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ABSTRACT 

 

 Recording the neural activity of human subjects is indispensable for fundamental 

neuroscience research and clinical applications.  Human studies range from examining 

the neural activity of large regions of the cortex using electroencephalography (EEG) or 

electrocorticography (ECoG) to single neurons or small populations of neurons using 

microelectrode arrays.  In this dissertation, microscale recordings in the human cortex 

were analyzed during administration of propofol anesthesia and articulate movements 

such as speech, finger flexion, and arm reach.  Recordings were performed on epilepsy 

patients who required long-term electrocorticographic monitoring and were implanted 

with penetrating or surface microelectrode arrays. 

 We used penetrating microelectrode arrays to investigate the effects of propofol 

anesthesia on action potentials (APs) and local field potentials (LFPs).  Increased 

propofol concentration correlated with decreased high-frequency power in LFP spectra 

and decreased AP firing rates, as well as the generation of large amplitude spike-like LFP 

activity; however, the temporal relationship between APs and LFPs remained relatively 

consistent at all levels of propofol anesthesia.  The propofol-induced suppression of 

neocortical network activity allowed LFPs to be dominated by low-frequency spike-like 

activity, and correlated with sedation and unconsciousness.  As the low-frequency spike-

like activity increased, and the AP-LFP relationship became more predictable, firing rate 
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encoding capacity was impaired.  This suggests a mechanism for decreased information 

processing in the neocortex that accounts for propofol-induced unconsciousness. 

 We also demonstrated that speech, finger, and arm movements can be decoded from 

LFPs recorded with dense grids of microelectrodes placed on the surface of human 

cerebral cortex for brain computer interface (BCI) applications using LFPs recorded over 

face-motor area, vocalized articulations of ten different words and silence were classified 

on a trial-by-trial basis with 82.4% accuracy.  Using LFPs recorded over the hand area of 

motor cortex, three individual finger movements and rest were classified on a trial-by-

trial basis with 62% accuracy.  LFPs recorded over the arm area of motor cortex were 

used to continuously decode the arm trajectory with a maximum correlation coefficient of 

0.82 in the x-direction and 0.76 in the y-direction.  These findings demonstrate that LFPs 

recorded by micro-ECoG grids from the surface of the cerebral cortex contain sufficient 

information to provide rapid and intuitive control a BCI communication or motor 

prosthesis. 
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CHAPTER 1 

 

INTRODUCTION 

 

Recording the neural activity of human subjects is indispensable for fundamental 

neuroscience research and clinical applications.  Human neural recordings allow us to 

extend established neuroscience studies in animals and to address the mechanisms of 

higher cognitive functions not found in animals.  Human studies range from examining 

the neural activity of large regions of the brain using grids of electrodes such as 

electroencephalography (EEG) or electrocorticography (ECoG) to assessing the neural 

activity of single neurons or small populations of neurons using microelectrode arrays.  In 

this dissertation, microscale recordings in the human cortex are examined during propofol 

anesthesia and articulate movements such as speech, finger flexion, and arm reach. 

 

1.1 Background 

1.1.1 Electroencephalography 

 Researchers have a variety of tools to choose from when studying brain function.  

Assessing cortical electrical activity originated with the development of EEG by Hans 

Berger (Berger 1929).  EEG grids are electrodes placed on the scalp surface to record 

cortical activity noninvasively.  EEG continues to be used by many researchers to 
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examine neural activity during different cognitive states or behavioral tasks.  EEG can 

provide a global assessment of cortical activity, but has prohibitively low temporal and 

spatial resolution. 

Specifically, EEG has been used globally to assess neural activity during the 

administration of propofol anesthesia and motor control.  With increased propofol 

administration in human subjects, EEG investigations demonstrate that cortical activity 

shifts from a high-frequency, low-amplitude signal to a low-frequency, high-amplitude 

signal (Feshchenko et al. 2004).  As propofol concentration is further increased, the EEG 

signal develops a burst suppression pattern with flat low-amplitude periods interspaced 

between high alpha and beta activity (Clark and Rosner 1973) and at the highest levels of 

propofol sedation, the EEG signal becomes isoelectric (Claassen et al. 2002).  

Alternatively, brain computer interface (BCI) studies have shown that human subjects 

can use signals recorded with EEG to indirectly communicate by spelling words 

(Birbaumer et al. 1999; Schalk et al. 2004), to move a computer cursor (Felton et al. 

2009; Huang et al. 2009; Wolpaw and McFarland 2004), and to provide 1-Dimensional 

control of a prosthetic arm (Hazrati and Erfanian 2010; Lauer et al. 1999; Pfurtscheller et 

al. 2000).  Although EEG signals can provide information on the effects of propofol on a 

global scale, EEG signals cannot provide the fine-scale resolution necessary for intuitive 

control of a prosthetic device. 

 

1.1.2 Electrocorticography 

ECoG has become common for recording neural activity in human subjects because 

of its clinical ubiquity in preparing patients for the surgical treatment of epilepsy (Feindel 
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et al. 1952).  For patients who have medically refractory epilepsy, ECoG grids are placed 

on the surface of the cortex for a one- to two-week period to localize the epileptogenic 

zone and eloquent cortex (Figure 1.1A).  Patients volunteer for neurophysiological 

research studies and their neural activity is recorded during their hospital stay while they 

are in different cognitive states or perform behavioral tasks.  Because ECoG electrodes 

are closer to the desired signals, they can record neural signals with a higher signal-to-

noise ratio and higher spatial resolution than EEG (Buzsaki et al. 2012; Cooper 1965). 

Specifically, ECoG has been used to assess neural activity during propofol anesthesia 

and motor control.  With the induction of anesthesia, the neural activity recorded with 

ECoG electrodes increased in delta band (1–2 Hz) power and decreased in gamma band 

(37–205 Hz) power.  In addition, the correlation between the phase of the delta band (1–4 

Hz) and the power of the gamma band (23–165 Hz) strengthened with propofol 

anesthesia (Breshears et al. 2010).  For BCI studies, neural activity recorded from ECoG 

electrodes has been used in the classification of spoken words or phonemes (Blakely et 

al. 2008; Chang et al. 2010; Leuthardt et al. 2004), classification of finger movements 

(Chestek et al. 2013; Kubanek et al. 2009; Miller et al. 2012; Miller et al. 2009; Pistohl et 

al. 2012) and continuous decoding of arm movement (Chao et al. 2010; Ganguly et al. 

2009; Pistohl et al. 2008; Pistohl et al. 2013; Sanchez et al. 2008; Schalk et al. 2008).  

With training periods of many days, cortical signals recorded with ECoG over 

sensorimotor cortex were able to provide a patient with tetraplegia limited control of a 

prosthetic arm (Wang et al. 2013).  ECoG recordings in human cortex are limited to one 

or two electrodes modulating with a specific movement (Leuthardt et al. 2004; Menon et 

al. 1996; Milekovic et al. 2012).  Because of this, some ECoG studies use indirect, 
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nonintuitive signals such as the movement of the tongue to control a computer cursor 

(Leuthardt et al. 2004; Schalk et al. 2008).  ECoG electrodes are typically millimeters in 

diameter with interelectrode spacing on the centimeter-scale.  ECoG grids likely spatially 

integrate and under-samples the information represented in the cerebral cortex at the scale 

of cortical columns.  To examine the effects of propofol anesthesia on single neurons and 

small populations of neurons as well as decode neural activity during articulate 

movements, higher spatial resolution recording technology is necessary. 

 

1.1.3 Microelectrodes 

Microelectrode arrays have the ability to record highly localized neural activity.  Both 

surface and penetrating microelectrode arrays are able to record microscale LFPs from a 

small population of neurons.  LFPs recorded with high-impedance microelectrodes are 

thought to be generated by synaptic potentials (Katzner et al. 2009; Khawaja et al. 2009; 

Mitzdorf 1985; Nunez and Srinivasan 2006).  While the spatial extent of LFPs are 

debated, they likely represent coordinated neural activity of cortical microcircuits, e.g., 

cortical columns (Mountcastle 1978).  High-impedance electrodes have a limited 

recording radius and record neural signals with minimal spatial integration (Tsanov et al. 

2011).  Therefore, microelectrode arrays can have smaller interelectrode spacing and 

prevent the issue of under-sampling cortical activity. 

Penetrating microelectrode arrays, unlike EEG and ECoG, are able to record APs 

from individual neurons and microscale LFPs (Figure 1.1B) (Buzsaki et al. 2012).  The 

first report of successful single-unit recording in the human neocortex was in 1955 (Ward 

and Thomas 1955).  Penetrating microelectrode arrays have been successfully implanted 
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and used for research applications in the motor cortex (Bansal et al. 2012; Egan et al. 

2012; Gilja et al. 2012; Reimer and Hatsopoulos 2010; Velliste et al. 2008), auditory 

cortex (Rousche and Normann 1998; Smith et al. 2013), auditory nerve (Hillman et al. 

2003; Middlebrooks and Snyder 2008), sciatic nerve (McDonnall et al. 2004), and visual 

cortex (Davis et al. 2012; Shushruth et al. 2011; Warren et al. 2001) of various animal 

models.  Moreover, they have been acutely implanted in the middle temporal gyrus of 

epilepsy patients undergoing temporal lobectomy surgery (House et al. 2006; Keller et al. 

2010; Schevon et al. 2010; Waziri et al. 2009).  While many studies have demonstrated 

the utility of penetrating microelectrode arrays in many applications, the following 

research is one of two studies to show the effects of propofol anesthesia in humans.  

Penetrating microelectrode arrays were specifically used to examine AP-LFP 

relationships in human cortex. 

Patients with tetraplegia have participated in BCI clinical trials with implanted 

penetrating microelectrode arrays.  These arrays record APs from individual neurons in 

motor cortex for volitional control of a prosthetic arm (Collinger et al. 2013; Hochberg et 

al. 2012).  Similar patients have used neural signals from penetrating microelectrode 

arrays to control a computer cursor to type and indirectly communicate (Kim et al. 2011).  

Due to an increased risk, few penetrating electrodes have been placed in the language 

areas of patients.  One such study used a glass electrode filled with neurotrophic growth 

factor to encourage axonal growth into the electrode.  The glass electrode was placed 

over the speech motor cortex to decode phonemes in real time (Guenther et al. 2009).  

Penetrating arrays are more invasive and AP recordings degrade over time (Polikov et al. 

2005; Turner et al. 1999).  This signal degradation may limit the lifetime of these BCI 
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systems.  For BCI studies in which the penetrating microelectrode arrays were implanted 

for more than a year, AP sorting was hindered due to decreased AP amplitudes and  

threshold-crossing events were applied to the 2-Dimensional decodes instead (Chestek et 

al. 2011; Fraser et al. 2009). 

The micro-ECoG grid was designed to record microscale LFPs at a high 

spatiotemporal resolution with invasiveness equivalent to an ECoG grid (Figure 1.1C).  

Micro-ECoG electrodes have a small surface area and high impedance, and therefore can 

record neural signals from a small volume of neural tissue.  To avoid signal distortion, 

LFPs from micro-ECoG grids must be recorded by a high impedance amplifier, not a 

clinical ECoG recording system (Stacey et al. 2012).  Unlike signals recorded from 

penetrating microelectrode arrays, LFPs recorded from the surface of the cortex may be 

less prone to signal degradation over time (Schendel et al. 2013).  The tighter 

interelectrode spacing of micro-ECoG grids provides the ability to sample the closely 

spaced areas of motor cortex that control specific movements (Chestek et al. 2013; Crone 

2006; Kim et al. 2007; Leuthardt et al. 2009; Menon et al. 1996; Miller et al. 2007; 

Slutzky et al. 2010; Van Gompel et al. 2008; Worrell et al. 2008).  In previous studies, 

micro-ECoG grids have shown promise for decoding speech (Kellis et al. 2010; 

Leuthardt et al. 2011), arm movement (Kellis et al. 2009) and primary hand movements 

(Leuthardt et al. 2009). 

