707 research outputs found

    Advances in transfer learning methods based on computational intelligence

    Get PDF
    Traditional machine learning and data mining have made tremendous progress in many knowledge-based areas, such as clustering, classification, and regression. However, the primary assumption in all of these areas is that the training and testing data should be in the same domain and have the same distribution. This assumption is difficult to achieve in real-world applications due to the limited availability of labeled data. Associated data in different domains can be used to expand the availability of prior knowledge about future target data. In recent years, transfer learning has been used to address such cross-domain learning problems by using information from data in a related domain and transferring that data to the target task. The transfer learning methodology is utilized in this work with unsupervised and supervised learning methods. For unsupervised learning, a novel transfer-learning possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering problem in a domain that has insufficient data. Moreover, TLPCM overcomes the problem of differing numbers of clusters between the source and target domains. The proposed algorithm employs the historical cluster centers of the source data as a reference to guide the clustering of the target data. The experimental studies presented here were thoroughly evaluated, and they demonstrate the advantages of TLPCM in both synthetic and real-world transfer datasets. For supervised learning, a transfer learning (TL) technique is used to pre-train a CNN model on posture data and then fine-tune it on the sleep stage data. We used a ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data to provide a non-invasive, in-home monitoring system that tracks changes in the subjects' health over time. The quality of sleep has a significant impact on health and life. This study adopts a hierarchical and none-hierarchical classification structure to develop an automatic sleep stage classification system using ballistocardiogram (BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is used for testing classification performance in most of the experiments. Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Networks DNNs are complementary in their modeling capabilities, while CNNs have the advantage of reducing frequency variations, LSTMs are good at temporal modeling. Polysomnography (PSG) data from a sleep lab was used as the ground truth for sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye movement (REM), and non-REM sleep (NREM). Moreover, a transfer learning approach is employed with supervised learning to address the cross-resident training problem to predict early illness. We validate our method by conducting a retrospective study on three residents from TigerPlace, a retirement community in Columbia, MO, where apartments are fitted with wireless networks of motion and bed sensors. Predicting the early signs of illness in older adults by using a continuous, unobtrusive nursing home monitoring system has been shown to increase the quality of life and decrease care costs. Illness prediction is based on sensor data and uses algorithms such as support vector machine (SVM) and k-nearest neighbors (kNN). One of the most significant challenges related to the development of prediction algorithms for sensor networks is the use of knowledge from previous residents to predict new ones' behaviors. Each day, the presence or absence of illness was manually evaluated using nursing visit reports from a homegrown electronic medical record (EMR) system. In this work, the transfer learning SVM approach outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class kNN.Includes bibliographical references (pages 114-127)

    Sleep stage classification using hydraulic bed sensor

    Get PDF
    Sleep monitoring can help physicians diagnose and treat sleep disorders. Polysomnography(PSG) system is the most accurate and comprehensive method widely used in sleep labs to monitor sleep. However, it is expensive and not comfortable, patients have to wear numerous devices on their body surface. So a non-invasive hydraulic bed sensor has been developed to monitor sleep at home. In this thesis, the sleep stage classification problem using hydraulic bed sensor was proposed. The sleep process divided into three classes, awake, rapid eye movement (REM) and non-rapid eye movement (NREM). The ground truth sleep stage came from regularly scheduled PSG studies conducted by a sleep-credentialed physician at the Sleep Center at the Boone Hospital Center (BHC) in Columbia, Missouri. And we were allowed to install our hydraulic bed sensors to their study protocol for consenting patients. The heart rate variability (HRV) features, respiratory rate (RV) features, and linear frequency cepstral coefficient(LFCC) were extracted from the bed sensors' signals. In this study, two scenarios were applied, put all subjects together and leave one subject out. In each scenario, two types of classification structures were implemented, a single classifier and a multi-layered hierarchical method. The results show both potential benefits and limitations for using the hydraulic bed sensors to classify sleep stages.Includes bibliographical reference

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Unen mittaaminen voimasensoreilla

