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Abstract

Smartphones prevalence in today’s society comes from the multitude of extremely useful services
provided. However, this depends on concerning access to amounts of information, such as the
one obtained from body sensors, calendars events, contacts, location, phone messages, internal
and external storage, and many more. Smartphones’ privacy managers allow the user to control
the application’s access to this sensitive data, however, the current permission systems often
misrepresent human intentions, since most of the times the permission decision (granted or
denied) remains the same after the first time it is asked to the user. Nonetheless, the decision
of the user can change depending on the context of the requesting application (app) and the
context of the user. For example, a user might allow a permission for an application that he is

currently using, but deny the same permission if the app is currently running in the background.

In this thesis we develop a secure strategy to learn and predict the users’ privacy preferences
according to the current context, such as if the app is in foreground or not, and the location of the
user. Our strategy is secure in the sense that the users’ data remains private and it is not shared
with any entity, including the server responsible for the learning process. We propose an efficient
and secure distributed k-Means algorithm, that is robust to data that is not independent and
identically distributed (IID). The base idea of our proposal consists in each client computing the
k-Means algorithm locally, with a variable number of clusters. The server will use the resultant
centroids to apply the k-Means algorithm again, discovering the global centroids. To maintain
the client’s privacy, homomorphic encryption and secure aggregation is used in the process of
learning the global centroids, such that the server has no access to the original data, except
its cyphertext. This algorithm is efficient and reduces transmission costs, since only the local

centroids are sent to the server to find the global centroids.

Using our proposed strategy we can generate privacy profiles from the resulting clusters in a
secure way. Then, using federated learning we can train a neural network to predict the users’
grant decisions (accept or deny a permission) using the context variables and the generated
privacy profiles as features, while guaranteeing the user privacy. To evaluate our strategy, we
resort to a dataset of privacy decisions collected from a field study with 93 participants, whereby
user’s grant decisions are securely predicted using federated learning neural networks. Our secure
strategy leads to an Fl-score of 90%, thus matching the state-of-the-art strategy for privacy

decisions prediction, with the advantage of our approach providing privacy guarantees.






Resumo

A prevaléncia de smartphones na sociedade atual provém da multiplicidade de servigos extrema-
mente uteis fornecidos pelos mesmos. No entanto, isso depende do acesso a uma quantidade
de informacao preocupante, como a de sensores corporais, eventos de calendérios, contatos,
localizagao, mensagens, armazenamento interno e externo e muito mais. Os gestores de privacidade
dos smartphones permitem que o utilizador controle o acesso das aplicagoes a estes dados sensiveis,
no entanto, os sistemas de gestao das permissoes atuais muitas vezes nao representam as intengdes
humanas, ji que na maioria das vezes a decisdo de permissdo (concedida ou negada) permanece a
mesma apds a primeira vez que é pedida ao utilizador. No entanto, a decisao do utilizador pode
mudar dependendo do contexto da aplicagao (app) e do utilizador. Por exemplo, um utilizador
pode permitir uma permissao para uma aplicacdo que estd a usar no momento, mas negar a

mesma permissao se a aplicacdo estiver a ser executada em segundo plano.

Nesta tese, desenvolvemos uma estratégia segura para aprender e prever as preferéncias de
privacidade dos utilizadores de acordo com o contexto, como a aplicacao estar em foreground
ou nao, e a localizacdo do utilizador. A nossa estratégia é segura no sentido em que os dados
dos utilizadores permanecem privados e nao sdo partilhados com nenhuma entidade, incluindo
o servidor responsavel pelo processo de aprendizagem. Propusemos uma maneira eficiente e
segura de aplicar o algoritmo k-Means de forma distribuida, que é robusta em casos extremos
de dados nao distribuidos de forma idéntica e independente. A ideia base da nossa proposta
consiste em cada cliente executar o algoritmo k-Means localmente, com um ntimero variavel de
clusters. O servidor usara os centrdides resultantes para aplicar o algoritmo k-Means novamente,
descobrindo os centroéides globais. Para manter a privacidade do cliente, encriptacdo homomérfica
e agregacao segura sao usadas no processo de aprendizagem dos centréides globais, de forma a
que o servidor nao tenha acesso aos dados originais, apenas aos dados cifrados. Este algoritmo é
eficiente e reduz os custos de transmissio, uma vez que apenas os centréides locais sdo usados

para encontrar os centroides globais.

Usando o algoritmo proposto geramos perfis de privacidade de forma segura. De seguida,
usando federated learning, podemos treinar uma rede neuronal para prever as decisdes de
permissoes dos utilizadores (concedem ou negam uma permissao) usando as varidveis de contexto
e os perfis de privacidade como features, garantindo a privacidade dos utilizadores. Para avaliar
a nossa estratégia, tiramos partido de um dataset de decisoes de privacidade recolhidas a partir

de um estudo de campo com 93 participantes, em que as decisdes de permissao do utilizador sao
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previstas com seguranca usando redes neuronais usando federated learning. A nossa estratégia
alcanga um F1-Score de 90%, correspondendo assim & performance da estratégia do estado da
arte para previsao de permissoes de privacidade, com a vantagem de a nossa abordagem dar

garantias de privacidade.
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Chapter 1

Introduction

Smartphones are mobile devices that gather almost the same capabilities as personal computers.
Besides the traditional voice calls and text messages, they contain multimedia functionalities
like music, image, video or gaming. They incorporate a variety of sensors like magnetometer,
gyroscope, accelerometer or proximity sensors and support communication protocols such as
Wi-Fi, Bluetooth or satellite navigation, which allows the collection of a variety of data [1].
Current modern smartphones are able to collect vast amounts of information like location, photos,
messages, call log, contacts or emails. On top of this, is possible to extract high level information
from this data, like home address, work address or close friends. Due to the widespread adoption
of these devices, and the ease of developing applications for smartphones, the barrier to collect
personal information from the masses is now much lower. This led to privacy concerns, specially
after events where the data collected was used to malicious purposes, like the Cambridge Analytica

scandal®.

All this data collection is done by the apps installed on the users’ smartphone. So, the users
can reduce the amount of data shared with the applications by allowing or denying specific
permissions for each application, such as location, camera, contacts, microphone, storage or call
logs. To allow for user control over these permissions, smartphones implement two permission
systems: Ask-On-Install (AOI) and Ask-On-First-Use (AOFU), the first asks the user to define
the permissions when the application is installed and the latter when it is first used. The user
can always change the permissions configuration on the phone settings latter on in the AOFU

strategy.

This thesis is incorporated in the COP-MODE project?. Context-Aware Privacy Protection
for Mobile Devices (COP-MODE) is a research project led by the University of Coimbra, the
University of Porto and the University of Cambridge aiming at enhancing the privacy of mobile

devices, with privacy-preserving mechanisms that empower users with control over their data.

"https:/ /www.theguardian.com/news /2018 /mar/17 /cambridge-analytica-facebook-influence-us-election (2021,
August 17)
2https://cop-mode.dei.uc.pt (2021, August 17)
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In the scope of this project, several data gathering campaigns were performed in order to
gather the necessary data to enable automated privacy protection. This thesis targets performing

such automated privacy protection in a private manner, i.e. without access to user data.

1.1 Problem Definition

There are problems with both AOI and AOFU strategies. In AOI prompts, people do not
pay attention or cannot understand the prompts. The users’ answers are also static, ¢.e. they
will remain with the initial configuration until the user decides to change them on the phone’s
settings. These static permissions do not account for the user’s context, like user’s location, if

the application asking the permission is being used or not or the time of the day [2-5].

In Ask-on-first-use system, every time an application asks for a permission for the first time,
the user has to choose to allow or deny it. This decision will be based on that specific context,
which makes it better than the AOI system [6, 7]. However, after being allowed a permission once,
the app will have this permission automatically granted for all subsequent uses, even without the
user noticing. Therefore, AOFU does not account for the context when automatically granting

permissions.

Taking into consideration what was said above, there is still a gap in the research on what
influences users’ decisions in terms of app permissions. The current model (AOFU) does not
represent how the users think about privacy. According to the data collected by our campaign,
each user has on average about 35 permission requests per hour, which makes manual answering
unfeasible. So, there is a need to create tools to automate these decisions, that are capable to
represent the user intentions as a function of the context of the user and of the context of the

device.

Currently, there are systems capable of automating these decisions. However, some of these
mechanisms are trained locally, which require intensive users’ input, which leads to user fatigue,
and others rely on a centralized approach, where all the users’ privacy preferences data must be

sent to a central server.

Our goal is to have a system capable of learning the users’ privacy preferences according to
the context, and the learning mechanism must to be private, 7.e. the users’ data about their

privacy preferences and context should not be disclosed to anyone.

1.2 Goals and Contributions

The main goal of this thesis is to develop a secure strategy to learn and predict the user’s privacy

preferences according to different contexts, while protecting the users’ privacy.

The contributions of this thesis are as follows:
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o We propose an efficient and secure way to apply the K-Means algorithm in a distributed
fashion, that is robust to extreme cases of non-I1ID, where each user belongs to only one or

two clusters, which is the case in mobile privacy preferences’ profiles.

e Secure privacy profile generation: Using the algorithm developed in the previous item, we

are able to generate privacy profiles in a secure way, without sharing user’s personal data.

e Privacy profiles’ usefulness testing: In this thesis we also show how we can compute the

usefulness of the generated privacy profiles in a secure way, using federated learning.

o Security complements to the Privacy Preserving Distributed Hierarchical Clustering (PP-
DHC) algorithm. PPDHC is a general framework for constructing a private agglomerative
hierarchical clustering algorithm over partitioned data, based on secure scalar product and
secure hamming distance. However the implementation presented by the authors contained
three security problems related to data leakage. We provided a solution to two of those

problems.

As a result, from these contributions, the following paper was published and presented at the
IDA 19" Symposium on Intelligent Data Analysis, in Apr 2021: A. Brandao, R. Mendes, J.
P. Vilela, “Efficient Privacy Preserving Distributed K-Means for Non-IID Data”, International
Symposium on Intelligent Data Analysis, Porto, Portugal, April 2021.

1.3 Structure

This dissertation is divided in the following six chapters:

Chapter 1 - Introduction: Brief description of the problem, its context and motivation. We

defined the goals of this dissertation as well its structure.

Chapter 2 - Background: Explanation of core concepts necessary for the understanding of

this dissertation, such as machine learning and user profiling.

Chapter 3 - State-of-the-Art: Description of the state-of-the-art approaches to the problems

we will face in this dissertation.

Chapter 4 - Efficient Privacy Preserving Distributed k-Means for Non-IID Data:
Description of a new clustering technique for distributed non-I1ID data, that is also efficient and

private.
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Chapter 5 - Secure Generation of Privacy Profiles: Real World Application: We
present our approach to solve a real world problem, using the strategies described in the previous

chapters, of generating privacy profiles in a secure way.

Chapter 6 - Conclusion and Future Work: We summarize our findings, together with

some reflections on the results obtained, together with some guidelines for future work.



Chapter 2

Background

In this chapter, we provide the necessary background information for. In particular, we start by
describing the Cross Industry Standard Process for Data Mining (CRISP-DM) in section 2.1, an
open standard describing how to approach a data mining problem. This is the guideline we used

in this thesis.

In section 2.2 we explain what supervised learning (section 2.2.1) and unsupervised learning
(section 2.2.2) is, and common models used in both techniques. The unsupervised learning
algorithms will be used to generate privacy profiles and the supervised learning algorithms to

evaluate their usefulness.

Finally, in section 2.3 we describe three strategies for user profiling, neighbourhood based
techniques (section 2.3.1), machine learning techniques (section 2.3.2), and ontology based
techniques (section 2.3.3). This techniques make use of unsupervised learning algorithms and
other strategies such as collaborative filtering to generate user profiles. Our goal is to generate
privacy profiles using mobile privacy preferences data, so we apply some of this strategies to

accomplish that goal.

2.1 CRISP-DM

Cross-Industry Standard Process for Data Mining (CRISP-DM), conceived in late 1999, is a
process model that specifies the data mining life cycle (figure 2.1). This model describes a

systematic and flexible approach to tackle data mining problems.
This model is composed by six phases:
¢ Business Understanding: In this first phase, the focus is on understanding the goals

and requirements of the project from a business perspective. Only then, we can convert it

to a data mining problem and formulate plan to achieve the desired goals.

e Data Understanding: This phase involves the data collection and continues with actions

17
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Y

Data
Understanding

Business —
Understanding <

Data
Preparation

A

Deployment

Y

Modeling

Evaluating

Figure 2.1: Phases of the CRISP-DM model.

that allows one to became familiar with data. Evaluate the quality of the data, acquire the

first insights and formulate possible hypothesis.

Data Preparation: After the data collection, the raw dataset needs to be cleaned and
transformed in order to be ready to be fed into the model(s). It is normal to perform this

phase multiple times throughout the life cycle.

Modeling: In this phase the data prepared in the previous phase is going to be used to

train model(s) and fine-tune the respective parameters.

Evaluation: At this phase of the life cycle, we have a final model(s) trained with the
collected data. Now, before deploying the model we need to verify it it achieves the business

goals defined in the first phase.

Deployment: In this final phase we already have the model(s), fully validated and ready
to use. Depending on the objectives, this phase could consist in a simple report or in a

complex setup requiring continuous learning.
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2.2 Machine Learning

Although the definition of machine learning varies in the literature and there is terminological
confusion, one of the most famous definitions is by Thomas Mitchell, which in 1997 described

machine learning as follows [8]:

Definition 2.2.1 (Machine Learning) A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at tasks

i T, as measured by P, improves with experience E.

