590 research outputs found

    Ring-LWE Cryptography for the Number Theorist

    Get PDF
    In this paper, we survey the status of attacks on the ring and polynomial learning with errors problems (RLWE and PLWE). Recent work on the security of these problems [Eisentr\"ager-Hallgren-Lauter, Elias-Lauter-Ozman-Stange] gives rise to interesting questions about number fields. We extend these attacks and survey related open problems in number theory, including spectral distortion of an algebraic number and its relationship to Mahler measure, the monogenic property for the ring of integers of a number field, and the size of elements of small order modulo q.Comment: 20 Page

    Classical Homomorphic Encryption for Quantum Circuits

    Get PDF
    We present the first leveled fully homomorphic encryption scheme for quantum circuits with classical keys. The scheme allows a classical client to blindly delegate a quantum computation to a quantum server: an honest server is able to run the computation while a malicious server is unable to learn any information about the computation. We show that it is possible to construct such a scheme directly from a quantum secure classical homomorphic encryption scheme with certain properties. Finally, we show that a classical homomorphic encryption scheme with the required properties can be constructed from the learning with errors problem

    Learning with Errors is easy with quantum samples

    Full text link
    Learning with Errors is one of the fundamental problems in computational learning theory and has in the last years become the cornerstone of post-quantum cryptography. In this work, we study the quantum sample complexity of Learning with Errors and show that there exists an efficient quantum learning algorithm (with polynomial sample and time complexity) for the Learning with Errors problem where the error distribution is the one used in cryptography. While our quantum learning algorithm does not break the LWE-based encryption schemes proposed in the cryptography literature, it does have some interesting implications for cryptography: first, when building an LWE-based scheme, one needs to be careful about the access to the public-key generation algorithm that is given to the adversary; second, our algorithm shows a possible way for attacking LWE-based encryption by using classical samples to approximate the quantum sample state, since then using our quantum learning algorithm would solve LWE

    Attacks on the Search-RLWE problem with small errors

    Get PDF
    The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE problem with small error widths, using ring homomorphisms to finite fields and the chi-squared statistical test. In particular, we identify a "subfield vulnerability" (Section 5.2) and give a new attack which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with respect to the number of elements in the subfield. We use this attack to give examples of vulnerable RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks. The time complexity of our attack is O(nq2f), where n is the degree of K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances and successfully attacking them. We include the code for all attacks

    Exploring the Application of Homomorphic Encryption for a Cross Domain Solution

    Get PDF
    A cross domain solution is a means of information assurance that provides the ability to access or transfer digital data between varying security domains. Most acceptable cross domain solutions focus mainly on risk management policies that rely on using protected or trusted parties to handle the information in order to solve this problem; thus, a cross domain solution that is able to function in the presence of untrusted parties is an open problem. Homomorphic encryption is a type of encryption that allows its party members to operate and evaluate encrypted data without the need to decrypt it. Practical homomorphic encryption is an emerging technology that may propose a solution to the unsolved problem of cross domain routing without leaking information as well as many other unique scenarios. However, despite much advancement in research, current homomorphic schemes still challenge to achieve high performance. Thus, the plausibility of its implementation relies on the requirements of the tailored application. We apply the concepts of homomorphic encryption to explore a new solution in the context of a cross domain problem. We built a practical software case study application using the YASHE fully homomorphic scheme around the specific challenge of evaluating the gateway bypass condition on encrypted data. Next, we assess the plausibility of such an application through memory and performance profiling in order to find an optimal parameter selection that ensures proper homomorphic evaluation. The correctness of the application was assured for a 64-bit security parameter selection of YASHE resulting in high latency performance. However, literature has shown that the high latency performance can be heavily mitigated through use of hardware accelerators. Other configurations that include reducing number of SIMON rounds or avoiding the homomorphic SIMON evaluation completely were explored that show more promising performance results but either at the cost of security or network bandwidth

