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Abstract
Motivated by the question of simultaneous embedding of several flow maps, we consider the
problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear
and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely,
we show that two rectilinear Steiner arborescences have a non-crossing drawing if neither tree
necessarily completely disconnects the other tree and if the roots of both trees are “free”. If
the roots are not free, then we can reduce the decision problem to 2SAT. If terminal-to-root
paths are allowed to turn only at Steiner points, then it is NP-hard to decide whether multiple
rectilinear Steiner arborescences have a non-crossing drawing. The setting of angle-restricted
Steiner arborescences is more subtle than the rectilinear case. Our NP-hardness result extends,
but testing whether there exists a non-crossing drawing if the roots of both trees are free requires
additional conditions to be fulfilled.
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1 Introduction

Flow maps are used in cartography to visualize the movement of objects between different
locations. Generally, multiple sources are connected to multiple destinations with curves of
varying thickness indicating the amount of flow. A good layout of a flow map consists of
“simple” aesthetically pleasing curves, and avoids unnecessary intersections. Specifically, in
this paper we are interested in drawing flow maps with no crossings at all. That is, given
a set of source points and a set of destination points, we are looking to connect the source
points to their corresponding destinations without intersections. For the sake of readability,
the curves of a flow map should roughly be oriented from the source to the destination
(or vice versa). This poses restrictions on the curves, which in related work [5] has been
formalized using the notion of angle-restricted paths: for every point p on the path, the angle
γ between the tangent vector at p and the vector from p to the source can be at most a
prescribed angle α (see Figure 1).
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Figure 1 Angle-restricted
path: γ is bounded by α.
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Figure 2 A rectilinear Steiner arborescence and a flux tree
with eight terminals.

The notion of angle-restricted paths is closely related to that of so-called generalized
self-approaching paths. A ϕ-self-approaching path, as defined by Aichholzer et al. in [2], is a
path such that for any point p on it, the rest of the path lies inside some wedge with apex
in p and with angle ϕ. Accordingly, any angle-restricted path with angular constraint α is
also generalized self-approaching for angle ϕ = 2α: for every point p on the path from some
destination to its source r, the remainder of the path is contained in a wedge with angle 2α,
with apex at p, and with r lying on its bisector. On the other hand, any α-self-approaching
path is also angle-restricted with constraint α.

In a way, angle-restricted paths behave similarly to (xy-monotone) rectilinear paths. In
this case, for every point p on the path, the subpath between p and the source r is bounded
by an axis-aligned 90◦ wedge with the apex at p that contains r. We therefore study the
following problems in this paper. Given a set of source points and a set of corresponding
destination points, is it possible to connect all sources to their respective destinations using
only angle-restricted paths (or xy-monotone paths in the rectilinear case) such that there
are no intersections? The rectilinear case offers a somewhat simpler setting that is more
amenable to analysis and allows us to clearly illustrate our main techniques.

In practice, a flow map will often have a small number of source points connected to
multiple destination points to show the comparison of a certain commodity flow between
several geographic locations, or to compare several types of commodities. Thus, we can
group the flows in a flow map by a common source point to represent the out-flow of a given
commodity from a specific location. Our problem is equivalent to drawing non-intersecting
flow trees with angle-restricted (or xy-monotone for rectilinear) leaf-to-root paths. This
approach has an important advantage of considering relevant flows together, and thus allowing
for the possibility of merging similar flows which are going to the same source. A resulting
merge point will then be a Steiner point, and the flow tree will be a Steiner arborescence
(a tree with directed edges in the direction from the root). Buchin et al. [5] introduced
angle-restricted Steiner arborescences, or flux trees, as a new variant of drawing flow trees.
They study the problem of drawing a flux tree of minimal total length, and, among other
results, show that the branches of an optimal flux tree consist of arcs of logarithmic spirals.
Figure 2 shows an example of a rectilinear Steiner arborescence and a flux tree.