This definition is very broad and encompasses a large variety of problems, Shai et. al [9]
provide a thorough taxonomy of learning paradigms. Here we would like to detail the differences
between supervised and unsupervised learning and describe some algorithms from both learning

strategies.

2.2.1 Supervised Learning

In supervised learning algorithms, the goal is to learn a function that maps an input to an output.
In the training phase, the algorithm has access to examples where both input and correct output
are present. Hence the name “supervised”, because the learning is being supervised and the
algorithm knows when the answer is right or wrong. The following sections detail supervised

learning techniques that are relevant in the context of this work.

2.2.1.1 Linear Regression

Linear regression with one explanatory variable is one of the simplest supervised learning models.

This model assumes a linear relationship between the input X and the output (equation 2.1).

h(X,0) = X0 +1b (2.1)

The parameters # and b are going to be estimated from the data using the least squares
method. The least squares method finds the optimal 6 values by minimizing the Residual Sum
of Squares (RSS) (equation 2.2).

RSS(0) = 301 — hlai, ) (2.2
=1

To find the minimum value of the RSS function, the gradient descent is used (algorithm 1).

The weights 6 are randomly initialized, then the gradient of the cost function (RSS) is

computed. The gradient gives the direction to which the cost function is increasing, so the
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Algorithm 1 Gradient Descent

1: 0y <+ random initialization
2: while 6; — 0;_1 > ¢ do

3: Grad < V * RSS(6:)

4 01 < 0, — X Grad

5

. end while

gradient multiplied by a learning rate A is subtracted to the current weights 6.

In figure 2.2 we can observe a linear regression applied to an artificial dataset with two

variables X and Y, where the goal is to predict Y based on X.

1.00

0.75

> 0.50

0.00

0.00 0.25 0.50 0.75 1.00
X

Figure 2.2: Example of a linear regression.

The final model, i.e. the black line represented in figure 2.2 has the following equation (2.3).

Y = X % 0.81359 4 0.08441 (2.3)
With a Residual Sum of Squares of 0.02114558.

2.2.1.2 k-Nearest Neighbours

The k-Nearest Neighbour (k-NN) classification algorithm is a non-parametric machine learning
method, where the output of the model is the class to which the input object belongs to. To
predict the class of a new object, the most common class among its k neighbours is outputted

(equation 2.4).

h(z) = argmaxg, #{z; € N(z, k)|ly; = C;} (2.4)

Where N(z,k) is the set of k neighbours of z and C; is the class j. We want to find the

class that contains the most neighbours. This algorithm is a type of lazy learning method, since
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the function is locally approximated and all the computations are delayed until the function
evaluation. In figure 2.3 we can observe the result of the k-NN applied to an artificial dataset
with two continuous variables: X and Y and one binary variable, represented by the color: blue
or black.

k=1 k=10

Figure 2.3: k-Nearest Neighbours example with artificial dataset for £ =1 and k£ = 10.

On the left side of figure 2.3 it is represented the k-NN model for k£ equal to 1. We can observe
that the boundary is very complex and it correctly describes almost every point. However, this
model is overfitted to the training data, this means that the model will fail to correctly predict
new observations. On the right side, we observe the resulting model for £ equal to 10. In this
case the boundary is smoother, although the majority of observations are well categorized, there
are around 14 who are not. In conclusion, by tweaking the parameter & we can manipulate the

complexity of the model, increasing or decreasing the bias.

2.2.1.3 Neural Networks

Neural networks are models inspired by biological neural networks present in animal brains. The

simplest neural network configuration is a perceptron (figure 2.4).

The output function of this model is 0 or 1 according to a threshold e defined in the step

function (equation 2.5).

0 if Y 0,z <e
h(z) = ' 2i=0 (2.5)
1 if Z?:O 9111,‘1 > €

This model represents a linear combination of the inputs with a discretized ouput, achieved



22

Inputs

Weights

%

Aggregation

CHAPTER 2. BACKGROUND

> output

Figure 2.4: Perceptron diagram.

using the activation function step function. In order to model more complex, non-linear

functions, we need to add more perceptrons, a multi-layer perceptron or neural network (figure

2.5).

Hidden Layer

Figure 2.5: Multi-layer perceptron or Neural Network diagram.

Fach perceptron in the hidden layer will serve as an input to the perceptrons in the output

layer, resulting in the following output (equation 2.6).

h(z) = A O 6)) - 617) (2.6)
J 7

where f() corresponds to the activation function of the neurons in layer i. This process of

computing the output by computing the perceptron values from the left to right is called

feedforward. The goal of a neural network is to find the weights that better fit the training

data. Since there is no analytical solution, in general, we use the same search procedure used

in the linear regression, the gradient descent. In the case of the neural networks, we call this

process backpropagation.
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2.2.2 Unsupervised Learning

As opposed to supervised learning, unsupervised learning does not have access to the output,
only the input. Since the algorithm does not have an explicit feedback, the goal of the algorithm
is to learn patterns in the input data [10]. One of the most common unsupervised learning tasks
is clustering: grouping objects in groups (clusters) such that the objects in the same cluster are

more similar between each other than to the ones in other clusters.

2.2.2.1 K-Means Clustering

K-Means, proposed by Stuart Lloyd in 1957 but only published in 1982 [11], is one of the most
known and widely used clustering algorithms. It is simple to implement, easily adapts to new
examples and it is able to create clusters of different shapes and sizes. However it is dependent
on the initial centroids and does not scale with the number of dimensions, given the curse of
dimensionality. In high dimensional data, all objects appear to be sparse and dissimilar in many

ways and the euclidean distance loses statistical significance.

The goal of K-Means is to assign each observation to a single cluster minimizing the within-

cluster Euclidean distance:

CT...C} = argmin Z Z || z; — cx| |2 (2.7)
C

1.-C keK z;€Cy,

where K is the set of cluster IDs, C} is a set of points representing a cluster and ¢ is the

centroid value for cluster k, the mean point of that cluster k. The C; are the resulting clusters.
The algorithm works as follows: given a set of k initial centroids cgl),cgl), .. .,c,(:) , the

algorithm iteratively executes the following two steps:

1. Assignment: Assign each observation to the cluster with the nearest mean, with respect

to the Euclidean distance.

2. Update: Compute the new centroids’ values.

1) _ 1
¢ =0 Z Tp (2.8)
’ ¢ | xpeC.(t)

The algorithm repeats these steps until the shift between the new centroids and the previous
ones is lower than a specified threshold [|c(tY) — ¢®)|| < e. In figure 2.6 we can visualize an
example of the iterations done by the K-Means algorithm on the Iris dataset [12]. It is possible
to observe that the initial centroids started all inside the same cluster, the versicolor species and

iteratively spread away towards the other clusters.
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Figure 2.6: K-Means iterations visualization. The initial centroids are represented by the orange
points, then at each iteration they change position, until they converge to their final centroids,

represented by the orange crosses.

2.2.2.2 Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering is an algorithm for cluster analysis that builds a hierarchy
of clusters. Unlike other cluster algorithms, Hierarchical Clustering only requires a measure of
similarity between groups of data points. This similarity distance is called linkage criterion, some

commonly used linkage criteria between two groups of observations A and B are:

o Single-Linkage: min{d(a,b):a € A,b € B}.

o Complete-Linkage: max{d(a,b):a € A,b€ B}.

o Centroid Linkage: ||C4 — Cg||, where C; is the centroid of the group of observations i.
The algorithm is simple in terms of complexity, however it has a time complexity of O(n?) and
requires O(n?) memory:

1. Create a group for every point in the dataset.

2. Repeat: iteratively merge the groups that are closer to each other, according to the

similarity distance.

3. Until: All the data points belong to the same group.

In figure 2.7 we can observe every step in the hierarchical clustering algorithm (complete-
linkage) applied to an artificial dataset with two variables. In the first iteration we see the points
5 and 6 are merged into the same group, represented by the red line. In the second iteration, the
groups corresponding to the points 1 and 2 are the closest ones, so they are merged together. In

the next iterations the process is repeated until in iteration 6 all points belong to the same group.
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Figure 2.7: Hierarchical Clustering example on an artificial dataset with two variables (V1 and
V2). Each blue point represents a data point and the points connected by a red line belong to

the same group. The points are numbered for easier reference.

This iteration process can also be visualized in a dendrogram, represented in figure 2.8. Here
the z-axis represent the points, with the respective numeration. The y-axis represents the height,
in this case the height is the similarity measure between two groups. For example, in iteration 3

the distance between the point 7 and the group with points 5 and 6 is close to 0.2.

As stated before, hierarchical clustering does not need a previous specified number of clusters.
Using the dendrogram we can cut it and decide the optimal number of clusters. One heuristic
commonly used is cutting where the gap between two successive combination similarities is

largest. For our example that gap would be between 0.3 and 1, creating a total of 3 clusters:

{{7,5,6},{1,2},{3,4}}.
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Figure 2.8: Final dengrogram created by the agglomerative hierarchical clustering with complete-

linkage.

2.3 User Profiling

In order to help users define their privacy rules, we need to understand how they think, how

they react to a certain permission request in a specific context. With this data, we then need to

extract knowledge so we understand which characteristics affect specific decisions, i.e. profiling.

In this section we will explore different techniques to perform user profiling.

According to Eke et al. [13] we can categorize the different techniques in the following main

categories: Neighbourhood based techniques, Machine learning techniques and Ontology based

(figure 2.9).

User Profiling Techniques

A 4

Neighbourhood Based Machine Learning Ontology Based
Techniques Techniques

Memory-Based
Collaborative Filtering

Supervised Learning

Unsupervised Learning

v

k-NN

K-Means Clustering

Hierarchical Clustering

Figure 2.9: User profiling techniques diagram. Adapted from Eke et al. [13].
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2.3.1 Neighbourhood Based Techniques

Neighbourhood based techniques focus on the commonality between users. On example of
this technique is Memory-Based Collaborative Filtering (CF), commonly used in recommender
systems [14]. The standard Collaborative Filtering techniques uses rating from a group of users,

this information is stored in a n x m matrix like the one in table 2.1.

Users Movies
Good Bye Lenin! The Lives of Others Persepolis Les Misérables

User 1 4 3 5 1
User 2 2 4 1 0
User 3 U 3 2 5
User 4 5 4 4 2
User 5 2 5 0 1

Table 2.1: User ratings matrix examples for 5 users and 4 movies. Each user gives a rating

between 0 and 5, if the user did not saw the movie, then the rating is null ().

The user-based CF stores the ratings matrix in memory and the users ratings vector
o = {Tul,Tu2,...,Tum} is used to compute the similarity between them. Using similarity

metrics like the Pearson correlation (equation 2.9).

Zz‘elm, (Tui = Tu) (1o — 7o)
\/Ziefuv (rui — fu)JZiezw (Tvi — )

7, represents the average rating for user x and the resulting value varies between —1 and 1. —1

STMyp =

(2.9)

indicates total negative linear correlation, 1 indicates total positive linear correlation and 0 no

linear correlation.

For our example in Table 2.1, the pearson correlation between users is presented in table 2.2.
From this results we can conclude, for example, that user 1 is very similar to user 4 and very

different from users 2 and 3.

User 1 User 2 User3 User4 User5
User 1 1.00
User 2 -0.98 1.00

User 3  -0.98 1.00 1.00
User 4 0.81 -0.19 -0.94 1.00
User 5 0.42 1.00 -1.00 0.42 1.00

Table 2.2: Pearson correlation coefficient matrix between every user.
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2.3.2 Machine Learning Techniques

Some of the techniques explained in section 2.2 can be used for user profiling [15]. In the
supervised learning category, k-NN can be used for user profiling. Bradley et al. [16] used k-NN
to create user profiles based on the job’s history and likes and dislikes of job’s postings. In order

to understand if a job posting is relevant or not to a specific user.

The unsupervised techniques are very useful in user profiling, since many times we are trying
to learn the profiles from the data, without having the corresponding labels. Both K-Means and
Hierarchical Clustering can be useful, for example, Paireekreng and Wong [17] used K-Means to
construct user profiles based on their demographics for mobile content personalisation. Liu et al.
[18] used hierarchical clustering to build user profiles based on users’ privacy app permissions
settings. These profiles were then used in a supervised learning model to recommend the users

app permissions configurations that are better suited to their profile.

2.3.3 Ontology Based Techniques

Ontology is the branch of philosophy which deals with the nature and the organisation of
reality [19]. Ontology based techniques use domain knowledge to build entities, attributes and
relationships between them to develop a representation of the users. These techniques usually
involve data collections, through questionnaires for example, and then a manual analysis and
construction of the ontology model has to be done by specialists of the domain. Tao, Li and
Zhong [20] developed an ontology model to discover user background knowledge for personalized
web information gathering. For each user, a personalized ontology is built, according to a specific

topic, with the goal to gather and query useful from the web.

In this chapter we provided the background knowledge required to understand the following
chapters. Mainly, how we structured our project using the CRISP-DM framework, what machine
learning is and the different types of learning, and how we can apply them and other strategies

to generate user profiles.



