1,524 research outputs found

    Research of Asynchronous SAR ADC Based on Hopfield Network

    Get PDF

    Design and Analysis of a Low-Power 8-Bit 500 KS/S SAR ADC for Bio-Medical Implant Devices

    Get PDF
    This thesis project involves the design and analysis of an 8-bit Successive Approximation Register (SAR) Analog to Digital Convertor (ADC), designed for low- power applications such as bio-medical implants. The sampling rate for this ADC is 500 KS/s. The power consumption for the whole SAR ADC system was measured to be 2.1 uW. The novelty of this project is the proposal of an extremely energy efficient comparator architecture. The result is the design of a final ADC with reasonable sampling speed, accuracy and low power consumption. In this project, all the different subsystems have been designed at the transistor level with 45 nm CMOS technology. The logical circuit was designed using Verilog language. It was then synthesized and integrated in the overall system

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Low Power and Small Area Mixed-Signal Circuits:ADCs, Temperature Sensors and Digital Interfaces

    Get PDF

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    All Digital, Background Calibration for Time-Interleaved and Successive Approximation Register Analog-to-Digital Converters

    Get PDF
    The growth of digital systems underscores the need to convert analog information to the digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC) calibration is often a limiting factor, requiring longer calibration times to achieve higher accuracy. The goal of this dissertation is to perform a fully digital background calibration using an arbitrary input signal for A/D converters. The work presented here adapts the cyclic Split-ADC calibration method to the time interleaved (TI) and successive approximation register (SAR) architectures. The TI architecture has three types of linear mismatch errors: offset, gain and aperture time delay. By correcting all three mismatch errors in the digital domain, each converter is capable of operating at the fastest speed allowed by the process technology. The total number of correction parameters required for calibration is dependent on the interleaving ratio, M. To adapt the Split-ADC method to a TI system, 2M+1 half-sized converters are required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 Split-TI converter that achieves full convergence in less than 400,000 samples. The SAR architecture employs a binary weight capacitor array to convert analog inputs into digital output codes. Mismatch in the capacitor weights results in non-linear distortion error. By adding redundant bits and dividing the array into individual unit capacitors, the Split-SAR method can estimate the mismatch and correct the digital output code. The results from this work show a reduction in the non-linear distortion with the ability to converge in less than 750,000 samples

    A 1.67 pJ/Conversion-step 8-bit SAR-Flash ADC Architecture in 90-nm CMOS Technology

    Get PDF
    A novice advanced architecture of 8-bit analog todigital converter is introduced and analyzed in this work. Thestructure of proposed ADC is based on the sub-ranging ADCarchitecture in which a 4-bit resolution flash-ADC is utilized. Theproposed ADC architecture is designed by employing a comparatorwhich is equipped with common mode current feedback andgain boosting technique (CMFD-GB) and a residue amplifier. Theproposed 8 bits ADC structure can achieve the speed of 140 megasamplesper second. The proposed ADC architecture is designedat a resolution of 8 bits at 10 MHz sampling frequency. DNL andINL values of the proposed design are -0.94/1.22 and -1.19/1.19respectively. The ADC design dissipates a power of 1.24 mWwith the conversion speed of 0.98 ns. The magnitude of SFDRand SNR from the simulations at Nyquist input is 39.77 and 35.62decibel respectively. Simulations are performed on a SPICE basedtool in 90 nm CMOS technology. The comparison shows betterperformance for the proposed ADC design in comparison toother ADC architectures regarding speed, resolution and powerconsumption
    corecore