    Get PDF
    This thesis presents methods for comfortable sleep measurement at home. Existing medical sleep measurement systems are costly, disturb sleep quality, and are only suited for short-term measurement. As sleeping problems are affecting about 30% of the population, new approaches for everyday sleep measurement are needed. We present sleep measurement methods that are based on measuring the body with practically unnoticeable force sensors installed in the bed. The sensors pick up forces caused by heartbeats, respiration, and movements, so those physiological parameters can be measured. Based on the parameters, the quality and quantity of sleep is analyzed and presented to the user. In the first part of the thesis, we propose new signal processing algorithms for measuring heart rate and respiration during sleep. The proposed heart rate detection method enables measurement of heart rate variability from a ballistocardiogram signal, which represents the mechanical activity of the heart. A heartbeat model is adaptively inferred from the signal using a clustering algorithm, and the model is utilized in detecting heartbeat intervals in the signal. We also propose a novel method for extracting respiration rate variation from a force sensor signal. The method solves a problem present with some respiration sensors, where erroneous cyclicity arises in the signal and may cause incorrect measurement. The correct respiration cycles are found by filtering the input signal with multiple filters and selecting correct results with heuristics. The accuracy of heart rate measurement has been validated with a clinical study of 60 people and the respiration rate method has been tested with a one-person case study. In the second part of the thesis, we describe an e-health system for sleep measurement in the home environment. The system measures sleep automatically, by uploading measured force sensor signals to a web service. The sleep information is presented to the user in a web interface. Such easy-to-use sleep measurement may help individuals to tackle sleeping problems. The user can track important aspects of sleep such as sleep quantity and nocturnal heart rate and learn how different lifestyle choices affect sleep.Unen mittaaminen voimasensoreilla Noin joka kolmannella on ongelmia unen kanssa. Nukahtamisvaikeus, heräily, huono unen laatu sekä erilaiset unenaikaiset hengitysongelmat ovat yleisiä. Helppo ja mukava unen seuranta voisi auttaa unenlaadun parantamisessa. Nykyiset mittausmenetelmät ovat kuitenkin epämukavia ja suunniteltu lähinnä lääketieteellisten diagnoosien tekemiseen. Ne eivät siis sovellu unen mittaamiseen itsenäisesti kotona. Tämä väitöskirja esittelee uuden mittausmenetelmän, joka mahdollistaa unen määrän sekä laadun mittaamisen helposti omassa sängyssä. Lakanan alle laitetaan pehmeästä kalvosta tehty anturi, joka mittaa nukkujan liikkeitä, sydämen sykettä sekä hengitystä. Anturi tunnistaa näiden mittausten perusteella useita uneen liittyviä asioita, kuten unenmäärä, kuorsaaminen sekä yön aikana mitattu leposyke. Uni-informaatio näytetään laitteen käyttäjälle verkkopalvelun tai mobiililaitteen avulla. Väitöskirjassa esitellyn unenmittausmenetelmän etu on, että syke- ja hengitystieto saadaan mitattua siitä huolimatta että anturi ei ole suoraan kosketuksissa nukkujan kehon kanssa. Kehitetyt signaalinkäsittelymenetelmät pystyvät erottamaan signaalista sykkeen ja hengityksen, sillä erilaisten mittaushäiriöiden ilmaantuminen signaaliin on otettu huomioon. Uutta unimittausmenetelmää on ehditty jo soveltaa käytännössä. Kehitetty tuote toimii siten, että mittaus lähetetään sensorilta langattomasti mobiililaitteelle, jossa unitiedot näytetään käyttäjälle. Mobiilisovellus antaa ohjeita unen parantamiseksi mittausten sekä käyttäjän profiilin perusteella

    A comprehensive study on the efficacy of a wearable sleep aid device featuring closed-loop real-time acoustic stimulation

    Get PDF
    Difficulty falling asleep is one of the typical insomnia symptoms. However, intervention therapies available nowadays, ranging from pharmaceutical to hi-tech tailored solutions, remain ineffective due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, and an ability to keep people asleep during the night. This paper aims to enhance the efficacy of such an intervention by proposing a novel sleep aid system that can sense multiple physiological signals continuously and simultaneously control auditory stimulation to evoke appropriate brain responses for fast sleep promotion. The system, a lightweight, comfortable, and user-friendly headband, employs a comprehensive set of algorithms and dedicated own-designed audio stimuli. Compared to the gold-standard device in 883 sleep studies on 377 subjects, the proposed system achieves (1) a strong correlation (0.89 ± 0.03) between the physiological signals acquired by ours and those from the gold-standard PSG, (2) an 87.8% agreement on automatic sleep scoring with the consensus scored by sleep technicians, and (3) a successful non-pharmacological real-time stimulation to shorten the duration of sleep falling by 24.1 min. Conclusively, our solution exceeds existing ones in promoting fast falling asleep, tracking sleep state accurately, and achieving high social acceptance through a reliable large-scale evaluation