 

1.2 Overview 

In Chapter 2, we examined the electrophysiological response to propofol anesthesia, 

the most widely used intravenous general anesthetic for induction and maintenance of  



7 

 

 

 
Figure 1.1.  Electrode types used to record neocortical activity in human subjects.  (a) 

Photograph of ECoG electrodes (silver disks with numbers), micro-ECoG electrodes 

(green wires) and penetrating microelectrode array (gold and brown square) implanted in 

human cortex.  (b) Photograph of penetrating microelectrode array (Blackrock 

Microsystems), which was used to record neural data in Chapter 2.  (c) Photograph of 

micro-ECoG grid (PMT Corporation), which was used to record neural data in Chapter 3. 

 

anesthesia (Kotani et al. 2008).  This study has important implications for the processing 

of information in the neocortex, and therefore on the interpretation of experimental 

results in anesthetized preparations and clinical results in intraoperative cortical mapping.  

While the pharmacology and EEG effects of propofol have been extensively studied, its 

effects on APs and LFPs are not well understood.   

Propofol is an intravenous sedative hypnotic and is an allosteric modulator of 

GABAA chloride channels, which are more densely located in the neocortex than in 

subcortical structures.  Therefore, propofol inhibits neural activity preferentially in the 

neocortex (Bai et al. 1999; Hentschke et al. 2005; Kaisti et al. 2002; Solt and Forman 

2007).  EEG and ECoG investigations have demonstrated that increasing propofol 

concentration in human subjects shifts cortical activity from a high-frequency, low-

amplitude signal to a low-frequency, high-amplitude signal (Breshears et al. 2010; 

Feshchenko et al. 2004).  Other studies have demonstrated that power in the high-

frequency component of EEG signals corresponds to corticocortical activity (Gray and 

McCormick 1996), while power in the low-frequency component of EEG signals 

primarily arises from subcortical interactions (McCormick and Bal 1997).  The decrease 

a b c 
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in high-frequency power with the administration of propofol may be due to a decrease in 

intracortical and corticocortical activity.  Alternatively, the increase in low-frequency 

power may arise from interactions with subcortical structures such as the thalamus 

(Ching et al. 2010; Velly et al. 2007).  The use of microelectrode arrays allowed us to 

determine if this pattern was consistent at the level of individual neurons and small 

populations of neurons.  We examined the effects of propofol anesthesia on APs, LFPs, 

and the temporal relationship between the two neural signals.  

In Chapter 3, we used micro-ECoG grids to microscale LFPs for BCI applications.  

BCIs have the potential to help restore communication and motor function to patients 

suffering from neurological disorders.  Amyotrophic lateral sclerosis (ALS) or spinal 

cord injury may leave patients severely paralyzed and unable to speak or interact with 

their environment in a condition known as locked-in syndrome (Smith and Delargy 

2005).  Some patients with locked-in syndrome depend on small residual movements for 

slow, basic communication and caregivers for physical interaction with their 

environment.  By directly interfacing with the motor areas of the cortex, it may be 

possible to provide intuitive communication and environmental control (Birbaumer 

2006).  The field of BCIs relies on prior basic neuroscience literature that has 

characterized neural activity with force, position, and velocity during movement in 

monkeys (Evarts 1968; Georgopoulos et al. 1982).  BCI systems transform neural activity 

related to intended movements into control signals for communication systems or 

assistive devices such as prosthetic arms.  Ideally, the neural activity will be acquired 

with the highest spatial and temporal resolution possible, while using the most minimally 

invasive electrodes, in order to provide intuitive and reliable control. 
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This work extends previous studies in which similar micro-ECoG grids have been 

shown to support high temporal- and spatial-resolution recordings for BCI-like 

applications (Kellis et al. 2012; Kellis et al. 2010; Kellis et al. 2009).  We used LFPs 

recorded on micro-ECoG grids placed over primary motor cortex to classify spoken word 

and individual finger movements, and to continuously decode the position of the hand 

during reaching. 
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CHAPTER 2 

 

THE EFFECTS OF PROPOFOL ON LOCAL FIELD POTENTIAL SPECTRA, 

ACTION POTENTIAL FIRING RATE, AND THEIR TEMPORAL 

 RELATIONSHIP IN HUMANS AND FELINES
1
 

 

2.1 Abstract 

Propofol is an intravenous sedative hypnotic, which, acting as a GABAA agonist, 

results in neocortical inhibition.  While propofol has been well studied at the molecular 

and clinical level, less is known about the effects of propofol at the level of individual 

neurons and local neocortical networks.  We used Utah Electrode Arrays (UEAs) to 

investigate the effects of propofol anesthesia on action potentials (APs) and local field 

potentials (LFPs).  UEAs were implanted into the neocortex of two humans and three 

felines.  The two human patients and one feline received propofol by bolus injection, and 

the other two felines received target-controlled infusions.  We examined the changes in 

LFP power spectra and AP firing at different levels of anesthesia.  Increased propofol 

concentration correlated with decreased high-frequency power in LFP spectra and 

decreased AP firing rates, and the generation of large amplitude spike-like LFP activity; 

however, the temporal relationship between APs and LFPs remained relatively 

 

1
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consistent at all levels of propofol.  The probability that an AP would fire at this local 

minimum of the LFP increased with propofol administration.  The propofol-induced 

suppression of neocortical network activity allowed LFPs to be dominated by low-

frequency spike-like activity, and correlated with sedation and unconsciousness.  As the 

low-frequency  spike-like activity increased and the AP-LFP relationship became more 

predictable, firing rate encoding capacity was impaired.  This suggests a mechanism for 

decreased information processing in the neocortex that accounts for propofol-induced 

unconsciousness. 

 

2.2 Introduction 

Propofol (2,6-di-isopropylphenol) is an intravenous sedative hypnotic and is an 

allosteric modulator of GABAA chloride channels.  GABAA chloride channels are more 

densely located in the neocortex than in subcortical structures, and propofol therefore 

inhibits neural activity preferentially in the neocortex (Bai et al. 1999; Hentschke et al. 

2005; Kaisti et al. 2002; Solt and Forman 2007).  While the pharmacology and 

electroencephalography (EEG) effects of propofol have been extensively studied, its 

effects on action potentials (APs) and local field potentials (LFPs) are not yet well 

understood. 

Most studies focusing on the electrophysiological effects of propofol have used low 

spatial resolution neural recording techniques, such as EEG and electrocorticography 

(ECoG).  EEG investigations demonstrate that increasing propofol concentration in 

human subjects shifts cortical activity from a high-frequency, low-amplitude signal to a 

low-frequency, high-amplitude signal.  Specifically, with increasing levels of propofol 
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anesthesia, beta activity (13 to 30 Hz) decreases and alpha (8 to 12 Hz) and delta 

activities (0.1 to 4 Hz) increase (Feshchenko et al. 2004).  As propofol concentration is 

further increased, the EEG signal develops a burst suppression pattern with flat low-

amplitude periods interspaced between high alpha and beta activity (Clark and Rosner 

1973).  At the highest levels of propofol sedation, the flat low-amplitude periods lengthen 

and the EEG signal becomes isoelectric (Claassen et al. 2002).  Similar patterns have 

been seen by using intracranial ECoG recordings in human subjects during induction and 

emergence from propofol anesthesia.  With the induction of anesthesia, delta band (1–2 

Hz) power increases as gamma band (37–205 Hz) power decreases.  In addition, the 

correlation between the phase of the delta band (1–4 Hz) and the power of the gamma 

band (23–165 Hz) strengthens with propofol anesthesia (Breshears et al. 2010).   

Power in the high-frequency component of EEG signals corresponds to 

corticocortical activity (Gray and McCormick 1996), while power in the low-frequency 

component of EEG signals primarily arises from subcortical interactions (McCormick 

and Bal 1997).  The decrease in high-frequency power with the administration of 

propofol may be due to a decrease in intracortical and corticocortical activity.  The 

increase in low-frequency power may arise from interactions with subcortical structures 

such as the thalamus (Ching et al. 2010; Velly et al. 2007).  Furthermore, the burst 

suppression pattern observed in the EEG signal in the anesthetized state is comparable 

with neural signal patterns seen in subcortical structures (Steriade et al. 1994).  The 

activity in these subcortical structures may be observed in the neural signals throughout 

the cortex in the anesthetized state, resulting in an increased synchronization across the 

cortex (Steriade 2001). 
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In contrast to EEG and ECoG that integrate neural signals from large areas of cortex 

and are spatiotemporally smoothed, LFPs are recorded using high-impedance microscale 

electrodes and are thought to be generated by synaptic potentials (Katzner et al. 2009; 

Khawaja et al. 2009; Mitzdorf 1985; Nunez and Srinivasan 2006).  While the spatial 

extent of LFPs is debated, they likely represent coordinated neural activity of cortical 

microcircuits, e.g., cortical columns.  EEG and ECoG are unable to record APs from 

individual neurons or LFPs and are therefore unable to examine AP-LFP relationships 

(Buzsaki et al. 2012). 

Arrays of microelectrodes can be used to examine the changes in LFP and AP activity 

during anesthesia.  Utah Electrode Array (UEA) recordings in the rat cortex during the 

administration of urethane anesthesia demonstrated an overall decrease in AP firing and 

an increase in synchronous bursts of AP firing (Erchova et al. 2002).  In addition, UEA 

recordings in the human cortex during the administration of propofol demonstrated a 

coupling between the slow (<1Hz) oscillation in the LFP and AP firing (Lewis et al. 

2012).  In this investigation, we examined the effects of propofol anesthesia on APs and 

LFPs and on the temporal relationship between these two neural signals.  Two human 

patients and one feline were given propofol by bolus injection.  A pharmacokinetic model 

was developed and was used for the target-controlled continuous infusion of propofol in 

two additional felines.  Given that propofol reduces power in high frequencies and 

increases power in low frequencies in EEG and ECoG recordings, we hypothesized that 

similar effects would be seen on microelectrode recordings of APs and LFPs.  In 

addition, the effect of propofol on the temporal relationship between APs and LFPs is 

unknown, and we aimed to determine whether propofol altered this relationship such that 
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information processing in the neocortex would be suppressed. 

 

2.3 Methods 

We used penetrating UEAs to investigate the electrophysiological changes resulting 

from propofol anesthesia at the level of single neuronal APs and LFPs.  Each UEA 

(Blackrock Microsystems, Salt Lake City, UT) consisted of 96 electrodes, 1 mm in 

length, spaced 400 μm apart.  UEAs were implanted into the cortices of two human 

patients and three felines.  Reference electrodes for each UEA were placed in the 

subdural space greater than 2 cm away from the UEA.  Neural activity was recorded and 

sampled at 30 kHz using a Cerebus system (Blackrock Microsystems).  APs were 

identified using an automatic spike sorting algorithm (Shoham et al. 2003).  The most 

prominent unit was used for each channel for consistency across all analysis.  Neural 

activity was recorded at different sedation levels.   

The study began with two humans (Patients A and B) given boluses of propofol.  To 

evaluate whether the neurophysiological changes seen in the human could be replicated 

in an animal model under more controlled conditions, one feline (Feline A) was given 

boluses of propofol.  To provide a controlled stepwise administration of propofol, a 

pharmacokinetic model was developed using a target-controlled infusion system for two 

additional felines (Felines B and C). 

 

2.3.1 Human Studies 

The two patients were enrolled in an Institutional Review Board–approved study.  

Each patient suffered from medically refractory temporal lobe epilepsy; on the basis of a 
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multidisciplinary review process, their condition was presumed to originate from the 

mesial temporal structures.  We evaluated seizure semiology, routine EEG, video EEG, 

high-resolution MRI, and PET imaging. 

In each case, a UEA was implanted in the middle temporal gyrus, approximately 3 cm 

from the temporal pole.  The patients were maintained on a total intravenous anesthetic 

consisting of propofol and remifentanil during their craniotomy.  Once the UEA was 

implanted, the anesthetic infusions were modulated to obtain a bispectral index scale 

(BIS) from a BIS Vista Monitoring System (Aspect Medical Systems, Norwood, MA) of 

~50.  The UEA made continuous recordings while boluses of propofol were administered 

intravenously to obtain a BIS of 20–30.  The stable anesthetized state achieved before the 

boluses of propofol were delivered was considered baseline.  For both patients, two 

rounds of BIS suppression with propofol boluses were recorded.  The UEA was removed, 

and a standard anterior temporal lobectomy was then performed on each patient.  Patient 

A (31-year-old man) underwent a right-sided resection, and Patient B (64-year-old man) 

underwent a left-sided resection.  The hippocampus was histologically normal in each 

case.  Specimens of lateral temporal neocortex from each patient contained thickening of 

the subpial plate, consistent with Chaslin's marginal sclerosis. 

