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Abstract

In this thesis, we do a survey of the most recent fully homomorphic encryption
schemes. We study some of the latest fully homomorphic encryption schemes, make
an analysis of them and make a comparison. We started with Gentry’s scheme,
which was the first fully homomorphic encryption scheme, and choose four other
fully homomorphic encryption schemes to analyze. We discuss the main ideas of
each scheme, and how each scheme improves upon the previous ones. Whenever
possible, we rewrite the main results of these schemes in a more detailed and
readable format.

2



Contents

Acknowledgements 5

1 Introduction 6
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Author’s Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Elementary Number Theory. . . . . . . . . . . . . . . . . . . 10
2.1.2 Algebraic Structures. . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Inner Products. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Expansion Factor. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.6 Negligible Functions. . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Definitions from Lattice Theory . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Shortest Vector Problem. . . . . . . . . . . . . . . . . . . . . 15
2.2.3 GapSVP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Ring Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Public Key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Probabilistic Encryption . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.2 Homomorphic Under Addition: Paillier . . . . . . . . . . . . 18
2.7.3 Homomorphic Under Multiplication: ElGamal . . . . . . . . 20

3 Recent Developments 21
3.1 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . 21
3.2 Gentry’s Scheme [Gen09] . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Brakerski and Vaikuntanathan’s Scheme [BV11] . . . . . . . . . . . 22

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3.1 Relinearization (Key Switching). . . . . . . . . . . 23
3.3.3.2 Modulus Switching. . . . . . . . . . . . . . . . . . 24

3.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Brakerski, Gentry and Vaikuntanathan’s Scheme [BGV12] . . . . . 25

3



3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.3.1 Key Switching (Dimension Reduction). . . . . . . . 26
3.4.3.2 Modulus Switching. . . . . . . . . . . . . . . . . . 28

3.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Brakerski’s Scheme [Bra12] . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.3.1 Homomorphic properties. . . . . . . . . . . . . . . 31
3.5.3.2 Vector Decomposition and Key Switching. . . . . . 32

3.5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Fan and Vercauteren’s Scheme [FV12] . . . . . . . . . . . . . . . . . 32

3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.3 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.3.1 Homomorphic Properties . . . . . . . . . . . . . . . 34
3.6.3.2 Relinearization. . . . . . . . . . . . . . . . . . . . . 36
3.6.3.3 Towards Fully Homomorphic Encryption. . . . . . 37

3.6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Comparison of Fully Homomorphic Encryption Schemes . . . . . . . 39

4 Possible Improvements 42
4.1 Finding a Good Upper Bound for the Expansion Factor . . . . . . . 42
4.2 Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Applications 43
5.1 Secure two-party computation [DFH12] . . . . . . . . . . . . . . . . 43
5.2 Oblivious databases [LNV11, BV11] . . . . . . . . . . . . . . . . . . 43

6 Conclusion 44
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1 Introduction

1.1 Problem Statement

Cryptography, generally speaking, is the study of secret writing. As such, one
important aspect of cryptography is encryption, which is the process of convert-
ing readable information into something unreadable. The readable information is
known as plaintext, the unreadable output is known as ciphertext, and the conver-
sion is done using a so called encryption algorithm. Encryption requires additional
information to perform, which is known as the encryption key. For encryption to
be useful, there must be a way to convert the ciphertext back to the plaintext.
This process is called decryption, and it usually requires some additional knowl-
edge that only privileged parties have access to, which is called the decryption
key.

The decryption key used in a decryption algorithm may or may not be the same
as the encryption key. When the decryption key is the same as the encryption key,
we have symmetric encryption. When these two keys are different, we have public-
key encryption. There are then two types of cryptography based on the type of
encryption used: symmetric cryptography and public-key cryptography.

Symmetric cryptography is typified by the use of a common key between the
sender and receiver. The most used encryption schemes today in symmetric cryp-
tography are known to be very efficient, but difficult to break in a short amount of
time. However, symmetric cryptography has some drawbacks. The main challenge
is distributing the common key: the sender and receiver must somehow ensure that
they share the same key, and that in the process of sharing this key no other party
knows anything about it. This will be true for every pair of parties who want to
communicate, meaning every party will also have to store many common keys. For
security reasons, a common key is used for only a short amount of time, usually
called one session.

Public-key cryptography, meanwhile, uses two different keys: a public key and
the secret key. A public key is published by a party who wants to receive a message,
and has the corresponding secret key that no one else knows. The public key and
secret key are mathematically related in such a way that even if a party knows
another party’s public key, finding out the corresponding secret key is extremely
difficult. The main advantage of public key cryptography is that key distribution
is very easy. A party only has to publish his public key to a common server that all
parties trust, and anyone who wants to communicate simply uses this public key
to send messages. However, public key encryption schemes are much less efficient
than symmetric encryption schemes.

Encryption started out as a tool used mainly for military purposes, that is
to send secret messages containing military information. Over time, it has been

6



used much more widely. We use encryption very frequently in everyday life, from
doing transactions with our favourite bank, to communicating privately with other
individuals using email or instant messaging. One interesting use of encryption is
in cloud computing. At a glance, it seems to be a very convenient way to store data
and use cloud services to make use of the data. However, current implementations
of cloud computing require a user to trust the cloud provider, who can get access
to a user’s private data if required. Storing the data in an encrypted form does
not help, as the cloud service will not be able to do most of its operations on
encrypted data without decrypting it first. If it were possible to store the data in
an encrypted form while still enabling the cloud services to do operations on it,
this trust requirement could be removed. Fully homomorphic encryption is a way
of solving this challenge.

Fully homomorphic encryption is an encryption scheme where a party can re-
ceive encrypted data and perform arbitrary operations on this data efficiently.
The data remains encrypted throughout, but the operations can be done regard-
less, without having to know the decryption key. Such a scheme would be very
advantageous, for example in ensuring the privacy of data that is sent to a third-
party service. This is in contrast with schemes like Paillier [Pai02] where you can
not perform a multiplication of encrypted data without decrypting the data first,
or ElGamal [Gam84] where you can not perform an addition of encrypted data
without decrypting the data first.

Fully homomorphic encryption is a very new area of research: the first such
scheme was constructed by Gentry [Gen09] in 2009. Gentry’s scheme used ideals
over polynomial rings, with security related to that of ideal lattices. Gentry’s idea
consists of two parts. First, define addition and multiplication on the ciphertext,
in this case ordinary addition and multiplication over a polynomial ring. This will
create a somewhat homomorphic scheme, which can evaluate circuits of additions
and multiplications up to a certain depth. However, every multiplication operation
increases the noise by a significant amount, meaning that at some point the noise
will be too big. The second idea tries to solve this by doing noise reduction.
Gentry modified his scheme to be bootstrappable, that is it can evaluate its own
decryption circuit. He then showed that any somewhat homomorphic scheme that
is bootstrappable can be changed into a fully homomorphic scheme, as by the use
of bootstrapping, the noise in any ciphertext can be reduced to be the same noise
of evaluating the decryption circuit.

