839 research outputs found

    Batch and median neural gas

    Full text link
    Neural Gas (NG) constitutes a very robust clustering algorithm given euclidian data which does not suffer from the problem of local minima like simple vector quantization, or topological restrictions like the self-organizing map. Based on the cost function of NG, we introduce a batch variant of NG which shows much faster convergence and which can be interpreted as an optimization of the cost function by the Newton method. This formulation has the additional benefit that, based on the notion of the generalized median in analogy to Median SOM, a variant for non-vectorial proximity data can be introduced. We prove convergence of batch and median versions of NG, SOM, and k-means in a unified formulation, and we investigate the behavior of the algorithms in several experiments.Comment: In Special Issue after WSOM 05 Conference, 5-8 september, 2005, Pari

    The TCLUST Approach to Robust Cluster Analysis

    Get PDF
    Producción CientíficaA new method for performing robust clustering is proposed. The method is designed with the aim of ¯tting clusters with di®erent scat- ters and weights. A proportion ® of contaminating data points is also allowed. Restrictions on the ratio between the maximum and the min- imum eigenvalues of the groups scatter matrices are introduced. These restrictions make the problem to be well-de¯ned guaranteeing the ex- istence and the consistency of the sample estimators to the population parameters.Estadística e I

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Non-Gaussian Hybrid Transfer Functions: Memorizing Mine Survivability Calculations

    Get PDF
    Hybrid algorithms and models have received significant interest in recent years and are increasingly used to solve real-world problems. Different from existing methods in radial basis transfer function construction, this study proposes a novel nonlinear-weight hybrid algorithm involving the non-Gaussian type radial basis transfer functions. The speed and simplicity of the non-Gaussian type with the accuracy and simplicity of radial basis function are used to produce fast and accurate on-the-fly model for survivability of emergency mine rescue operations, that is, the survivability under all conditions is precalculated and used to train the neural network. The proposed hybrid uses genetic algorithm as a learning method which performs parameter optimization within an integrated analytic framework, to improve network efficiency. Finally, the network parameters including mean iteration, standard variation, standard deviation, convergent time, and optimized error are evaluated using the mean squared error. The results demonstrate that the hybrid model is able to reduce the computation complexity, increase the robustness and optimize its parameters. This novel hybrid model shows outstanding performance and is competitive over other existing models

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Vision-based neural network classifiers and their applications

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy of University of LutonVisual inspection of defects is an important part of quality assurance in many fields of production. It plays a very useful role in industrial applications in order to relieve human inspectors and improve the inspection accuracy and hence increasing productivity. Research has previously been done in defect classification of wood veneers using techniques such as neural networks, and a certain degree of success has been achieved. However, to improve results in tenus of both classification accuracy and running time are necessary if the techniques are to be widely adopted in industry, which has motivated this research. This research presents a method using rough sets based neural network with fuzzy input (RNNFI). Variable precision rough set (VPRS) method is proposed to remove redundant features utilising the characteristics of VPRS for data analysis and processing. The reduced data is fuzzified to represent the feature data in a more suitable foml for input to an improved BP neural network classifier. The improved BP neural network classifier is improved in three aspects: additional momentum, self-adaptive learning rates and dynamic error segmenting. Finally, to further consummate the classifier, a uniform design CUD) approach is introduced to optimise the key parameters because UD can generate a minimal set of uniform and representative design points scattered within the experiment domain. Optimal factor settings are achieved using a response surface (RSM) model and the nonlinear quadratic programming algorithm (NLPQL). Experiments have shown that the hybrid method is capable of classifying the defects of wood veneers with a fast convergence speed and high classification accuracy, comparing with other methods such as a neural network with fuzzy input and a rough sets based neural network. The research has demonstrated a methodology for visual inspection of defects, especially for situations where there is a large amount of data and a fast running speed is required. It is expected that this method can be applied to automatic visual inspection for production lines of other products such as ceramic tiles and strip steel
    corecore