 

2.3.2 Feline Studies 

In an Institutional Animal Care and Use Committee approved study, UEAs were 

implanted in the motor cortex of three felines.  For Feline A, the neural activity was 

recorded continuously beginning while the feline was fully awake and continuing while it 

was given two boluses of propofol sufficient to mimic clinical burst suppression patterns 
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in the LFP.  For felines B and C, a target-controlled infusion (TCI) system was developed 

to enable the achievement of pseudo steady-state propofol concentrations at or near a 

specified plasma level (Egan 2003).  In brief, using raw propofol concentration versus 

time data obtained in a prior investigation (Bester 2009), the parameters for a three-

compartment mammillary model were estimated using nonlinear regression techniques.  

This feline propofol pharmacokinetic model was then incorporated into Stanpump 

(Stanford University, Palo Alto, CA), a TCI software package that allows implementation 

of user-designated models.  The TCI system was used to achieve and maintain predicted 

plasma propofol concentrations that were gradually raised over time.  With the 

pharmacokinetic aspects of the experiment controlled in this manner, the 

pharmacodynamic measurements (i.e., electrophysiology and clinical observations) were 

made at each pseudo steady-state concentration plateau. 

For Feline B, isoflurane was administered at the beginning of the experiment to place 

the intravenous catheter for propofol infusion.  Propofol infusion started at a predicted 

plasma propofol concentration of 2 μg/ml for 10 minutes to allow time for elimination of 

isoflurane from the animal before the experiment began.  For Feline C, the intravenous 

catheter was placed while the feline was fully awake and no isoflurane was administered.  

Eye blink, ear twitch, and toe pinch withdrawal reflexes were examined at each level of 

propofol infusion. 

 

2.3.3 Analysis 

For AP and LFP analysis, 30-second windows of data were examined during an 

awake (Feline A, B, and C) or baseline (Patient A and B) state, a lightly anesthetized 
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state (Patient A and B, Feline A, B, and C), a deeply anesthetized state (Patient A and B, 

Feline A, B, and C), and an isoelectric state (Feline C).  The human patient data were all 

collected intraoperatively under a level of anesthesia appropriate for patient safety and 

comfort.  Therefore, for these data, we will be referring to “lightly” and “deeply” 

anesthetized states only in a relative sense and only to simplify presentation.  For the 

experiments in which propofol was delivered by bolus injection, clinical indicators of 

depth of anesthesia were not assessed as even the “light” state represents a clinical state 

consistent with general anesthesia.  However, low-pass filtered (200 Hz) voltage traces 

can be used to categorize the 30-second time windows as belonging to the lightly or 

deeply anesthetized states by the resemblance of the voltage traces to the EEG 

waveforms from other human studies during their lightly and deeply anesthetized states, 

respectively (Brown et al. 2010).  A low-pass filter of 200 Hz was applied to the voltage 

traces to closely approximate EEG waveforms seen in other human anesthesia studies. 

The analyses of AP firing rate and LFP multitaper spectra were performed using the 

Chronux package (http://chronux.org) (Mitra and Bokil 2008).  For LFPs, low-frequency  

bands are orders of magnitude larger in power than high-frequency bands (Miller et al. 

2009).  Therefore, each spectrogram was normalized by frequency bin to enhance 

visualization across the broad range of frequencies.  Each time-frequency point was 

normalized by the minimum and maximum value of that frequency bin.  LFP power in 

the high gamma band (60–120 Hz) was quantified over 30-second windows in three 

distinct brain states.  The LFP power in the awake (felines) or minimally anesthetized 

(human patients) state was considered baseline, and the mean percent change from the 

LFP power in the awake state was calculated across all channels for each brain state.  The 
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30-second periods of data were low-pass filtered at 200 Hz for each subject under varying 

levels of anesthesia.  AP firing rate histogram was smoothed using a Gaussian kernel of 

1-second and standard error bars were calculated using a bootstrapping procedure. 

The temporal relationship of AP firing and LFP was examined by generating 

averaged AP-aligned LFP for three different levels of anesthesia.  The time periods taken 

for the AP-aligned LFP analyses started at the same time as the 30-second windows for 

the awake or baseline state, lightly anesthetized state, and deeply anesthetized state.  

These time windows taken for analysis were extended by 3 minutes or longer to obtain 

enough APs.  The temporal relationship between APs and the minimum value of the LFP 

during a 500-millisecond epoch around each AP was determined.  A 500-millisecond 

epoch was chosen to capture the slowest AP-aligned LFP waveforms observed.  Using 

epoch sizes of 200-milliseconds and 1000-milliseconds produced similar results because 

of the increased probability an AP would fire very close in time to the LFP minimum.  

The AP to minimum LFP value was created for each AP on all electrodes for the three 

different levels of anesthesia.  A probability density function was created plotting the 

difference between the time the minimum value occurred in each LFP epoch and the time 

the AP fired.  The integral of the probability density for the 50 milliseconds around the 

AP firing function yielded the probability that the minimum value of the LFP and AP 

firing occurred with 50 milliseconds of each other, i.e., they had a consistent temporal 

relationship.  Randomly generated AP times were used to serve as a control in these 

analyses (Destexhe et al. 1999).  The number of randomly generated APs was the same as 

observed in the original data to maintain AP firing rate.  Randomly generated AP times 

were also used to generate averaged LFP epochs and served as a control for this analysis. 
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2.4 Results 

All subjects, both human and feline, tolerated the experiments well.  There were no 

adverse events relating to the propofol administrations.  The human subjects enjoyed a 

routine postoperative course.  Feline subjects were in good condition postexperiment.   

Increased propofol concentration resulted in suppression of small-amplitude, high-

frequency activity and a dominance of large-amplitude, low-frequency spike-like activity 

in the LFP.  For both patients, the LFP was initially a small-amplitude, high-frequency 

oscillatory signal in the baseline period (BIS = ~50).  As the anesthesia was increased, 

the LFP developed into a larger-amplitude spike-like signal.  In the deeply anesthetized 

state, the LFP consisted of large-amplitude spike-like activity separated by silent periods, 

which resemble EEG “bursts” (Figure 2.1A) (Table 2.1).  We wished to evaluate whether 

the changes in LFP power seen in the human subjects could also be observed in an animal 

model under more controlled conditions, i.e., more disparate brain states and during 

steady states of anesthesia.  In Feline A, continuous recordings were made from a fully 

awake state and two separate boluses of propofol were administered.  During this feline 

model experiment, the observed changes in LFPs were similar to those observed in the 

human subjects (Table 2.1).  To provide a controlled, stepwise administration of 

propofol, a pharmacokinetic model was developed using a TCI system for Felines B and 

C.  During the controlled infusion of propofol, similar patterns of change in LFP power to 

those observed during bolus injections were observed.  For Felines B and C, the LFP 

power in the high frequencies gradually decreased as the predicted propofol plasma 

concentration increased (Table 2.1).  Additionally, the emergence from propofol hypnosis 

can be observed in the recordings as a return of power in the higher frequencies several 



27 

 

 

hundred seconds after bolus injection (Figure 2.1B) and as the target concentration of 

propofol was reduced (Figure 2.2). 

The level of propofol correlated with the level of consciousness in both Felines B and 

C.  Feline B in the lightly anesthetized state (predicted plasma propofol concentration = 6 

µg/mL) made small voluntary movements and responded to touch.  Eye blink, ear twitch, 

and toe pinch reflexes were still present at this level of anesthesia.  In the deeply 

anesthetized state (predicted plasma propofol concentration = 8 µg/mL), only the eye 

blink reflex was present.  For Feline B, an isoelectric state was not reached at the 

maximum level of anesthesia tested (predicted plasma propofol concentration of 18  

 

 
 

Figure 2.1.  Boluses of propofol decreased the high-frequency power in the LFP spectra.  

Spectrogram and low-pass filtered traces (200 Hz) from one representative electrode for 

Patient A (A) and Feline A (B).  Patient A received one bolus of propofol at ~200 s, 

while Feline A received two boluses of propofol at ~100 s and ~850 s.  Colored 

rectangles above the spectrograms correspond with the level of anesthesia.  Red 

represents the baseline or awake state.  Blue represents the lightly anesthetized state.  

Green represents the deeply anesthetized state.  White rectangles indicate the time 

periods and frequency bands chosen for the average power calculations across the array. 
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Table 2.1.  Percent change in average power of a 30-second time window in the high 

gamma band (60–120 Hz) with respect to the baseline or awake state for all electrodes 

(N=96) (mean ± SD). 

 

Subject Lightly anesthetized 
(L) 

Deeply Anesthetized 
(D) 

Pairwise 
Significance 

Patient A 16.01 ± 13.48 % -28.67 ± 7.6 % All pairs 

Patient B -4.96 ± 11.86 % -10.09 ± 10.39 % All pairs 

Feline A -29.79 ± 5.69 % -41.35 ± 7.31 % All pairs 

Feline B -20.22 ± 6.57 % -22.69 ± 6.66 % A/B-L, A/B-D 

Feline C -7.23 ± 3.38 % -23.04 ± 2.84 % All pairs 

All changes in power were significant (Kruskal-Wallis, p < 0.01; multiple comparisons 

test, p < 0.05; A/B = Awake/Baseline, L = Lightly anesthetized, D = Deeply 

anesthetized). 

 

µg/ml).  Feline C in the lightly anesthetized state (predicted plasma propofol 

concentration = 8 µg/ml) made small voluntary movements and responded to touch.  Eye 

blink, ear twitch, and toe pinch reflexes were still present at this level of anesthesia.  In 

the deeply anesthetized state (predicted plasma propofol concentration = 14 µg/ml), the 

LFP developed bursts of large amplitude LFP separated by silent periods, i.e., burst 

suppression.  Voluntary movement stopped, but eye blink, ear twitch, and toe pinch 

reflexes were present at this level of anesthesia.  As anesthesia was increased, only the 

eye blink reflex remained at a predicted plasma propofol concentration of 18 µg/ml, and 

all reflexes were absent at a predicted plasma propofol concentration of 30 µg/ml.  LFP 

power returned in the higher frequencies as the predicted plasma propofol concentration 

was decreased from 40 µg/ml (Figure 2.2). 

In addition to altering the spectral power of LFPs, propofol administration also 

resulted in decreased AP firing rate.  For Patients A and B, the average AP firing rate 

generally decreased across all electrodes in the array when comparing the baseline state  
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Figure 2.2.  Target-controlled infusion of propofol gradually decreased the high-

frequency power in the LFP spectra.  Spectrogram and low-pass filtered traces (200 Hz) 

from one representative electrode in Feline C. Top plot show the predicted propofol 

plasma concentration using the target-controlled infusion system (red) and the TCI pump 

speed (blue) over the duration of the experiment.  Induction and emergence from 

anesthesia occurred at nearly the same propofol concentrations as noted by the black 

arrows.  Colored rectangles below the spectrogram correspond with the level of 

anesthesia.  Red represents the awake state.  Blue represents the lightly anesthetized state.  

Green represents the deeply anesthetized state.  Purple represents the isoelectric state.  

White rectangles indicate the time periods and frequency bands chosen for the average 

power calculations across the array.  With very high propofol concentrations, power in 

the LFP decreased across all frequency bands.  After the peak propofol concentration is 

reached and the propofol concentration decreases, the power in the LFP increases. 
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with the lightly and deeply anesthetized states.  For Feline A, the average AP firing rate 

decreased across all electrodes in the array comparing the awake state with the lightly and 

deeply anesthetized states.  The recovery from the propofol boluses can be observed in 

the recording as return to higher AP firing rates over several hundred seconds after each 

bolus (Figure 2.3).  The controlled infusion of propofol also yielded changes in AP firing 

rate similar to those observed during bolus injections.  For Felines B and C, the average 

AP firing rates across the array gradually decreased as the predicted propofol plasma 

concentration increased (Table 2.2).  For Feline C, APs in the isoelectric state were rare 

(predicted plasma propofol concentration = 40 µg/ml), but AP firing rates returned to 

higher levels as the propofol concentration was decreased (Figure 2.4). 