Since Gentry’s breakthrough, there have been many advances inspired by Gen-
try’s work. The latest fully homomorphic encryption schemes use public key cryp-
tography and are based on lattices. Lattice-based cryptography is gaining more
interest due to its security against quantum computers, and its worst case security
guarantee. However, the main problem remains: the schemes do not yet have an
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efficient implementation that still maintains adequate security requirements. Seen
in this light, recent advances in fully homomorphic encryption either improves the
efficiency of previous schemes, or proposes a new scheme with better efficiency.

1.2 Outline

The work in this thesis consists of three parts. First, we will look at the prelim-
inary knowledge required to understand the later sections on fully homomorphic
encryption. We start with definitions on algebraic number theory, lattice theory,
and public key encryption. We then move to an important security assumption
named learning with errors. Learning with errors is a lattice-based security as-
sumption introduced in [Reg05], and it can be shown to be related to the hardness
of the shortest vector problem in lattice theory.

Second, we will discuss in detail the most recent fully homomorphic encryption
schemes. The main elements that will be analyzed here are the use of learning
with errors and its variant ring-learning with errors, and techniques such as key
switching and modulus reduction. We will also show how each scheme improves
upon the previous scheme that we have discussed.

One work we start with is the scheme of Brakerski and Vaikuntanathan [BV11],
which improves upon Gentry’s scheme by the introduction of relinearization and
modulus switching, removing the need of a squashing step. We continue with the
scheme of Brakerski, Gentry, and Vaikuntanathan [BGV12], which improves upon
Brakerski and Vaikuntanathan’s scheme by having a general scheme that can be
used both in the learning with errors setting, or its ring variant, and by improving
the relinearization and modulus switching techniques to obtain fully homomorphic
encryption without bootstrapping. We will then continue with Brakerski’s scheme
[Bra12], that uses Regev’s LWE-based scheme under the invariant perspective,
and modulus switching is not required. Finally, we focus on Fan and Vercauteren’s
scheme [FV12], that implements Brakerski’s scheme in the ring learning with errors
setting, improving its efficiency.

Apart from Gentry’s scheme, the schemes that we choose to discuss are very
new. Brakerski and Vaikuntanathan’s scheme [BV11] was published in October
2011, Brakerski, Gentry, and Vaikuntanathan’s scheme [BGV12] was published
in January 2012, while both Brakerski’s work [Bra12] and Fan and Vercauteren’s
work [FV12] are still only available as eprints.

Third, we will analyze and compare the bounds, size and complexity of the
chosen schemes. A discussion of possible improvements for future work, and a look
of possible applications of fully homomorphic encryption will also be included.

8



1.3 Author’s Contribution

This work acts as a survey of the most recent fully homomorphic encryption
schemes. We study some of the latest fully homomorphic encryption schemes,
make an analysis of them and make a comparison. Whenever possible, we rewrite
the main results of these schemes in a more detailed and readable format. This
includes the proof of Lemma 3.1, Lemma 3,2, Lemma 3.3, Lemma 3.4, and Lemma
3.5, the observations of the performance for each of the schemes, and the compar-
ison of the schemes. We hope this work can help readers be up to date with the
field of fully homomorphic encryption, paving way to further advances in the field.

For the author, this work will serve as a foundation for ongoing and future work.
One direction we are working on is finding a tighter bound for the expansion factor
than those used in [BGV12]. This will be discussed in Section 4.1. Another way
to proceed is to go deeper into the idea of batching, which will be discussed in
Section 4.2. A third way is to improve the bounds given in [FV12], which is the
most recent result we focus on in this work.
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2 Preliminaries

Before we go into the encryption schemes, we will give an overview of the mathe-
matical concepts used in the later sections. This will mostly consist of definitions
in algebraic number theory and lattice theory, then continue with learning with
errors and its ring variant.

2.1 Basic Definitions

2.1.1 Elementary Number Theory.

Let n, x be positive integers. The division algorithm states that there are unique
integers a, b such that

x = an+ b,with− n

2
< b ≤ n

2
.

If b = 0, we say that n divides x, and that n is a divisor of x. If x has no divisors
except 1 and x itself, we say that x is prime.

Define [x]n = b, where b ∈ Zn satisfies the above requirement. Moreover, if we
have values c = (c1, · · · , ck) with c1, . . . , ck ∈ Z, define

[c]q = ([c1]q, . . . , [ck]q) = (c′1, . . . , c
′
k),with− q

2
< c′i ≤

q

2
.

Let a be a real number. Then we define three operations below:

• Define the floor function bac to be the largest integer which is not larger
than a. This is also known as the integer part of a.

• Define the ceiling function dae to be the smallest integer which is not smaller
than a.

• Define the round function bae to be the closest integer to a.

For example, b1.49c = bae = 1, and d1.51e = b1.51e = 2.
Given two integers a, b not both zero, we define the two operations below:

• Define the greatest common divisor of a and b, denoted gcd(a, b), to be the
largest positive integer that divides both a and b.

• Define the lowest common multiple of a and b, denoted lcm(a, b), to be the
smallest positive integer that is both a multiple of a and a multiple of b.
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For example, gcd(9, 12) = 3, gcd(2, 7) = 1, lcm(9, 12) = 36, and lcm(2, 7) = 14.
When gcd(a, b) = 1, we say that a and b are relatively prime. For example, 2

and 7 are relatively prime, but 9 and 12 are not relatively prime.
For a positive integer n, define Euler’s totient function φ(n) to be the number

of positive integers not greater than n but relatively prime to n. For example, 6
is relatively prime to 1 and 5, but not relatively prime to 2, 3, 4, or 6, so φ(6) = 2.

We will present two theorems related to the totient function, which will be
used in later sections. The first one is useful to compute φ(n), while the second
one is useful to simplify modular exponentiation.

Theorem 2.1 Let n be a positive integer which can be written as n = pa11 ·
pa22 · · · p

ak
k , where p1, p2, . . . , pk are the k distinct prime factors of n. Then we

have

φ(n) = n · (1− 1

p1
) · (1− 1

p2
) · · · (1− 1

pk
).

Theorem 2.2 (Euler’s Theorem) Let n, a be positive integers which are relatively
prime. Then

aφ(n) ≡ 1 (mod n).

For a positive integer n, define the Carmichael number λ(n) to be the smallest
positive integer m such that

aλ(m) ≡ 1 (mod n).

for an integer a relatively prime to n.
Carmichael’s theorem is a way to easily compute λ(n).

