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For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order

to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the

epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation.

The current gold standard for identification of the EZ is the seizure-onset zone (SOZ).

The fact, however that surgical outcomes are unfavorable in 40–50% of well-selected

patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new

biomarkers resulting in better postsurgical outcomes are needed. Research of recent

years suggested that high-frequency oscillations (HFOs) are a promising biomarker of

the EZ, with a potential to improve surgical success in patients with drug-resistant

epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as

a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs

as a clinically relevant biomarker stems predominantly from retrospective assessments

with visual marking, leading to problems of reproducibility and reliability. Prospective

assessments of the use of HFOs for surgery planning using automatic detection of

HFOs are needed in order to determine their clinical value. Second, disentangling

physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance

and the topographic location of presumed physiologic HFOs could be immanent for the

interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively

via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly

desirable, as it would provide us with the possibility to translate the use of HFOs to

the scalp in a large number of patients. This article reviews the literature regarding

these three issues. The first part of the article focuses on the clinical value of invasively

recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation

from physiologic HFOs. The second part of the article focuses on the current state of

the literature regarding non-invasively recorded HFOs with emphasis on findings and

technical considerations regarding their localization.
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1. INTRODUCTION

Despite more than 30 antiepileptic medication available on the
market (1, 2), about 30–40% of patients treated for epilepsy
continue to have seizures (3). For these patients with drug-
resistant focal epilepsy, surgery constitutes the most promising
treatment option in order to achieve seizure freedom (4–6).
The success of surgical interventions foremost depends on the
localization of the epileptogenic zone (EZ), defined as the area of
brain responsible for seizure generation (7). However, identifying
this brain region is challenging, as all available diagnostic tools
are not able to directly measure the EZ. Only post-hoc, after
surgery, and when seizure freedom is achieved, we are able to
conclude that the EZ had been within the resected area (7).
Consequently, results from multiple modalities are considered in
order to indirectly infer the location of the EZ. The current gold
standard for identification of the EZ is the seizure-onset zone
(SOZ). The fact, however that surgical outcomes are unfavorable
in 40–50% of well-selected patients (8), suggests that the SOZ
is a suboptimal biomarker of the EZ, and that new biomarkers
resulting in better postsurgical outcomes are needed.

High frequency oscillations (HFOs) have been proposed
as a promising biomarker of the EZ (9–15). HFOs are
spontaneous events occurring in electroencephalography (EEG)
or magnetoencephalography (MEG) signals, defined as at least
four oscillations with frequencies higher than 80 Hz, which
distinctively stand out from the background signal (16). HFOs
are divided into three subgroups: ripples (80–250 Hz), fast ripples
(250–500 Hz), and very-fast ripples with frequencies exceeding
even 500 Hz (17–20). Regarding epilepsy, studies suggested that
a resection of brain tissue generating high rates of HFOs may
lead to good post-surgical outcome (e.g., 21–23). The possible
value of HFOs recorded interictally is of special interest, as
this does not require to record seizures, a process which is not
only time and resource consuming, but also bearing the risk of
complications due to secondary generalization after lowering the
patients’ antiepileptic drugs. This notion of interictal HFOs as
a possible biomarker for the EZ has tipped the scale to further
pursue their investigation.

To establish HFOs as clinical biomarker for epilepsy,
three main issues still need to be tackled. First, evidence on
HFOs as a clinically relevant biomarker stems predominantly
from retrospective assessments with visual marking of HFOs,
leading to problems of reproducibility and reliability (24, 25).
Second, there are also physiologic, non-epileptic HFOs and
their existence poses a challenge, as disentangling them from
clinically relevant pathologic HFOs still is an unsolved issue
with considerable influence on HFO research (26–30). Such a
distinction is crucial to further investigate the clinical value of
HFOs in predicting outcome after epilepsy surgery. Third, most
findings on HFO research stem from invasive intracranial EEG
(iEEG) obtained from patients with drug-resistant epilepsy, as
part of their presurgical evaluation (e.g., 17, 31–34). Recording
HFOs non-invasively via scalp EEG and MEG is highly desirable,
as it would provide us with the possibility to translate the use of
HFOs to the scalp in a large number of patients, and to extend its
application from presurgical evaluation to monitoring of disease

activity and predicting seizure occurrence in vulnerable patient
populations. However, accurately recording HFOs on the scalp is
problematic, regarding artifacts mimicking HFOs (35–38), and a
low signal-to-noise ratio (39). Moreover, localizing the sources of
HFOs obtained on the scalp is challenging.

In the first part, this review considers findings from iEEG
recordings, assessing the value of HFOs for the localization of the
EZ. Furthermore, technical issues regarding HFO detection, and
findings regarding the appearance and location of physiologic
HFOs are presented. The normative values of invasively-recorded
HFOs are also discussed. In the second part, this article
focuses on findings of pathologic HFOs recorded non-invasively,
and discusses technical considerations regarding localization
of HFOs.