Although AP firing rates and LFP activity were altered by anesthesia, AP-aligned 

LFP analysis demonstrated the temporal relationship between them remained relatively 

consistent across the different levels of anesthesia.  The AP-aligned LFP exhibited a 

negative-going potential proximal in time to the APs.  As the anesthesia increased, the 

AP-aligned LFP exhibited large-amplitude spike-like activity (Table 2.3).  Because the 

number of well-isolated APs for Patient B was small, the AP-aligned LFP data from this 

subject was not analyzed.  The phenomenon was also observed during the controlled 

infusion experiments.  The LFP and AP temporal relationship was relatively consistent 

across all levels of anesthesia, i.e., APs fired during a local minimum in the LFP (Figure 

2.5). 

The probability that an AP would fire when the LFP reaches this local minimum 

increased with propofol administration.  A probability density function was created 

plotting the difference between the time the minimum value occurred in each LFP epoch  
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Figure 2.3.  Boluses of propofol decreased firing rate across array.  Raster plots and firing 

rate of Patient A (A) and Feline A (B).  Patient A received one bolus of propofol at ~200 

s, while Feline A received two boluses of propofol at ~100 s and ~850 s. Propofol 

boluses resulted in decreased AP firing rate as seen in the raster plots and firing rate 

histograms.  The blue line represents the firing rate histogram and the gray dashed lines 

represent an interval of four standard errors wide centered at the mean.  Colored 

rectangles above the plots correspond with time periods chosen for the average firing rate 

calculations.  Red represents the baseline or awake state.  Blue represents the lightly 

anesthetized state.  Green represents the deeply anesthetized state.  With the emergence 

from anesthesia, the firing rate begins to increase in Feline A after both boluses of 

propofol. 
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Table 2.2: Average firing rate for a 30-second time window for all subjects across all 

electrodes (N=96) (mean ± SD) 

 

 
Awake/Baseline 

(A/B) 

Lightly 

Anesthetized (L) 

Deeply 

Anesthetized (D) 

Pairwise 

Significance 

Patient A 
1.426 Hz 

± 1.912 

0.4139 Hz 

± 0.9779 

0.1772 Hz 

± 1.121 
All pairs 

Patient B 
0.8781 Hz 

± 0.9563 

0.9014 Hz 

± 0.9805 

0.2208 Hz 

± 0.3181 

A/B-D 

L-D 

Feline A 
15.77 Hz 

± 16.62 

0.8125 Hz 

± 0.8182 

0.1663 Hz 

± 0.2454 
All pairs 

Feline B 
0.6538 Hz 

± 2.107 

0.0705 Hz 

± 0.4123 

0.0687 Hz 

± 0.4518 

A/B-L 

A/B-D 

Feline C 
0.3993 Hz 

± 0.9782 

0.150 Hz 

± 0.3644 

0.0257 Hz 

± 0.0821 
A/B-D 

Values are mean ± SD. 

All changes in firing rate were significant (Kruskal-Wallis, p < 0.01; multiple 

comparisons test, p < 0.05; A/B = Awake/Baseline, L = Lightly anesthetized, D = Deeply 

anesthetized). 

 

 

 
 

Figure 2.4.  Target-controlled infusion of propofol decreased firing rate across the array 

for Feline C. Controlled infusion of propofol resulted in decreased AP firing rate as seen 

in the raster plot and firing rate histogram.  The blue line represents the firing rate 

histogram and the gray dashed lines represent an interval of four standard errors wide 

centered at the mean.  Colored rectangles above the plots correspond with time periods 

chosen for the average firing rate calculations.  Red represents the awake state.  Blue 

represents the lightly anesthetized state.  Green represents the deeply anesthetized state.  

Purple represents the isoelectric state.  With the emergence from anesthesia, the firing 

rate begins to increase 175 minutes into the recording. 
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Table 2.3: Average minimum across all electrodes (N=96) for the AP-aligned LFP 

analysis (mean ± SD) 

 

 
Awake/Baseline 

(A/B) 

Lightly 

Anesthetized (L) 

Deeply 

Anesthetized (D) 

Pairwise 

Significance 

Patient A 
-23.16 μV 

± 14.46 

-217.22 μV 

± 150.18 

-204.96 μV 

± 190.24 

A/B-L 

A/B-D 

Feline A 
-47.28 μV 

± 22.75 

-354.90 μV 

± 155.38 

-280.02 μV 

± 148.7 

A/B-L 

A/B-D 

Feline B 
-133.36 μV 

± 47.65 

-766.16 μV 

± 312.72 

-615.28 μV 

± 285.72 

A/B-L 

A/B-D 

Feline C 
-141.93 μV 

± 56.83 

-582.29 μV 

± 290.61 

-577.45 μV 

± 323.40 

A/B-L 

A/B-D 

All changes in power were significant (Kruskal-Wallis, p < 0.01; multiple comparisons 

test, p < 0.05; A/B = Awake/Baseline, L = Lightly anesthetized, D = Deeply 

anesthetized). 
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Figure 2.5.  AP-aligned LFP plots for one representative channel from Patient A (A), 

Feline A (B), Feline B (C), and Feline C (D) in three distinct brain states.  AP-aligned 

LFP exhibited a negative-going spike-like potential proximal in time to the APs.  As the 

anesthesia increased, the amplitude of the spike-like LFP increased.  Dashed lines 

represent the control cases in which randomly generate AP times were used to align the 

LFP.  Red represents the awake state.  Blue represents the lightly anesthetized state.  

Green represents the deeply anesthetized state. 
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and the time the AP fired.  The integral of the probability density for the 50 milliseconds 

around the AP firing function yielded the probability that the minimum value of the LFP 

and AP firing occurred with 50 milliseconds of each other, i.e., they had a relatively 

consistent temporal relationship compared to control.  Randomly generated AP times 

were used to generate averaged LFP epochs and served as a control for this analysis.  For 

each subject, the probability that the minimum value of the LFP and AP firing had a 

consistent temporal relationship increased in the lightly and deeply anesthetized states 

from baseline (Figure 2.6) (Table 2.4). 

 

2.5 Discussion 

Previous studies of propofol in humans have used macroscopic EEG and ECoG 

electrodes, which integrate neural signals from large areas of the brain and cannot record 

APs from individual neurons.  In the current study, UEAs were used to examine changes 

in high-frequency LFPs and in APs due to propofol administration in the human and 

feline.  As hypothesized, increased propofol concentration decreased the high gamma 

(60–120 Hz) power in the LFP spectra and decreased AP firing rates in the neocortex.  

The temporal relationship between APs and LFPs remained relatively consistent across 

all levels of anesthesia, while the probability that an AP would fire when the LFP reach 

this local minimum increased from baseline with propofol administration.  The changes 

in neural activity were correlated with decreased responsiveness, i.e., the level of 

consciousness.   

In nonhuman primates, APs and LFPs were phase-locked in V4 during attention to 

visual stimuli (Fries et al. 2001), parietal cortex during activation of working memory  
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Figure 2.6.  Probability density of the temporal separation between APs and the minimum 

LFP value for each AP on all electrodes for Patient A (A), Feline A (B), Feline B (C), 

and Feline C (D) at three different levels of anesthesia.  The integral of the probability 

density for the 50 milliseconds around AP firing (shaded region) yielded the probability 

that the minimum value of the LFP and AP firing occurred with 50 milliseconds of each 

other, i.e., they had a consistent temporal relationship.  With propofol administration, the 

probability of an AP occurring at the local minimum of the LFP increased.  Dashed lines 

represent the control cases in which randomly generated AP times were used to align the 

LFP.  Red represents the awake or baseline state.  Blue represents the lightly anesthetized 

state.  Green represents the deeply anesthetized state. 
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Table 2.4: Probability that a local minimum value of the LFP would occur within 50 ms 

of an AP for all electrodes 

 

 Awake/ Baseline 
Lightly 

Anesthetized 

Deeply 

Anesthetized 

Patient A 0.15 (0.09) 0.31 (0.06) 0.19 (0.08) 

Feline A 0.10 (0.08) 0.48 (0.08) 0.40 (0.09) 

Feline B 0.11 (0.08) 0.30 (0.09) 0.27 (0.09) 

Feline C 0.11 (0.09) 0.27 (0.09) 0.45 (0.09) 

Values in parentheses refer to control probabilities generated using random AP times. 

 

(Pesaran et al. 2002), and motor cortex during voluntary movements (Donoghue et al. 

1998).  In human patients, APs and LFPs were observed to be phase-locked in the 

hippocampus, superior temporal gyrus, entorhinal cortex, orbitofrontal cortex, and 

amygdala (Jacobs et al. 2007).  These nonhuman primate and human studies support that 

neurons represent information in terms of the timing of APs relative to neuronal 

oscillations. 

We observed in the anesthetized states regularly occurring large-amplitude, spike-like 

potentials and burst suppression patterns replaced the small-amplitude, high-frequency 

oscillatory LFPs seen in the awake state, and AP firing was concomitantly decreased.  

However, the AP-LFP temporal relationship was maintained and the probability of an AP 

firing at the LFP local minimum was increased in the lightly and deeply anesthetized 

state compared to the awake and baseline states.  A clear pattern of increasing probability 

not consistently seen between the lightly and deeply anesthetized states may be due to 

moderately high levels of anesthesia in the lightly anesthetized state.  These anesthesia-

induced changes in AP and LFP structure resulted in a decreased number of distinct 

neural activity patterns and therefore lowered the information capacity of the neural 
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signal (Alkire et al. 2008; Shannon and Weaver 1949).  The entrainment of APs at low-

frequency LFPs induced by propofol anesthesia would impair the amount of information 

represented in terms of the timing of APs relative to neuronal oscillations and decrease 

information processing of the cortex.  Therefore, the effects of propofol anesthesia may 

be better characterized as a decrease in cortical information processing rather than as 

general neuronal inactivation. 

That AP firing occurs when the transmembrane potential reaches a threshold voltage 

is well established (Hodgkin and Katz 1949); however, the relationship between the LFP 

and the transmembrane potential is less well understood.  The transmembrane potential is 

the integration of the excitatory and inhibitory inputs onto a particular neuron, while the 

LFP represents the integration of the postsynaptic potentials from all neurons within 

several hundred micrometers of the recording electrode, i.e., the integration of the 

excitatory and inhibitory inputs to the local cortical circuitry.  We did not observe that the 

probability of an AP occurring was related to a voltage threshold of the LFP; however, 

we observed that AP firing occurred with a high probability at a local minimum of the 

LFP.  Across all levels of consciousness, AP firing was temporally correlated with the 

structure of the LFP, e.g., inflection points or minima, rather than a specific voltage level 

of the LFP.  The occurrence of an inflection point in the LFP may reflect the moment that 

a significant shift occurs in the relative excitatory and inhibitory balance of the local 

network.  GABAA inhibition induced by propofol alters the balance between excitatory 

and inhibitory activity in cortical circuits, and this altered balance is likely related to the 

observed changes in the LFP and the AP–LFP relationship.  Simultaneous intracellular 

and extracellular recordings in awake rats using AP-aligned LFP demonstrated that the 
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LFP is correlated with the transmembrane depolarization of a single neuron (Okun et al. 

2010).  This finding, together with the consistently observed LFP–AP temporal 

relationship observed in the current study, suggest that there may be a biophysical 

mechanistic linkage between LFPs and APs.  Many important neurophysiological animal 

studies are performed under various levels of hypnosis and anesthesia.  Using 

intraperitoneal thiopental sodium to induce a lightly anesthetized state, and reduce AP 

firing due to top-down feedback and other processes, allowed the examination of AP 

firing in V1 driven by feedforward signals evoked by visual stimuli (Hubel and Wiesel 

1959).  Using a stimulus presentation paradigm that only allowed top-down feedback 

LFP signals to be recorded by electrodes in V1, it was possible to classify natural images 

based on decoding of the LFPs at above chance levels in the awake monkey, but only at 

chance levels in the anesthetized monkey (Shushruth et al. 2011).  These studies show 

that varying the level of anesthesia can differentiate feedforward and feedback signals in 

V1.  Similarly, studies examining AP–LFP relationships in V1 using AP-aligned LFP 

analysis achieved differing results under different levels of anesthesia.  One study used 

awake monkeys (Ray and Maunsell 2011) and another used anesthetized monkeys and 

felines (Nauhaus et al. 2009).  Intracortically recorded LFPs are thought to be generated 

by synaptic potentials (Katzner et al. 2009; Khawaja et al. 2009; Mitzdorf 1985; Nunez 

and Srinivasan 2006) that arise from multiple neural sources, and anesthesia can 

differentially alter the balance between these sources.  Propofol binds to GABAA 

receptors that are located primarily in the cortex, so that propofol may impact 

corticocortical inputs more strongly than subcortical inputs.  These studies and the 

present work demonstrate that while anesthetized preparations provide control of 
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experimental paradigms and are a powerful tool to dissect neurophysiological processes, 

the impact of the anesthesia itself on the neural system being studied must be taken into 

account when interpreting the results. 