Theorem 2.3 (Carmichael’s Theorem) Let n be a positive integer. Then

λ(n) = φ(n), n = 2, 4, pk, 2pk, p odd prime,

λ(n) =
1

2
φ(n), n = 2k, k ≥ 3, and

λ(lcm(a, b)) = lcm(λ(a), λ(b)).

2.1.2 Algebraic Structures.

A group (G,+) is an algebraic structure where:

1. The operation (+) is closed and associative in G,

2. There exists an identity element 0 ∈ G and inverse element −a for each
element a ∈ G.
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If the operation (+) is also commutative, we say that (G,+) is an abelian group.
For an integer n and an element g ∈ G, define ng to be the result of:

• g + g + · · ·+ g (n times), when n > 0,

• (−g) + (−g) + · · ·+ (−g) (−n times), when n < 0, or

• 0, when n = 0.

If every element a ∈ G can be written as a = ng for some n ∈ Z, we say that
(G,+) is a cyclic group. In this case, g is said to be a generator of the group.
A ring (R,+, ·) is an algebraic structure that satisfies the following conditions:

1. (R,+) is an abelian group.

2. (R, ·) is associative.

3. The distributive laws apply to (R,+, ·).

We usually work with rings which are commutative and have an identity element
under the operation (·).

Given a ring (R,+, ·), a subset I of R is called an ideal if it satisfies the following
conditions:

1. (I,+) is a subgroup of (R,+).

2. For any two elements x ∈ I, r ∈ R, x · r ∈ I and r · x ∈ I.

For example, in the ring R = Z, the ideal I = 2Z is the set of even integers.
Given a ∈ R and an ideal I, we can define the equivalence class

[a] = {a+ x|x ∈ I}.

Then [a] = [b] ⇐⇒ a − b ∈ I. The set of all distinct equivalence classes is the
quotient ring R/I. For example, in the ring R = Z, with ideal I = 2Z, the quotient
ring R/I = Z/2Z has two equivalence classes [0] = {. . . ,−4,−2, 0, 2, 4, . . .} and
[1] = {. . . ,−3,−1, 1, 3 . . .}.

A field (F,+, ·) is a commutative ring which under (·) has an identity element
and inverses. (F,+, ·) is a field iff (F,+) and (F − {0}, ·) are both abelian groups
and the distributive laws apply. We will mostly use the fields Zq (where q is a prime
number) and GF(2) (the Galois field of two elements), which is mostly used for
studying arithmetic circuits with operations XOR and AND. Here, XOR is associ-
ated with the addition operator, while AND is associated with the multiplication
operator.
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A polynomial ring F [X] is a ring formed from a set of polynomials in the
variable X, where the coefficients are from a field F . If f(X) = adX

d + · · · +
a1X + a0 ∈ F [X] is an irreducible polynomial, we have the quotient ring R =
F [X]/(f(X)). Moreover, when F is the field Zq we write Rq = Zq[X]/(f(X)).
Additionally, if we have that f has degree d, then |Rq| = qd.

2.1.3 Inner Products.

Let V be an n-dimensional vector space over a field F. For a = (a1, . . . , an)T , b =
(b1, . . . , bn)T ∈ V , define the inner product

〈a, b〉 =
n∑
i=1

aibi.

We will mostly use the polynomial ring R[x] = Zq[x]/(f(x)), where f is a monic
polynomial (polynomial with leading coefficient 1) with degree d. In this case,

a =
d−1∑
i=0

aix
i, b =

d−1∑
i=0

bix
i.

2.1.4 Norms.

Let s =
d∑
i=0

six
i be an element of a polynomial ring R. Define the Euclidean norm

‖s‖2 =

√√√√ d∑
i=0

s2i ,

and the infinity norm
‖s‖∞ = maxi|si|.

Also, for x ∈ Rn, we define the `1-norm

`1(x) =
n∑
i=1

‖xi‖2.

We will be using norms in many of the inequalities in this work. For that reason,
we will give two well-known inequalities related to norms that we will be using
often in the following sections.

Theorem 2.4 (Triangle Inequality) Given two vectors a, b of the same size, we
have that

‖a+ b‖ ≤ ‖a‖+ ‖b‖.
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Theorem 2.5 (Cauchy-Schwarz) Given two non-zero vectors a, b of the same
size, we have that

|〈a, b〉| ≤ ‖a‖‖b‖,

where equality holds if and only if a = kb for some scalar k.

2.1.5 Expansion Factor.

Let R be a polynomial ring. The expansion factor of R is defined as

γR = max{ ‖a · b‖2
‖a‖2‖b‖2

: a, b ∈ R}.

When R = Z[x]/(xd + 1), we can prove using Cauchy-Schwarz that γR ≤
√
d.

2.1.6 Negligible Functions.

A function f : N → R is negligible if for every positive integer c there exists an
integer N = N(c) such that for all x > N ,

|f(x)| ≤ 1
xc

.

We usually denote negligible functions as negl(x).

2.2 Definitions from Lattice Theory

Lattice theory is a study of mathematical structures called lattices. They have
many interesting applications in cryptography, and as we will see, some lattice
problems have convenient properties in terms of complexity.

2.2.1 Lattice.

A lattice is a set of points in n-dimensional space with a periodic structure. As
such, it is a discrete subgroup of Rn under addition of vectors in Rn.

Let b1, b2, · · · , bk be k linearly independent vectors in Rn. Then we can define
the lattice generated by these vectors as

L(b1, b2, · · · , bk) = {
∑

aibi|ai ∈ Z}

By this definition, {b1, b2, · · · , bk} form a basis of this lattice, which has dimension
k. Every lattice has a basis, but this basis is not unique. For example, if {b1, b2} is
a basis of a lattice L in R2 then {b1, b1 + b2} is also a basis of L. In general, if B is
a basis of a lattice L of dimension n, and Un×n is an integer matrix of determinant
1, then BU is also a basis of L.
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A cryptographic construction using lattices can have strong provable security
guarantees based on the worst-case hardness of lattice problems. This is done
by having parameters chosen such that breaking the construction is as hard as
solving lattice problems in the worst case [MR08]. One of the most efficient ones
are cryptosystems based on learning with errors, which will be discussed later.

Figure 1: 2-dimensional lattice with base {(1, 0), (1
2
, 1
2

√
3)}

2.2.2 Shortest Vector Problem.

One important property of a lattice is the length of the shortest non-zero vector
v ∈ L, denoted as λ1(L). Here we use the Euclidean norm ‖ · ‖2

This leads to the shortest vector problem (SVP): Given a lattice L with basis
B = (b1, b2, · · · , bk), find a vector v ∈ L such that v = λ1(L).