Chapter 3

State of the Art

In this chapter is presented a review of the state of the art done for this dissertation. In section
3.1 we review the most common strategies for the creation of privacy profiles. In section 3.2 we
introduce the concept of federated learning that will be used in section 3.3, were we describe the
state-of-the-art strategies for privacy preserving distributed k-Means. In section 3.4 we describe
a privacy preserving distributed strategy to generate profiles using hierarchical clustering and
secure scalar product. In the final three sections, we introduce three techniques for clustering data
with privacy guarantees: homomorphic encryption (section 3.5), local representatives (section

3.6) and differential privacy (section 3.7).

3.1 Privacy Profiles

Privacy profiles are explicit representations of the users’ privacy decisions for a given system. In

order to generate these privacy profiles many user profiling techniques have been applied.

Agarwal and Hall [21] developed ProtectMyPrivacy, a system for iOS devices that
recommends privacy decisions to users based on crowdsourcing. All users send their privacy
decisions to a centralized server, then the “experts”, about 1% of the most active users, contribute
to the recommendation system. This approach does not protect users’ privacy and the system only
provides universal recommendations, i.e. only one profile exists and the same recommendation is
sent to every user. They do not take into account each users’ individual characteristics or the
context, they assume instead that a consensus will emerge from the crowd. Rashidi, Fung, and
Vu [22] also developed a crowdsourcing system named RecDroid. This system, despite having a
more advanced system for recommending privacy decisions than ProtectMyPrivacy, it suffers
from the exact same problems. Users’ privacy decisions are sent to the server, exposing their
data to anyone who has access to the server, in a lawful or unlawful way, and only one profile

exists for every user.

Y. Zhao, J. Ye, and T. Henderson [23] proposed collaborative filtering strategies to recommend

privacy settings for location permissions. However, the data collection was done using surveys,

29
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where specific scenarios where presented to the participants and they had to select a privacy
setting. It is hard to understand if this simulation is representative of real life decisions as
aspirational responses often diverge from real behavior [24]. J. Xie, B. P. Knijnenburg, and H. Jin
[25] also proposed a location-privacy recommender system based on collaborative filtering. The
data, collected by 40 volunteers in University of St. Andrews, is only related to the location status
on the Facebook! app. Ismail et al. [26] conducted a user study with 26 participants to create
a collaborative-filtering recommender system for Instagram? privacy settings. They also used
K-nearest neighbours to create profiles with similar users, from which the collaborative-filtering

will recommend the permission setting.

Lin et al. [27] used Amazon Mechanical Turk to collect privacy preferences with regard to
over 800 apps from over 700 participants. The data collected corresponded to the privacy decision
for each (permission, purpose) tuple. They applied hierarchical clustering over their dataset and
identified four distinct clusters. With the results obtained, they concluded that the profiles were
capable of predicting many of a user’s mobile app privacy preferences. Liu et al. [28] collected
privacy preferences from the LBE Privacy Guard® application. The collected data from users
mainly based in mainland China, corresponds to over 239000 users and 12119 apps, resulting in
a total of 28630179 decisions. A problem with their dataset is that this data was collected from
users who already had rooted phones, so their dataset is very biased since all participants are
all tech savvy. They used k-Means, with each user represented by one vector with every (app,
permission, decision) tuple combination, to generated six privacy profiles. With the resulting

profiles they were capable of improving the users’ permission preferences predictions.

Ravichandran et al. [29] generated profiles for location-sharing applications, where users have
to choose if they are willing to let others see their locations under specific conditions. The data
used in the project was collected in 2008 from 30 users over a period of one week. In order to
generate the profiles, they represented each user by training a decision tree to extract policies.
With each user represented as a vector of policies, K-means was used to cluster those policies in
profiles. They concluded that the resulting profiles were capable of improving the predicting

accuracy of the users’ choices, in comparison to the model without the profiles.

Sanchez et al. developed a privacy-settings recommendation system for fitness devices [30].
Using Amazon Mechanical Turk, they recruited 310 participants to answer a survey. They
collected data related to demographics, phone permissions, the type of data collected by the
sensors and the entity to which the data is going to be shared with. They proceeded to apply
the K-Modes algorithm, similar to the k-Means but more suitable to nominal variables, where
instead of using the mean to compute the centroid, the mode is used. With the resulting 6
profiles, where each user belongs to more than one profile, they conclude that the profiles helped

the recommendation system to make better decisions.

Liu et al. [18] collected permission settings from 84 Android users around the world.

Lwww.facebook.com (2021, August 17)
2www.instagram.com (2021, August 17)
Shttp://www.lbesec.com (2021, August 17)
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Representing user data as a vector of decisions for every combination of the (app category,
permission, purpose) tuple, they applied hierarchical clustering to obtain 7 privacy profiles.
These profiles were then used as input in a SVM classifier to predict user preferences to apps’
future permission requests. Using profiles as input in the SVM classifier improved the F1-score
of the model from 74.24% to 90.02%.

From the reviewed literature we conclude that the strategies for generating privacy profiles can
be divided in two categories: hierarchical clustering and k-means, where the user is represented
by a single point or multiple points. However, all proposed methodologies rely on a centralized
server to create the profiles using the privacy preferences of the users. In this thesis, our
objective is to generate these profiles while preserving users’ privacy even against the centralized
server. Therefore, in the next sections we introduce federated learning, an efficient way to learn
neural networks from decentralized data, that we can use to test privacy profiles. The concept
of federated learning can also be applied to the k-Means algorithm and learn clusters from
decentralized data, that we can use to generate privacy profiles. We also discuss a private and
distributed strategy for hierarchical clustering, homomorphic encryption, differential privacy and
local representatives. All these strategies are applied in order to obtain clusters in a distributed

and private manner, that can be used to generate privacy profiles.

3.2 Federated Learning

McMahan et al. presented in 2017 an efficient strategy to learn neural networks from decentralized
data [31]. This algorithm, designated by Federated Averaging takes advantage of the local clients’
computing power to apply the gradient descent algorithm to the clients’ data in their own devices.
At each iteration, every client will send the gradient to the server where it will be averaged and

distributed to every client.

In algorithm 2 we can observe the the pseudo-code presented by McMahan et al.. The server
initializes the global weights, and for each round a random number of clients is chosen. Each one
of these chosen clients, using the global weights sent from the server, applies batch learning, as
explained in section 2.2.1.3, and returns the resulting weights to the server. The server, after
receiving every clients’ contribution, applies a weighted average to the weights according to the
percentage of points (2£) they have. Since the data never leaves the clients’ devices, their privacy

is safeguarded.

Even though federated learning proved to be an effective way to learning neural networks
from decentralized data, it also carries some challenges. For example, expensive communication,
every device must communicate their weights every round, and the server must wait for the
responses from every device as well. There is also the problem of system heterogeneity, every
device contains different hardware with different computational capacities, some low-end devices
may not be able to train neural networks locally, stopping them from participating in the learning

process.
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Algorithm 2 FederatedAveraging. The K clients are indexed by k; B is the local minibatch

size, E is the number of local epochs, and 7 is the learning rate.

1: Server executes:

2 initialize wq

3 for each round t = 1,2,... do

4 m < max(C - K, 1)

5 St < (random set of m clients)

6: for each client k € S; in parallel do
7 wy,; + ClientUpdate(k, w)

8 end for

9 Wit e %kwfﬂ

10: end for

11:

12: ClientUpdate(k, w):

13: B < (split P into batches of size B)
14: for each local epoch ¢ =1,...,F do

[\V]

15: for batch b € B do
16: w — w — nVI(w;b)
17: end for

18: end for

19: return w to server

Virgin et. al outlines current works that aim to address these challenges [32]. In order to
improve communication efficiency, three strategies have been used: local updating methods,
compression schemes, and decentralized training. Local updating methods make devices apply
updates locally multiple times for each round, reducing the overall communication. Model
compression schemes such as sparsification, subsampling, and quantization can also reduce the
size of the messages significantly. Traditionally, all devices connect to the central server to perform
the training, however, decentralized training where devices communicate with their neighbours
instead of the central server can drastically improve the algorithm performance. To counter effect
the system heterogeneity problem, current work focuses on three main strategies: asynchronous
communication, active device sampling, and fault tolerance. Asynchronous communication can
help mitigate stragglers in the face of device variability. Since some devices may disconnect during
the training process, an active device sampling, where a small subset of devices is deliberately
selected for training at each round, can reduce the number of dropouts. Implementing fault
tolerance strategies allows the model to complete the training process even if some devices are

disconnected.

Federated learning will be used in this thesis to test the usefulness of the generated privacy
profiles. By training a neural network to predict the grantResult variable we can understand
if the privacy profiles generated are useful or not by comparing the performance of a neural

network trained with the privacy profiles as a feature and a neural network without those features.
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In order to maintain the users’ privacy during this phase, federated learning is used to train

these neural networks.

The concept of federated learning can also be applied to unsupervised learning, in section 3.3

we present a strategy to apply federated learning with k-Means.

3.3 Federated k-Means

Triebe and Rajagopal applied mini batch k-Means together with FederatedAveraging
(section 3.2) and created the federated k-Means algorithm [33]. It works in a similar way to the
FederatedAveraging, but instead of the clients sharing weights, they share the centroids’
positions and number of observations per cluster. The server applies a weighted average over the

centroids’ positions based on the cluster size and send back the results to the clients.

One of the problems of this strategy is the centroids initialization method, since we do not
have access to the data, we have to randomly select k points from the input space X. However,
this method achieves poor performance and may lead to empty clusters [34]. Another problem
is that every client will generate the same number of clusters, k. In a scenario where the data
is distributed in an extreme non-IID manner, e.g. each client only has data belonging to one

cluster, the federated k-Means will perform poorly.

3.4 Privacy Preserving Distributed Hierarchical Clustering

As explained in sections 2.2.2.2 and 2.3.2, hierarchical clustering can be used for user profiling,
by building a hierarchy of clusters (dendrogram). In order to build this hierarchy, we need the
distance between every point in the dataset. If we have n points, the dissimilarity matrix is a
n X n matrix that contains the distance between every point. Using the dissimilarity matrix and

a distance measure (section 2.2.2.2) it is possible to build the intended dendrogram.

When the data is distributed across multiple devices, centralized approaches send the clients
data to a server which will then proceed to compute the dendrogram. However, this strategy

does not protect users’ privacy.

Hamidi, Sheikhalishahi and Martinelli [35] presented a general framework for constructing
any type of agglomerative hierarchical clustering algorithm in a distributed and secure way. The
base concept of this strategy is to construct the dissimilarity matrix without revealing individual
points. To compute the distance between two points X and Y, the algebraic equation (3.1) is
used, where the server only needs to know X - X, Y - Y and the scalar product between the two

X .Y, where, none of this information reveals the actual individual points.

(X -X+Y Y -2X V)2 (3.1)
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The X - X and Y - Y are easy to calculate, the owner of the point can compute the result
locally and send it to the server. In order to compute the scalar product between the two in a

secure way, the authors introduced the Secure Scalar Product (algorithm 3).

Algorithm 3 Secure Scalar Product

1: Data: Client; and Client; have vectors X = (z1,22,...,2,) and Y = (y1,%2,...,Yn),

respectively.
2: Result: Client; and Client; obtain securely X - Y.
3: Client; and Client; agree on random n x n matrix C
4: Client; do
5: Generate random vector R <— (r1,72,...,7y)
6: Z+ (CxR
7 X1 — X+Z
8: Send X to Client;
9: Ending
10: Client; do
11: S22 T Y
12: Yi=CT xYyT
13: Send S7 and Y; to Client;
14: Ending
15: Client; do
16: Se Dl YT
17: S=51—-5
18: Ending

In this algorithm, each client holds one point, a vector of length n. Each client has a different
role, client; which we define as privilege client, because he is the one to first observe the scalar
product, and has the duty to share it with client;. First, the two clients agree on a random
n X n matrix C. This can be done using diffie-hellman key exchange algorithm, for example.
The privilege client will generate another matrix R and applies the scalar product with C' and
sums the result with his point X. The result is sent to the second client as matrix S;. The
second client applies the dot product between the received matrix and his point Y and also sends
this result to the privilege client as Y;. The second client also sends the scalar product between
matrix C and his point Y to the privilege client. Finally, to obtain the scalar product X - Y, the
privilege client applies the dot product between the random vector R and the vector Y, and

subtracts the result to the matrix S.

In the end, each client and the server only hold the scalar product and euclidean distances
between every point. With the distances between every point, it is possible to build the
dendrogram using a distance measure that only uses the euclidean distance between two points.

For example, the centroid linkage (section 2.2.2.2) could not be used in this strategy.
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Figure 3.1: Secure Hierarchical Clustering Diagram.

3.4.1 Security Concerns

The algorithm presented by Hamidi, Sheikhalishahi and Martinelli [35] allows the computation
of the dendrogram without sharing individual points. However we found some security problems,

that allows the extraction of information or the manipulation of the final model.
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o Although the server and the users do not know the other users’ individual points, they will
know the distance between every two clients. So, they are able to understand how similar

or different they are between each other.

e There is a need to trust that the privileged client, the one who computes S first, will be
well behaved and send the real S to the server. Otherwise, the resulting dendrogram for

the server and the other clients will be manipulated.

e In a situation where one client has n points with n coordinates and the other client has
1 point with n coordinates, if all the n points the first client has are n unit vectors, the
dot products will reveal the second client’s point. Which is particularly dangerous if the

attacker is the privileged client, because the victim has no way to know it is under attack.

These security problems are not addressed in [35], however we found solutions to for the first

two problems.