For two or more sets of input points, non-crossing Steiner arborescences need not even
exist. Nonetheless, they are very relevant in practice. A single flux tree can show information
about only one source, but ideally multiple sources should be shown simultaneously, in
such a way that the corresponding flux trees have few or no crossings. To the best of our
knowledge, these problems have not yet been studied. In this paper we are therefore studying
the decision question of whether there exists a simultaneous non-crossing drawing of multiple
geometric Steiner arborescences. Specifically, given a set of k roots (sources) r1, . . . , rk ∈ R2,
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and k sets of terminals (destinations) T1, . . . , Tk ⊂ R2, do there exist k non-crossing Steiner
arborescences which connect each set of terminals Ti to its root ri, such that the leaf-to-root
paths are angle-restricted (or xy-monotone for rectilinear)?

When talking about flows in a flow map, we assume the (standard in the literature)
root-to-terminal orientation of the flows1. However, when drawing a flow tree, we start from
a terminal and move towards the root. Thus, the direction of the paths in the construction
of the trees is opposite to the flows in the flow map. When needed, we will explicitly state
which orientation is considered to avoid any ambiguity.

Related work. The Euclidean Steiner tree problem and its variants have been studied
extensively. Although most of these problems are NP-hard, many efficient approximation
algorithms are known [3, 10]. However, if we want to compute multiple Steiner trees for
multiple point sets, such that the Steiner trees have no or few crossings, then there are
very few results. Aichholzer et al. [1] give an algorithm that, given two sets of n points in
the plane, computes in O(n logn) time two spanning trees (not Steiner trees) such that the
diameters of the trees and the number of intersections between the trees are small. Similar
(weaker) results have also been obtained for drawing more than two plane spanning trees
with few crossings [7, 9]. Recently, Bereg et al. [4] presented approximation algorithms for
computing k disjoint Steiner trees for k point sets, with approximation ratios O(

√
n log k)

and k + ε for general k, (5/3 + ε) for k = 3, and a PTAS for k = 2. Other relevant related
work considers obtaining particular subgraphs of given geometric or topological graphs with
few or no crossings [6, 8, 11, 12]. These problems are often NP-hard, except for certain
special cases [12], but they differ from general Steiner tree problems, as the selected edges
must be part of the input graph.

Preliminaries. In this paper, we focus mostly on the case of drawing two flow trees, i.e.,
when k = 2. When considering only two trees, we refer to the first tree as the red tree, with
root r1 and terminals T1 = {p1, . . . , pn}, and the second tree as the blue tree with root r2 and
terminals T2 = {q1, . . . , qm}. When studying multiple rectilinear Steiner arborescences, we
generally allow the use of different axes for different trees. This way, the rectilinear problem
is more similar to the more involved angle-restricted (flux trees) version of the problem.

It follows from the restriction on the paths that the path between a terminal and its root
must completely lie in a particular region. For rectilinear Steiner arborescences this is the
axes-aligned rectangle spanned by the root and the terminal. For flux tree this region is
bounded by two curves traced by points for which the angle between the tangent and the
direction to the destination is exactly α. These curves are in fact logarithmic spirals, and
hence the above region is called the spiral region [5] (see Figure 3). Here we refer to these
regions as R-regions, and denote the R-region given by a root r and a terminal t by R(r, t).

I Definition 1. Two R-regions R(r1, pi) and R(r2, qj) fully intersect if r1, pi /∈ R(r2, qj),
r2, qj /∈ R(r1, pi), and segments r1pi and r2qj intersect.

It is easy to verify that two non-crossing Steiner arborescences do not exist if there are two
R-regions R(r1, pi) and R(r2, qj) that fully intersect for pi ∈ T1 and qj ∈ T2 (see Figure 3):
any two paths routed within the respective R-regions must intersect.

1 The same flow map can as well be used to represent an in-flow of a product with the flows oriented
from terminals to roots.
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Figure 3 Two R-regions fully intersect. Figure 4 Limited turns: no drawing.