2. HIGH-FREQUENCY OSCILLATIONS IN
THE INTRACRANIAL EEG

Invasive EEG recordings performed in the context of presurgical
epilepsy evaluation in people with drug-resistant epilepsy provide
us with excellent data to investigate high frequencies in the EEG,
as they have a high signal-to-noise ratio and are less prone to
artifacts in comparison to non-invasive recording techniques.
Although these results are limited to this special population,
many studies point to a prognostic value of HFOs in predicting
the EZ (10–15, 22, 23).

Another limitation is the difficulty to perform prospective
studies within this population. A recently updated Cochrane
review by Gloss et al. (40) investigated the clinical value of HFOs
regarding decision making in epilepsy surgery. They identified
only two prospective studies and concluded that there is not
enough evidence so far to allow for any reliable conclusions
regarding the clinical value of HFOs as a marker for the EZ.
Despite this somewhat disillusioning result, general evidence
points to a potential clinical value as outlined in detail by
Frauscher et al. (16). In this section, we will (i) discuss the studies
that support the identification of HFOs as biomarker of the EZ,
(ii) present the few prospective trials that have been reported or
that are currently being conducted, and (iii) review important
aspects for the detection of HFOs. Lastly, we will (iv) review
means to distinguish physiologic from pathologic HFOs and
discuss normative values of HFOs.

2.1. HFOs as Biomarker of the EZ:
Evidence From Retrospective Studies
In a meta-analysis, Höller et al. (41) investigated whether
patients in whom high HFO generating areas had been resected
presented a better post-surgical seizure outcome in comparison
to patients in whom those areas had not been resected. They
found significant effects for resected areas that either presented a
high number of ripples or fast ripples. However, effect sizes were
small and only eleven studies fulfilled their selection criteria (41).
Since then, several studies investigated the predictive value of
HFOs, showing that the resection of areas with high rates of both
ictal (42–45), as well as interictal HFOs resulted in a favorable
surgical outcome (46–50). Better results regarding the outcome

Frontiers in Neurology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 94

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Thomschewski et al. HFO Localization in Epilepsy

prediction were reported for very-fast ripples than for ripples
and fast ripples (19, 20), which was attributed to the possibility
that very-fast ripples might be less prone to being mimicked
by physiologic activity or artifacts (19). However, it was also
noted that very-fast ripples have not been detected in all subjects,
making it only useful for a subgroup of patients (20).

Importantly, it has been suggested, that pre-surgically assessed
HFO rates might not be key in predicting seizure outcome, but
that high rates recorded after resection might be an indicator
of seizure reoccurrence (50–54), suggesting the importance to
disconnect HFO generating networks (53). Accordingly, Weiss
et al. (55) found that areas with fast ripples occurring on spikes
that were not resected during epilepsy surgery were linked to
a poor surgical outcome. This might also explain the high
specificities occasionally reported by some studies (42, 50, 52, 56).
Fedele et al. (56) for instance, reported on 20 patients with mesial
temporal lobe or extratemporal lobe epilepsy who underwent
resective surgery. Using a prospectively trained automated HFO
detector, the authors evaluated the accuracy of HFOs in post-
surgical outcome prediction, and reported a specificity of 100% in
predicting surgical success by combining ripples and fast ripples
as a biomarker.

Noteworthy, just this year (57) reported on results from three
tertiary epilepsy referral centers, in which surgical outcome was
correlated and predicted by the ratio of interictal HFO removal.
They found significant correlations between the resection of high
rates of ripples and fast ripples with surgical outcome. However,
individual analysis suggested that HFO assessment was only
associated with good surgical outcome in two thirds of their
patients (57). Concordantly, also Roehri et al. (58) reported that
HFOs are not better in predicting epileptogenic regions on an
individual level than spikes. These discrepancies and concerns
further stress the need for prospective trials.

2.2. HFOs as Biomarker of the EZ:
Prospective Studies
Höller et al. (41), searched pubmed in February 2015 and found
two prospective trials. Conducting another search using the
pubmed database with the terms “High frequency oscillation,”
we found 1,055 publications since 2015 (search conducted on
August 22nd, 2018). Screening these articles, we could identify
one additional publication on a prospective trial. Two further
trials are currently being conducted, and thus are registered in
trial databases (see Table 1). For this review, we considered trials
only to be prospective, if they entailed that findings on HFOs
were taken into consideration for surgical decision making.

Regarding the published results, Ramachandran Nair et al.
(62) reported on five children suffering from focal-onset epileptic
spasms. All five children received invasive video EEGmonitoring
using subdural grid electrodes and resective surgery afterwards.
Surgical decision was based on the findings of ictal HFOs
among other criteria. After surgical resection including the HFO
generating areas, all children yielded a reduction in seizure
frequency or were seizure-free (see Table 1 for more details). In a
second study, six children with neocortical epilepsy and unifocal
seizure onsets who underwent resective surgery were investigated

(61). Decisions regarding resection area and resection boundaries
were based on the SOZ and on ictal HFO findings in subdural
invasive recordings. Findings revealed a positive seizure outcome
of Engel class I or II in five out of six children. Just recently,
Leung et al. (60) reported on a cohort of epilepsy patients who
received iEEG recordings, from which ictal HFOs were analyzed
either visually or automatically using a wavelet-transform-based
analysis approach. In comparison with a previous cohort of
patients where no HFO analysis was performed, the authors
reported an increase of patients eligible for resective surgery from
70 to 76.5% following wavelet-transformed HFO analysis and
75% following visual HFO analysis. Accordingly, the rate of good
surgical outcome increased from 57 to 71.4% and 75%.