« TOR* is an open-source, free software which enables anonymous communication by relaying
the traffic through an overlay network. If clients use TOR, or another anonymization
technique like VPN or proxies to communicate with the server, it is not possible anymore

to know which users are similar or different, because they are anonymous.

e For the manipulation vulnerability, it can not be prevented, but it can be detected if
instead of running the algorithm only once, the algorithm can be executed multiple times,
with different clients as the privileged ones. In this situation, the server can compare the
resulting scalar products, if they are different, it means that at least one user faked the

results.

The third vulnerability is harder to detect or avoid, the only scenario where the attacker’s
ability is restricted is when his number of points is much lower than the number of coordinates.
Since an attacker must have a point for each coordinate (unit vectors), the less points the attacker
can use, the less coordinates the attacker can uncover from the other users’ points. This problem
makes this strategy suitable for the case where a client is represented by a single vector. In this

case an attacker can only reveal one feature from the other clients’ vectors.

We can group all the remaining work we reviewed about privacy preserving clustering in
three categories: homomorphic encryption, differential privacy and local representatives. In the

next three subsections we describe these approaches, their advantages and issues.

3.5 Homomorphic Encryption

Many approaches have used homomorphic encryption based on the Pailliar cryptosystem [36-39].

They used on privacy preserving clustering algorithms by encrypting the entire dataset before

“https://www.torproject.org (2021, August 17)
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sending it to the server. By using homomorphic encryption, the server is able to compute
the distances between the clients’ data and the global centroids without decrypting it. This
information is sent back to the clients, who will decrypt and assign each point to the nearest
cluster. By sending back the sum and number of points in each cluster, the server can compute
the new centroids’ values. While this strategy is robust to non-IID data, it is not efficient or
scalable as it requires the encryption and decryption of the entire dataset. Additionally, the
computations over encrypted data need more computation power when compared to the plaintext
computations. The sum and number of points per cluster shared with the server could be used
by the server to know which cluster(s) does the clients belong to. Since the client will have the
distances from every point to every global cluster, it is possible for the client to apply trilateration

to find the global centroids kept by the server [40], so this strategy is also not mutually private.

3.6 Differential Privacy

Another common strategy is combining k-means clustering with differential privacy (DP) [41-44].
Differential privacy is considered the state of the art in anonymization mechanisms and consists
on adding “statistical noise” that is significant enough to protect client’s privacy, but small
enough to not affect the model performance. Each client applies differential privacy to their
local datasets and send them to the server. The server will aggregate all datasets and apply
the k-Means algorithm. Although this strategy is very efficient and robust to non-1ID data,
since the data points from all clients are sent to the server, it lacks a systematic approach, it is
hard to define the amount of noise as it highly depends on the dataset [45]. Other problems of
differential privacy include the inherent uncertainty in the answer and the fact that the guarantees
of immunity to background knowledge attacks are overstated [45]. Background knowledge may
allow an adversary to learn information on one individual from a differentially private answer
that is computed from the values of other individuals. It has also been show recently, that DP

can increase existing biases and have substantial impacts on the accuracy [46].

3.7 Local Representatives

Another common strategy is to select a subset of local points and apply the k-Means algorithm
over them. Soliman et al. [47] presented a strategy that is efficient and robust against non-I1ID
distributions. They run the k-Means algorithm locally on each client and using HyperLogLog
counters they share the centroids and the approximate number of observations per centroid in a
decentralized fashion with the other clients. Then a weighted averaging over all the centroids
is done to find the global centroids. Januzaj et al. [48] have a similar strategy, where local
representatives are extracted on site and then shared with the server, who will then perform a
global clustering over the representatives. Both strategies are efficient and robust to non-IID
data, but lack privacy. In the first strategy, the clients will know to which cluster(s) the other

clients belong to. The second strategy it is focused on efficiency and the clients send actual
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observations to the server, but fewer than the entire dataset.

Table 3.1: Summary of current strategies.

Category Strategies Efficiency Privacy Robustness to
Non-IID
Federated k-Means [33] Good The server knows | Bad, by averaging
which cluster(s) the | the local centroids,
clients belong to. in  extreme non-
IID cases, the final
centroids will reside
in the middle of the
dataset.
Homomorphic Encryption | [36, 38] Bad, because it | Good Good
needs to encrypt
entire/decrypt
datasets.
Homomorphic Encryption | [37] Bad, because it | Server knows which | Good
needs to encrypt | cluster(s) the clients
entire/decrypt belong to.
datasets.
Homomorphic Encryption | [39] Improved by using | Good Good
a Map Reduce in-
frastructure.  Cli-
ents still need to en-
crypt and decrypt
the entire dataset
and send it to the
server.
Differential Privacy [41-44] Good Depends on the im- | Good
plementation.
Local Representatives [47] Good Clients know which | Good
cluster(s) the other
clients belong to, and
the approximate num-
ber of observations
per cluster.
Local Representatives [48] Good Server knows which | Good
cluster(s) the clients
belong to. The
local representatives
sent to the server
are actual observa-
tions from the data-
set.

Table 3.1 summarizes the aforementioned works by their efficiency, privacy and robustness to
non-IID data. From this table, we can observe that none of these works fully accomplishes the
three requirements. In the case of federated k-Means, it is efficient but has an issue with privacy
and it is not robust to non-IID. The homomorphic encryption strategies are not efficient, because
they involve encrypting and decrypting entire datasets. The privacy provided by Differential
Privacy is highly dependent on the implementation and the local representatives also have issues

with privacy, mainly disclosing which cluster(s) the clients belong to.

Another aspect that we found in the literature is the lack of approaches to securely evaluate
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the final model. A very important step in the machine learning pipeline is the model evaluation,
where we use one or more metrics to understand how well the model fits the data. These metrics
will allow the comparison between models, since we are implementing strategies to build models
in a secure way, we also need strategies to compute these metrics in a secure way as well. Another
problem arises in privacy preserving k-Means, where we cannot see the data anymore, which is

how to choose the ideal number of clusters k.

In this chapter we provided the state-of-the-art of privacy profile generation, privacy preserving
clustering and neural networks training from distributed data using federated learning. In
chapter 4 we present our approach for privacy preserving distributed k-Means that fulfills three
requirements: efficiency, privacy, and robustness to non-IID data, that the current state-of-the-art
strategies cannot not satisfy. Our strategy will be later used in chapter 5 to generate mobile’s

privacy preferences profiles.






Chapter 4

Efficient Privacy Preserving Distrib-
uted k-Means for Non-I1ID Data

In this chapter we detail our proposed approach towards an efficient and secure k-means algorithm
that is robust to non-IID data. As explained in section 3.3, there is no strategy that is capable of
fulfilling the three requirements: Efficiency, Privacy, and Robust to non-IID data. So, in order to
tackle this problem, we developed our own strategy capable of meeting the three requirements,
and an approach to select the best number of clusters and test the resulting model in a secure
way as well. This mechanism can be used for any generic type of data. However, in Section 5 we
implement it towards generating privacy profiles and compare it to centralized and other secure

approaches

In section 4.1 we describe our proposed approach and in section 4.2 we present a detailed

evaluation of the privacy, efficiency and robustness to non-IID data of our strategy.

4.1 Description

We consider a setup where a set of clients, each possessing its own dataset of N points with M
features, aims to cluster their data. In this scenario, we propose a mechanism that allows the
clients to cluster their data, alongside the other clients without the server knowing the clients’
points. The operation of our proposed mechanism is illustrated via an example in figure 4.1. In
the first stage, each client performs Diffie-Hellman Key Exchange so as to agree on a seed with
the server. Then, they will compute the sum and number of points in their local dataset. These
two statistics will be masked and securely sent to the server using secure aggregation (“Send
Masked Statistics” step on figure 4.1). Secure aggregation presented by Bonawitz et al. [49]
allows the secure sum of vectors using Diffie-Hellman Key Exchange, where the resulting secret
will be used as a seed to generate random vectors. These random vectors will be the same for
each pair of clients: one of the clients adds the random vector and the other subtracts the vector

to their contributions and both send the result to the server. To the server each contribution will
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be indistinguishable from a random vector. But when the server adds all the contributions, the
random vectors cancel out, retaining only the real sum of every client’s contribution. Using this

strategy the server is able to compute the center point of all clients’ datasets. In the example

(284-56,50+58)
100+200

random points close to the center point as initial centroids. Since the server cannot choose k

from figure 4.1, = (0.28,0.36). To improve the k-Means performance we choose k
points from the data (known only to the clients) and choosing random points from the input

space would result in a poor performance [34].

While the server is initializing the centroids, the clients will apply the k-means to their local
dataset to generate local clusters. Each client uses the silhouette score to estimate the best

number of local clusters as follows. Given the following metrics:

a(i) — b(i)

_ 2jecyizi 400, J) (i) = o Ljecy A )
mazx{a(i),b(i)}

all) = =6 =1 i |Gyl 5@ =

where C; is the set of points in cluster ¢ and d(-) is the distance metric. We can interpret a(i)
has how well is point i assigned to its cluster and b(¢) as the smallest mean dissimilarity of any
cluster except C;. The silhouette score is defined as the mean s(i), over all observations of the
local dataset. We compute the silhouette score for 2 < k < K, where K is the number of global
clusters, defined by the server. Then, the number of clusters for the model with the maximum

silhouette score is chosen as the optimal local number of clusters.

The resulting centroids for the local clusters will be sent to the server in a secure way, using
homomorphic encryption. Homomorphic encryption allows one to perform calculations over
encrypted data, in such a way that when the result is decrypted it yields the same result as if the
operations were made over unencrypted data. The centroids will be encrypted and sent to the
server, that will compute the distances between the encrypted local centroids and the unencrypted
global centroids. To calculate the distances between the pairs of points, we will need a schema
that is able to subtract scalars from encrypted numbers and multiply an encrypted number by
itself. The CKKS schema [50] offers us that possibility. By only providing approximate results,
it is more efficient, but still precise enough for machine learning models [50], as we also assess.
Even with the encrypted centroids, the server would still be able to known how many clusters
each client has. In order to hide this informantion, each client will always send information about
k clusters, by adding random centroids whenever needed. In the example from figure 4.1, the
server defined k = 2 as the number of clusters and Client B found a single centroid, namely
(0.28,0.29). So, the client is going to send [c; = (0.28,0.29), co = (0.56,0.89)], where the second

centroid is randomly created to deceive the server.

The server computes the squared distance between the encrypted local centroids and every
global centroid. The encrypted distances are sent back to the users, who decrypt them and
assign each local centroid to a global cluster. Now each client sends to the server the sum and

the number of points for each cluster — this information is needed for the server to compute
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the new centroids (equation (2.8)). In the example from figure 4.1, the resulting statistics are
[((0.28,0.29),1),((0,0),0)], for client B, where (0.28,0.29) represents the sum of points in this
cluster and 1 the number of points in the cluster. The distances for the random centroid are
ignored and both the sum and the number of points are set to zero. Since only the local centroids
are sent to the server, this will difficult the trilateration attack, since in order to infer the global
centroids from the distances, the client needs to have more points than the number of features[51].
To update the global centroids in the server without revealing the clients’ individual statistics,
secure aggregation is employed again to send the masked statistics. With these statistics, the
server is able to compute the new global centroids’ values by dividing the total sum by the total
number, just like in equation (2.8). These steps will be repeated until the new centroids are

equal to the previous ones or a maximum number of iterations is performed.

CLIENT A SERVER CLIENT B
« Diffie-Hellman Key Exchange >
Compute Sum and 5 Compute Sum and
Number of Points: : Number of Points:
SUM=(28, 50) : SUM=(56, 58)
NUM=100 : NUM=200
: Send Masked Statistics L Send Masked Statistics :
. T . Random
Generate Homomorphic Sum Statistics to Generate Homomorphic Centroid
Encryptllon Keys Compute Average Point: Encryption P!(eys to Deceive
Apply K-Means over the AVG POINTT(O'Z& 0.36) Apply K-Means over the the Server
Local Dataset. S ) Local Dataset.
Result=[(0.28, 0.28), (0.28, 0.61)] Obtain Initial Centroids by Result=[(0.28, 0.29), (0.56, 0.89)]
' Adding Random 1x2 Vectors ;
Homomorphic Encryption INIT. CENTROIDS: [(0.27, 0.34),(0.26,0.37)] Homomorphic Encryption
of the Local Centroids of the Local Centroids
; Send Encrypted Local Centroids i Send Encrypted Local Centroids ;
! ‘TRepeat Unti
Compute Encrypted Square Distances ; thg New
Between Global ar?d Local Centroids Centroids are
3 Send Encrypted Distances ; Send Encrypted Distances _i|Equal to the
o : "1 | Previous Ones.
Decrypt Distances : Decrypt Distances
Assign Each Local Centroid : Assign Each Local Centroid
to a Global Cluster : to a Global Cluster
Compute the Sum and Number Compute the Sum and Number Randorp
of Points per Cluster: 5 of Points per Cluster: Centroid
[((0.28, 0.28), 1), ((0.28, 0.61), 1)] s [((0.28,0.29), 1), (0,0, 0 [ gnored
: Send Masked Statistics i Send Masked Statistics '
Sum the Contributions from all Clients:
Result: [((0.56, 0.57), 2), ((0.28, 0.61), 1)]
Update Global Centroids from
the Previous Result
NEW CENTROIDS:[(0.28, 0.285), (0.28, 0.61)]

Figure 4.1: Sequence diagram (with example) of the proposed algorithm.