On the administration of propofol, we consistently observed a decrease in high-

frequency power and AP firing rate, and an increase in regular and predictable patterns of 

LFP and AP activity.  This reduced the information processing capacity in the neocortex 

and was correlated with a loss of responsiveness and consciousness.  These effects of 

propofol on APs and LFPs have important implications for the processing of information 

in the neocortex, and therefore on the interpretation of experimental results in 

anesthetized preparations. 
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CHAPTER 3 

 

DECODING ARTICULATE MOVEMENTS USING MICROSCALE SURFACE 

RECORDINGS IN HUMAN MOTOR CORTEX
2 

 

3.1 Abstract 

Brain computer interfaces (BCIs) have the potential to help restore communication 

and motor functions to patients suffering from neurological disorders.  By recording 

neural signals from the motor cortex, it may be possible to provide rapid and intuitive 

communication and prosthetic control.  We demonstrated that speech, finger, and arm 

movements can be decoded from local field potentials (LFPs) recorded with dense grids 

of microelectrodes placed on the surface of human cerebral cortex.  Five epilepsy patients 

who required long-term electrocorticographic (ECoG) monitoring were implanted with 

micro-ECoG grids.  Patients were asked to perform specific tasks depending on the 

placement of the micro-ECoG grid on the cerebral cortex.  Tasks included repeating 

spoken words, flexing individual fingers, and reaching in two dimensions.  Using LFPs 

recorded over face-motor area, vocalized articulations of ten different words and silence 

were classified on a trial-by-trial basis with 82.4% accuracy.  

 

2
 S.  J.  Hanrahan, S.  Kellis, T.  Davis, E.  Smith, P.A.  House, B.  Greger.
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Using LFPs recorded over the hand area of motor cortex, three individual finger 

movements and rest were classified on a trial-by-trial basis with 62% accuracy.  LFPs 

recorded over the arm area of motor cortex were used to continuously decode the arm 

trajectory with a maximum correlation coefficient of 0.82 in the x-direction and 0.76 in 

the y-direction.  These findings demonstrate that LFPs recorded by micro-ECoG grids 

from the surface of the cerebral cortex contain sufficient information to provide rapid and 

intuitive control a BCI communication system or motor prosthesis. 

 

3.2 Introduction 

Brain computer interfaces (BCIs) have the potential to help restore communication 

and motor function to patients suffering from neurological disorders.  Amyotrophic 

lateral sclerosis (ALS) or spinal cord injury may leave patients severely paralyzed and 

unable to speak or interact with their environment in a condition known as locked-in 

syndrome (Smith and Delargy 2005).  Some patients with locked-in syndrome depend on 

small residual movements for slow, basic communication and caregivers for physical 

interaction with their environment.  By directly interfacing with the motor areas of the 

cortex, it may be possible to provide rapid and intuitive communication and prosthetic 

control (Birbaumer 2006).  All such BCI systems transform neural activity related to 

intended movements into control signals for communication systems or assistive devices 

such as prosthetic arms.  Ideally, the neural activity will be acquired with the highest 

spatial and temporal resolution possible, while using the most minimally invasive 

electrodes, in order to provide rapid, intuitive, and reliable control. 

Researchers have a variety of electrode types to choose from when recording neural 
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activity from the cerebral cortex.  Cortical activity related to movement can be recorded 

noninvasively from the scalp surface using electroencephalographic (EEG) electrodes.  

Studies have shown participants can use signals recorded with EEG to indirectly 

communicate by spelling words (Birbaumer et al. 1999; Schalk et al. 2004), move a 

computer cursor (Felton et al. 2009; Huang et al. 2009; Wolpaw and McFarland 2004), 

and provide 1-Dimensional control of a prosthetic arm (Hazrati and Erfanian 2010; Lauer 

et al. 1999; Pfurtscheller et al. 2000).  EEG signals do not provide intuitive control of a 

prosthetic device because EEG records neural signals with prohibitively low temporal 

and spatial resolution. 

Electrocorticography uses large (> 1 mm diameter) electrodes, typically placed 

beneath the dura, to map cortical function and locate an epileptic focus prior to the 

surgical treatment of epilepsy.  Because ECoG is closer to the cortex, it can record neural 

signals with a higher signal-to-noise ratio and higher spatial resolution than EEG 

(Buzsaki et al. 2012; Cooper 1965).  ECoG has become more common for BCI studies 

because of its clinical ubiquity in preparing patients for the surgical treatment of epilepsy.  

Neural activity recorded from ECoG electrodes has been used in the classification of 

spoken words or phonemes (Blakely et al. 2008; Chang et al. 2010; Leuthardt et al. 

2004), classification of finger movements (Chestek et al. 2013; Kubanek et al. 2009; 

Miller et al. 2012; Miller et al. 2009; Pistohl et al. 2012) and the continuous decode of 

arm movement (Chao et al. 2010; Ganguly et al. 2009; Pistohl et al. 2008; Pistohl et al. 

2013; Sanchez et al. 2008; Schalk et al. 2008).  With many days of training, a patient 

with tetraplegia was able to control a prosthetic arm to perform limited reaching motions 

using cortical signals recorded over sensorimotor cortex with ECoG.  The patient used 
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attempted movements of the thumb, elbow, and wrist to control the prosthetic arm (Wang 

et al. 2013).  ECoG recordings in human motor cortex are limited to one or two 

electrodes modulating with movement (Leuthardt et al. 2004; Menon et al. 1996; 

Milekovic et al. 2012).  Because of this, some ECoG studies use indirect, nonintuitive 

signals such as the movement of the tongue to control a computer cursor (Leuthardt et al. 

2004; Schalk et al. 2008).  ECoG electrodes are typically several millimeters in diameter 

with interelectrode spacing on the centimeter-scale.  Therefore, ECoG grids spatially 

integrate and under-sample the information represented in the cerebral cortex at the scale 

of cortical columns.  

Microelectrode arrays have the ability to record highly localized neural activity.  Both 

surface and penetrating microelectrode arrays are able to record LFPs from a small 

population of neurons.  LFPs recorded with high-impedance microelectrodes are thought 

to be generated by synaptic potentials (Katzner et al. 2009; Khawaja et al. 2009; Mitzdorf 

1985; Nunez and Srinivasan 2006).  While the spatial extent of LFPs is debated, they 

likely represent coordinated neural activity of cortical microcircuits, e.g., cortical 

columns (Buzsaki et al. 2012; Mountcastle 1978).  High-impedance electrodes have a 

limited recording radius and record neural signals with minimal spatial integration 

(Tsanov et al. 2011).  Therefore, microelectrode arrays can have smaller interelectrode 

spacing and avoid the issue of under-sampling cortical activity. 

Patients with tetraplegia have participated in clinical trials with implanted penetrating 

microelectrode arrays.  These arrays record action potentials (APs) from individual 

neurons in motor cortex and enable patients to control a computer cursor (Kim et al. 

2011), and a prosthetic arm (Collinger et al. 2013; Hochberg et al. 2012).  Due to an 
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increased risk of damaging eloquent cortex, few penetrating electrodes have been placed 

in the language areas of patients.  One such study used a glass electrode filled with 

neurotrophic growth factor to encourage axonal growth into the electrode.  The glass 

electrode was placed over the speech motor cortex to decode phonemes in real time 

(Guenther et al. 2009).  Penetrating arrays are more invasive and AP recordings, which 

may last for years, do eventually degrade limiting the functional lifetime of these BCI 

systems (Barrese et al. 2013; Simeral et al. 2011).  For BCI studies in which the 

penetrating microelectrode arrays were implanted for more than a year, AP sorting was 

hindered due to decreased AP amplitudes and  threshold-crossing events were used to 

control 2-Dimensional movement (Chestek et al. 2011; Fraser et al. 2009). 

Micro-ECoG grids were designed to record LFPs at high spatiotemporal resolution 

with an invasiveness equivalent to ECoG grids.  Micro-ECoG electrodes have a small 

surface area, high impedance, and therefore record neural signals from a small volume of 

neural tissue.  To avoid signal distortion, LFPs from micro-ECoG grids must be recorded 

by a high impedance amplifier (Stacey et al. 2012).  Unlike penetrating microelectrode 

arrays, LFPs recorded from the surface of the cortex may be less prone to signal 

degradation over time (Schendel et al. 2013).  The tighter interelectrode spacing of 

micro-ECoG grids provides the ability to sample the closely spaced areas of motor cortex 

that control different movement (Chestek et al. 2013; Crone 2006; Kim et al. 2007; 

Leuthardt et al. 2009; Menon et al. 1996; Miller et al. 2007; Slutzky et al. 2010; Van 

Gompel et al. 2008; Worrell et al. 2008). Micro-ECoG grids have shown promise for 

decoding speech (Kellis et al. 2010b; Leuthardt et al. 2011), arm movement (Kellis et al. 

2009) and basic hand movements (Leuthardt et al. 2009).  This work builds upon and 



49 

 

 

extends previous studies in which similar micro-ECoG grids have been shown to support 

high temporal- and spatial-resolution recordings for BCI-like applications (Kellis et al. 

2012; Kellis et al. 2010b; Kellis et al. 2009). 

We hypothesize that LFPs recorded on micro-ECoG grids can provide control signals 

for highly articulate prosthetic devices.  To support this hypothesis, we used LFPs 

recorded with micro-ECoG grids placed over primary motor cortex to classify spoken 

word and individual finger movements, and to continuously decode the position of the 

hand during reaching. 

 

3.3 Methods 

3.3.1 Subjects and Grids 

Data for this work were generated from human subjects in collaboration with the 

University of Utah, Department of Neurosurgery and under the approval of the 

Institutional Review Board.  Human subjects were patients undergoing brain mapping 

procedures to identify the source of medication-resistant seizures. 

Five patients were implanted with micro-ECoG grids (PMT Corporation, 

Chanhassen, MN and Ad-Tech Medical Instrument Corporation, Racine, WI; Table 3.1).  

Patients A and B were implanted with grids manufactured by PMT Corporation that 

consisted of 40 μm diameter platinum wire electrodes embedded in a thin layer of 

silicone.  Each wire terminated in a cylindrical protuberance that extended approximately 

200 μm above the base of the grid (Figure 3.1).  Patient A was implanted with two 16 

channel grids with 1 mm interelectrode spacing.  Patient B was implanted with a 30 

channel grid with 2 mm interelectrode spacing.  Patients C, D, and E were implanted with  
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Table 3.1.  Patient and grid information 

 

 Sex Task Grid Reference & Ground 

Patient A M 
Speech 

Arm Movement 

PMT 

Two 16 channels 

40 m, 1-mm spacing 

Epidural wires 

Patient B M Arm Movement 

PMT 

30 channels 

40 m, 2-mm spacing 

On-grid low-

impedance electrodes 

Patient C M 

Finger Flexion 

Arm Movement 

Online Decode 

Ad-Tech 

64 channels 

50 m, 3-mm spacing 

EEG electrodes 

Patient D M 
Finger Flexion 

Arm Movement 

Ad-Tech 

32 channels 

50 m, 3-mm spacing 

Nearest Subdural 

ECoG electrode 

EEG electrode 

Patient E F 
Finger Flexion 

Arm Movement 

Ad-Tech 

32 channels 

50 m, 3-mm spacing 

Nearest Subdural 

ECoG electrode 

Epidural ECoG 

electrode 
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Figure 3.1.  SEM pictures of micro-ECoG grids.  Patients A and B were implanted with 

micro-ECoG grids manufactured by PMT Corporation.  Each wire terminated in a 

cylindrical protuberance that extended ~200 μm above the base of the grid.  Patients C, 

D, and E were implanted with micro-ECoG grids manufactured by Ad-Tech Medical.  