Regarding the ongoing studies, there are currently two
large trials conducted which aim at prospectively assessing the
clinical value of HFO analyses for surgical decision making. The
recently started SPREAD trial is a multi-center study including
several hospitals in France, where the clinical value of certain
biomarkers for surgical decision making in patients with focal
cortical dysplasia will be evaluated (59). The investigators plan
to recruit up to 240 patients and one biomarker of interest
will be the interictal HFO distribution obtained by invasive
stereo-EEG recordings. The second study will assess the value
of interictal HFOs for delineating the EZ in intraoperative
electrocorticography (63). Surgery tailored by HFOs and surgery
tailored by interictal spikes will be compared with respect to
surgical outcome.

What becomes apparent upon reviewing the literature is that
despite notable findings suggesting that HFOs might provide us
with a valuable biomarker for epileptogenicity, there are also
concerns regarding their reliability as a marker (50, 51, 53, 57).
This stresses the need for prospective multi-center trials enabling
clinicians to quantify a potential value. In the context of this need,
it becomes important to answer the question on how we can best
and least time consuming assess HFOs and how we can separate
epileptic from non-epileptic physiologic HFOs.

2.3. Detection of HFOs
Various groups have reviewed the technical aspects of HFO
detection (see e.g., 39, 64, 65). The detection of HFOs is a
challenging task, mainly due to their usual low signal-to-noise
ratio, their association with other epileptic activity, and the
still open questions regarding their nature and definition. We
can summarize the process of detecting HFOs in three steps:
recording of the signals, HFO detection, and HFO validation.
Here we will summarize the approaches and practical technical
guidelines to execute them.When recording, we need to consider
appropriate temporal and spatial sampling of the signals. For
an appropriate temporal sampling, we need a recording system
that allows to record at least three times the highest frequency of
interest, with a low noise level for high frequencies (39, 65, 66).
Regarding spatial sampling, the literature suggests that clinical
SEEG electrodes are a very good option, thanks to their robust
HFO measurements (65, 67–70), their safety surgical record
(65, 71), and their sampling scale, which represents a good
compromise between micro and macro-scales (17, 39, 65, 68, 72).
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HFO detection has greatly benefitted from the development
of automated detectors (see 64, for a 2016 review) (30, 54,
73–76). It is well-known that visual HFO detection is very
time-consuming, and the reliability of this procedure has been
questioned on several occasions (16). Just recently, Spring et al.
(25) investigated the interrater reliability of visual HFO detection
in iEEG recordings. Even though the experts were presented with
an automatically detected set of possible HFOs, the evaluation
agreement for these events was poor with a mean Cohen’s
Kappa of 0.4. Furthermore, it was shown that HFO rates for
given recording channels vary over time, leading to inconsistent
sources (77). Automatic detectors help to minimize the time
required for HFO detection and to reduce the bias induced by
human raters.

Many detectors work by first bandpass filtering the signal
around the frequencies of interest (i.e., the ones of ripples
or fast ripples). Many of them use forward and backward
filtering to eliminate phase distortion (24, 78–81), and use Finite
Impulse Response (FIR) filters that in comparison to Infinite
Impulse Response (IIR) filters have less tendency to oscillate and
have linear phase properties (64, 67). Their general aim is to
differentiate the HFO events from the background activity (39).
When working with existing detectors, it is important to consider
that the design of automatic detectors is based on a definition
of HFO, which is not yet standardized in the field. A common
definition is that of events with at least four oscillations in a
frequency range from 80 to 500 Hz that “distinctively” stand
out from the background signal. This definition, however, lacks
precision, and thus various groups applied different ways to
interpret and implement it (82).

Furthermore, the detectors are optimized for the data-set for
which they were designed. Therefore, to obtain good results
when working with an existing detector, it is advisable to train
and validate it on a data-set with similar characteristics to the
one of interest (39, 81). The quality of the detections can also
be affected by muscle activity, as it can contaminate the signal
resulting in increased power in the HFO frequencies of interest
(39, 69, 83, 84). This latter is less of a problem in iEEG. Another
important aspect to consider is that the filtering process itself
can produce spurious oscillations, and can therefore contaminate
the data (64, 79). For example, filtering of sharp EEG events,
including spikes, can result in filtering effects mimicking HFOs
(39, 70, 79). To minimize the contamination introduced by the
filtering process, Navarrete et al. (64) and Bénar et al. (79) give a
series of recommendations to choose an adequate configuration
to minimize filter distortions and to handle these artifacts,
when detecting HFOs, accordingly. For clinical purposes though,
Burnos et al. (85) showed that both spike-related and non-related
HFOs are likewise markers of epileptogenicity.