Since the central server does not have access to the data anymore, in order to find the best
global number of clusters, we developed a privacy preserving way to use the elbow method
heuristic to determine the best number of clusters in the dataset. It’s possible to plot the inertia
vs. the number of clusters without sharing any individual data to the server. Using this plot,

the server can make an informed decision about the optimal number of global clusters. Since
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the inertia is the sum of squared distances of every observation to their closest cluster center,
this information can be computed locally. The sum of squared distances of all local observations
(local inertia) is sent to the server using the secure aggregation strategy, where all the users’

contributions would be summed to obtain the global inertia.

4.2 FEvaluation

To evaluate this strategy we ran the algorithm through 114 artificial benchmark datasets'. To
simulate an environment of non-IID data, we created 20 clients, where each has a random
number of clusters from 1 to & (depending on the dataset). Every client has a random number of
70 to 90 observations from one cluster and a random number of 1 to 30 observations for each of
the remaining clusters, except in the case of only one cluster, with 100 observations from the

same cluster. All random numbers are generated from a uniform distribution.

Since we have access to the cluster labels of the benchmark datasets, we used the Adjusted
Rand Index (ARI) metric to compare our strategy with the centralized k-means over the entire
dataset [52]. Let K; be the clustering ground truth and K, the clustering done by the model. If
a is the number of pairs of elements that are in the same set in K; and K, and b the number of

pairs of elements that are in different sets in K; and K, then

RI——2t0 (4.1)
C2 samples
ARI = — BL= EIRT (4.2)

max(RI) — E[RI]]

Since the Random Index (RI) in (4.1) does not guarantee a value close to zero for random
label assignments, we resort to the ARI in (4.2) that counters this effect by subtracting the
expected RI. We run the strategy 30 times for each dataset and the one with lowest inertia
is chosen. The inertia metric corresponds to the sum of the distances of all points within a
cluster to the respective centroid [53]. Each client computes the local inertia and, using secure
aggregation, the server obtains the total inertia, without knowing individual contributions. This
metric can be used to compare models and allows the server to use the elbow method to estimate
the best number of clusters in the dataset [54]. We chose the best inertia because our goal is
to prove that our strategy can achieve a good performance with few repetitions. Additionally,
this procedure replicates a real world scenario where one computes the inertia securely in order
to choose the best model. We compared the results of our strategy to the centralized version
in terms of efficiency and robustness to non-IID, since the centralized version achieves the best

results in these two criteria.

Mhttps://github.com/deric/clustering-benchmark (2021, August 17)
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Figure 4.2: Adjusted rand index distribution and adjusted rand index by dataset.

4.2.1 Robustness to non-IID Data

Figure 4.2a shows the distribution of the ARI over the 114 datasets of the proposed strategy
(orange) versus the centralized k-means (blue). From this plot, we can see that our strategy and
the centralized k-means have a similar distribution, however our proposal achieves smaller values
at the extremes. In fact, our strategy was not able to achieve ARI values above 0.9 in around
10 datasets. However, it also produced fewer ARI values closer to 0 and achieved more ARI
values between 0.6 and 0.9. Overall, we can conclude that this strategy is consistent with the

centralized version of k-means.

Figure 4.2b presents the ARI score for every dataset. The number of datasets for which
our approach performed better than the centralized model is 56, worse in 43 and had the same
performance in 15 of the 114 datasets. As aforementioned, when the centralized model is better,

it is usually better by a larger difference than when the centralized model is worse.

Figure 4.3 compares the differences between ARI scores when the centralized model is worse
than our strategy (blue distribution) and when the centralized model is better than our strategy
(orange distribution). We can observe, as previously discussed, that the two distributions are
similar. More than 50% of the times, when the centralized model is better, the ARI differences
are lower than 0.1 and the same happens when the centralized model is worse. However, we see a
more uniform distribution in the interval between 0 and 0.1 when the centralized model is worse,
as to when the centralized model is better, where approximately 45% of the times the difference

is practically 0.

From figures 4.2 and 4.3 we conclude that the proposed strategy achieves a similar performance
to the centralized k-means. Specifically, it achieves a better ARI score in more datasets than
the centralized version, but the majority of the differences are lower than 0.1. Therefore, our

strategy, while decentralized, is robust against non-IID data.
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Figure 4.4: Execution time versus the number of centroids on the clients and server side (95%
confidence intervals are shaded). The case with privacy features corresponds to our proposed
method.

4.2.2 Efficiency

In order to understand the efficiency of our final strategy we compared it to the strategy without
privacy features, i.e. without secure aggregation and homomorphic encryption. To measure
the efficiency, we measured the execution time, without taking into account the network delay,
in three dimensions: number of points, number of clusters and number of clients. For each
dimension we measured the time spent by the clients and by the server. To facilitate the efficiency
evaluation, we assume the server to know how many clusters there are in the dataset. Since the
steps executed by the clients are done in parallel, the reported clients’ execution time corresponds
to the time of the slowest client. We trained the model 30 times and in the following figures is

presented the mean values and the 95% confidence interval.

In Fig. 4.4 we present the execution time according to the number of centroids in the dataset.
We can observe that for the strategy with privacy features, most of the work is done by the
clients (see Fig. 4.4a). This is expected, since the clients perform local clustering followed by the
encryption of the centroids. The server execution time shown in Fig. 4.4b is much higher without
privacy features than with privacy. This result is expected since without privacy features the
server needs to apply the full clustering algorithm as opposed to only computing the distances
and updating the global centroids. Nevertheless, for the server side, both strategies have a rather

low server execution time — below 0.1 seconds. Thus, the predominant execution time is the
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Figure 4.5: Execution time versus the number of clients on the clients and server side (95%
confidence intervals are shaded). The case with privacy features corresponds to our proposed
method.

clients’ time.

In Fig. 4.5 we present the execution time according to the number of clients. The strategy
with privacy takes more time to execute in the client side and slowly increases with the number
of clients. Specifically, its execution times are 1 to 2 seconds higher than the strategy without
privacy features. This latter strategy has a higher server execution time, but the difference is low,

below 0.025, and thus the total execution time is mostly affected by the clients’ execution time.

We additionally measured the execution time as a function of the number of points in the
dataset. Our results indicate that on both strategies, the execution time is not affected by the
number of points in the dataset (between 100 and 50000). On the clients’ execution time, the
strategy with privacy features takes around 1 second more than the strategy without privacy
features. On the server side, this latter strategy takes around 0.025 seconds more than the

strategy with privacy features. We omit these plots due to the lack of space.

Overall, we consider the algorithm to be efficient. While it takes more time than the strategy
without privacy features it is only significant when the datasets have many centroids. In this

case, our strategy will take longer to execute.

To conclude, our proposal is robust to non-IID data while preserving the privacy of individual
contributions, as the server only accesses the encrypted local centroids. Additionally, it is efficient
at the expense of a slightly higher execution time, yet within reasonable bounds when compared
to the centralized version. In particular, letting nyts, Tcol, Teent and ne; respectively represent the
number of points, coordinates per point, centroids and clients, our method achieves a complexity
of O(n2,,; X (Npts X Neol + 12 4+ 1) 4+ Npts X Neer) for each client and O(ne; X Neent (Neent + Neot))
for the server. When compared to the strategy without privacy features, with a complexity of
O(npts X Neent X Neor) for each client and O (e X Neent (Neent X Neor)) for the server, this confirms

that the cost of our scheme lies in the increase of the client execution time, with the server

2We assume a, constant time complexity for multiplication between the encrypted centroids and the plaintext

global centroids, according to [50].
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execution time becoming even lower than for the base strategy without privacy.

In this chapter we propose a privacy preserving clustering algorithm that is private, efficient
and robust to non-I1ID. As far as we known, there is no method that can fully fulfill the three.
Our strategy based on local representatives, homomorphic encryption and secure aggregation is
capable of outperforming or matching the centralized version in more than half of the datasets
in terms of Adjusted Random Index in a non-IID scenario. In terms of efficiency, the time
complexity moves from the server to the clients, yet leading to an overall time complexity within
reasonable bounds when compared to the centralized version. Moreover, given the lack of secure
metrics to evaluate models in a distributed environment, we introduced secure inertia, a method
to compute the inertia of the model without sharing individual contributions. This strategy will

be applied in chapter 5 to generate mobile’s privacy preferences profiles.



Chapter 5

Secure Generation of Privacy Profiles

In this chapter, we show the usefulness of profiling mechanisms for automated privacy protection.
For that, we resort to a real-world dataset obtained in the COP-MODE project. This dataset,
that comprises 93 users, contains 2180302 permissions, from which 65261 were manually answered,
with an average of 701.73 answered requests per users. We target prediction of the privacy
decisions of users by clustering the users in order to generate privacy profiles. For this, we use
two algorithms, hierarchical clustering and k-means, the resulting privacy profiles will be used as

features to predict the users’ answers to permission requests.

Our final goal is to design and evaluate a secure mechanism to predict the users’ permission
requests using a profile-based optimized model. To achieve this, we generate the privacy-profiles
in a secure way, using privacy preserving distributed hierarchical clustering and efficient privacy
preserving distributed k-means for non-1ID data, and then, using these profiles, train a model
in a secure way, using federated learning, to predict the users’ responses to the permissions
requests. We also need to evaluate these strategies against the non-secure ones, to understand if
the security component of the strategies is influencing the models’ performance. In this chapter,

we describe the implementation process done in order to accomplish these objectives.

We start by describing the data collection process, how we choose to store the data, and
finally, we characterize the data collected (section 5.1). We then proceed to explain how can we
apply hierarchical clustering and k-Means to generate privacy profiles using the COP-MODE
dataset (sections 5.2.1 and 5.2.2). Finally, we explain how we can use these two strategies with

privacy guarantees to generate the privacy profiles (sections 5.2.1.1 and 5.2.2.1).

In order to evaluate the usefulness of the generated privacy profiles, we use them as features
in a neural network to predict the grant result, 7.e. whether the user would accept or deny a
permission (Section 5.3). The score of this model is then used as a metric for the usefulness/utility

of the privacy profiles (Section 5.4).
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5.1 Data

In this section we describe and explore the data collected from the COP-MODE project. Section
5.1.1 describes the data collection process done in the COP-MODE project, Section 5.1.2 describes
how and why the data collected was stored, and finally, in Section 5.1.3 an exploratory data

analysis is done on the dataset.

5.1.1 Data Collection

To collect the necessary data an app was developed outside the scope of this thesis (COP-MODE
Naive Permission Manager) to intercept permission checks and request specific data from the
users. When the app intercepts a request, the popup presented in figure 5.1 is presented to the

user.

&) Telegram FOSS

Allow Telegram FOSS to access photos
media, and files on your device?

&' Dpeny ALLOW

urrent location:

HOME WORK

TRAVELLING OTHER

For what you were doing with the phone, is this
equest expected?

DONT

_Yes _NO know

Figure 5.1: Popup request for intercepted permission request.

The user provides the following data: answer to the request, the semantic location and if it
was expecting that request to appear. At the time of the prompt, the app also collects contextual
data regarding the phone state and the user context. Information such as background and
foreground running apps, network status, geographic coordinates, devices in neighborhood, etc.
The complete description of the data collected by the app is presented at appendix A.1 and an

example of the data collected from one request is presented in appendix A.2.

The smartphones need to be rooted in order to intercept the permission requests, but we do
not want to include only people with rooted phones, since it would produce a biased dataset. So,
we provided people with a rooted smartphone with their personal apps already installed, along
with the COP-MODE Naive Permission Manager.
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The participants were recruited through word-of-mouth and university’s mailing lists. Each
user had to use the phone at least for one week, although they were sometimes allowed to continue
using it for longer, if they desired it. Participation was rewarded with a FNAC gift card, given
that they answered to a minimum number of 50 requests. The data was collected through several

campaigns occurring between end of July 2020 and end of March 2021

5.1.2 Data Storage

All the data from the mobile users was stored as JSON format in compressed files. In order to
manipulate and use the data, an adequate and efficient storage solution is needed. In table 5.1, a
comparison of types of databases is done in order to identify the best suitable database for our

problem.

Since our data is stored in JSON, where each document has a different number of fields,
we need a database that is flexible and schemaless. Considering that we are going to perform
analytical queries over millions of documents, we also want a database with good performance

on analytic functions, like aggregation operations.

Looking at table 5.1, we can immediately exclude the relational databases, because they are
suited for a single data model, the relational one, and we need support for JSON documents. We
can also exclude key-value store databases, since they lack analytics features. Graph databases
are not efficient at large-volume analytics queries and they are also more oriented towards graph
data. Object oriented databases are ideal for complex object relationships and are not efficient for
simple ones, which is the type of data we have, data with simple relationships. Between the two
ones that were not excluded, columns-oriented and document store, we decided to chose document
store, more specifically, MongoDB. Columns-oriented databases have some restrictions when it
comes to data manipulation since it is difficult to manipulate an entire row, and MongoDB stores
the data in JSON format directly and comes with a powerful querying language, allowing many

analytics functions.
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’ Databases ‘ Advantages Disadvantages ‘
. o Mature. o Single data model (relational).
Relational

(Ex.: MySQL, Microsoft
SQL Server,PostgreSQL)

e Standard query language.
e ACID compliant.

o Easy maintenance.

o Difficulty to scale.
e Lower Performance, given

the atomicity of the operations.