Each wire protruded above the base of the grid by ~80 μm. 

 

grids manufactured by Ad-Tech Medical Instrument Corporation that consisted of 50 μm 

diameter platinum wire electrodes embedded in a thin layer of silicone.  Each wire 

protruded above the base of the grid by approximately 80 μm.  Patient C was implanted 

with a 64 channel grid and Patients D and E were implanted with 32 channel grids.  The 

grids in Patients C, D, and E had 3-mm interelectrode spacing. 

Clinical needs and constraints drove the placement of reference and ground. Ideally, 

reference and ground would be low-impedance electrodes located close to the micro-

ECoG grids.  For Patient A, reference and ground were low-impedance wires placed in 

the epidural space.  For Patient B, reference and ground were on-grid low-impedance 
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ECoG electrodes.  For Patient C, EEG electrodes located near the implantation site were 

used as reference and ground because all ECoG electrodes were necessary for clinical 

localization.  To increase the quality of the EEG electrode reference and ground signals, a 

conductive gel was reapplied between the EEG electrodes and scalp prior to each 

experimental session.  For Patient D, the reference was the nearest subdural ECoG 

electrode on the clinical grid and an EEG electrode was used for ground.  For Patient E, 

the reference was the nearest subdural ECoG electrode on the clinical grid and ground 

was an epidural ECoG electrode (Table 3.1). 

Micro-ECoG grids for all patients were implanted subdurally.  As with the reference 

and ground, placement of the electrode grids was driven by clinical needs.  In Patient A, 

the grids were initially implanted over the hand and arm representations of primary motor 

cortex.  Patient A required a revision surgery to move the clinical ECoG grid and the two 

micro-ECoG grids were moved to be placed over face motor cortex and Wernicke’s area 

during this surgery.  The LFP recorded from face motor cortex classified words with a 

higher accuracy than the LFP recorded over Wernicke’s (Kellis et al. 2010b).  Therefore, 

the speech classification performed in this study only utilized data from the grid placed 

over face motor cortex.  In Patients B – E, the grids were all implanted over the hand and 

arm representation in primary motor and somatosensory cortex (Table 3.1). 

 

3.3.2 Experimental Paradigm 

All behavioral and neural data were recorded with a NeuroPort system (Blackrock 

Microsystems, Salt Lake City, UT).  A microphone recorded the patient’s speech.  Finger 

movement was monitored with three pressure sensors (Liberating Technologies, 
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Holliston, MA).  To record the arm movement, patients used a computer mouse on a 

large tablet (Wacom, Vancouver, WA).  A task control system (LabVIEW, National 

Instruments, Austin, TX) was used to visually cue patients. 

For the speech task, the patient was verbally cued to repeat the words “Yes,” “No,” 

“Hot,” “Cold,” “Hungry,” “Thirsty,” “Hello,” “Goodbye,” “More,” and “Less.”  For the 

finger task, patients were visually cued by the task control system to randomly flex their 

index, middle, and ring finger with the hand contralateral to the implanted electrodes.  

For the arm movement task, patients performed center out reaching movements after 

holding their arm at the start position for 500 ms with the arm contralateral to the 

implanted electrodes.  Patients were verbally cued or visually cued using the task control 

system to move to random targets.  Patients A and B experienced no hold times and 

Patients C, D, and E were instructed to hold their arm in the start position for 500 ms 

between cues.  For the online Kalman filter decode, the task control system was also used 

to update the cursor position based solely on the Kalman filter estimate of position.  

Patient A performed the speech task with multiple sessions over several days.  Neural 

activity and speech were recorded at 30 kHz.  Patients A and B performed the arm 

movement task and were verbally cued to the targets.  The neural activity and computer 

cursor movement was sampled at 30 kHz.  Patients C, D, and E performed both the finger 

flexion task and the arm movement task.  The task control system was used to cue all 

movements.  Neural data were recorded at 10 kHz and behavioral data were recorded at 2 

kHz.  Patient C had an additional online decode session in which he was instructed to 

move to two targets horizontally separated.  Neural and hand position data were down 

sampled to 5 kHz (Patient A) or 2 kHz (Patients B, C, D, and E) to reduce data size for 
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analysis.  The neural data were also high-pass filtered at 1 Hz to attenuate motion artifact 

(Table 3.1). 

 

3.3.3 Data Analysis 

Data from each microelectrode were re-referenced by subtracting the common 

average across 16 channel blocks of electrodes, which were located within close 

proximity.  All LFPs were visually inspected by plotting low-pass filtered (200 Hz) 

voltage time series of representative electrodes to identify excessive noise.  Several 

channels had high 60 Hz noise.  Channels were excluded if the average power between 

59 to 61 Hz was greater than twice the average power of the broadband signal.  For the 

remaining channels, 60 Hz and its harmonics were excluded from the data using a comb 

filter. 

 

3.3.3.1 Speech Classification 

For speech classification, different types of LFP features were selected as the decode 

input to explore dynamics in the time domain as well as the frequency domain.  To 

examine the time domain, the voltage time series of all channels was downsampled to 

100 Hz.  The voltage time series was also normalized across trials for each channel.  To 

examine the frequency domain, the power spectra for all channels were estimated for 

frequencies between 1-1000 Hz.  LFP multitaper spectra were generated using the 

Chronux package (http://chronux.org) (Mitra and Bokil 2008) and were log-normalized 

across trials for each channel.  The frequency domain consisted of one vector of power in 

different frequency bands for each trial for each channel.  Frequencies between 1 and 
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1000 Hz were chosen because the spectrogram of the raw data showed increased power 

with each word throughout this frequency band.  The time domain LFP features were 

constrained in time from the 0.25 seconds before the onset of articulation to 0.5 seconds 

after.  The frequency domain LFP features were constrained in time from the onset of 

articulation to 0.5 seconds.  A baseline period was used to represent a silence state when 

the patient was not speaking.  The LFP features for the baseline period were calculated 

using data from the 1 second to 0.25 seconds before the onset of articulation for the time 

domain and 0.75 seconds to 0.25 seconds before the onset of articulation for the 

frequency domain. 

Speech classification was performed on the time domain features and the frequency 

domain features separately and in combination (Figure 3.2).  PCA was performed on LFP 

features collected from 30 training trials for each word to decorrelate the data.  A number 

of leading principal components sufficient to preserve 90% of the variance in the data 

were used in the decode.  During the decode phase, projected feature vectors from 20 

subsequent testing trials for each word were classified using linear discriminant analysis.  

For Patient A, ten words and a baseline period were classified. 

 

3.3.3.2 Finger Flexion Classification 

For finger flexion classification, different types of LFP features were selected as the 

decode input to explore dynamics in the time domain as well as the time varying 

frequency domain.  To examine the time domain, the voltage time series of all channels 

was downsampled to 100 Hz.  The voltage time series was also normalized across trials 

for each channel.  To examine the time varying power in the frequency domain, the  
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Figure 3.2.  Using features from time and frequency domain from multiple channels for 

the classification of spoken words and finger movements.  Power spectra were calculated 

for each trial and each microelectrode, and were concatenated with down sampled 

voltage time series.  Trials were stacked to form a large 2-dimensional matrix of 

microelectrode and trial information.  The same number of principal components was 

retained for each case.  The selected features capture relevant dynamics in time, space, 

and frequency. 

 

power spectra for all channels were estimated for frequencies between 65 and 115 Hz  

each 100 ms time bin.  LFP multitaper spectra were generated using the Chronux package 

and were log-normalized across trials for each channel.  Spectra were calculated over 100 

ms time bins, forming vectors of power in different frequency bands that were stacked to 

build a matrix of time varying frequency features.  Frequencies between 65 and 115 Hz 

were chosen because it reflects the high gamma and low chi bands that has been shown to 

modulate with finger movement (Chestek et al. 2013).  The LFP features were 

constrained in time from the 200 ms before the onset of movement to 1000 ms after.  A 

baseline period was used to classify a rest state when there was no finger movement.  The 

baseline period was calculated using data from the 1200 ms before the onset of the cue to 
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the onset of cue. 

Finger flexion classification was performed on the time domain features and the time 

varying frequency domain features separately and in combination (Figure 3.2).  PCA was 

performed on LFP features collected from training trials for each movement type to 

decorrelate the data.  A sufficient number of leading principal components were retained 

to preserve 90% of the variance in the data.  During the decode phase, projected feature-

vectors from subsequent testing trials for each movement type were classified using 

linear discriminant analysis.  For Patient C, LFP features from 64 channels were used for 

40 training trials and 40 testing trials.  For Patient D, LFP features from 26 channels were 

used for 30 training trials and 19 testing trials.  For Patient E, LFP features from 30 

channels were used for 40 training trials and 40 testing trials. 

 

3.3.3.3 Continuous Decode of Arm Movement 

For the continuous decode of arm movement, different types of LFP features were 

selected as the decode input to explore dynamics in the time domain as well as the time 

varying power in the frequency domain.  To examine the time domain, the voltage time 

series was averaged for each 100 ms time bin.  LFP multitaper spectra were generated 

using the Chronux package and were log-normalized across trials for each channel.  To 

examine the time varying frequency domain, the spectral power at 1-5 Hz, 10-15 Hz, 25-

30 Hz, 50-55 Hz, 100-105 Hz, and 250-255 Hz was estimated for each 100 ms time bin.  

Frequency bands were chosen because the spectrogram of the raw data showed increased 

power with arm movement distributed between 1-255 Hz.  

To continuously decode arm movement, a standard Kalman filter was implemented.  
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The likelihood model was defined as 

 

               (1) 

 

where    linearly relates the arm kinematics    to the LFP features   .    represents 

noise in the observation, assumed to be zero-mean and normally distributed.  The final 

feature vector   consisted of LFP features for each channel. 

 

                    (2) 

 

The state transformation matrix    was defined to model how the arm kinematics, 

varied over time, with     a noise term, also assumed to be zero-mean and normally 

distributed.  The arm kinematic state    comprised x and y position, velocity, and 

acceleration for    = 1, 2, ... M, where M was the number of time bins in the data set.  

The parameters  ,  ,  , and   were directly calculated from the training data as 

described in (Wu et al. 2006) and were assumed to be constant, e.g.,    =  .. 

The LFP and arm kinematic data were segmented into 100 ms time bins and the 

decode updated the estimated position each 100 ms time bin.  The Kalman filter was 

performed with   as the time domain features and the time varying frequency domain 

features separately and in combination.  An offset of 200 ms was introduced between the 

movement data and the LFP feature set to account for the delay between neural activity 

and motor output.  The Kalman filter was trained and then tested on subsequent 

nonoverlapping segments of data. 

For Patient A, the LFP features were selected from 32 channels.  The training set was 
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112 seconds (31 reaches) and the testing set was the subsequent 89 seconds (25 reaches) 

after 225 seconds of the patient resting.  For Patient B, the LFP features were selected 

from 30 channels.  The training set was 55 seconds (19 reaches) and) and the testing set 

was the subsequent 65 seconds (28 reaches) after 15 seconds had passed.  For Patient C, 

the LFP features were selected from 64 channels.  The training set was 180 seconds (70 

reaches) and the testing set was the subsequent 180 seconds (68 reaches).  For Patient D, 

LFP features were selected from 26 of the 32 channels.  The training set was 180 seconds 

(52 reaches) and the testing set was the subsequent 120 seconds (36 reaches).  For Patient 

E, LFP features were selected from 32 channels.  The training set was 120 seconds (20 

reaches) and the testing set was the subsequent 120 seconds (25 reaches).  