To minimize the number of true undetected HFOs (false
negatives), a typical approach is to set the automatic detector
to work with high sensitivity and low specificity (24, 38, 86,
87). Given the low specificity, the next step is the validation
of the automatic detections by an expert reviewer to discard
false positive detections. Zijlmans et al. (65) give practical
guidelines on the visual identification process for reviewers. As
different reviewers might have different definitions of HFOs and

training, this is a highly subjective step. A common approach to
account for inter-reviewer reliability is to consider more than one
reviewer, checking for consistency in the markings (24, 38, 86,
87). Nonetheless, to account for the lack of reproducibility and
possible bias that comes from relying on the selection performed
by an expert, there is a need for standardized automated detection
strategies and the definition of a gold standard for detection
(25, 39, 64, 65).

2.4. Physiologic vs. Pathologic HFOs
The fact that HFOs are not only pathologic in nature but
also occur under physiological conditions is a further challenge
when assessing the validity of HFOs as a marker for epilepsy.
Distinguishing pathologic from physiologic HFOsmight increase
the specificity of that marker. This requires defining HFOs to be
considered either being physiologic or pathologic. For instance,
continuous high frequency activity in the background EEG
has been suggested to reflect physiologic activity distinctive for
certain brain regions, such as the hippocampus or the occipital
lobe (88). Concordantly HFOs have been considered to reflect
epileptic activity when observed on a flat background, and not
when they are embedded in an oscillatory background (13). Just
recently, Liu et al. (89) reported on a morphological difference
between HFOs obtained in patients with epilepsy and healthy
controls, associating stereotypical HFOs with a high degree of
waveform similarity to the SOZ of patients and HFOs appearing
within random waveforms to functional regions.

In addition, HFOs couple with interictal epileptiform
discharges (IEDs), such as spikes, can be considered to reflect
epileptic activity as there is a clear association with pathology,
and indeed, they have been shown to bemore specific for the SOZ
than independent HFO events (90). Furthermore, it has been
suggested that the physiologic nature pertains mainly to ripples
and that fast ripples mostly represent epileptic activity in these
areas (31, 89, 91, 92). In this context, very-fast ripples might even
more exclusively reflect epilepsy-related activity, making them a
very promising candidate for clinical use, when present (18–20).

There is also the possibility to identify HFOs as being
physiologic by associating them with certain physiologic
processes. There are, for example, certain physiologic HFOs
linked to specific cognitive processes that can be observed in
special conditions or can be even evoked by tasks or stimuli.
The different types of physiologic HFOs are presented in Table 2.
Noteworthy, in this review article we focus on oscillations with
frequencies above 80 Hz only. A more detailed description of the
gamma band oscillations and their role for cognitive processes
are provided in a comprehensive review by Lachaux et al. (117).

Distinguishing Physiologic From Pathologic HFOs
In 2013, Matsumoto et al. (118) reported on the possibility
to distinguish somatosensory associated HFOs from epileptic
HFOs in patients with intracranial EEG recordings. They evoked
somatosensory HFOs by asking patients to press digits on a
keyboard, and compared the detected events to spontaneously
occurring HFOs. Pathologic HFOs were found to have lower
mean frequencies but longer durations when compared to
physiologically evoked events. Automated classification revealed
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TABLE 2 | Different types of physiologic HFOs.

Type Localization Relevant findings

Memory-related HFOs Hippocampus,

parahippocampus,

entorhinal cortex

Spontaneously and bilaterally occurring (17, 31, 68, 78); coupled with neocortical sleep spindles (93–95);

occurrence rate correlates with memory performance (96–98)

Motor-related HFOs Motor cortex,

subthalamic regions

Occur over motor areas (77, 99); highly localized and movement specific (100); associated to symptoms in

Parkinson’s disease and tremors (101–104)

Somatosensory HFOs Somatosensory cortex,

thalamic regions

Overly the P20 and N20 components of SEPs (105–107); HFOs overlying the ascending N20 phase, possibly

reflect presynaptic action potentials and are linked to arousal and critical stimuli detection (108–110); HFOs

overlying the descending N20 phase may reflect bursts of inhibitory interneurons (111, 112)

Visually evoked HFOs Occipital lobe,

visual cortex

Spontaneously occurring (90, 92); possibly related to processing of visual stimuli (113–115); evokable by visual

stimuli (116)

SEPs, somatosensory evoked potentials.

high sensitivity and specificity in classifying pathologic HFOs.
Evoked physiologic HFOs detected on electrodes within the SOZ
also differed from evoked HFOs recorded from other sites and
appeared to be more similar to epileptic HFOs. Comparable
results have been obtained for HFOs that can be evoked by visual
stimulation (116), yielding also higher frequencies and shorter
durations in comparison to epileptic HFOs (118).