Key-Value Store
(Ex.: Redis, DynamoDB
RIAK)

e Simple.
o Efficient.
¢ Schema less.

e High scalability.

o Low consistency.
e Not ACID compliant.
e Lack of analytics features like

joins and aggregate operations.

Columns-Oriented
(Ex.: Big Table,

Cassandra, Vertica)

e Very high scalability.
o High availability.
o Fault tolerance.

o Easy maintenance.

e Difficult to manipulate an entire
row.
e Low insertion rate.

e Low update rate.

Document Store
(Ex.: MongoDB,
CouchDB, RethinkDB)

e Great performance.

o High scalability.

e Flexible and schemaless.
e Documents may have

similar and dissimilar data.

o Bad performance for data
with many relationships.
e Not suitable for normalization.

e Lack of the join operation.

Graph
(Ex.: Neo4j,OrientDB
AllegroGraph)

e Mature.

o Optimal for storing
connections between data.
e ACID compliant.

e Highly scalable.

« Difficult to achieve “sharding”.
e Not optimized for processing
high volumes of transacions.

e Not efficient at large-volume

analytics queries.

Object Oriented
(Ex.: dbdo, ObjectDB
Perst)

e Object Oriented
Programming features.

o Fast access to the data.
e Makes the software
development process more

agile.

e Optimal for complex object

relationships.

e Tied to a specific type of
programming language.

« Difficult to scale.

e Not efficient for simple

relationships.

Table 5.1: Advantages and disadvantages of the different types of databases.

5.1.3 Data Characterization Overview

The final dataset, comprising 93 users has 2180302 permissions, from which 65261 were manually

answered by the users, with an average of 701.73 answered requests per user.

From the 65261 permissions, 66% were accepted and 33% denied. In figure 5.2 we can observe

the grant result distribution per user.
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Figure 5.2: Grant result distribution for user answered permissions per user, where the x axis

represents a user id.

We can observe that there more users that have more allowed permissions thant denied ones.
Besides our users being more permissive, the two users who answered more permissions have

accepted more than 80% of their permission requests.
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Figure 5.3: Semantic location distribution.

Since some campaigns were done during the COVID-19 confinement, we can observe that
more than 80% of the permissions were asked when the users were at home, 6.8% at work, 6.3%

while travelling and the remaining at other locations.
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Figure 5.4: Grant result distribution by semantic location.

Looking at the grant result distribution by the semantic location (figures 5.4a, 5.4b, 5.4c and
5.4d), we can extract interesting conclusions. At work and while travelling, the users tend to
allow many more permissions, unlike at other location, where the users deny almost as many

permissions as they grant. At home, users tend to grant twice as much as they deny.

Figure 5.5: Permission distribution.
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Currently, Android contains 12 permission groups: ACTIVITY_RECOGNITION, CALENDAR,
CALL_LOG, CAMERA, CONTACTS, LOCATION, MICROPHONE, NEARBY_DEVICES, PHONE, SENSORS,
SMS, STORAGE. These permission groups comprises a set of permissions, for example, the SMS
group permission encompasses the permissions READ_SMS and SEND_SMS. Because the Android
default permission manager only requests permissions at the group level, we focus our analysis on
permission groups and refer to these simply as permissions. By observing figure 5.5 we conclude
that there are two main permissions groups, LOCATION and CONTACTS, accounting for 50% of
the requests. PHONE and STORAGE permissions account for 37% of the requests.
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Figure 5.6: Request app name distribution (user answered).

In figure 5.6 we observe the distribution of the applications’ names and categories, where
social and communication apps account for the top 7 applications, corresponding to 76% of the

requests.
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Figure 5.7: Top running app name distribution.

Analysing the top running applications, Instagram, WhatsApp and Twitter are the most
frequent, accounting for 37% of the requests, with the exception of the Pixel Launcher (Iniciador

do Pizel), which is a system app.

Figure 5.8 gives us an overall view of the users tendencies to allow and deny specific app
categories and permissions. The app categories were extracted from the Google Play Store!, from
which MUSIC_AND_AUDIO, ENTERTAINMENT, SPORTS, SHOPPING, and GAME were merged
together in the ENTERTAINMENT category. For each combination of app category and permission,
it is represented the average decision of all users. For example, almost all requests for CALENDAR
from ENTERTAINMENT apps were accepted by the users, and almost all requests for PHONE from
PHOTOGRAPHY apps were denied.

We can observe that the most denied permissions are MICROPHONE and PHONE and the most
denied app categories are TOOLS, VIDEO_PLAYERS, FINANCE, NEWS_AND_MAGAZINES. The
most accepted permissions are STORAGE, CALENDAR and CAMERA and the most accepted app

Yhttps://play.google.com /store (2021, August 17)


https://play.google.com/store

56 CHAPTER 5. SECURE GENERATION OF PRIVACY PROFILES

Average
_ Grant
| Result
1.0

TOOLS

VIDEO_PLAYERS

FINANCE

NEWS_AND_MAGAZINES

LIFESTYLE

PHOTOGRAPHY
ENTERTAINMENT K

SOCIAL I B ..
COMMUNICATION K

MAPS_AND_NAVIGATION

Category

BUSINESS

CcomMmiCs

TRAVEL_AND_LOCAL
HEALTH_AND_FITNESS
PRODUCTIVITY

PERSONALIZATION

AUTO_AND_VEHICLES

MEDICAL

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ART_AND_DESIGN | | | | |
N O S S - _J -1.0

STORAGE ~ CALENDAR ~ CAMERA  CALL_LOG  LOCATION  CONTACTS MICROPHONE  PHONE
Permission

Figure 5.8: Average grant decision for app category and permission.

categories are ART_AND_DESIGN, MEDICAL and AUTO_AND_VEHICLES.

We can also observe that both LOCATION and CONTACTS permissions have many yellow/or-
ange squares. This indicates that users are not in agreement with each other and/or there
are more variables that makes the same user accept and deny the same permission in different

contexts, like location for example.

Figure 5.9 show us the users location when they answered the permission requests. We see a
very strong presence in Porto/Gaia, and also in Coimbra. Some users were in Guarda, Lisboa,

and Algarve as well. Overall, we are looking at mainly northern users.

5.2 Privacy Profiles

As seen in section 2.3 there are many possible methods to generate profiles. In this section,
we design strategies to generate privacy profiles with the COP-MODE data, using hierarchical
clustering (section 5.2.1) and k-Means (section 5.2.2). Then, using the algorithms presented in
section 3.1, we devise a strategy to apply them to the COP-MODE data, generating privacy

profiles in a secure and private manner (sections 5.2.1.1 and 5.2.2.1).

We need to generate privacy profiles so we can increase the effectiveness of the users’ grant
results predictions. Liu et. al [18] demonstrated that a profile-based optimized model achieves
far better results than a model without privacy-profiles. So, our goal in this chapter is to describe
how we can use the algorithms described in section 2.3 to generate these privacy profiles in a

secure way.
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Figure 5.9: Users location, where each point represents a permission request.

5.2.1 Hierarchical Clustering

As seen in sections 2.3 and 3.1, one of the possibility towards the generation of user profiles is using
the hierarchical clustering algorithm [18]. In order to apply this strategy to our dataset, for each
user answered permission we group the data by userID, category and permission, with the
average of the grantResult. So, for each user, we have the average grantResult for every
combination of category and permission. However, most users do not have grantResults
for all these possible combinations. So, these data points are filled by a multivariate imputer,
where the grantResult is modeled as a polynomial function of all the remaining features.
We chose this imputation strategy for being more sophisticated than the univariate imputation

strategies. We used the TterativeImputer class from the Scikit-Learn package.

After the imputation, all the category, permission tuples are flattened in the same row,
i.e. for each user we will have one column for every category, permission combination and
its value is the average grantResult (table 5.2). With the resulting matrix, we can build a
dendrogram and use the agglomerative clustering algorithm to generate the privacy profiles, as

explained in section 2.2.2.2.
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EVENTS EVENTS ... AUTO_AND_VEHICLES AUTO_AND_VEHICLES
CALENDAR CAMERA ... PHONE CONTACTS
0.9 0 . 0 0
0.2 0.1 e 0.35 0.4
0.6 0.2 e 0.15 0.2

Table 5.2: Matrix representation, where each row represents one user (grant result normalized

between 0 and 1.

In figure 5.10 we can observe the resulting dendrogram and privacy profiles for 3 clusters

represented in figures 5.11a, 5.11b and 5.11c.
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Figure 5.10: Resulting dendogram.

The dendrogram is a diagram representing the arrangement of the clusters produced by the
hierarchical clustering algorithm. In the z-axis we have each user represented by a number. In
order to create the clusters, for demonstration purposes, we used k equal to 3, so one cluster
will contain the yellow users, another cluster will contain the green and the red, and the final
cluster will contain the remaining users. In figures 5.11a, 5.11b and 5.11c, we observe the
resulting profiles for those three clusters, and the average grantResult for each category,
permission combination. For example, in profile 1 (figure 5.11a), the users tend to deny most of
the permissions on most of the categories, in profile 2 (figure 5.11b), the opposite happens, users
accept almost always all permissions related to all categories, with the exception of (CAMERA,
PHOTOGRAPHY), (MICROPHONE, FINANCE) and (PHONE, NEWS_AND_MAGAZINES). Finally, in
profile 3 (figure 5.11c), we observe less consistent behaviour, with many yellow/orange rectangles,
meaning the users allow and deny that permission/category combinations more or less the same

number of times.
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Figure 5.11: Privacy profiles. (a) Profile of the privacy conscious. (b) Profile of the permissive

users. (c) Profile of the "middle-ground" users.

5.2.1.1 Privacy Preserving Distributed Hierarchical Clustering

To generate privacy profiles using hierarchical clustering with privacy guarantees, we can use the

privacy preserving distributed hierarchical clustering algorithm (section 3.4).

In this context, each user has only access to their own local dataset. So, the process referred

above (section 5.2.1) needs to be applied independently to each local dataset. This will cause

problems in the imputation step if our imputation algorithm needs access to all the users’ data.

So, our imputation strategy must rely solely on the local data or global statistics that can be

acquired using the secure aggregation strategy.

For that, we perform imputation by using the TterativeImputer class from the Scikit-

Learn Python package 2 and the flattening process, each user will have a single vector, since the

process generates only one row per user (section 5.2.1). This vector will then be used to generate

the profiles using the privacy preserving distributed hierarchical clustering algorithm.

https://scikit-learn.org/stable/modules/generated /sklearn.impute.Tterativelmputer.html, (17, August 2021)


https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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5.2.2 k-Means

Another strategy discussed in sections 2.3 and 3.1 is to use k-Means to generate multiple profiles

for each user [30].

To apply this algorithm to our data, we also group the data by userID, category and
permission, with the average of the grantResult, for each user. But this time, each user
is represented by multiple rows of category, permission and grantResult (table 5.3).
Unlike the strategy in section 5.2.1, we do not need to flatten the users data in one row, so we
also do not need to impute the missing combinations of category and permission. This is a
clear advantage of this method, since it removes the added bias from the imputation. We can
feed this data directly to the k-Means algorithm and generate the privacy profiles, where each

user will have data points in one or more profiles.

UserID Category Permission Average Grant Result
1 FINANCE CALENDAR 0.90
2 FINANCE CALENDAR 0.20
3 FINANCE CALENDAR 0.60
1 FINANCE CAMERA 0.00
2 FINANCE CAMERA 0.10
3 FINANCE CAMERA 0.20
1 AUTO_AND_VEHICLES PHONE 0.00
2 AUTO_AND_VEHICLES PHONE 0.35
3 AUTO_AND_VEHICLES PHONE 0.15
1 AUTO_AND_ VEHICLES CONTACTS 0.00
2 AUTO_AND_VEHICLES CONTACTS 0.40
3 AUTO_AND_VEHICLES CONTACTS 0.20

Table 5.3: Matrix representation, where one user is represented by one or more rows.

However, the profile representation is less intuitive. In order to represent the users and keep
as much information as possible, we decided to associate a percentage of each profile to every
user. For example, if a user has 10 data points in profile 1, 30 in profile 2 and 60 in profile 3 on
a total of 3 profiles, this user will be represented as [0.1,0.3,0.6], instead of being represented as
[0, 0, 1], for instance. This representation is needed in order to use the profiles” information to

predict the grantResult in section 5.3.

5.2.2.1 Efficient Privacy Preserving Distributed k-Means

To generate privacy profiles with privacy guarantees, using the k-Means algorithm, we can use

the efficient privacy preserving distributed k-Means algorithm (section 3.3).
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The exact same pre-processing will be applied here, but now independently on every local
dataset. Since there is no imputation step, or any other step that involves other users’ data,
there is no bottleneck. The resulting matrix for each user will be directly feed into the efficient

privacy preserving distributed k-Means algorithm.

In the end, each user will have the association between every local data point and the
respective profile. With this information, the user can extract the profile representation described

in section 5.2.2.

5.3 Neural Network for Grant Prediction

In this section we describe how to use a neural network to predict the users’ answers to a
permission request. Our final goal is to evaluate the results of federated learning. Since federated
learning uses neural networks, we need to evaluate the results of a centralized neural network in
order to understand how the federated component affects the results. With the data collected
from the users and the assignment to profiles, we can predict the grantResult for a given

permission request.