When drawing (the paths of) Steiner arborescences, we will consider two models. In the
limited turns model, we restrict the segments of a terminal-to-root path of a flux tree to only
follow one of the two logarithmic spirals implied by the location of the corresponding root,
and prohibit the path from making a turn anywhere except for maybe at a merging point
with another path. Similarly, in the limited turns model in the rectilinear case, we restrict
terminal-to-root paths to be rectilinear, and prohibit the paths from making a turn except
for at a merging point with another path (or at a corner of an R-region). In the free turns
model, we allow the paths to follow any angle-restricted (or xy-monotone) curves as long as
there is no crossings. The limited turns model can be quite restrictive. Figure 4 shows an
example where a non-crossing drawing of two rectilinear Steiner arborescences exists only if
free turns are allowed.

Results. In Section 2.1 we show that two rectilinear Steiner arborescences, in the case
when the roots are not contained inside any R-regions, have a non-crossing drawing in the
free turns model if and only if no two R-regions fully intersect. In Section 2.2 we lift the
constraint on the roots and show how to reduce the decision problem to 2SAT. For flux trees
the problem is more involved: R-regions of flux trees can have more complicated interactions.
Contrary to rectilinear Steiner arborescences, it is not sufficient for flux trees to consider
only full intersections of R-regions if the roots are not contained in R-regions. Nonetheless
we can extend our arguments for rectilinear Steiner arborescences to show that, in the case
when the roots are not contained in R-regions, we can decide in polynomial time if two flux
trees have a non-crossing drawing. Due to space constraints we provide only a sketch of this
extension in Section 3; refer to the full version of this paper for details. In the limited turns
model we can show that it is NP-hard to decide whether an arbitrary number of rectilinear
Steiner arborescences or flux trees have a non-crossing drawing. This result, as well as all
the omitted proofs, can be found in the full version of this paper.

2 Two rectilinear Steiner arborescences

In this section we show how to decide if a non-crossing drawing of two rectilinear Steiner
arborescences in the free turns model exists and how to construct such a drawing if the
answer is positive. We consider the general case, when the axes of the arborescences are not
aligned. The free turn model implies that, in principle, the paths of the trees can approximate
any xy-monotone curve. We show that we can restrict the directions of the paths to the 8
directions implied by the axes of the two rectilinear Steiner arborescences.



I. Kostitsyna, B. Speckmann, and K. Verbeek 54:5

x

x

IV

y
y

III
II I

I
II

IV
II
I

Figure 5 Non-crossing drawings of two Steiner arborescences.

2.1 Roots not contained in R-regions
Consider the four quadrants of the coordinate system of the red arborescence ordered counter-
clockwise, and the four quadrants of the blue arborescence ordered clockwise. Let the first
quadrants be the ones containing the other root (see Figure 5). In the arrangement of the
four coordinate axes there are eleven faces, to which we refer by the two corresponding
quadrants. For simplicity of presentation, we assume that no terminal lies on an axis of the
other color. Let Cb be a cone with angle range [0, π2 ] in the red coordinate system with the
apex in the blue root, and let Cr be a cone with angle range [0, π2 ] in the blue coordinate
system with the apex in the red root. If the roots are not contained in the R-regions of the
other tree then there are no red terminals in Cb, and there are no blue terminals in Cr.

Given a red terminal p, and some xy-monotone path πp connecting p to r1, define a dead
region D2(πp) with respect to the blue root r2 to be the union of all points q such that path
πp intersects region R(q, r2) and disconnects q from r2. Analogously, given a blue terminal q
and some xy-monotone path πq connecting q to r2, define a dead region D1(πq) to be the
union of all points p such that path πq disconnects p from r1 in region R(p, r1).