A recent study by Bruder et al. (119) could further
show that certain features are marginally different between
memory-related ripples that appear linked to sleep spindles
and supposedly epileptic ripples. Spindle-linked ripples seem
to be shorter and appear to have lower amplitudes (119). In
addition, both spindles and physiologic HFO activity were found
to be increased during the “up-state” and decreased during
the “down-state” of slow oscillations during deep sleep (26,
120). Accordingly, epileptic HFOs have been shown to appear
increasingly during the “down-state” or the transition to it
(121). Implementing these findings into the process of detecting
HFOs and classifying iEEG channels according to epileptic
or non-epileptic brain regions, von Ellenrieder et al. (122)
showed enhanced classification performance after considering
the different coupling to slow waves.

Besides memory-related HFOs, the study of Nonoda et al.
(123) indicates that HFOs recorded over somatosensory and
visual cortices that seem to reflect physiologic processes are also
linked to slow waves (123). In comparison to epileptic HFOs,
which were found to couple with slow waves at 3Hz, these
physiologic ripples were further found to couple with even slower
waves at 1 Hz during sleep in a study by (116). Similar to the
results presented in the study by von Ellenrieder et al. (122)
also Nonoda et al. (123) found that considering the different
types of slow-wave coupled HFOs and interpreting the seemingly
pathologic HFO rates only, significantly increased the prediction
accuracy for the SOZ.

In addition to slow wave phases, sleep stages have also been
found to modulate the occurrence of HFOs. HFOs in general
are considered to appear most frequently and most widespread
during NREM sleep, whilst being the least frequent and most
focal during REM sleep (124–127). However, there seems to be a
difference between physiologic and pathologic HFOswith respect
to the sleep stages. In contrast to pathologic HFOs, physiologic

HFOs appear predominantly during phasic REM sleep (128) and
seem to increase in rate over night during REM sleep (127). von
Ellenrieder et al. (127) further found pathologic ripples and fast
ripples to decrease with increased duration of sleep. Therefore,
for clinical HFO evaluation, the authors suggested to analyze the
night’s first NREM sleep. Interestingly, it was also shown that
the occurrence of pathologic HFOs in close proximity to the EZ
might be less suppressed during REM sleep (126).

Although the possibility to evoke physiologic HFOs presents
an exciting way to study these phenomena in more detail and
to investigate possible differences to epileptic HFOs, considering
the different appearance rates during certain sleep stages seems
more profitable at this point. Importantly it has also been
acknowledged that there are great variations and overlap in
appearance and rates of physiologic HFOs with regard to the
topographic location, suggesting that establishing normative
values for these various appearance rates might improve the use
of HFOs for clinical purposes even further (129).

Normative Value of HFOs
The ability of HFOs as a biomarker for the EZ might
be improved by correcting HFO rates according to their
topographic localization. As mentioned before, rates of ripples
vary substantially across different brain regions. A multicenter
project aiming at developing normative values of iEEG activity
(see 130) investigated this question by carefully selecting iEEG
channels showing normal physiologic EEG activity defined as
(i) absence of interictal activity during the recording period, (ii)
exclusion of a significant slow wave anomaly, and (iii) being
outside of lesional tissue as assessed with MRI. In a subproject
of this atlas of normative iEEG activity, normative rates of
HFOs (ripples and fast ripples) were assessed (131). A total of
1,171 bipolar channels with normal physiologic activity from
71 patients were analyzed. Note is made that rates of ripples
varied substantially across the different regions analyzed, with
rates of up to 30/min in primary eloquent cortical areas. The
mean 95th percentile was 9.6/min. The highest 95th percentile
rates were recorded in the occipital cortex, the medial and basal
temporal region, the transverse temporal gyrus and planum
temporale, the pre- and postcentral gyri, and the medial parietal
lobe (see Figure 1).
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FIGURE 1 | Physiologic ripple rate results for bipolar channels recorded with DIXI electrodes, represented on the inflated cortex. Top: 95th percentile of the

physiologic ripple rate per brain region. Bottom: rate of the individual channels, each dot represents a channel, the size and color indicates its ripple rate (left: lateral

view, right: medial view). Source: Frauscher et al. (131) with permission from Wiley.

The mean rate of fast ripples was very low with 0.038/min.
Only 5% of channels had a rate of at least 0.2/min. This
multicenter atlas is the first to provide region-specific normative
values for physiologic HFOs in a common stereotactic space. It
demonstrated that physiologic ripples are particularly frequent
in eloquent cortical areas. In contrast, physiologic fast ripples are
very rare, even in eloquent cortical areas, which makes them a
better candidate for defining the EZ, when present. This atlas is
an open resource available for augmentation and consultation on
the web (http://mni-open-ieegatlas.research.mcgill.ca).

3. HFOS OBTAINED FROM NON-INVASIVE
RECORDINGS

In the previous sections we have reviewed findings regarding
invasively obtained HFOs and the possible value for presurgical
evaluation in epilepsy. However, the ultimate goal for a new
biomarker of epileptogenicity would be to record it non-
invasively, thus sparing patients the invasive procedure of
electrode implantation. Furthermore, non-invasive recordings
are of interest, as they enable us to study HFOs in larger
populations and not only for pre-surgical evaluation, but also
for drug and disease monitoring, or even for the assessment
of epileptogenic potentials after brain injury. In this section,
we will present findings of ictal and interictal HFOs obtained
from both EEG and MEG. Finally, we will emphasize findings
regarding source localization of HFOs and review important
technical considerations.