    Efficient Fully Homomorphic Encryption from (Standard) LWE

    Get PDF
    A fully homomorphic encryption (FHE) scheme allows anyone to transform an encryption of a message, m, into an encryption of any (efficient) function of that message, f(m), without knowing the secret key. We present a leveled FHE scheme that is based solely on the (standard) learning with errors (LWE) assumption. (Leveled FHE schemes are initialized with a bound on the maximal evaluation depth. However, this restriction can be removed by assuming “weak circular security.”) Applying known results on LWE, the security of our scheme is based on the worst-case hardness of “short vector problems” on arbitrary lattices. Our construction improves on previous works in two aspects: 1. We show that “somewhat homomorphic” encryption can be based on LWE, using a new relinearization technique. In contrast, all previous schemes relied on complexity assumptions related to ideals in various rings. 2. We deviate from the “squashing paradigm” used in all previous works. We introduce a new dimension-modulus reduction technique, which shortens the ciphertexts and reduces the decryption complexity of our scheme, without introducing additional assumptions. Our scheme has very short ciphertexts, and we therefore use it to construct an asymptotically efficient LWE-based single-server private information retrieval (PIR) protocol. The communication complexity of our protocol (in the public-key model) is k·polylog(k)+log |DB| bits per single-bit query, in order to achieve security against 2k-time adversaries (based on the best known attacks against our underlying assumptions). Key words. cryptology, public-key encryption, fully homomorphic encryption, learning with errors, private information retrieva

    On Fully Homomorphic Encryption

    Get PDF
    Täielikult homomorfne krüpteerimine on krüptosüsteem, mille puhul üks osapool saab enda valdusesse krüpteeritud andmed ning saab nende andmetega tõhusalt sooritada erinevaid operatsioone. Operatsioone saab teha hoolimata sellest, et andmed jäävad krüpteerituks ning seega ei ole ka vajalik teada dekrüpteerimisvõtit. Selline süsteem oleks äärmiselt kasulik, näiteks tagades andmete privaatsuse, mis on saadetud kolmanda osapoole teenusele. Täielikult homomorfne krüpteerimine on vastandiks krüptosüsteemidele nagu Paillier, kus ei ole võimalik teostada krüpteeritud andmete peal korrutamist ilma neid enne dekrüpteerimata, või ElGamal, kus ei saa sooritada krüpteeritud andmete liitmist enne andmete dekrüpteerimist. Täielikult homomorfne krüpteerimine on väga uus uurimisala: esimese taolise süsteemi lõi Gentry aastal 2009. Gentry läbimurdest alates on olnud palju tema tööst inspireeritud edasiminekuid. Kõik viimased täielikult homomorfsed krüptosüsteemid kasutavad avaliku võtmega krüptograafiat ja põhinevad võredel. Võre-põhine krüptograafia äratab üha enam huvi oma turvalisuse püsimisega kvantarvutites ning oma halvima juhu turvagarantiidega. Siiski jääb püsima peamine probleem: süsteemidel ei ole veel tõhusat teostust, mis säilitaks adekvaatsed turvalisuse nõuded. Selles valguses vaadatuna, viimased edasiminekud täielikult homomorfses krüpteerimises kas täiendavad eelnevate süsteemide tõhusust või pakuvad välja uue parema efektiivsusega skeemi. Antud uurimus on ülevaade hiljutistest täielikult homomorfsetest krüptosüsteemidest. Õpime tundma mõningaid viimaseid täielikult homomorfseid krüptosüsteeme, analüüsime ning võrdleme neid. Neil süsteemidel on teatud ühised elemendid: 1. Tõhus võre-põhine krüptosüsteem turvalisusega, mis põhineb üldteada võreprobleemide keerulisusel. 2. Arvutusfunktsioon definitsioonidega homomorfsele liitmisele ja korrutamisele müra kasvu piiramiseks. 3. Meetodid, et muuta süsteem täielikult homomorfseks selle arvutusfunktsiooniga. Niipea kui võimalik, kirjutame nende süsteemide peamised tulemused ümber detailsemas ja loetavamas vormis. Kõik skeemid, mida me arutame, välja arvatud Gentry, on väga uued. Kõige varasem arutletav töö avaldati oktoobris aastal 2011 ning mõningad tööd on veel kättesaadavad ainult elektroonilisel kujul. Loodame, et käesolev töö aitab lugejail olla kursis täielikult homomorfse krüpteerimisega, rajades teed edasistele arengutele selles vallas
    corecore