The hardness of SVP depends on the basis used. One algorithm that approxi-
mate a solution for SVP is the LLL algorithm. The strength of LLL is that it runs
in polynomial time, but with a good choice of a basis, the LLL algorithm may
reach errors of up to an exponential factor 2O(n), where n is the dimension of the
lattice [MR08].

2.2.3 GapSVP.

Another problem related to SVP is to determine whether the length of the shortest
non-zero vector in L is at most 1 or larger than β > 1. This is known as GapSV Pβ:
Given a basis B = (b1, b2, · · · , bk) of a lattice L, decide whether λ1(L) ≤ 1 or
λ1(L) > B.

SVP and GapSVP are NP-hard problems, and no efficient quantum algorithm
has yet been found that solves these problems or approximates them with a small
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error [MR08].

2.3 Learning With Errors

Suppose we want to get values of the form (a, b) ∈ Zn+1
q , where a ∈ Znq , b ∈ Zq.

Consider the two distributions below:

1. Select random values (ai, bi) uniformly from Zn+1
q .

2. Uniformly choose s ∈ Znq . Select random ai uniformly from Znq and ei ∈ Zq
from some distribution χ over Zq. Set bi = 〈ai, s〉+ ei ∈ Zq. Give the values
(ai, bi).

The learning with errors assumption LWEn,q,χ states that given samples from the
second distribution, we cannot approximate the value of s. A variant of this
problem, the decision learning with errors assumption DLWEn,q,χ states that these
two distributions are indistinguishable. Regev [Reg05] proved that by choosing
correct parameters n, q, χ, LWEn,q,χ is as hard as the shortest vector problem, and
that LWE and DLWE are equivalent provided that the prime q is bounded by a
polynomial in n.

2.4 Ring Learning With Errors

We will use the variation of ring learning with errors (RLWE) used in [BGV12].
Let λ be the security parameter, and f(x) = xd + 1 where d = d(λ) is a power of
2. Let q = q(λ) ≥ 2 be an integer satisfying q ≡ 1 mod d. Let R = Z[x]/(f(x))
and let Rq = R/qR. Let χ = χ(λ) be some distribution over R.
Consider the two distributions below:

1. Sample values (ai, bi) uniformly from R2
q .

2. Uniformly choose s ∈ Rq. Sample ai uniformly from Rq and ei ∈ R from χ.
Set bi = ai · s+ ei ∈ Rq. Give the values (ai, bi).

The ring learning with errors assumption RLWEd,q,χ states that these two distri-
butions are indistinguishable. The importance of the RLWE comes from the fact
that by choosing B = ω(

√
d log d) and χ that outputs elements of R with length at

most B (except for a negligible probability), the worst case shortest vector problem
over ideal lattices, which are lattices corresponding to ideals I of polynomial ring
R, can be reduced to RLWE [LPR10].

LWE is the more standard assumption and is a harder problem than RLWE,
but RLWE can be shown to be more efficient [LPR10]. Notice that LWE uses
elements in Zn+1

q , but RLWE only uses elements in R2
q . This means that RLWE

uses smaller keys, and arithmetic in Rq is more efficient.
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2.5 Public Key Cryptosystem

A public key cryptosystem consists of three elements: key generation, encryption,
and decryption.

• Key generation is the process of generating a public key and secret key pair
for encryption and decryption. It requires a security parameter λ, typically
the size of the resulting public key.

• Encryption is the function that maps a plaintext into a ciphertext, using a
public key. The domain of this encryption function is called plaintext space.

• Decryption is the function that maps a ciphertext back into plaintext, using
a secret key.

A public key cryptosystem with a key generation algorithm KG, encryption algo-
rithm E and decryption algorithm D can then be written as (KG,E,D).

2.6 Probabilistic Encryption

A probabilistic encryption scheme is an encryption scheme which introduces ran-
domness in the encryption algorithm. This is done so that encrypting the same
message more than once will result in different ciphertexts, making it difficult to
detect two different encryptions of the same message. The randomness factor in-
troduced in the encryption of a particular message is often called the noise. We
define E(m; r) to be an encryption of a message m using the encryption algorithm
E, with noise parameter r.

For a probabilistic public key cryptosystem (KG,E,D) and adversary A, and
let λ be the security parameter. Consider the following two games:

1. Game 1:

• Set (pk, sk) ← KG(1λ).

• Get (m1,m2) ← A(pk).

• Output Epk(m1) for random noise r.

2. Game 2:

• Set (pk, sk) ← KG(1λ).

• Get (m1,m2) ← A(pk).

• Output Epk(m2) for random noise r.
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(KG,E,D) is indistinguishable under chosen plaintext attack (IND-CPA) if for all
adversaries A running in polynomial time, there is no way to distinguish between
these two games except with negligible probability. That is, for all A there exists
a negligible function f such that:

|Pr[A = 1 : Game 1]− Pr[A = 1 : Game 2]| ≤ f(x)

2.7 Homomorphic Encryption

We will give the definition of homomorphic encryption under addition and multipli-
cation, and show two schemes that do not quite match the criteria: homomorphic
under one operation but not the other.

2.7.1 Definition

Let the plaintext space P have ”addition” operator + , and ”multiplication” op-
erator ×, and let the ciphertext space C have ”addition” operator ⊕ , and ”multi-
plication” operator ⊗. Let E : P → C be a probabilistic encryption scheme, and
D : C → P the corresponding decryption scheme.
A public key cryptosystem (KG,E,D) is homomorphic under addition and mul-
tiplication, if

D(E(a)⊕ E(b)) = a+ b

and
D(E(a)⊗ E(b)) = a× b

for all a, b ∈ P .
In general, an encryption scheme homomorphic under addition and multipli-

cation has a homomorphic evaluation function f : Cn → C that when decrypted
will result in a corresponding function g : P n → P where D(f(c1, · · · , cn)) =
g(p1, · · · , pn) with ci = E(pi), and g is f with ⊕ replaced by +, ⊗ replaced by ×.

Typically, we use a public key encryption scheme with public key pk and secret
key sk, and the evaluation function f might also need an evaluation key evk.
These keys are generated by a key generator (pk, sk, evk) ← KG(1λ), where λ is
the security parameter. In this case, the encryption function is Epk : P → C.

2.7.2 Homomorphic Under Addition: Paillier

Paillier is a public key cryptosystem that relies on the Decisional Composite Resid-
uosity Assumption (DCRA) [Pai02]: given a composite integer n and integer
x ∈ Zn2 , it is hard to decide whether or not there is a y ∈ Zn2 such that

x ≡ yn (mod n2).
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Key generation in Paillier is as follows:

1. Generate distinct prime numbers of the same size p, q, and let n = p · q.
Ensure that n is an integer where DCRA holds.