3.1. HFOs on the Scalp EEG
Similar to research of iEEG in the context of epilepsy, high
frequencies were first investigated in the ictal state in scalp
EEG recordings (132, 133). Furthermore, high frequency activity,
that is frequency band power ranging above 80 Hz, rather
than single HFO events, were studied first. For instance, in

2004 Kobayashi et al. (132), reported on high gamma activity
of up to 100 Hz recorded during epileptic spasms in children
with West-Syndrome. Comparable findings were obtained for
the onset of tonic seizures in children with Lennox-Gastaut
syndrome (133). Iwatani et al. (134) could show a few years
later that sources of HFOs recorded at spasm onset in children
withWest-Syndrome spatially corresponded with cortical lesions
determined by neuroimaging. A chronological list of scalp EEG
studies investigating high frequency activity and later HFO
events is given in Table 3.

Regarding the investigation of interictal HFOs, the first study
using scalp EEG was published in 2010 by Kobayashi et al.
(135). They recorded children with epilepsy and continuous
spike-waves during sleep and found ripples co-occurring with
epileptic spikes. In concordance with these results, the Montreal
group reported for the first time an association between
interictal ripples and epileptic spikes recorded non-invasively
in adult patients (38). Since then several studies addressed the
relationship between HFOs and IEDs (88, 137, 140, 142, 144,
147). In this context, Melani et al. (88) reported that ripple rates
seem to relate to the rates of IEDs. van Klink et al. (147) further
showed that ripples preceded IEDs, suggesting an interrelation
between these phenomena, and excluding the possibility of these
ripples to be artificially created due to filtering effects.

Importantly, when dealing with scalp EEG in the absence of
iEEG findings, assessing the clinical value of HFOs with regard
to the EZ becomes more difficult. In the absence of epilepsy
surgery, the value of HFOs can only be assessed according to
their localizing value of the SOZ or an epileptic lesion. As such,
Andrade-Valenca et al. (38) investigated the localizing value of
ripples for the scalp electrodes detecting the seizure onset. They
found significantly more ripples on these electrodes yielding an
81% accuracy to identify the SOZ channels. Furthermore, ripples
yielded a lower sensitivity but higher specificity than spikes in
this context, a result that was also reported by Melani et al.
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(88). In order to increase the possibility to detect ripples on the
scalp, using a larger coverage with more electrodes seems to be
promising. Kuhnke et al. (157) just recently reported that the
usage of a high-density scalp EEG with 128 electrodes did not
only yield an increased detection rate of ripples, but an increased
correspondence with iEEG results. Though not using source-
localization in a strict sense, they were able to co-localize ripples
more accurately to iEEG electrodes within areas that had been
resected when using 128 electrodes as compared to only using 20
electrodes, which often led to false localizations (157).

Cuello-Oderiz et al. (149) showed that interictal scalp HFOs
are predominantly recorded in epilepsy patients with superficial
lesions compared to deep-seated foci. In another study, scalp
HFO dominant regions were found to be concordant with
MRI abnormalities in patients with structural etiologies (151).
Patients with focal epilepsy were further found to have greater
thalamic BOLD changes during IEDs when yielding high rates
of interictal scalp HFOs accompanying those discharges (137).
The occurrence of ripples was therefore associated with a more
pronounced pathology of cortical-thalamo-cortical networks.

In accordance with the findings of ripples reflecting
epileptogenesis, a possible application is the prediction of seizure
activity. In children with Rolandic spikes, ripples were shown
to predict the occurrence of seizures, and their rates differed
significantly between self-limited and atypical or symptomatic
courses (148). A similar observation was made by Qian et al.
(146) and 2 years later by Ikemoto et al. (155), reporting on
interictal ripple rates identifying atypical forms in childhood
epilepsy with centrotemporal spikes. Qian et al. (146) further
found interictal ripples to sensitively monitor the response to
pharmacological treatment with methylprednisolone. Sensitive
treatment response assessments using scalp HFOs were also
reported for children suffering from epileptic encephalopathy
with continuous spike-and-wave during sleep treated with
methylprednisolone (151), and for children with hypsarrhythmia
in West syndrome being treated with adrenocorticotropic
hormones (141).

Noteworthy, there is also one report of scalp HFOs obtained
in non-epileptic children by Mooij et al. (150). The authors
found ripples in subjects who did not present with seizures
or any interictal epileptiform activity using a standard 10–20
montage (150). This result fosters the idea of using scalp EEG
not only for clinical purposes but also as a possibility to study
“pure physiologic” HFOs in healthy subjects. The same authors
showed that these physiological ripples were coupled to sleep-
specific oscillations in children (158). On another note, all but
two studies on scalp HFOs reported on frequencies below 250
Hz only. Of course, technical issues arising when trying to detect
ripples are magnified for the detection of fast ripples. This is
exactly the observation made by Pizzo et al. (145). They showed
that a detection of frequencies >250 Hz is possible, although
it is difficult and fast ripples are far less observable in scalp
EEG signals than ripples due to their smaller generators and
the amplifier noise at frequencies above 200 Hz (145). Just
recently, Bernardo et al. (154) reported on the possibility to detect
fast ripples in children with tuberous sclerosis complex. They
speculate, that a detection of oscillations above the ripple band

may be more feasible in children, as the skull is thinner in a
pediatric population, leading to a decreased signal attenuation
(154). Use of a low-noise amplifier might be helpful to overcome
this challenge (56, 159).