To use the data we collected from the users as input in the machine learning model, we scale
the data using MinMaxScaler, which scales the data points to a range between 0 and 1. We
also applied one-hot encoding to the dataset, so each categorical variable is represented by a

vector of Os and 1s. The following features are used to predict the grantResult:

app_category isForeground

¢ checkedPermissionGroup . isTopAppRequestingApp

e checkedPermission
e screenlIsInteractive

e method

e networkStatus
e hour
e weekday e profile

These are the non-unique features collected by the permission manager, i.e. the fea-
tures that have repeating values, unlike ID like features. The selectedSemanticLoc and
wasRequestExpected were removed, since they require user interaction. The timestamp was

transformed into hour and weekday, since the timestamp by itself is unique.

The profile feature is represented as a one-hot encoding vector, in the profiles generated
by the hierarchical clustering algorithms of the previous sections 5.2.1 and 5.2.1.1. For example,
a user in profile 3 of a total of 5 profiles would be represented as (user 1 in table 5.4). In case the
profiles are generated by the k-Means algorithm, the profiles are represented as percentage-wise,

where we still have a column for each profile, but instead of Os and 1s we have the percentage of
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User Profile 1l Profile 2 Profile 3 Profile 4 Profile 5

user 1 0 0 1 0 0
user 2 0.1 0 0.7 0.2 0

Table 5.4: Possible representations for the profile feature.

data points per profile (user 2 in table 5.4).

With the final dataset, we trained a neural network with 1 hidden layer with 100 neurons.
In order to not overload the validation phase with too many hyper-parameters, we designed a
simple test where we created Neural Networks with a hidden layer of sizes 50, 100, 150, 200,
250, 300, and 500 and tested in the fixed scenario, where we used hierarchical clustering with 3
clusters. The results showed that a hidden layer of size 100 achieved the best results, although

the changes in performance observed, where not very significant.

Figure 5.12 represents the entire process in a diagram. The first step is to generate the
privacy profiles using one of the methods described in section 5.2, after the clustering algorithm,
the results are added to the local dataset, i.e. for each row in the dataset, we add the respective
profile ID. Then, one-hot encoding is applied to the dataset, and a division of 66% for training
and 33% for testing is applied. This strategy is called centralized training because the next
step is for every client to send their corresponding training data to a centralized server, where
a Neural Network will be trained, and the resulting weights will be sent back to the clients.
Afterwards, each client will create a Neural Network with the received weights and use the test

set to evaluate the model’s performance, finally it will send the results to the server.
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Figure 5.12: Centralized training diagram.

We applied this process, using hierarchical clustering with 3 clusters, and the results obtained

are summarized in figures 5.13, 5.14, and 5.15.

It is clear from these figures that the resulting model does not work very well for some users,
more specifically, the ones with lower percentage of granted permissions in figure 5.14, i.e the
ones who deny most of the requests. It is also possible to observe the advantages of using multiple
metrics, while the accuracy metric has a very high score to these users, the Fl-score and the
precision-recall AUC do not, indicating that the model is always denying the permissions. In
figure 5.15 we observe the boxplot of scores for each metric, the median score is always above 0.8,
with 75% of the points being above 0.7 for all metrics. However there are some points with very
low scores, bellow 0.4, mainly the Fl-scores. In order to reduce the bias of the model against
users with lower percentage of granted permissions, we decided to oversample each local training
dataset after dividing it, obtaining 50% training points with granted permissions, and 50% with

denied permissions. This way, the trained model will be less biased, yet the test set will have a
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Figure 5.13: Histogram of scores. Figure 5.14: Scores vs. percentage of granted
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Figure 5.15: Boxplot of scores by metric.

realistic percentage of granted permissions, since it is not oversampled.

The results are summarized again in figures 5.16, 5.17 and 5.18. From these results we observe
a reduction in the bias against users with lower percentage of granted permissions, improving
the overall scores. From the boxplot is also very clear that there was a reduction in lower scores

in all metrics, even tough the median score remained more or less the same.
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Figure 5.18: Boxplot of scores.

5.3.1 Federated Learning with Neural Networks for Grant Prediction

While neural networks can be used to predict the users’ answers, we want a strategy to evaluate
the privacy profiles with privacy guarantees. Federate learning provides us that possibility by
training a model locally, on each smartphone, using only local data, and then sharing the neural
networks’ weights with a central server on each iteration. The central server averages the weights
and returns the result to the clients, so they can use these new weights to continue the training.
Here, the same processing referred in section 5.3 is done locally, using the same features. Figure

5.19 represents the entire process in a diagram.

The first 4 steps are exactly the same as the ones presented in figure 5.12, the oversampling
of the training dataset, in order to have the same number of rows with granted permissions and
denied permissions, was also described before. Now, instead of sending the training data to a
centralized server, the centralized server creates a Neural Network and shares the weights with

all the clients. Next, each client initiates a Neural Network with the received weights. Each
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client will iteratively train the network and send the local weights to the server, the server will
average all the local weights and send back the results. Each client will set the received weights
on their local Neural Network. This process is executed until convergence, when the average of
all local weights is equal to the one in the previous iteration or when a maximum number of

iterations is reached. With the test set, each user tests the model performance and sends the

results to the server.
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Figure 5.19: Federated learning training diagram.

We applied this process, using hierarchical clustering with 3 clusters, and oversampling the
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training data as explained before, and the results obtained are summarized in figures 5.20, 5.21,
and 5.22.
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Figure 5.20: Histogram of scores. Figure 5.21: Scores vs. percentage of granted
permissions.
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Figure 5.22: Boxplot of scores.

Looking at the results, we still observe some bias in the model, specially for users with
more than 90% of denied permissions or, in order words, less than 10% percentage of granted
permissions. However, the other users have even better results than the ones obtained before,
using the centralized neural network. From these results we can conclude that not only it is
possible to predicting the grant result with privacy guarantees, doing so leads to comparable or

even better results than we using a centralized approach.

5.4 Evaluation

The previous section demonstrated the feasibility of predicting the grant result using federated

learning. However, the profile assignment was still done in a centralized fashion, thus requiring
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the data of the users to go to a centralized server. In this section we assess the feasibility and
performance of building profiles using the privacy-preserving strategies described in sections
5.2.2.1 and 5.2.1.1. However, because there is no ground truth for the users’ privacy profiles, it is
hard to evaluate them. So, in order to evaluate the utility of the generated profiles, we can use

the grant prediction results.

Using the strategies described before, we can use the grant prediction evaluation metrics to
compare the usefulness of the different profiles. If the neural network is capable of achieving
a better score using a specific set of profiles, we consider them to be more useful than another

other set, that achieves a lower score.

We use three metrics to evaluate the models’ performance, F1-Score, Accuracy, and Precision-
Recall AUC (Area Under the Curve). The F1-Score is the harmonic mean of the precision and
recall, and we use it because it takes both false positives and false negatives into account, and
this is also the metric used in previous works. We also use Accuracy, given the uneven class
distribution in our dataset, the F1-Score is not always possible to calculate, e.g. when the
dataset only contains one class, this way the accuracy can give us an idea of how the model is
behaving. Finally, the Precision-Recall AUC summarizes the Precision-Recall curve, and can be
used to understand the trade-off in performance for different threshold values when interpreting
probabilistic predictions. For the evaluation of the performance, we divided the dataset in 80%

for the validation and 20% for testing, as described in section 5.4.1 and section 5.4.2, respectively.

5.4.1 Validation

To find the best set of profiles in our dataset we preformed a grid search on the following

parameters:

e Clustering Algorithm.
e Imputation Method.

o Number of Clusters.

The clustering algorithms consist of hierarchical clustering (hc centralized), privacy pre-
serving distributed hierarchical clustering (distributed hc), k-means (centralized k-means)
and efficient privacy preserving distributed k-means (distributed k-means). The imputation
method used was the multivariate imputer, that estimates each feature from all the others. But
applied in different ways, one globally, using all the users data together (not possible in a private

distributed manner) and applied locally, each user applies the imputation locally to their dataset.

For every combination we applied a 5-fold cross validation, using 80% of the dataset, leaving
20% for testing. We used the centralized neural network and federated learning, since we want

to evaluate the utility of the profiles in a secure way as well. In figures 5.23a, 5.23b and 5.23c we
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can observe the results obtained for three metrics, accuracy, Fl-score and precision-recall AUC

with centralized neural networks.

1.00 Algorithm and Imputation Strategy
0.95 M distributed hc M centralized hc

) W distributed kmeans [ centralized kmeans
0.90

o
o)
a

Mean Test Accuracy

Number of Profiles

(a) Mean accuracy 5-fold cross validation results.

Algorithm and Imputation Strategy

M distributed hc M centralized hc
M distributed kmeans [ centralized kmeans

Mean Test F1-score

Number of Profiles

(b) Mean Fl-score 5-fold cross validation results.

Algorithm and Imputation Strategy

B distributed hc B centralized hc
M distributed kmeans [l centralized kmeans|

Mean Test
Precision-Recall AUC

o
© O
o O

Number of Profiles

(c) Mean precision-recall AUC 5-fold cross validation results.

Figure 5.23: Results obtained for the centralized neural networks.

We can observe that the lowest achieved accuracy was 0.81 with distributed hierarchical
clustering with 3 profiles, and the highest was 0.89 with k-means centralized with 8 profiles. The
distributed hierarchical clustering always underperforms all the other strategies, and the best

strategies are always k-means (centralized or distributed).

Looking at the Fl-scores (figure 5.23b), the lowest score is 0.86 with k-means centralized using
4 profiles, and the highest one is 0.91 with k-means centralized with 8 profiles. These results are
more inconsistent, with a low number of profiles (3 and 4), the distributed k-means outperforms

the other strategies. However, when the number of profiles is greater than 4, k-means centralized



70 CHAPTER 5. SECURE GENERATION OF PRIVACY PROFILES
usually outperforms the other strategies, with distributed k-means in second.

Finally, the precision-recall AUC scores present a more optimistic and consistent view, with
the lowest score being 0.93 for distributed hierarchical clustering using 3 profiles, and the highest
being 0.99 for distributed hierarchical clustering using 10 profiles.

This set of metrics allow us to conclude that using privacy preserving strategies for generating
privacy profiles does not affect the usefulness of the resulting profiles. With this in mind, we can
use this strategies and compute their usefulness using federated learning and compare the results
to understand if it is possible to generate and evaluate privacy profiles in a fully distributed

scenario.

In figures 5.24a, 5.24b and 5.24c we can observe the results obtained for three metrics,

accuracy, Fl-score and precision-recall AUC with federated learning.

With federated learning, we are capable of achieving similar results to the ones with centralized
neural networks. We can observe that the lowest accuracy is 0.82 with distributed hierarchical
clustering with 4 profiles, and the highest is 0.88 with distributed k-means with 9 profiles. The
distributed hierarchical clustering still underperforms almost all the other strategies, and the

best strategies are always k-means (centralized or distributed) as well.

Looking at the Fl-scores (figure 5.24b), the lowest score is 0.87 with distributed hierarchical
clustering using 3 profiles, and the highest one is 0.91 with distributed k-means with 9 profiles.
The k-means algorithm, both centralized and distributed, continue to outperform most of the

strategies.

Finally, the precision-recall AUC scores (figure 5.24¢) have a lowest score of 0.93 for distributed
hierarchical clustering using 3 profiles, and the highest being 0.98 for distributed hierarchical

clustering using 10 profiles.
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(¢) Mean precision-recall AUC 5-fold cross validation results with federated learning.

Figure 5.24: Results obtained for the federated learning approach.
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Overall, and since we want to compare our results to the ones in previous works, the best

secure model is the distributed k-means using 9 profiles, both for centralized neural networks

and federated learning (tables 5.5 and 5.6). This demonstrates that our strategy can be used

in a fully distributed scenario, where both the profiles’ generation and evaluation are done in a

private distributed manner.
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Centralized Neural Network
Accuracy F1-Score PR-AUC
Best 0.89 (k=3) 0.91 (k=28) 0.99 (k =10)
Centralized k-Means | Centralized k-Means | Distributed HC
Worst 0.87 (k=3) 0.77 (k=5) 0.94 (k=3)
Distributed HC Distributed k-Means | Distributed HC

Table 5.5: Best and worst results for centralized neural network.

Federated Learning
Accuracy F1-Score PR-AUC
Best 0.88 (k=9) 0.91 (k=9) 0.98 (k =10)
Distributed k-Means | Distributed k-Means | Distributed HC
Worst 0.82 (k=4) 0.87 (k=23) 0.93 (k=23)
Distributed HC Distributed HC Distributed HC

Table 5.6: Best and worst results for federated learning.

5.4.2 Testing

In order to test the best models found in the validation phase, each user will train the models
using the data from validation, 80% of their dataset, and test it with the remaining 20%. The
F1l-score, accuracy and precision-recall AUC metrics for each user is presented in figures 5.25
and 5.27 and a scatter plot with metrics vs. percentage of granted permission is presented to

identify any bias in the model is presented in figures 5.26 and 5.28.
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Figure 5.25: Histogram of scores for Figure 5.26: Scores vs. percentage of granted
centralized neural network. permissions for centralized neural network.

For the centralized neural network, the global F1-score was 0.91, the global accuracy was
0.90 and the global precision-recall AUC was 0.97. Figure 5.26 show us that the model is still
somewhat biased, with users with a high percentage of granted permissions having consistently

higher scores than the ones with a lower percentage. With the exception of a few users, where
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the neural network underperforms the random model, the results are good and similar to the
ones obtained by Bin Liu [18], where a linear-kernel support vector machine using hierarchical

clustering to generate the privacy profiles achieved a cross-validated F1-Score of 90.02%.