2. Set λ = lcm(p− 1, q − 1). The public key is n.

3. For the corresponding secret key, compute, µ = λ−1 mod n The secret key
is (λ, µ).

To encrypt a message m ∈ Zn, we do the following:

1. Select a random r ∈ Z∗n.

2. Output the ciphertext E(m; r) = (n+ 1)mrn mod n2.

Under the DCRA assumption, this scheme is IND-CPA secure.
To decrypt a ciphertext c ∈ Z∗n2 , simply compute m = L(cλ mod n2) ·µ, where

L is the discrete logarithm function. In Paillier, this function can be simplified as
L(u) = bu−1

n
c. Decryption works, because due to Carmichael’s Theorem,

λ(n2) = lcm(λ(p2), λ(q2))

= lcm(p2 − p, q2 − q)
= pq · lcm(p− 1, q − 1)

= n · λ.

So by definition rn·λ ≡ 1 (mod n2). So we have

L(cλ mod n2) · µ = L((n+ 1)m·λ · rn·λ mod n2) · µ
= L((n+ 1)m·λ mod n2) · µ
= m · λ · µ
≡ m (mod n).

Note that if we have two ciphertexts E(m0; r0) and E(m1; r1) which are en-
cryptions of m0,m1 respectively, then

E(m0; r0) · E(m1; r1) ≡ ((n+ 1)m0r0
n) · ((n+ 1)m1r1

n)

≡ (n+ 1)m0+m1r0 · r1n

≡ E(m0 +m1; r1 · r2) (mod n2).

Then D(E(m0; r0) · E(m1; r1)) = m0 + m1. So Paillier is an additively homo-
morphic scheme: given encryptions of m0 and m1, we can get an encryption of
m0 + m1 without having to know the secret key. However, given encryptions of
m0 and m1 there is no known way of obtaining an encryption of m0 · m1 with-
out knowing m0 or m1 first. So Paillier is not known to be homomorphic under
multiplication.

19



2.7.3 Homomorphic Under Multiplication: ElGamal

ElGamal [Gam84] is a public key cryptosystem that relies on the hardness of
the decisional Diffie-Hellman (DDH) problem [Bon98]: Let G be a group with
generator g. Then it is hard to distinguish between the distributions 〈g1, gb, gab〉
and 〈ga, gb, gc〉 where a, b, c are integers chosen randomly from [1, |G|]

Key generation in ElGamal is as follows:

1. Let G be a cyclic group with prime order q, where the DDH assumption
holds.

2. Let g be a generator of G chosen randomly from Z∗q.

3. Generate the secret key s← Zq, and the public key h = gs.

To encrypt a message m ∈ G, we do the following:

1. Select a random r ← Zq.

2. Compute c1 = gr.

3. Compute c2 = m · hr.

4. Output E(m; r) = (c1, c2).

Under the DDH assumption, this scheme is IND-CPA secure [Bon98].
To decrypt a ciphertext c = (c1, c2), compute m = D(c) = c2 · (cs1)−1. Decryp-

tion works, because

c2 · (cs1)−1 = (m · hr) · (gr)−s

= (m · hr) · (gs)−r

= (m · hr) · h−r

= m.

Note that if we have two ciphertexts E(m0; r0) and E(m1; r1), then

E(m0; r0) · E(m1; r1) = (gr0 · gr0 , (m0 · hr0) · (m1 · hr1))
= (gr0+r1 , (m0 ·m1) · hr0+r1)
= E(m0 ·m1; r1 + r2).

Then D(E(m0; r0) · E(m1; r1)) = m0 · m1. So ElGamal is a multiplicatively
homomorphic scheme: given encryptions of m0 and m1, we can get an encryption
of m0 ·m1 without having to know the secret key. However, given encryptions of
m0 and m1 there is no known way of obtaining an encryption of m0 +m1 without
knowing both m0 and m1 first. So ElGamal is not known to be homomorphic
under addition.
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3 Recent Developments

This section will discuss the latest fully homomorphic encryption schemes, and a
comparison of complexities for these schemes. We will start with Gentry’s scheme
and his bootstrapping theorem, how bootstrapping could reduce noise and how
this theorem was a blueprint for later results, until schemes were found that did
not require bootstrapping.

3.1 Fully Homomorphic Encryption

We will use the definitions in [BV11]. A scheme is somewhat homomorphic if it
can achieve homomorphism under addition and multiplication, without doing any
noise reduction, i.e., without any process of reducing the size of the noise relative
to the size of the ciphertext.

An encryption scheme is compact if there exists a polynomial (over the security
parameter λ) p = p(λ) such that the output of the evaluation function is at most
p bits long, regardless of f or the number of inputs.

Moreover, an encryption scheme is fully homomorphic if it is compact and
homomorphic for all arithmetic circuits over GF(2).

3.2 Gentry’s Scheme [Gen09]

Gentry’s scheme used an ideal I of a ring R, where the noise e is chosen to be an
element in the I, so that it has the form e = rI for some r ∈ R. This means that
the message m is encrypted to m + rI, and decrypting is the process of getting
rid of the ideal. The homomorphic properties can be seen from the fact that if
c1 = m1 + r1I and c2 = m2 + r2I, then

c1 + c2 =(m1 +m2) + (r1 + r2)I

c1c2 =(m1 + r1I)(m2 + r2I) = (m1m2) + (m1r2 +m2r1 + r1r2I)I.

Notice that after addition, the noise is (r1 + r2)I, while after multiplication the
noise is dominated by r1r2I. This means that addition approximately doubles
the noise, while multiplication approximately squares the noise. After a number of
operations, the noise will overwhelm the ciphertext and make decryption incorrect.
Gentry solved this problem by evaluating the decryption function homomorphically
with the ciphertext as input, which will create an equivalent ciphertext which has a
small noise again. This is known as bootstrapping, and requires that the decryption
function to be efficient, with the decryption circuit as simple as possible.

Gentry’s scheme relied on the hardness assumptions on ideal lattices. The main
drawback here is that the field of ideal lattices has not been very well studied. Also,
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there is a need for a squashing step to reduce the decryption complexity, but re-
quires an additional strong assumption, that is the sparse subset-sum assumption:
given a big set of integers S, a modulus M and a target sum t, it is difficult to
find a sparse subset of S that sums up to t (mod M). However, his work is very
significant because it was the first scheme proved to be fully homomorphic, and
because of his bootstrapping theorem [Vai11].

A homomorphic encryption scheme E is bootstrappable if it can evaluate its
own decryption circuit, and slightly augmented versions of it. A PKE scheme is
weakly circular secure if it is IND-CPA secure even for an adversary with addi-
tional information containing encryptions of all secret key bits {E(ski)}, where
ski is the i-th bit of the secret key sk. Gentry’s theorem states that if E is boot-
strappable and the PKE is weakly circular secure, then E can be modified into a
fully homomorphic encryption scheme.