3.2. HFOs in MEG
Similar to EEG, MEG recordings have an excellent temporal
resolution. While EEG records electric fields that are sensitive
to both tangential and radial dipole sources, MEG records
magnetic fields and is sensitive to tangential dipolar sources (160)
and is more selective for activity arising from fissural cortices
than the EEG (161). Magnetic fields are less prone to volume
conduction effects than electric fields. Therefore, MEG presents
some advantages over EEG to reconstruct the neural sources
responsible for the activity recorded at the scalp, which is done
by means of magnetic source imaging (MSI) techniques (162).

Hand in hand with the investigation of HFOs using scalp
EEG, researchers started to investigate the possibility of using
MEG as well (see Table 4 for an overview). The early studies also
focused on high frequency activity rather than on discrete events
embedded within the MEG/EEG signals (163–165). However,
Guggisberg et al. (163) showed that source localizing spike-locked
beta/gamma MEG activity identified the surgically resected area
in patients with a good post-surgical outcome, with an accuracy
of 85%.

When applying strict criteria for HFOs as single events, as
described by Zijlmans et al. (65), interictal MEG studies reported
lower event rates than in EEG recordings (87, 173). van Klink
et al. (173) for example reported to find ripples only in three out
of 12 patients analyzing 15 min of interictal MEG recordings.
The detection rate was significantly increased when considering
virtual sensors created via beamforming as compared to sensors
alone (173). Especially combining methods such as beamforming
with automated HFO detection algorithms resulted in a high
sensitivity for interictal MEG recordings (87, 174). However,
visual supervision of the automatic detection results is necessary
in order to reduce false positive detections (87, 174).

Along with interictal HFO analyses, ictal MEG activity is
also a subject of active investigation. Using MSI, Miao et al.
(167) showed that ictal HFOs were spatially more refined than
spikes and reliably localized a propagative pattern during absence
seizures in childhood absence epilepsy (167, 168). Velmurugan
et al. (175) just recently demonstrated the benefit of MSI in a
large sample of patients with drug-resistant focal epilepsy. They
were able to localize the EZ using ictal HFOs concordantly with
other modalities; surgery of this identified zone performed in
six patients led to seizure freedom in all of these six patients.
Interestingly and differently to scalp EEG research, very high
frequency components of up to 1,000 Hz have been recorded
using MEG. Also, these frequencies could be localized to areas
associated with the SOZ (164, 166). Xiang et al. (170) later even
reported on frequencies up to 2,000 Hz. However, these studies
did not investigate distinctive electrophysiological events, but
merely frequency components of the recorded signals.

As revealed by studies that investigated both MEG and EEG,
there are ripples observable in one modality that remain unseen
in the other and vice versa (87, 153). These studies show a
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FIGURE 2 | Depicted are examples from a 34 year old female patient undergoing presurgical evaluation including stereo EEG recording at the Montreal Neurological

Institute and Hospital. She presented with a MRI-negative drug-resistent epilepsy and a seizure semiology suggestive of a right frontal and possible orbitofrontal

generator. Scalp EEG with 25 electrodes recorded at a sampling frequency of 600 Hz showed interictal and ictal changes over right frontotemporal electrodes.

Implantation showed continuous spiking over the lateral orbitofrontal region (electrode ROF 8–9). The patient underwent resection and is now seizure-free (Engel class

1) since 8 years. Neuropathology confirmed FCD IIb. Shown are a true ripple over Fp2-F10 contrasted to a muscle artifact over T10-P10 as well as a ripple and fast

ripple recorded invasively at electrode ROF. All examples are given as filtered EEG signals at 80 or 250 Hz respectively, unfiltered signals, and time frequency plots.

Note the isolated blobs in case of “true” HFOs.

superior detection rate of ripples in scalp EEG. However, MEG
ripple sources appeared to be more specific for the identification
of epileptogenic tissue (87). Taking this into consideration, as well
as the fact that source localization performance increases with
the number of events, a combination of MEG and EEG might be
very beneficial for both the detection and localization of interictal
HFOs. Ultimately, such an endeavor is worthwhile compared to
the expenditure that comes with invasive EEG monitoring and
further diminishes sampling errors resulting from the restricted
area investigated with intracranial electrodes.