Observe that πp is on the boundary of D2(πp), and that the rest of the boundary consists
of lines parallel to blue axes. For example, in Figure 6, D2(πp) is bounded on one side by
a line that goes through r1 that is parallel to the blue y-axis. On the other side D2(πp) is
bounded by a line parallel to the blue y-axis that goes through p, as p is in the blue quadrant
II. If p were, for example, in blue quadrant I, than the bounding line would be parallel to
blue x-axis. Also note that there are terminals p such that D2(πp) only consists of the points
of πp.

I Definition 2. Given a red terminal p such that r2 6∈ R(p, r1), define the dead region D2(p)
with respect to r2 to be the intersection of dead regions D2(πp) for all possible paths πp
connecting p to r1:

D2(p) =
⋂
πp

D2(πp) .

Define the dead region D1(q) of a blue terminal q analogously.

I Proposition 3. For a red terminal p 6∈ R(q, r2) and a blue terminal q 6∈ R(p, r1), the
following three statements are equivalent: (a) q ∈ D2(p), (b) p ∈ D1(q), (c) R(p, r1) and
R(q, r2) fully intersect.

Note that there can exist terminals whose dead regions are empty. For example, if p ∈ I ∩ I
then there is a path connecting p to r1 that does not obstruct routing of any possible blue

ISAAC 2017
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Figure 6 Dead regions: of a path πp (left) and of a terminal p (right).

(a) I ∩ II. (b) II ∩ II. (c) III ∩ I. (d) III ∩ IV.

Figure 7 Red terminal p, blue terminal q, the corresponding dead regions D2(p) (light red) and
D1(q) (light blue), and paths π∗

p and π∗
q connecting p to r1 and q to r2. Cones Cr and Cb are denoted

with dashed red and blue lines respectively.

terminal. Consider the eight faces of the arrangement of the four axes except for faces I ∩ I,
I∩ IV, and IV∩ I. For terminals p and q in them, D2(p) and D1(q) are not empty. Moreover,
in these faces p ∈ D2(p) and q ∈ D1(q). Denote π∗

p to be the path that connects p to r1 along
the boundary of D2(p) (refer to Figure 6 (right)). Similarly, denote π∗

q to be the path that
connects q to r2 along the boundary of D1(q). We can show that:

I Proposition 4. Paths π∗
p and π∗

q are xy-monotone in the red and blue coordinate systems,
respectively.

Therefore π∗
p and π∗

q are valid paths connecting p to r1 and q to r2. From Proposition 3 it
follows that if a blue terminal q 6∈ D2(p) then π∗

p does not intersect π∗
q . Figure 7 illustrates

some of the possible placements of p and q such that their dead regions D2(p) and D1(q) are
not empty.

Routing rules. Note that two cases, when there is a red terminal p in I∩ II and when there
is a blue terminal q in II ∩ I, are mutually exclusive. Otherwise there is no crossing free
drawing of the arborescences. Table 1 gives a full list of all mutually exclusive cases. We will
prove that, given two roots and two sets of terminals such that no two R-regions of opposite
colors fully intersect, there exists a non-crossing drawing of two Steiner arborescences. We
can draw two non-crossing Steiner arborescences using the following routing rules:
Rule 1. If a red terminal p ∈ (II ∪ III)\Cr (refer to Figure 7 (b, c, d)), or p is in faces I ∩ II,

I ∩ III, IV ∩ III, or IV ∩ IV (refer to Figure 7 (a)), then connect p to r1 along π∗
p.

Rule 2. If a blue terminal q ∈ (II ∪ III)\Cb (refer to Figure 7 (a, b)), or q is in faces II ∩ I,
III ∩ I, III ∩ IV, or IV ∩ IV (refer to Figure 7 (c, d) respectively), then connect q to r2
along π∗

q .
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Table 1 Mutually exclusive cases of locations
of red and blue terminals.

red terminals blue terminals
(a) in I ∩ II vs. (b) in II ∩ I,
(c) in I ∩ III vs. (d) in III ∩ I,
(e) in I ∩ IV vs. (f) in IV ∩ I,
(g) in III ∩ IV vs. (h) in IV ∩ III,
(i) in I ∩ III vs. (j) in IV ∩ IV,
(k) in IV ∩ IV vs. (l) in III ∩ I.

x

x

y
y

Figure 8 Rule 3.