This method of starting from a somewhat homomorphic encryption scheme and
applying the bootstrapping theorem became a blueprint for many of the subsequent
schemes.

3.3 Brakerski and Vaikuntanathan’s Scheme [BV11]

3.3.1 Overview

The scheme uses relinearization to make it somewhat homomorphic. The noise is
managed by modulus switching discussed below. The scheme is then shown to be
bootstrappable which turns it into a fully homomorphic encryption scheme.

The most significant development of [BV11] compared to Gentry’s scheme is
the use of well-known security assumptions based on DLWE, and the introduc-
tion of the relinearization and modulus switching techniques. Modulus switching
in particular removes the need of the expensive squashing step used in Gentry’s
scheme.

3.3.2 Encryption Scheme

Brakerski and Vaikuntanathan define an LWE-based public key encryption scheme
as follows. Let λ be the security parameter, n be a positive integer polynomial in
λ, k be a positive integer polynomial in n, and q an odd number sub-exponential
in n. Let χ be a noise distribution that produces small numbers. We have the
secret key s = (s[1], · · · , s[n]) ∈ Znq and public key (A,v = As + 2e) where A is
a k × n matrix chosen uniformly from Zk×nq and e is chosen uniformly from χk.
j

Suppose m ∈ {0, 1} is the bit we want to encrypt. To encrypt, we do the
following:
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1. Select a random r ∈ {0, 1}k.

2. Compute a = ATr and b = vTr +m.

3. Output (a, b).

The ciphertext is an element in Zn+1
q generated the same way as the distribution

we have seen in Section 2.3. on learning with errors. Thus according to DLWEn,q,χ

(where χ is a uniform distribution over Zq), we can use this scheme a polynomial
number of times with negligible probability that an adversary can guess s.

To decrypt a ciphertext (a, b), we do the following:

1. Compute b′ = b− 〈a, s〉 = 2e+m ∈ Zq for some noise e.

2. Output m = b′ mod 2.

Decryption works because

b− 〈a, s〉 = (vTr +m)− (aTs)

= (vTr +m)− (vTr − 2eTr)

= 2eTr +m

so taking this value modulo 2 results in m.

3.3.3 Ideas

3.3.3.1 Relinearization (Key Switching). Given a ciphertext (a, b),a =
(a[1], · · · , a[n]), consider the linear evaluation function fa,b : Znq → Zq as follows:

fa,b(x) = b − 〈a,x〉 = b −
n∑
i=1

a[i] · x[i] (mod q), where the variables are x =

(x[1], · · · ,x[n]). Note that m = fa,b(s) (mod 2). Now, one wants to make an
evaluation function which is a combination of additions and multiplications of
these f over different ciphertexts (ai, bi).
First note that

f(a,b)(x) + f(a′,b′)(x) = (b−
n∑
i=1

a[i] · x[i]) + (b′ −
n∑
i=1

a′[i] · x[i])

= (b+ b′)−
n∑
i=1

(a[i] + a′′[i]) · x[i]

= f(a+a′,b+b′)(x),
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so addition in f is homomorphic.
However, multiplication seems problematic, as

f(a,b)(x) · f(a′,b′)(x) = (b−
n∑
i=1

a[i] · x[i]) · (b′ −
n∑
i=1

a′[i] · x[i])

= h0 +
n∑
i=1

hi · x[i] +
∑

1≤i≤j≤n

hi,j · x[i]x[j],

where

h0 = bb′,

hi = −(ba′[i] + b′a[i]),

hi,j = a[i]a′[j] + a[j]a′[i].

The problem here is that the number of coefficients is 1 + n +
(
n+1
2

)
= (n+1)(n+2)

2
,

so the ciphertext becomes quadratic in the size of s.
This can be overcome by a method called relinearization [BV11]. Suppose that
the secret key s = (s[1], . . . , s[n]) is changed into a secret key

t = (s[1], . . . , s[n], s[1]s[1], s[1]s[2], . . . , s[n]s[n]).

Then ha,b(x) = f(a,b)(x)·f(a′,b′)(x) becomes linear in t. Moreover, ha,b(t) mod 2 =
m ·m′.

Relinearization makes our public key encryption scheme become a somewhat
homomorphic scheme. The secret key is somewhat larger, but as this is only used in
decryption, this does not increase the communication or homomorphic evaluation
complexity.

3.3.3.2 Modulus Switching. We have shown how to use relinearization to
make a homomorphic evaluation function with the LWE-based encryption scheme.
To make this scheme fully homomorphic, the challenge is to manage the noise. One
such method is modulus switching [BV11]. Essentially, this method changes the
ciphertext c ∈ Znq to a ciphertext c′ ∈ Znp , where decrypting c′ still gives m. This
method will be discussed in more detail when discussing the [BGV12] scheme.

3.3.4 Analysis

The performance of the [BV11] scheme is as follows:

• Secret key: The secret key s ∈ Znq , with size n log q = O(λ log λ) bits.
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• Single ciphertext: The ciphertext c ∈ Zn+1
q , with size (n + 1) log q =

O(λ log λ) bits.

• Public key: (n+ 1)((n+ 1) log q + 2λ) log q bits.

• Evaluation key: Õ(n2+2ε) bits.

• Per-gate computation: Õ(k3 · L5),

where λ is the security parameter, ε ∈ (0, 1), q = 2n
ε
, p = 16nk log 2q, and L is the

maximum depth that the scheme can correctly evaluate circuits.

3.4 Brakerski, Gentry and Vaikuntanathan’s Scheme
[BGV12]

3.4.1 Overview

The scheme uses a technique named key switching / modulus reduction which
generalises the relinearization method we have seen in [BV11]. Here the relin-
earization procedure can be used to transform any ciphertext c1 decryptable to m
with secret key s1 into a ciphertext c2 decryptable to m with secret key s2, not
necessarily reducing the dimension of the ciphertext. This enables the evaluation
function to be somewhat homomorphic.

To achieve a fully homomorphic scheme, the modulus switching method from
[BV11] is again introduced. However, the technique is refined to manage the noise
better, so that a fully homomorphic scheme can be achieved without bootstrapping.
Bootstrapping is later introduced, but as an optimization technique.

The most significant development of [BGV12] compared to [BV11] is the use
of well-known security assumptions based on RLWE, where the use of RLWE over
standard LWE paves way to a more efficient fully homomorphic scheme. Also, a
careful use of modulus switching achieves fully homomorphic encryption without
the need for bootstrapping.

3.4.2 Encryption Scheme

Brakerski, Gentry and Vaikuntanathan use general encryption scheme that can
be instantiated to both LWE and RLWE. However, we will focus on the more
efficient RLWE setting. The RLWE-based public key encryption scheme as follows.
Given the security parameter λ and an additional parameter µ, first choose a µ-bit
modulus q. Then choose d = d(λ, µ), χ = χ(λ, µ), n = d3 log qe.