3.3. Technical Issues and Obstacles of
Non-invasive Recording of Scalp HFOs and
Source Localization
Besides the challenges described for intracranial recording and
detection of HFOs, there are other additional difficulties we need
to face at the scalp level. Scalp recordings lack the excellent
spatial resolution of intracranial recordings and therefore, we
need to use mathematical algorithms called inverse solutions, to
estimate where in the brain the signals are being generated. The
whole head coverage with a high number of sensors of MEG
and HD-EEG systems gives a global view of the brain activity,
and a spatial sampling that is expected to facilitate the source

localization procedure (compared to traditional EEG systems).
Nonetheless, this high number of sensors represents a challenge
for the visual detection and validation of HFOs given the amount
of information needed to process. Thus, the HD-EEG and
MEG HFO detection requires the implementation of automated
detectors that allow to run the analysis in a suitable time frame.
As in iEEG, a common approach is to use an automatic detector
as a first step on the detection process, and then visually validate
the detections (24, 38, 86, 87). An open question regarding the
scalp spatial sampling is how many channels would be necessary
to identify and localize MEG and scalp EEG HFOs.

Also, it is important to consider that artifacts produced by
movement, muscle activity, and poor electrode contact have
similar characteristics as HFO events (35–38). An example is
given in Figure 2, which shows a “true” ripple obtained via
scalp EEG and a muscle artifact, that, when filtered, mimics a
ripple. Please note the difference in signal-to-noise ratio and
the difference in duration in case of the muscle artifact. The
figure also shows a ripple and fast ripple obtained using invasive
stereo EEG for comparison. As the signal-to-noise ratio is
more favorable in intracranial as compared to scalp EEG, and
artifacts are more prominent in scalp as compared to iEEG,
scalp EEG requires a very thorough differentiation to artifacts.
As explained in section 2.4, it would be therefore advisable to
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assess HFOs during NREM sleep, especially when analyzing scalp
EEG recordings.

Although the scalp identification of HFOs is informative,
for clinical purposes we are interested in the brain areas that
give rise to this activity. Reconstructing these sources constitutes
an inverse problem, which requires the use of mathematical
algorithms called inverse solutions to address them. Various
inverse solutions exist in the literature, which mainly differ from
one another by the assumptions on the neuronal sources and
on the noise. Knowledge of the characteristics of the sources
is therefore highly helpful when designing and implementing
the inverse solution for source reconstruction (176). When
source-localizing HFOs, it is important to consider that they
are oscillatory transients that are not necessarily mutually phase
locked, and therefore can be removed, when applying methods
on averaged trials and are associated with low signal-to-noise
ratio (39). Currently, there are various Open Source Software
solutions for the analysis of EEG and MEG signals that include
implementations of different inverse models and tutorials where
the reader can have a further introduction to this subject (i.e.,
177–179).

Up to now HFO source reconstruction has only been
performed using MEG. The most frequently used method for
HFO source reconstruction are the beamformers (74, 167, 173–
175, 180, 181). The beamformers use a set of spatial filters to
scan the source space. The spatial filters are designed to pass the
brain activity from a specified location while attenuating activity
originating at other locations. Beamformers have been widely
used in the neuroscience literature to reconstruct the activity of
oscillatory sources at the HFOs frequencies of interest, and they
have been shown to be robust to different levels of signal-to-
noise ratio (182–187). A more recent method, especially suited
to localize HFO events is based on the wavelet-based Maximum
Entropy on the Mean method (wMEM; 188). The wMEM was
designed to localize single-trial events of oscillatory transient
cortical activity which is usually associated with low signal-to-
noise ratio. wMEM has been proved to correctly localize HFOs
events in realistic simulations (188) and has been used to localize
HFOs detected at the scalp in MEG (87, 143).

4. CONCLUSION AND FUTURE
DIRECTIONS

With the present article we aimed to provide a comprehensive
overview of the current state of HFO research in epilepsy. There
is an increasing body of evidence pointing toward the use of
HFOs for delineating the EZ. However, there is still a lack of
evidence derived from prospective clinical trials evaluating the
clinical value of such a biomarker. Prospective trials are needed
in order to assess the potential value of HFOs, especially as there
are still concerns regarding the potential of HFOs as a reliable

clinical marker (58). Therefore, it is indicated that conclusions of
findings, especially with regard to surgical decision-making, need
to be taken with caution.

Furthermore, the development and implementation of a
framework for standardized HFO detection needs to be pursued,
in order to reduce biases (16, 25) and make the analysis of HFOs
useful in clinical routine. Therefore, automatic detectors need
to be further investigated and existing algorithms need to be
systematically evaluated in order to enable prolonged analysis
of multiple recordings as well as the reliable detection of HFOs.
The existence of physiologic HFOs in multiple areas of the brain
is another obstacle that needs to be tackled. Identification of
physiologic events is of special importance when it comes to
source localization of HFOs as including them will obviously
seriously alter the results. It awaits confirmation if normalizing
HFO rates for the different brain regions as possible with the
recent availability of an atlas on physiologic HFOs will indeed
increase the specificity of pathologic HFOs.

Nonetheless, the increasing amount of findings suggesting
also non-invasively obtained HFOs to be of use should fuel
further research, as they give hope that localized sources of
pathologic HFOs might improve guidance for resective surgery
in the future and spare iEEG recordings. Novel markers such as
very-fast ripples of up to 2,000 Hz (18–20), and more advanced
analyses considering the network properties of HFOs (189–191)
provide further exciting novel approaches for future research.
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