I-I

(a) routing in I ∩ I when ∃ red
terminals in I ∩ II

I-I

(b) routing in I∩ I when ∃ blue
terminals in II ∩ I

I-IV

(c) routing in I∩IV when ∃ red
terminals in I ∩ III

I-IV

(d) routing in I ∩ IV when ∃
blue terminals in IV ∩ IV

IV-I

(e) routing in IV ∩ I when ∃
blue terminals in III ∩ I

IV-I

(f) routing in IV∩ I when ∃ red
terminals in IV ∩ IV

Figure 9 Routing rules for drawing rectilinear Steiner arborescences. Shaded regions denote dead
regions.

Rule 3. Route the red terminals in cone Cr parallel to the red y-axis until reaching the x-axis,
then along it. Route the blue terminals in Cb parallel to the blue y-axis until the x-axis,
then along it. For aesthetics, we can add a shortcut in the direction of one of the axes of
the opposite color (see Figure 8).

After applying Rules 1–3, all the terminals outside of I∩ I, I∩ IV, and IV∩ I are connected
to the roots. We use the following routing rules for the remaining terminals (see Figure 9).
Rule 4. Face I ∩ I: in case (a) (in Table 1), red edges are drawn parallel to the red x-axis

until the red y-axis, then follow it, blue edges are drawn parallel to the red x-axis, until a
blue axis, then follow it to the root; in case (b), blue edges are drawn parallel to the blue
x-axis until the blue y-axis, then follow it, red edges are drawn parallel to the blue x-axis
until a red axis, then follow it.

Rule 5. Face I ∩ IV: in case (i) (in Table 1), red edges are drawn parallel to the red y-axis
then along the red x-axis, blue edges are drawn parallel to the red y-axis then along the
blue y-axis; in case (j), red edges are drawn parallel to the blue x-axis then along the red
x-axis, blue edges are drawn parallel to the blue x-axis then along the blue y-axis.

ISAAC 2017
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p`

r2

qj

pi

r1

Figure 10 Definition 6.

Rule 6. Face IV ∩ I: in case (k) (in Table 1), red edges are drawn parallel to the red x-axis
then along the red y-axis, blue edges are drawn parallel to the red x-axis then along the
blue x-axis; in case (l), blue edges are drawn parallel to the blue y-axis then along the
blue x-axis, red edges are drawn parallel to the blue y-axis then along a red axis.

Theorem 5 now follows from the definition of the dead regions and a case analysis over
faces containing red and blue terminals.

I Theorem 5. If the roots are not contained in R-regions, then two rectilinear Steiner
arborescences can be drawn with no crossings in the free turn model if and only if no two
R-regions fully intersect.

2.2 Roots contained in R-regions
We now relax the restriction that the roots cannot be contained in R-regions. Hence, for
any R-region that contains the root of the other color, we need to make a choice of how to
route the terminal-to-root path around the other root. This choice clearly can affect later
decisions.

Before we proceed, we introduce some additional definitions. Points r and t split the
boundary of R(t, r) into two pieces that we call the left and the right sides (with respect to
moving from t to r).

I Definition 6. We say that R(pi, r1) cuts the left (right) side of R(qj , r2), if r1 ∈ R(qj , r2),
and both sides of R(pi, r1) intersect the left (right) side of R(qj , r2) (refer to Figure 10).