For Patient C, the Kalman filter was also implemented online in real-time.  LFP and 

kinematic data were segmented into 100 ms time bins, with an offset of 200 ms between 

neural data and kinematics.  Eighteen channels were selected for the decode.  These 

channels were chosen because the LFPs demonstrated the highest correlation coefficients 

with arm movement.  For the selected channels, spectral data in the beta band, 20 to 30 

Hz, were averaged.  The beta band was selected because there was a visual increase in 

power between 20 to 30 Hz when the patient made reaching movements.  For other 

studies decoding arm movement, power in frequencies above 100 Hz has been shown to 

have higher mutual information with kinematic data, but power in the beta band had a 

moderate value of mutual information with the kinematic data (Zhuang et al. 2010).  The 

decode was trained using 1 minute of data.  The position of the cursor during online 

decoding was restricted within the space of the tablet and monitor, but no algorithmic 

constraints were applied to trajectory.  Patient C received visual feedback while the task 
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control system updated the cursor position based on the Kalman filter output every 100 

ms.  A trial was considered successful immediately after the patient crossed the perimeter 

of the 50 mm diameter target.  The target remained on until the trail was successful. 

 

3.3.4 Evaluation 

Classification accuracy was measured against the level of chance, which was 

determined by assuming a uniform distribution for each class assignment.  Classification 

accuracies above the level of chance indicates that the LFP features applied to the 

classification were correlated to the behavior measured.  Confusion matrices were also 

computed for classification decodes.  Each value on a given row and column of a 

confusion matrix represents the normalized number of times that a class was predicted by 

the decoder.  If the decoding is perfect, the confusion matrix should be an identity matrix, 

i.e., have entries equal to one along the main diagonal and zero everywhere else. 

To determine the level of chance in the context of the continuous trajectory decode, 

the Kalman filter was trained and tested using a LFP feature set in which the 0.1 second 

time bins were randomized.  Recorded kinematic data were maintained.  The Kalman 

filter was performed for all five patients using the randomized time and frequency 

domain feature sets.  The correlation coefficients for each kinematic variable were 

averaged across the five patients to obtain the level of chance values. 
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3.4 Results 

3.4.1 Speech Classification 

For speech classification, combining features from the time and frequency domain 

improved performance relative to using only the time domain or frequency domain 

features.  Using LFP features from only the time domain, two words were classified with 

a median accuracy of 93.3% and eleven words were classified with an accuracy of 

67.9%.  Using LFP features from only the frequency domain, two words were classified 

with a median accuracy of 96.7% and eleven words were classified with an accuracy of 

49.7%.  However, when using LFP features from both the time and frequency domains, 

the greatest accuracy was achieved with two words classified with a median accuracy of 

99.9% and 11 classes (10 words and silence) classified with an accuracy of 82.4%.  In all 

cases, the median accuracy for all combinations of words was classified well above 

chance of 50% for two words and 9.1% for eleven words (Figure 3.3A).  The confusion 

matrix shows the number of times each word or silence was predicted by the decoder 

using features from the frequency and time domain (Figure 3.3B).  Periods of silence in 

which the patient was not speaking was classified with the highest accuracy.  Words such 

as “no” and “less” were classified more accurately than words such as “hello” and “cold.” 

 

3.4.2 Finger Flexion Classification 

For finger flexion classification, combining features from the time and frequency 

domain also improved performance relative to using only the time domain or frequency 

domain features.  For Patient D, using LFP features from only the time domain, two 

finger movements were classified with a median accuracy of 71.1% and four finger  
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Figure 3.3.  Comparing performance of classification of speech for two through eleven 

words simultaneously classified for Patient A.  (A) Performance of speech classification 

for two to ten words and silence using only frequency domain features, only time domain 

features, and with combined time and frequency domain features from LFP recorded over 

face motor cortex.  (B) Confusion matrix showing the number of times each word or 

silence was predicted by the decoder using the combined time and frequency domain 

features. 

 

movements were classified with an accuracy of 40.8%.  Using LFP features from only the 

frequency domain, two finger movements were classified with a median accuracy of 

77.6% and four finger movements were classified with an accuracy of 56.6%.  When 

using LFP features from both the time and frequency domains, the greatest accuracy was 

achieved with two finger movements classified with a median accuracy of 77.6% and 

four finger movements classified with an accuracy of 61.8% (Figure 3.4A).  For Patient 

C, the accuracy for four finger movements was 46.4% using only time domain features, 

50.3% using only frequency domain features, and 53% using both time and frequency 

domain features.  For Patient E, the accuracy for four finger movements was 30% using 

only time domain features, 28.8% using only frequency domain features, and 38.3% 

using both time and frequency domain features.  The median accuracy for all 

combinations of finger movements was classified well above the chance level of 25%.  

The confusion matrix in Figure 3.4B shows the number of times each movement was  
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Figure 3.4.  Comparing performance of classification of speech for two through four 

finger movements simultaneously classified for Patient D.  (A) Performance of finger 

flexion classification for two to three finger movements and rest using only frequency 

domain features, only time domain features, and with combined time and frequency 

domain features.  (B) Confusion matrix showing the number of times each finger 

movement or rest was predicted by the decoder using the combined time and frequency 

domain features. Perfect classification would be a dark red diagonal line. 

 

predicted by the decoder using features from the frequency and time domain for Patient 

D.  Rest and middle finger flexion was more accurately classified than index and ring 

finger flexion. 

 

3.4.3 Continuous arm movement decode 

For the continuous decode of arm movement, the performance of the decode was 

quantified offline by calculating the correlation coefficient between the actual arm 

position, velocity, and acceleration and the estimated arm position, velocity, and 

acceleration.  Applying LFP features from both the time and frequency domain, the 

Kalman filter decode was able to estimate the arm movements for Patient B with the 

highest correlation (Figure 3.5).  The estimated position and the actual position of the arm 

had correlation coefficients of 0.82 in the X direction and 0.76 in the Y direction.  The  
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Figure 3.5.  Output of the Kalman filter decode for Patient B. Comparison of actual X 

and Y arm kinematics (blue) to estimated X and Y arm kinematics (red) of the computer 

cursor during a 2-Dimensional task.  The Kalman filter was performed on 30 channels 

using LFP features from both the time and frequency domain.  A lag time of 0.2 sec was 

added to the LFP feature set.  The Kalman filter was trained on 55 seconds of data and 

tested on 65 seconds of data. 

 

estimated velocity and the actual velocity of the arm had correlation coefficients of 0.45 

in the X direction and 0.51 in the Y direction.  The estimated acceleration and the actual 

acceleration of the arm had correlation coefficients of 0.10 in the X direction and 0.32 in 

the Y direction.  Using LFP features from the time and frequency domain, the decode 

performed well above chance for X and Y position, velocity, and acceleration for all 

patients (Table 3.2).  The correlation coefficients between the actual and estimated 

kinematic variables were averaged together in order to compared decode performance for 

the three possible LFP feature sets (time, frequency, and time+frequency).  Combining 

features from the time and frequency domain improved performance slightly from using 

only the time domain or frequency domain features (Table 3.2).  The decode had the  
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Table 3.2.  Correlation coefficients between actual and estimated arm kinematics for all 

patients 
 

 Patient 
A 

Patient 
B 

Patient 
C 

Patient 
D 

Patient 
E Chance 

X Position 0.32 0.82 0.66 0.53 0.35 0.10 

Y Position 0.39 0.76 0.54 0.45 0.25 0.12 

X Velocity 0.17 0.45 0.43 0.39 0.30 0.09 

Y Velocity 0.32 0.51 0.36 0.36 0.16 0.05 

X Acceleration 0.12 0.10 0.40 0.19 0.16 0.03 

Y Acceleration 0.20 0.32 0.21 0.08 0.10 0.03 

Average 
(time + frequency domain) 0.25 0.49 0.43 0.33 0.22 0.07 

Average 
(time domain) 0.18 0.31 0.41 0.24 0.13 0.07 

Average 
(frequency domain) 0.24 0.39 0.32 0.24 0.16 0.07 

 

lowest correlation coefficients for Patients A and E, which may be due to a less ideal 

positioning of the grid over the arm area of cortex or decreased contact with the cortex. 

For the online experiment, Patient C neurally controlled the movement of a computer 

cursor using the real-time Kalman filter.  The patient moved the cursor between two 

targets, which were visually cued for 21 minutes (Figure 3.6).  The patient required a 

median of 2.15 seconds (Interquartile Range of 3.78) to start moving in the direction of 

the target, and a median of 6.24 seconds (Interquartile Range of 14.29) to acquire each 

target.  All presented targets were successfully reached because the target remained on 

until the patient reached the perimeter of the target for a successful trial. 

 

3.5 Discussion 

We hypothesized that micro-ECoG grids could acquire neural signals with high 

spatial and temporal resolution from the primary motor cortex of human patients.  If so,  
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Figure 3.6.  X position of a computer cursor neurally controlled by Patient C with a real-

time Kalman filter decode.  A 300-second representative sample of performance of the 

real-time Kalman filter decode is shown.  The blue line represents the x position in 

millimeters of the cursor as Patient C was randomly cued to move to two targets (red 

circles) horizontally separated on the monitor.  A single feature was used from 18 

channels, consisting of the average power between 20 and 30 Hz.  The real-time Kalman 

filter was trained on 60 seconds of data and was implemented with 100 ms time bins and 

a 200 ms time lag. 

 

micro-ECoG grids could form the basis for a neural prosthesis that provides rapid and 

intuitive communication, e.g. speech recognition and thought typing, through decoding 

the neural signals that intrinsically control the articulate movements of speaking and 

typing.  Here we show that neural signals recorded from micro-ECoG grids placed on the 

primary motor cortex could provide control signals for articulate movements, i.e., 

classification of spoken words, classification of individual finger movements, and 

continuous decoding of hand position during reaching.  Each of these decodes performed 

well above chance, and decode performance was influenced by the selection and 

combination of time and frequency domain features.  

People comfortably hear and vocalize words in the range of 150–160 words per 

minute (Williams 1998).  Our results demonstrated that classification of words from 

LFPs recorded on micro-ECoG grids can be performed rapidly using only 750 ms of data 
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yielding a maximum of 80 words per minute.  The classification performed with an 

accuracy of 82.4% correct for 11 classes, nine times the level of chance.  The relatively 

flat shape of the speech decode performance curve suggests that decoding a longer list of 

words is feasible without a large decrease in performance.  However, it is likely that 

increasing the number of electrodes in the micro-ECoG grids, implanting grids over both 

hemispheres, and improvements in decoding algorithms may be needed to provide rapid 

and accurate decoding of larger sets of words.  The decode was able to classify the silent 

states with the highest accuracy, most likely due to an absence of increased voltage or 

power during these periods.  Differentiating between speech and silence states, i.e., 

detecting the intention to speak, would be an important component for any practical 

communication device for patients. 

For finger flexion classification, the decode performed above chance for all patients.  

Sessions with patients were very limited in time both because of clinical needs and 

because of the general well-being of the patient directly after invasive brain surgery.  

Therefore, the finger movement task was limited to index, middle, and ring finger 

flexions and rest.  These basic movements demonstrated that micro-ECoG grids are 

capable of recording LFP activity correlated with individual finger movements without 

over taxing the patients.  Classifying the flexion of the thumb, the extension of fingers, 

and combined finger movements will be an important next step in demonstrating useful 

control of a prosthetic hand.  The decode performance was lowest for Patient E.  We 

observed that Patient E had difficulty making finger movements, which may have 

contributed to the relatively poor decode performance.  The confusion matrix in Figure 

3.4B demonstrates that index and ring finger flexion were inaccurately decoded several 
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times.  More precise methods for monitoring finger movement and force could capture 

subtle stabilization movements that may have confounded the decode algorithm.  For 

Patients C, D, and E, rest was classified with the highest accuracy probably due to an 

absence of increased LFP activity that was present with finger movement.  Detection and 

classification of finger movement would be an important component for practical 

prosthetic arm control (Egan et al. 2012). 

This study demonstrated that the continuous decode of arm movement is possible 

using micro-ECoG grids to record LFPs.  Significant work remains to improve the 

accuracy and performance of the Kalman filter decode.  Due to significant 

nonstationarities in neural signals, it is necessary to retrain decode algorithms over time.  

Specifically, adaptive methods could be applied to the LFP features to update the 

parameters A, H, W, and Q to reflect changing relationships in the LFP data over time.  

The recalibrated feedback intention-trained Kalman filter (ReFIT-KF) algorithm has 

demonstrated high performance for 2-Dimension tasks without retraining (Gilja et al. 

2012).  Furthermore, although the linear models used for this work were sufficient for an 

initial demonstration, the true nature of the relationship between motor output and LFP 

activity is likely nonlinear, and therefore the extended Kalman filter or other nonlinear 

variant may be more appropriate for future studies. 