301 [ F1-Score m 1.0
Accuracy
401 mmm Precision-Recall AUC 0.8
- 2 ‘ 3
§ 301 £ 0.61 °* s . R
z ° 'Y
> wn Y
g E -. °
&£ 201 B 041
=
[ ]
104 0.2 e F1-Score (Corr: 0.67)
e Accuracy (Corr: 0.12)
0.01 e Precision-Recall AUC (Corr: 0.66)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Metrics' Value Percentage of granted permissions
Figure 5.27: Histogram of scores for Figure 5.28: Scores vs. percentage of granted
federated learning. permissions for federated learning.

For the federated learning, the global F1-score was 0.90, the global accuracy was 0.88 and the
global precision-recall AUC was 0.97. When comparing the results from the federated learning
displayed in 5.27 and 5.28, to the centralized approach from figures 5.25 and 5.26, we can see
that federated learning achieved a lower bias. This is evidenced by the more uniform distribution
on the y-axis throughout the z-axis. Overall, these federated learning results are positive and
comparable to the centralized results obtained by Liu, Lin and Sadeh [18], with the benefit of

ensuring user privacy.






Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we present methods for generating privacy profiles and using these to predict users’
privacy preferences with privacy guarantees. For that, we developed a new clustering technique
to generate privacy profiles using k-means in a efficient, private way that is also robust to non-I11D
data. For this strategy, each client computes the k-Means algorithm locally. The server will then
use the resultant centroids from each client to apply the k-Means algorithm again, generating the
global centroids. To maintain the client’s privacy, homomorphic encryption is used to compute
the distance matrix in a secure way and secure aggregation is applied to share the sum and
number of points per cluster. This way, the server never sees the original data, only ciphertexts

and aggregated data.

Using privacy-preserving clustering techniques, such as the one described above, we used the
resulting clusters to generate privacy profiles. Using these profiles, together with context features,
we can train a neural network, without sharing the clients’ data, using federated learning. In each
iteration, every client trains a neural network locally on their private data and only the resulting
weights are shared with the central server, which, in turn, will return the weights average to the
clients. This strategy can outperform the centralized hierarchical clustering approach used in the

state-of-the-art strategy.

Using the resulting profiles and federated learning we were able to demonstrate the usefulness
of the privacy profiles in predicting the users’ grant decision in a secure fashion, i.e. without
sharing users data. Moreover, our secure strategy achieved an Fl-score of 90%, matching state-of-
the-art performance for privacy decisions prediction. In conclusion, our strategy can be applied
in the real world, where not only we are able to generate the profiles, but test them as well, while

preserving users’ privacy and maintaining a state-of-the-art performance.
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6.2 Future Work

In the future, to improve the robustness and applicability of our strategy, data from broader
demographics should be collected. This data would allow us to analyse more diverse responses

to different app categories and permissions, thus testing the robustness of our strategy.

We presented an approach to securely generate privacy profiles and also test their usefulness,
but in order to apply our strategy to real world scenarios, we need to be able to monitor and
re-train the model in a secure way as well. We need to build a framework capable of monitoring
the model’s performance in a secure way, together with the ability to update the profiles with
the new data in a secure way as well. Such framework would improve the adaptability of the

model to real world scenarios, and thus incorporate potential changes in privacy preferences.

The final strategy, presented by us, to predict the users’ grant decision, is complex, including
two learning phases: one for privacy profile generation, another for using the profiles and context
variables to predict the users’ answers. For future work, a deep learning approach together with
federated learning could be capable of replacing the two step process: profile generation and

grant prediction, by a single one, simplifying the process and possibly obtain better performance.

Could be considered as well other neural network architectures in the context of deep learning,
such as recurrent neural networks that, given the temporal characteristic of our dataset, could
capture patterns in the data that traditional neural networks cannot. Testing the performance,
in a real scenario, of federated learning with recurrent neural networks or other neural network

architectures would also be interesting, as there is little work in this area.



Appendix A

Supplementary Information

In this appendix we present a more complete description of the data collected from each permission
request in section A.1. We also provide an actual example of the data collected from a permission

request in section A.2.

A.1 Description of the data collected from a permission request

In this section we provide a complete description of every data field of the data collected from a

permission request.

o permissionDialogData: object. Contains the data pertaining to a permission dialog.

— permissionDialogDatald: long. Internal identifier of the permission dialog data.

— requestingApplicationInfo: object. Contains data about the requesting applica-

tion.
x name: nullable string. Application name as returned by the PackageManager
getApplicationLabel().
x packageName: string. Package name of the application.

x longVersionCode: nullable long. The long version code of the application as

returned by Packagelnfo getLongVersionCode().

x flags: nullable integer. Application flags as given by ApplicationInfo flags.

* isSystemApp: nullable boolean. Whether the app is a system app or a third-
party app.

x isForeground: nullable boolean. Whether the app is currently in foreground or

background.
x category: integer. The category of the app as obtained from Applicationlnfo

category.

+ uid: nullable integer. The user id assigned to the application.

7
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x pid: nullable integer. The process id of the running application.

— ipcCallingApplicationInfo: nullable object. Contains the data about the applica-
tion that called (through interprocess communication) the permission requesting app
(identified by the object in requestingApplicationInfo). This field does not exist if
there was no interprocess call that lead to the permission request. Contains the same

fields as requestingApplicationlnfo.

— checkedPermission: string. The name of the permission being requested as declared

in the manifest. Default android permissions can be found here.

— checkedPermissionGroup: nullable string. The group of the checkedPermission if

any. Default android permission groups can be found here

— method: string. The calling method used to check if the app has the permission.
The value is one of: checkCallingOrSelfPermission; checkCallingPermission; checkPer-

mission; checkSelfPermission.
— timestamp: [ong. The epoch time of this permission request.

— answerType: string. The value can be one of: UNANSWERED, USER_ ANSWERED,
CACHE_ANSWERED, TIMEDOUT, DISMISSED, UNHANDLED.

— grantResult: integer. Whether the permission was granted or denied by the
user. The value is either 0 if the permission is granted, which corresponds to
PackageManager. PERMISSION__GRANTED, -1 if the permission is denied, which
corresponds to PackageManager. PERMISSION__DENIED, or integer. MIN__ VALUE
(-2147483648) if there was no answer.

— selectedSemanticLoc: string. The user semantic location given as input by the

participant. The value can be one of: Home, Work, Home, Travelling and Other.

— wasRequestExpected: integer. Participant input on whether the request was
expected. Value is 2 if it was expected, 1 if it was unexpected or 0 if the participant

was not sure.

— contextData: nullable object. Contains the data related to the participant and
device context at the time of the permission dialog. This field only exists when
answerType in permissionDialogData is USER__ ANSWERED.

— contextDatald: long. Internal identifier of the context data object.

— permissionDialogDataOwnerld: long. The id of the permissionDialogData object

that this contextData pertains to.

— topRunningApplicationInfo: object. The application that is currently being shown

to the user as top application. Contains the same fields as requestingApplicationInfo.

— foregroundRunningApplicationInfoArray: array of objects. An array of the
applications that are visible to the user at the time of the permission dialog. Each

application has the same fields as requestingApplicationlnfo.
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— foregroundRunningApplicationInfoArray: array of objects. An array of the
applications that are running in the background at the time of the permission dialog.

Each application has the same fields as requestingApplicationlnfo.

— networkStatus: string. The network status at the time of the permission dialog.
The value is one of: DISCONNECTED, NOT_METERED or METERED.

— screenlIsInteractive: boolean. Whether the screen is interactive (true) or not (false)

as given by the PowerManager isInteractive().

— isKeyguardLocked: boolean. Whether the keyguard is locked (true) or unlocked
(false) as given by the KeyguardManager isKeyguardLocked().

— dockState: integer. The dock state at the time of the dialog. It is the integer value
obtained from EXTRA DOCK STATE.

— callState: integer. The current call state as returned by the TelephonyManager
getCallState().

— plugState: integer. The current plug (charging) state as returned from the field
EXTRA_PLUGGED. Value is 0 if it is not plugged, 1 if it is plugged to an AC

charger, 2 if it is plugged to an USB port and 3 if the power source is wireless.

— location: object. Contains the last location reading of the user. The location can be
obtained from GPS, network cell towers and wifi access points. Note that the last
location does not necessarily means the current location, as the participant might
have turned location off.

* latitude: double. Latitude reading.

* longitude: double. Longitude reading.

* time: long. The time of this location reading in milliseconds since January 1st,
1970. Note campaign 3 is missings this field.

x elapsedRealtimeNanos: long. Time of the location reading in nanos since
system boot.

* horizontalAccuracyMeters: float. The accuracy of the location reading in

meters as returned by Location.get Accuracy/().

— wifiDevices: nullable array of objects. Each object in the array is a wifi device in
the neighbourhood of the participant. A scan is attempted every 5 minutes, but the
participant may deactivate the wifi at any time. Each device has the following fields:

x ssid: string. The network name.

* bssid: string. The address of the access point.

* rssid: integer. The power of the signal measured in RSSI.

* timestamp: long. The time that this device was last see in microseconds since
boot.

* time: long. The time at which this device was last seen in milliseconds since

January 1st, 1970. Note campaign 3 is missing this field.
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— bluetoothDevices: nullable array of objects. Each object in the array is a bluetooth

device in the neighbourhood of the participant. A scan is attempted every 5 minutes,

but the participant may deactivate the bluetooth at any time. Each device has the

following fields:

*

*

*

name: string. The name of the device as returned by BluetoothDevice.getName().
address: string. The hardware address of the bluetooth device.

type: integer. The device type. The value is 0 if the device type is not known, 1
if it is a Classic - BR/EDR, 2 if it is Low Energy - LE-only or 3 if is Dual Mode -
BR/EDR/LE.

bondState: integer. The bond (pair) state of the remote device. Value is 10 if
device is not bonded, 11 if is bonding or 12 if is bonded (paired).

deviceClass: integer. The major and minor device class component of the
remote device. The value corresponds to one of the device classes in Bluetooth-
Class.Device.

rssi: short. The power of the signal measured in RSSI.

timestamp: long. The time at which the last scan that found this device started

in milliseconds since January 1, 1970.

— calendarEvents: nullable array of objects. Each object in the array is an instance

of a calendar event that is on-going at the time of the permission dialog. Each event
has the following fields:

*

*

instanceld: long. The identifier of the event instance.

calendarld: long. The identifier of the calendar that the event instance pertains
to.

eventld: long. The identifier of the event.

eventBegin: [ong. The beginning time of the instance, in UTC milliseconds
since January 1, 1970.

eventEnd: long. The ending time of the instance, in UTC milliseconds since
January 1, 1970.

eventLocation: string. Where the event takes place, as inputted by the user.
eventStatus: integer. The event status. The value is 0 if the status is tentative,

1 if it is confirmed or 2 if it canceled.

A.2 Example of the data collected from a permission request

In this section we provide a real example of a permission request received by our server. Personal

identifiable information was replaced with random data.

contextData: {
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backgroundRunningApplicationInfoArray:

{
category: -1,
flags: 550027079,
isForeground: true,
isSystemApp: false,
longVersionCode: 1,
name: Example,
packageName: pt.uc.dei.copmode
pid: 1235,
uid: 10000

1,
calendarEvents: [

{
calendarId: 1,
eventBegin: 1601137396919,
eventEnd: 1605137396919,
eventId: 1,

eventLocation: Example location,

eventStatus: 1,

instanceId: 1

1,
callState: O,

contextDatalId: 1,
dockState: O,

foregroundRunningApplicationInfoArray:

{
category: -1,
flags: 550027079,
isForeground: true,
isSystemApp: true,
longVersionCode: 1,
name: CM-NPM,

[

.example,

[

packageName: pt.uc.dei.copmode.npm,

pid: 1234,
uid: 10000
}
I
isKeyguardLocked: false,

location: {
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elapsedRealtimeNanos: 123123,
horizontalAccuracyMeters: 10,
latitude: 60.124512,
longitude: -60.245
b
networkStatus: NOT_METERED,
permissionDialogDataOwnerId: 1,
plugState: O,
screenlIsInteractive: true,
topRunningApplicationInfo: {
category: -1,
flags: 550027079,
isForeground: true,
isSystemApp: true,
longVersionCode: 1,
name: CM-NPM,

packageName: pt.uc.dei.copmode.npm,

pid: 1234,

uid: 10000
b
wifiDevices: [

{
bssid: aa:aa:aa:aa:aa:aa,
rssid: -20,
ssid: WIFI_NAME,
timestamp: 123123123

by
permissionDialogData: {
answerType: USER_ANSWERED,
checkedPermission: android.permission.WRITE_EXTERNAL_STORAGE,
checkedPermissionGroup: android.permission—-group.STORAGE,
grantResult: O,
method: checkSelfPermission,
permissionDialogDatald: 1,
requestingApplicationInfo: {
category: -1,
flags: 550027079,
isSystemApp: true,
longVersionCode: 1,
name: CM-NPM,
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packageName: pt.uc.dei.copmode.npm,
pid: 1234,
uid: 10000

by

selectedSemanticLoc: Home,

timestamp: 123123123,

wasRequestExpected: 1
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