We can define a dead region of a terminal p for a fixed direction a p-to-r1 path must take
around r2:

I Definition 7. A left (right) dead region D2(p, left) (D2(p, right)) with respect to r2, for a
given red terminal p such that r2 ∈ R(p, r1), is the intersection of dead regions D2(πp) for all
possible paths πp connecting r1 to p that pass between r2 and the left (right) side of R(p, r1):

D2(p, left) =
⋂

left πp

D2(πp) , D2(p, right) =
⋂

right πp

D2(πp) .

Analogously, define D1(q, left) and D1(q, right). Note that we can make a similar observation
for left and right dead regions as for dead regions. Let blue root r2 ∈ R(p, r1). A blue
terminal q lies in D2(p, left) (D2(p, right)) if and only if R(q, r2) cuts the left (right) side of
R(p, r1).

We reduce the problem of choosing the direction of the path with respect to the other root
by reducing it to 2SAT. We assign a boolean variable to each R-region containing the root of
the other color, which takes its value according to the direction in which the terminal-to-root
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Figure 11 Dead regions for two flux trees.

q1

r1 r2

q2

p

Figure 12 R(p, rq) does not fully intersect
R(q1, r2) nor R(q2, r2). Nevertheless, there is no
angle-restricted path from p to r1 that does not in-
tersect paths from q1 and q2 to r2. Areas highlighted
in light-blue are the dead regions of q1 and q2.

path goes around the other root. Given a 2SAT formula solution, we can apply the routing
rules and connect the terminals to their roots along the boundaries of the dead regions.

I Theorem 8. We can decide in polynomial time whether two rectilinear Steiner arborescences
can be drawn without crossings in the free turn model.

3 Two flux trees

In this section we sketch how to draw two flux trees with no root containment in R-regions
in the model when free turns are allowed. The details can be found in the full version of this
paper. Similarly to the rectilinear case, free turns imply that a terminal-to-root path can be
any angle-restricted curve. Any angle-restricted curve can be approximated with a curve
following only four types of logarithmic spirals: left-handed and right-handed, or simply left
and right, spirals (left spirals spiral in clockwise direction when moving towards the root,
right spirals spiral in counter-clockwise direction) with their origins in the red and blue roots.
Thus we can restrict our drawing to these four types of spirals.

Similarly to the rectilinear case, we define the areas Cr and Cb which should be empty of
blue and red terminals respectively (to fulfill the no-root-containment requirement). These
areas are bounded by the spirals centered at one root and going through the other root.

Analogously to the rectilinear case, we can define a dead region of a path, and a dead
region of a terminal point. Figure 11 shows an example of several terminals and their dead
regions. The dead regions are bounded by two logarithmic spirals going through a terminal
and centered at the two roots. Consider, for example, red terminal p2 in Figure 11. Part of
the blue spiral that goes through p2 is hidden from root r2 by the red spiral connecting p2
to r1. Therefore, for any terminal q above the red spiral, but below the blue spiral (area
shaded light-red in the figure), R(q, r2) will fully intersect R(p2, r1).

A red and a blue logarithmic spiral can intersect more than once inside the area R2\(Cr∪Cb).
This fact can cause some dead regions to consist of several connected components (for
example, blue terminal q3 in Figure 11). Moreover, we no longer can consider the dead
regions independently, as we did in the rectilinear setting. Consider the example in Figure 12.
Point p does not belong to the dead region of q1 nor of q2 (R(p, r1) does not fully intersect
R(q1, r2) nor R(q2, r2)). Nevertheless, no angle-restricted path connecting p to r1 can avoid
paths from q1 and q2 to r2. Indeed, any angle-restricted path from p to r1 will intersect

ISAAC 2017
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Figure 13 Regions At, Ab, Bt
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2, Dt, and Db.

either the dead region of q1 or the dead region of q2. Thus, when two or more dead regions
intersect, they block some area outside of them that becomes forbidden for the terminals of
the other color. We will call this area an extended dead region.