In addition to the offline analysis, an online Kalman filter was performed to 

demonstrate that neural signals recorded with micro-ECoG grids are capable of 

controlling the position of a computer cursor in real-time.  Patient C only had minutes of 

exposure to the decode with a very short period of time for training the decode.  If Patient 

C was able to use the online control for a longer period of time, the results may have 
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improved as he adapted to the real-time Kalman filter (Carmena et al. 2003).  In addition, 

the selection of the beta band power for the LFP features was likely not ideal.  Use of 

voltage and time domain features, as well as using power spectra of higher-frequency 

bands, would have likely improved online decoding performance (Zhuang et al. 2010).  

Power in high frequencies such as the gamma band has been shown to correlate with 

movement, but low-frequency  activity (< 5 Hz) is thought to reflect neural processes 

preceding spiking activity and may provide relevant features for control over a prosthetic 

arm as well (Bansal et al. 2011; Logothetis 2002; Mitzdorf 1985). 

The use of both time and frequency domain features increased decoding performance 

because the data from these two domains had nonoverlapping time periods and was 

binned in different manners.  For the speech classification, using both the time and 

frequency domain provided the decode with LFP features in the time domain that were 

lower frequency (below 100 Hz) for 250 ms before the onset of articulation to the 500 ms 

after, and with LFP features in the frequency domain that were a broader range of 

frequencies (1 to 1000 Hz) for the onset of articulation to 500 ms after.  For the finger 

flexion classification, using both the time domain and time varying power in the 

frequency domain provided the decode with LFP features in the time domain that were 

lower frequency (below 100 Hz) and with LFP features in the frequency domain between 

65 to 115 Hz.  For the continuous arm movement decode, there was only a small increase 

in the decode performance with LFP features from both the time and time varying 

frequency domain.  Because continuous decodes integrate the features over small time 

windows, it is difficult to compare the results of continuous versus discrete decodes. 

Neural activity and behavioral tasks were recorded from each patient over a short 
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one- to two-week period.  The patients’ ability to participate in the experiments were 

restricted to what they could do while lying in a bed, and were additionally impacted by 

their changing medical status and the preeminent need to provide care and treatment.  

Therefore, the time to run the experiments was limited and experimental sessions had to 

be conducted with great efficiency.  Ideally, more trials would be obtained and tasks 

would include more complex movements; and all decodes could be implemented online 

to allow for real-time sensory feedback.  The patients involved in this study suffered from 

medically refractory epilepsy for many years and areas of the motor cortex may have 

been abnormally mapped (Lado et al. 2002; Teskey et al. 2002), which is an important 

consideration when transitioning to a different patient population. 

Generally, the decode performance for patients implanted with micro-ECoG grids 

manufactured by PMT was higher than the decode performance for patients implanted 

with micro-ECoG grids manufactured by Ad-Tech.  The wires forming the electrodes in 

PMT grids terminated in small protuberances of silicone, which may have pushed against 

the arachnoid layer resulting in better contact with the cerebral cortex and stabilizing the 

position of the grid relative to the cortex.  The wires forming the electrodes in Ad-Tech 

grids terminated flush with or slightly protruding from the silicone base, which may have 

allowed cerebrospinal fluid to accumulate between the electrode and the cerebral cortex.  

The accumulation of cerebrospinal fluid increases electrical shunting between electrodes 

and a higher correlation of neural signals between electrodes (Kellis et al. 2011).  Due to 

the silicone protuberances and the microwires extending above the silicone base of the 

grids, great care was taken to not slide the grids along the surface of the cortex.  

This study demonstrates while the size of micro-ECoG electrodes is well suited to 
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record relevant information, improvements can be made with these devices.  

Manufacturing micro-ECoG grids that either protrude slightly in a safe way or are made 

of a material that conforms to the cortex surface may prevent grid movement and 

cerebrospinal fluid from accumulating between the cortex and the micro-ECoG grid.  

Thinner micro-ECoG grids are currently being designed to have increased flexibility 

using materials such as polyimide (Thongpang et al. 2011; Viventi et al. 2011) or PDMS 

(Ochoa et al. 2013).  Increased spatial coverage of the grid by adding more electrodes 

would increase the number of relevant neural signals and allow better decoding accuracy.  

Larger coverage area would increase the probability of placing the grid in the optimum 

location given patient-to-patient variability and possible abnormal mapping due to 

neurological disorders.  However, the increased grid size would increase the number of 

electrodes and require a recording system with increased bandwidth and storage for the 

larger volume of data.  Ideally, thinner and larger wireless micro-ECoG grids would be 

implanted chronically in patients with severe paralysis or locked-in syndrome to provide 

control signals for highly articulate prosthetic devices. 

This study provides further evidence that  there is significant motor information 

represented at the scale of single cortical columns and a micro-ECoG grid is capable of 

acquiring LFP signals at this scale from the surface of the cortex (Chestek et al. 2013; 

Kellis et al. 2011; Kellis et al. 2012; Kellis et al. 2010a).  By providing high spatial and 

temporal resolution recordings of neocortical activity, micro-ECoG grids are a promising 

neural interface for providing articulate and intuitive control for communication or 

prosthetic devices. 
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CHAPTER 4 

 

CONCLUSION 

 

In this dissertation, microscale recordings in the human cortex were examined during 

the administration of propofol anesthesia and articulate movements such as speech, finger 

flexion, and arm reach.  Through these studies, we increased our understanding of LFPs 

in neurophysiological recordings.  In Chapter 2, we used propofol anesthesia to probe the 

relationship between APs and LFPs recoded with microelectrodes arrays.  To examine 

this, we performed AP-aligned LFP analysis, which demonstrated the generation of large 

amplitude spike-like LFP activity in lightly and deeply anesthetized states.  In addition, 

the temporal relationship between APs and LFPs remained relatively consistent at all 

levels of propofol.  This study demonstrated that neurons can represent information in 

terms of the timing of APs relative to neuronal oscillations (the LFP).  In Chapter 3, we 

demonstrated that significant motor information is represented at the scale of single 

cortical columns and a micro-ECoG grid is capable of acquiring LFP signals at this scale 

from the surface of the cortex.  LFPs are very informative signals, but the term LFP is 

widely used for microelectrode, ECoG, and EEG recordings.  Although ECoG and EEG 

record field potentials from neural tissue, EEG and ECoG electrodes have a higher 

surface area, lower impedance, and therefore record electrical activity from a much larger 

area of neural tissue.  It is difficult to compare the signals recorded by different  
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modalities, because studies vary in the behavioral task used, the location of the electrode 

grid, and subject variability.  A study in which one subject has simultaneous recordings 

from EEG, ECoG, surface microelectrodes, and penetrating microelectrodes would be 

able to thoroughly quantify specific abilities and limitations of each recording modality. 

Recording the neural activity of human subjects is indispensable for fundamental 

neuroscience research and clinical applications.  Human neurophysiological studies have 

limitations that must be considered.  Addressing these challenges such as the type of 

subjects and neural interfaces used can further our knowledge of neural mechanisms and 

improve medical technology. 

 

4.1 Challenges: Subjects 

In the field of invasive recordings of neocortical activity in humans, subjects are 

primarily patients suffering from medically refractory epilepsy.  Experimental sessions 

with patients are very limited in time both because of clinical needs and because of the 

need to preserve general well-being of the patient directly after invasive brain surgery.  

Clinical needs and constraints drive the placement of electrodes used for research, 

limiting the types of experiments that can be performed.  Furthermore, behavioral 

paradigms are restricted to movements the patient can perform while lying in a hospital 

bed and tethered to recording equipment.  Wireless recording setups could provide 

greater movement and comfort for these patients leading to better experimental sessions 

(Miranda et al. 2010).  The impact of epilepsy in these subjects is also important to 

consider when recording neocortical activity.  Neural recordings during experimental 

sessions must be reviewed for seizure activity and interictal discharges.  In addition, 
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relevant cortices such as motor areas and speech areas may be abnormally mapped. 

Subject recruitment is limited to the small number of patients who are undergoing 

long-term monitoring for their epilepsy and who have volunteered for the research study.  

For each patient, the location of possible areas for neural recordings is different.  

Therefore, collaborating with other research labs will be valuable for the future of 

invasive neurophysiological studies in human subjects.  One such initiative is the 

International Epilepsy Electrophysiology Portal (IEEG-Portal), which is a platform for 

sharing data and tools for studies relevant to epilepsy (Litt et al. 2012).  There are many 

preventative measures that must be put into place such as de-identifying data for patient’s 

privacy, approval of the research study by the IRB of the institution, and formatting the 

data in a standard way for universal use. 

Recording microscale neocortical activity in patients without epilepsy is also 

important.  To assess BCI systems for the end user, we must implant microelectrode 

arrays in people who are paralyzed and have them drive communication or control 

systems for clinical trials.  Recent studies have safely implanted ECoG grids (Wang et al. 

2013) and penetrating microelectrode arrays (Collinger et al. 2013; Hochberg et al. 2012) 

in patients with tetraplegia. 

 

4.2 Challenges: Neural Interfaces 

To record neocortical activity in patients, researchers want effective, reliable, and safe 

electrodes.  Improvements can be made with the penetrating microelectrode arrays and 

micro-ECoG grids used in this dissertation.  Penetrating microelectrode arrays are limited 

in their use in epilepsy patients due to their increased invasiveness.  These electrodes are 
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also limited in their spatial coverage (4mm x 4 mm).  The grid design could have 

increased spatial coverage by adding more electrodes or increasing interelectrode 

spacing.  Increasing the number of electrodes would require a recording system with 

increased bandwidth and storage for the larger volume of data and increasing 

interelectrode spacing may lead to missed relevant neural signals.  Furthermore, neural 

signals recorded from penetrating microelectrode arrays have been shown to degrade 

over time.   

Electrode grids placed on the surface of the cortex may record signals that are more 

reliable over time.  This dissertation demonstrates that while the size of micro-ECoG 

electrodes is well suited to record relevant information, improvements can be made with 

these devices.  Manufacturing micro-ECoG grids that either protrude slightly in a safe 

way or are made of a material that conforms to the cortical surface may prevent grid 

movement and cerebrospinal fluid from accumulating between the cortex and the micro-

ECoG grid.  These designs would limit implantation techniques and grids could not be 

slid along the surface of the cortex like traditional ECoG grids.  Thinner micro-ECoG 

grids are currently being designed to have increased flexibility using materials such as 

polyimide (Thongpang et al. 2011; Viventi et al. 2011) or PDMS (Ochoa et al. 2013).  A 

thinner design would avoid placing extra pressure on the cortex or blood vessels and a 

flexible design may be able to reach relevant neural signals located in both gyri and sulci.  

However, FDA approval of this new technology and implantation in humans for clinical 

trials is years away.  In addition, increased spatial coverage of the grid by adding more 

electrodes would increase the number of relevant neural signals and allow better 

decoding accuracy.  Larger coverage area would increase the probability of placing the 



82 

 

 

grid in the optimum location given patient-to-patient variability and possible abnormal 

mapping due to neurological disorders.  Ideally, thinner and larger wireless micro-ECoG 

grids would be used for human neurophysiological research. 

 

4.3 Conclusion 

In this dissertation, microscale neural activity was recorded from human subjects 

during the administration of propofol anesthesia and articulate movements such as 

speech, finger flexion, and arm reach. 

In Chapter 2, with the administration of propofol, we consistently observed a decrease 

in high-frequency power and AP firing rate, and an increase in regular and predictable 

patterns of LFP and AP activity.  This reduced information processing capacity in the 

neocortex was correlated with a loss of responsiveness and consciousness.  These results 

have important implications for the processing of information in the neocortex, and 

therefore on the interpretation of experimental results in anesthetized preparations and 

clinical results in intraoperative cortical mapping. 

The findings in Chapter 3 provide further evidence that there is significant motor 

information represented at the scale of single cortical columns and a micro-ECoG grid is 

capable of acquiring LFP signals at this scale from the surface of the cortex.  By 

providing high spatial and temporal resolution recordings of neocortical activity, micro-

ECoG grids are a promising tool to provide articulate and intuitive control for 

communication or control systems. 
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