LetRq = Zq[x]/(f(x)) with f(x) a polynomial of degree d. To get the secret key,
we first draw s′ uniformly from χ. The secret key is then s = (1, s′) ∈ R2

q . To get
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the public key, first generate vectors A′ ← Rn
q , e← χn, then set b = −A′s′ + 2e.

Set the public key A = (b|A′) ∈ Rn×2
q . Note that A · s = 2e.

Suppose m ∈ {0, 1} is the bit we want to encrypt. To encrypt, we do the
following:

1. Select a random r ∈ Rn
2 and expand the message to m = (m, 0) ∈ R2

q .

2. Output c = m + ATr ∈ R2
q .

According to RLWEd,q,χ (where χ is a uniform distribution over Rq), we can use
this scheme a polynomial number of times with negligible probability that an
adversary can guess s.
To decrypt, we do the following:

1. Compute b′ = [〈c, s〉]q.

2. Output m = [b′]2.

3.4.3 Ideas

3.4.3.1 Key Switching (Dimension Reduction). This technique general-
izes the relinearization method we have seen in [BV11]. It consists of two basic
operations as follows:

• BitDecomp(x ∈ Rn
q , q) decomposes x into its bit representation u ∈

R
n·dlog qe
2 . We do this by first writing x =

dlog qe∑
i=0

2i · ui with all ui ∈ Rn
2 ,

then output u = (u0,u1, · · · ,udlog qe) ∈ Rn·dlog qe
2 .

• Powersof2(x ∈ Rn
q , q) expands x into u ∈ R

n·dlog qe
q that has copies of x

multiplied by powers of 2. The output is (x, 2 · x, · · · , 2dlog qex) ∈ Rn·dlog qe
q .

Lemma 3.1 〈BitDecomp(c, q), Powersof2(s, q)〉 = 〈c, s〉 mod q.

Proof We will give a more detailed proof than in [BV11]. Writing c =

dlog qe∑
i=0

2i ·ci,

we have BitDecomp(c, q) = (c0, c1, · · · , cdlog qe). Also, Powersof2(s, q) = (s, 2 ·
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s, · · · , 2dlog qes). Hence,

〈BitDecomp(c, q), Powersof2(s, q)〉 =

dlog qe∑
i=0

〈ci, 2i · s〉

=

dlog qe∑
i=0

2i · 〈ci, s〉

=

dlog qe∑
i=0

〈2i · ci, s〉

= 〈
dlog qe∑
i=0

2i · ci, s〉

= 〈c, s〉 mod q

The key switching technique can be defined by the following two operations.
SwitchKeyGen(s1 ∈ Rn1

q , s2R
n2
q ):

1. Generate a public key A as previously described, but with secret key s2 and
parameter n = n1 · dlog qe .

2. Set B = [Powersof2(s1)|O], that is the matrix with first column containing
Powersof2(s1) and augmenting some columns with all elements zero until
it matches the size of A.

3. Set C = A + B, and output τs1→s2 = C.

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)
T ·C.

The following lemma proves that key switching works.

Lemma 3.2 Let s1, s2, q,A,B,C be as in SwitchKeyGen(s1, s2), and let A·s2 =
2e2 ∈ RN

q . Let c1 ∈ Rn1
q and c2 ← SwitchKey(τs1→s2 , c1). Then we have

〈c2, s2〉 = 2〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q.

Proof We will give a more detailed proof than in [BV11]. By definition,

〈c2, s2〉 = 〈BitDecomp(c1)T ·C, s2〉
= BitDecomp(c1)

T ·C · s2
= BitDecomp(c1)

T · (A + B) · s2
= BitDecomp(c1)

T · (2e2 + Powersof2(s1))

= 2〈BitDecomp(c1), e2〉+ 〈BitDecomp(c1), Powersof2(s1)〉
= 2〈BitDecomp(c1), e2〉+ 〈c1, s1〉 mod q. (from Lemma 3.1)
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This lemma implies that key switching only produces an error
‖2〈BitDecomp(c1), e2〉‖2 which is small because BitDecomp(c1) only has
coefficients 0 or 1 in the inner product.

3.4.3.2 Modulus Switching. The modulus switching technique used is a vari-
ant of the one used in [BV11]. This method changes the ciphertext c ∈ R2

q to a
ciphertext c′ ∈ R2

p, where decrypting c′ still gives m.

Suppose we have a ciphertext c = (c1, c2) ∈ R2
q , and consider ~c′ to be the

vector closest (using `1-norm) to (p/q) ·~c. such that c′ ≡ c mod 2. Note that for
some k ∈ Z we have [〈c, s〉]q = 〈c, s〉 − kq. Define e = 〈c′, s〉 − kp = [〈c, s〉]q +
(〈c′, s〉−〈c′, ~s〉) + (kq−kp). So e ≡ [〈c, s〉]q mod 2. Also, if s is chosen such that
|[〈c, s〉]q| < q/2 − (q/p)`1(s), we can then show that e ≡ [〈c, s〉]p mod 2, which
means that decrypting c and c′ will result to the same message. Moreover with
this choice of s, we can also show that |[〈c, s〉]p| < |[〈c, s〉]q| + `1(s). This means
that if we choose a short secret key s (i.e. with a small `1(s)) and small enough p
relative to q, we can significantly decrease the amount of noise in the ciphertext.

Now we will give a short analysis (slightly modified from [BGV12]) of how
much noise can actually be reduced. Suppose q is approximately xk, and we have
two ciphertexts with noise approximately x. Without modulus switching, note
that addition creates noise of size 2x, and multiplication creates noise of size x2.
Hence, we can evaluate multiplication with depth at most log k before the noise
becomes too large.
However, using modulus switching, we get that the noise after multiplication comes
down from x2 back to x, with the modulus reduced from qi to qi/x. So by choosing
a good chain of decreasing moduli (q, q/x, q/x2, · · · ), there can be up to k levels
of multiplication. Also, this method can be used at any time during evaluation
because we did not require the secret key to perform it.

3.4.4 Analysis

The performance of the [BGV12] scheme is as follows (RLWE case):

• Secret key: The secret key is 2 ring elements, which require 2d log q bits.

• Single ciphertext: The ciphertext also consists of 2 ring elements, which
require 2d log q bits.

• Public key: The public key A ∈ Rn×2
q consists of 2n ring elements, which

require 2dn log q bits.
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• Key switching: Õ(dn3 log2 q).

• Modulus switching: Õ(dn2 log q).