To formally define the extended dead region, we need to introduce some notation. Let
s+
r (p) and s−

r (p) be respectively the spiral segments of the right and left logarithmic spirals,
centered at r1 and going through p, which are bounded by R2\(Cr ∪ Cb); and let s+

b (q) and
s−
b (q) be respectively the spiral segments of the right and left logarithmic spirals, centered at
r2 and going through q, which are bounded by R2\(Cr ∪ Cb). Let R2

+ be the half-plane to the
left of r1r2, and R2

− be the half-plane to the right of r1r2.

I Definition 9. Given k blue terminals Q = {q1, q2, . . . , qk} in R2
+\(Cr ∪ Cb), such that the

component of the dead region D1(qi) containing qi intersects the left side of R(qi+1, r2) for
all 1 ≤ i < k, and Q is maximal, define the extended dead region D1(Q) with respect to the
red root r1 to be:

D1(Q) =
⋃

1≤i<k

Fi ,

where Fi is the area enclosed between the left sides of R(qi, r2) and R(qi+1, r2), and the two
red spiral segments s+

r (qi) and s+
r (qk).

Similarly define the extended dead region D1(Q) of a set Q of blue terminals lying in the
bottom half-plane, and the extended dead regions D2(P ) of a set P of red terminals for the
top and the bottom half-planes.

We will show that there exists a non-crossing drawing of two flux trees, given that the
roots are not contained in any R-region, if and only if no terminal lies inside a dead region
or an extended dead region of the other color.

Routing rules. We can partition R2 into several regions such that we can specify the routing
rules for terminals within each region separately (see Figure 13): At and Ab are bounded
by r1r2 and two circular arcs with an angle subtended by the chord r1r2 equal to π − 2α;
Bt1, Bt2, Bb1, and Bb2 are bounded by the arcs of At and Ab, the boundaries of the regions
Cr and Cb, and by a spiral going through the topmost or the bottommost point of the arcs;
Dt = R2

+\(Cr ∪ Cb ∪At ∪Bt1 ∪Bt2), and Db = R2
−\(Cr ∪ Cb ∪Ab ∪Bb1 ∪Bb2). An important

observation is that in At and Ab red paths can be routed along blue spirals and vice versa.
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(a) Rule 2. (b) Rule 4. (c) Rules 4 and 5.

Figure 14 Routing rules for drawing flux trees.

We can now introduce the following routing rules to draw two non-crossing flux trees if
there were no terminals of the other color in the dead regions. Refer to Figure 14 for the
illustrations of the rules. Note that Rules 4 and 5 can introduce some intersections, that we
will uncross afterwards.

Rule 1. Route red and blue terminals in Dt in Db along their respective spiral segments s+
r ,

s−
b , s−

r , or s+
b until reaching the boundary of Cr or Cb;

Rule 2. For all blue extended dead regions, route the corresponding sets of blue terminals
Q = {q1, . . . , qk} in R2

+ in the following way: route q1 along a blue spiral segment s−
b (q1)

until it reaches Cb; for every 1 < i ≤ k, route qi along the boundary of its dead region
and then along the boundary of the extended dead region until reaching s−

b (q1) (merging
with the path from q1 to r2) or the boundary of the cone Cb;

Rule 3. For all red extended dead regions, route the corresponding sets of red terminals
P = {p1, . . . , pk} in R2

− in the following way: route p1 along a red spiral segment s−
r (p1)

until it reaches Cr; for every 1 < i ≤ k, route pi along the boundary of its dead region,
then along the boundary of the extended dead region until reaching s−

r (p1) (merging with
the path from p1 to r1) or the boundary of the cone Cr;

Rule 4. The rest of the blue terminals in R2
+ route along their left blue spiral segments until

reaching the boundary of cone Cb; the rest of the red terminals in R2
+ route along a right

red spiral within region Bt2, along a left blue spiral within At, and along right red spiral
within Bt1 until reaching the cone Cr;

Rule 5. The rest of the red terminals in R2
− route along their left red spiral segments until

reaching the boundary of cone Cr; the rest of the blue terminals in R2
− route along a right

blue spiral within Bb1, along a left red spiral within Ab, and along right blue spiral within
Bb2 until reaching the cone Cb;

Rule 6. Finally, route all the blue paths along the boundary of Cb to r2 and all the red paths
along the boundary of Cr to r1. Red terminals in Cr and blue terminals in Cb can be
routed arbitrarily (joining when necessary) within those cones towards their respective
roots.