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Computational Sleep Behaviour Analysis and Application

    Get PDF
    Sleep affects a person’s health and is, therefore, assessed if health problems arise. Sleep behaviour is monitored for abnormalities in order to determine if any treatments, such as medication or behavioural changes (modifications to sleep habits), are necessary. Assessments are typically done using two methods: polysomnography over short periods and four-week retrospective questionnaires. These standard methods, however, cannot measure current sleep status continuously and unsupervised over long periods of time in the same way home-based sleep behaviour assessment can. In this work, we investigate the ability of sleep behaviour assessment using IoT devices in a natural home environment, which potential has not been investigated fully, to enable early abnormality detection and facilitate self-management. We developed a framework that incorporates different facets and perspectives to introduce focus and support in sleep behaviour assessment. The framework considers users’ needs, various available technologies, and factors that influence sleep behaviours. Sleep analysis approaches are incorporated to increase the reliability of the system. This assessment is strengthened by utilising sleep stage detection and sleep position recognition. This includes, first, the extraction and integration of influence factors of sleep stage recognition methods to create a fine-grained personalised approach and, second, the detection of common but more complex sleep positions, including leg positions. The relations between medical conditions and sleep are assessed through interviews with doctors and users on various topics, including treatment satisfaction and technology acceptance. The findings from these interviews led to the investigation of sleep behaviour as a diagnostic indicator. Changes in sleep behaviour are assessed alongside medical knowledge using data mining techniques to extract information about disease development; the following diseases were of interest: sleep apnoea, hypertension, diabetes, and chronic kidney disease. The proposed framework is designed in a way that allows it to be integrated into existing smart home environments. We believe that our framework provides promising building blocks for reliable sleep behaviour assessment by incorporating newly developed sleep analysis approaches. These approaches include a modular layered sleep behaviour assessment framework, a sleep regularity algorithm, a user-dependent visualisation concept, a higher-granularity sleep position analysis approach, a fine-grained sleep stage detection approach, a personalised sleep parameter extraction process, in-depth understanding on sleep and chronic disease relations, and a sleep-wake behaviour-based chronic disease detection method.This work has been supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 676157

    Early detection of health changes in the elderly using in-home multi-sensor data streams

    Get PDF
    The rapid aging of the population worldwide requires increased attention from health care providers and the entire society. For the elderly to live independently, many health issues related to old age, such as frailty and risk of falling, need increased attention and monitoring. When monitoring daily routines for older adults, it is desirable to detect the early signs of health changes before serious health events, such as hospitalizations, happen, so that timely and adequate preventive care may be provided. By deploying multi-sensor systems in homes of the elderly, we can track trajectories of daily behaviors in a feature space defined using the sensor data. In this work, we investigate a methodology for learning data distribution from streaming data and tracking the evolution of the behavior trajectories over long periods (years) using high dimensional streaming clustering and provide very early indicators of changes in health. If we assume that habitual behaviors correspond to clusters in feature space and diseases produce a change in behavior, albeit not highly specific, tracking trajectory deviations can provide hints of early illness. Retrospectively, we visualize the streaming clustering results and track how the behavior clusters evolve in feature space with the help of two dimension-reduction algorithms, Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Moreover, our tracking algorithm in the original high dimensional feature space generates early health warning alerts if a negative trend is detected in the behavior trajectory. We validated our algorithm on synthetic data, real-world data and tested it on a pilot dataset of four TigerPlace residents monitored with a collection of motion, bed, and depth sensors over ten years. We used the TigerPlace electronic health records (EHR) to understand the residents' behavior patterns and to evaluate and explain the health warnings generated by our algorithm. The results obtained on the TigerPlace dataset show that most of the warnings produced by our algorithm can be linked to health events documented in the EHR, providing strong support for a prospective deployment of the approach.Includes bibliographical references
    • …
    corecore