50 research outputs found

    Non-Crossing Geometric Steiner Arborescences

    Get PDF
    Motivated by the question of simultaneous embedding of several flow maps, we consider the problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely, we show that two rectilinear Steiner arborescences have a non-crossing drawing if neither tree necessarily completely disconnects the other tree and if the roots of both trees are "free". If the roots are not free, then we can reduce the decision problem to 2SAT. If terminal-to-root paths are allowed to turn only at Steiner points, then it is NP-hard to decide whether multiple rectilinear Steiner arborescences have a non-crossing drawing. The setting of angle-restricted Steiner arborescences is more subtle than the rectilinear case. Our NP-hardness result extends, but testing whether there exists a non-crossing drawing if the roots of both trees are free requires additional conditions to be fulfilled

    Algorithms for cartographic visualization

    Get PDF
    Maps are effective tools for communicating information to the general public and help people to make decisions in, for example, navigation, spatial planning and politics. The mapmaker chooses the details to put on a map and the symbols to represent them. Not all details need to be geographic: thematic maps, which depict a single theme or attribute, such as population, income, crime rate, or migration, can very effectively communicate the spatial distribution of the visualized attribute. The vast amount of data currently available makes it infeasible to design all maps manually, and calls for automated cartography. In this thesis we presented efficient algorithms for the automated construction of various types of thematic maps. In Chapter 2 we studied the problem of drawing schematic maps. Schematic maps are a well-known cartographic tool; they visualize a set of nodes and edges (for example, highway or metro networks) in simplified form to communicate connectivity information as effectively as possible. Many schematic maps deviate substantially from the underlying geography since edges and vertices of the original network are moved in the simplification process. This can be a problem if we want to integrate the schematized network with a geographic map. In this scenario the schematized network has to be drawn with few orientations and links, while critical features (cities, lakes, etc.) of the base map are not obscured and retain their correct topological position with respect to the network. We developed an efficient algorithm to compute a collection of non-crossing paths with fixed orientations using as few links as possible. This algorithm approximates the optimal solution to within a factor that depends only on the number of allowed orientations. We can also draw the roads with different thicknesses, allowing us to visualize additional data related to the roads such as trafic volume. In Chapter 3 we studied methods to visualize quantitative data related to geographic regions. We first considered rectangular cartograms. Rectangular cartograms represent regions by rectangles; the positioning and adjacencies of these rectangles are chosen to suggest their geographic locations to the viewer, while their areas are chosen to represent the numeric values being communicated by the cartogram. One drawback of rectangular cartograms is that not every rectangular layout can be used to visualize all possible area assignments. Rectangular layouts that do have this property are called area-universal. We show that area-universal layouts are always one-sided, and we present algorithms to find one-sided layouts given a set of adjacencies. Rectangular cartograms often provide a nice visualization of quantitative data, but cartograms deform the underlying regions according to the data, which can make the map virtually unrecognizable if the data value differs greatly from the original area of a region or if data is not available at all for a particular region. A more direct method to visualize the data is to place circular symbols on the corresponding region, where the areas of the symbols correspond to the data. However, these maps, so-called symbol maps, can appear very cluttered with many overlapping symbols if large data values are associated with small regions. In Chapter 4 we proposed a novel type of quantitative thematic map, called necklace map, which overcomes these limitations. Instead of placing the symbols directly on a region, we place the symbols on a closed curve, the necklace, which surrounds the map. The location of a symbol on the necklace should be chosen in such a way that the relation between symbol and region is as clear as possible. Necklace maps appear clear and uncluttered and allow for comparatively large symbol sizes. We developed algorithms to compute necklace maps and demonstrated our method with experiments using various data sets and maps. In Chapter 5 and 6 we studied the automated creation of ow maps. Flow maps are thematic maps that visualize the movement of objects, such as people or goods, between geographic regions. One or more sources are connected to several targets by lines whose thickness corresponds to the amount of ow between a source and a target. Good ow maps reduce visual clutter by merging (bundling) lines smoothly and by avoiding self-intersections. We developed a new algorithm for drawing ow trees, ow maps with a single source. Unlike existing methods, our method merges lines smoothly and avoids self-intersections. Our method is based on spiral trees, a new type of Steiner trees that we introduced. Spiral trees have an angle restriction which makes them appear smooth and hence suitable for drawing ow maps. We study the properties of spiral trees and give an approximation algorithm to compute them. We also show how to compute ow trees from spiral trees and we demonstrate our approach with extensive experiments

    The Homogeneous Broadcast Problem in Narrow and Wide Strips

    Get PDF
    Let PP be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let sPs\in P be a given source node. Each node pp can transmit information to all other nodes within unit distance, provided pp is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source ss can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, ss must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width ww. We almost completely characterize the complexity of both the regular and the hop-bounded versions as a function of the strip width ww.Comment: 50 pages, WADS 2017 submissio

    Gap-ETH-Tight Approximation Schemes for Red-Green-Blue Separation and Bicolored Noncrossing Euclidean Travelling Salesman Tours

    Full text link
    In this paper, we study problems of connecting classes of points via noncrossing structures. Given a set of colored terminal points, we want to find a graph for each color that connects all terminals of its color with the restriction that no two graphs cross each other. We consider these problems both on the Euclidean plane and in planar graphs. On the algorithmic side, we give a Gap-ETH-tight EPTAS for the two-colored traveling salesman problem as well as for the red-blue-green separation problem (in which we want to separate terminals of three colors with two noncrossing polygons of minimum length), both on the Euclidean plane. This improves the work of Arora and Chang (ICALP 2003) who gave a slower PTAS for the simpler red-blue separation problem. For the case of unweighted plane graphs, we also show a PTAS for the two-colored traveling salesman problem. All these results are based on our new patching procedure that might be of independent interest. On the negative side, we show that the problem of connecting terminal pairs with noncrossing paths is NP-hard on the Euclidean plane, and that the problem of finding two noncrossing spanning trees is NP-hard in plane graphs.Comment: 36 pages, 15 figures (colored

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    Packing and covering in combinatorics

    Get PDF
    corecore