As mentioned, after applying Rules 4 and 5, some intersections are possible. Specifically,
red and blue paths can intersect within regions Bt1, Bt2, Bb1, or Bb2. Red and blue paths
do not intersect within At or Ab, as they follow non-intersecting spirals; and red and blue
paths do not intersect within Dt or Db, otherwise the corresponding R-regions would fully
intersect.

Consider a red terminal p and a blue terminal q in R2
+ such that their paths, constructed

by the presented routing rules, intersect. These paths can intersect only once, due to the

ISAAC 2017
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Figure 15 Two non-crossing drawings of flux trees for α = 60◦ (left) and α = 30◦ (right).

difference of curvatures of spirals in Bt1 and Bt2, and because within At these paths follow
non-intersecting spirals. There can be two cases: (a) the intersection point is in Bt1; and (b)
the intersection point is in Bt2.

In the first case, the blue terminal q is in Bt1, and the red path crosses its dead region
D1(q). Then reroute the red path along the boundary of the dead region D1(q), when it
first encounters it. If q is a part of a set of blue terminals that define an extended dead
region, then reroute the red path along the boundary of the extended dead region when it
first encounters it. The new red path will not intersect any other blue paths, otherwise these
paths would be a part of the set defining the extended dead region.

In the second case, when intersection point is inside Bt2, the red terminal p is in Bt2. Let f
be the intersection point of the red path with the boundary between At and Bt2. Consider the
left side of R(p, rq). It intersects the blue path exactly two times, otherwise the R-regions of
p and q would fully intersect. Let g be the intersection point of the left side of R(p, rq) and
the blue path inside At. Consider all the blue paths that intersect the red spiral segment
s+
r (p) between points f and g. Reroute all these paths along the red spiral segment s+

r (p)
when they first encounter it, until they reach point g, then route the merged path along
a new blue spiral segment s−

b (g) within Bt2. Let the red path continue following the red
spiral segment s+

r (p) when it enters At until it reaches point f , then let the red path follow
the blue spiral segment s−

b (f) “parallel” to the rest of the paths in At. Note, that if there
was a part of the red path in R2

−, the new path may completely lie in R2
+. This procedure

essentially brings the part of the blue path(s) that was above the red path under it.

The symmetrical cases in the bottom half-plane can be dealt with similarly. And if the
terminals lie in the different half-planes, their paths can intersect once or twice. However,
the method for uncrossing such paths completely mirrors the cases for when p and q lie in
the same half-plane. Figure 15 shows the final result of the procedure. In the full version of
this paper we prove the following theorem.

I Theorem 10. A drawing of two non-crossing flux trees with no root containment in R-
regions exists if and only if no terminal lies in a dead region or an extended dead region of
the other color. If it exists, such a drawing can be constructed in polynomial time.
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4 Conclusion and Future Work

In this paper we study the problem of drawing a flow map with non-crossing curves that
have to be oriented approximately towards the source. We have shown that we can efficiently
decide if two rectilinear Steiner arborescences can be drawn without crossings, if we require
the paths to simply be xy-monotone with no other restrictions. Similarly, we show how to
draw two non-intersecting flux trees in the case when their roots are not contained in the
other tree’s R-regions.

With an extra restriction on the paths that prohibits free turns, the problem becomes
NP-hard for k Steiner arborescences, where k is part of the input. We conjecture that this
problem is also NP-hard for k = 2. Whether the problem is NP-hard for more than two
Steiner arborescences in the free turn model is left as an open problem.
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