• Per-gate computation: Õ(k · L3),

where, with λ as the security parameter, q = Θ(2λ), d = Ω(λ log λ), n = d3 log qe,
and L is the maximum depth that the scheme can correctly evaluate circuits.
Here, we recall that Rq = Zq[x]/(f(x)) with f(x) a polynomial of degree d. So
an element in Rq has size log qd = d log q bits. Also, we focus the analysis on the
RLWE version, as it is more efficient than the LWE instantiation.

3.5 Brakerski’s Scheme [Bra12]

3.5.1 Overview

The scheme works in an invariant perspective, where only the ratio q/B matters.
This is done by scaling the ciphertext down by a factor of q (that is, c′ = c/q). In
this perspective, homomorphic multiplication multiplies the noise by a polynomial
factor p(n), which is an improvement from [BGV12] where homomorphic multipli-
cation squares the noise. One significant change in this scheme is that it does not
use modulus switching as in the previous two schemes.

3.5.2 Encryption Scheme

Brakerski uses Regev’s LWE-based public key encryption scheme [Reg05] as fol-
lows. Given the security parameter n, let q = q(n) be an integer and χ = χ(n) be
a distribution over Z. We have the secret key s = (s[1], · · · , s[n]) ∈ Znq . To get the
public key, first let N = (n+ 1) · (log q +O(1)). Sample A← ZN×n and e← χN .
Compute b = [A · s + e]q. The public key is then P = [b|−A] ∈ ZN×(n+1).

Suppose m ∈ {0, 1}. To encrypt m, we do the following:

1. Select a random r ∈ {0, 1}N .

2. Set m = (m, 0, · · · , 0) ∈ {0, 1}n+1.

3. Output c = [P T · r + bq/2c ·m]q ∈ Zn+1
q

To decrypt a ciphertext c, we do the following:

1. Compute c0 = [〈c, (1, s)〉]q.

2. Output m = [b2 · c0/qe]2.
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The correctness of this scheme can be seen from analyzing the encryption and
decryption noise. The noise magnitude of properly encrypted ciphertexts can be
shown to be small, by the following lemma.

Lemma 3.3 Let q, n,N, |χ| ≤ B be parameters for Regev’s public key encryption
scheme. Let s ∈ Zn be a vector and m ∈ {0, 1} be some bit. Set P as the public key
generated from Regev’s scheme with secret key s, and c be the ciphertext created
by encrypting m under public key P . Then for some e with |e| ≤ N · B it holds
that

〈c, (1, s)〉 = bq/2c ·m+ e (mod q)

Proof We will give a detailed and more elementary proof than in [Bra12]. Let r
be the random element sampled, and m be the extended message vector in the
Regev encryption. Then we have that

〈c, (1, s)〉 = 〈P T · r + bq/2c ·m, (1, s)〉
= 〈bq/2c ·m, (1, s)〉+ 〈P T · r, (1, s)〉
= bq/2c ·m+ rTP · (1, s)

= bq/2c ·m+ rT (b−As)

= bq/2c ·m+ rT · e
= bq/2c ·m+ 〈r, e〉 (mod q).

As r ∈ {0, 1}N , we have |r| ≤ N . Also, by definition e ≤ B. So by Cauchy-
Schwarz, we have that |〈r, e〉| ≤ |r||e| ≤ N ·B, and the lemma follows by setting
e = 〈r, e〉.

Moreover, for ciphertexts with a small noise, decryption gives the correct mes-
sage according to the following lemma:

Lemma 3.4 Let s ∈ Zn be some vector, and let c ∈ Zn+1
q be such that

〈c, (1, s)〉 = bq/2c ·m+ e (mod q)

with m ∈ {0, 1} and |e| ≤ q/4. Then the decryption of c under secret key s outputs
m.

Proof By definition, we have that in the decryption, c0 = [〈c, (1, s)〉]q = bq/2c ·
m+ e. So, decryption outputs

[b2 · c0/qe]2 = [b2 · (bq/2c ·m+ e)/qe]2
= [b2bq/2c ·m/q + 2e/qe]2
= m

since |2e/q| < 2(q/4)/q = 1/2 so the rounding is correct.
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3.5.3 Ideas

3.5.3.1 Homomorphic properties. We start from Regev’s public key en-
cryption scheme, where the encryption of m ∈ {0, 1} is a vector c ∈ Znq such that
[〈c, s〉]q = b q

2
c ·m + e with |e| ≤ E. First take the invariant perspective, and set

c′ = c/q. Then [〈c′, s〉]1 = 1
2
·m+e′ with |e′| ≤ E/q = ε. Additive homomorphism

can be seen directly in this perspective: if c1, c2 encrypt m1,m2 respectively, then

cadd = c1 + c2

encrypts [m1 +m2]2, with noise approximately 2ε. Multiplicative homomorphism
is done by defining

cmult = 2 · c1 ⊗ c2.

The above tensored ciphertext can be decrypted using a tensored secret key s⊗s,
because

〈2 · c1 ⊗ c2, s⊗ s〉 = 2〈c1, s〉 · 〈c2, s〉.
To show why this definition works, we have to show that [2〈c1, s〉 · 〈c2, s〉]1 ≈

1
2
m1m2 + e′ , for a small e′. We start by letting I1, I2 ∈ Z be integers, ande1, e2

with absolute value less than ε be rational numbers such that

〈c1, s〉 =
1

2
m1 + e1 + I1

〈c2, s〉 =
1

2
m2 + e2 + I2

Then we have:

2〈c1, s〉 · 〈c2, s〉 = 2 · (1

2
m1 + e1 + I1) · (

1

2
m1 + e2 + I2)

=
1

2
m1m2 + 2(e1I2 + e2I1) + (e1m2 + e2m1 + 2e1e2)

+(m1I2 +m2I1 + 2I1I2)

But m1,m2 ∈ {0, 1} so m1I2 + m2I1 + 2I1I2 ∈ Z. Also, the term 2e1e2 that
squares the noise in [BV11] and [BGV12] can now be ignored as |2e1e2| ≤ 2ε2 � ε.
By the triangle inequality, we also have that |e1m2 + e2m1| ≤ |e1m2| + |e2m1| ≤
|e1|+ |e2| < 2ε. Therefore the noise is dominated by the term e′ = 2(e1I2 + e2I1).
[Bra12] shows that this term is bounded by O(‖s‖1) · ε, and that by choosing
q ≤ 2n, ‖s‖1 only depends on n and independent of B, q. Hence we have:

[2〈c1, s〉 · 〈c2, s〉]1 =
1

2
m1m2 + 2(e1I2 + e2I1) + (e1m2 + e2m1 + 2e1e2)

≈ 1

2
m1m2 + 2(e1I2 + e2I1)

≈ 1

2
m1m2 + e′
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3.5.3.2 Vector Decomposition and Key Switching. Vector decomposition
is done to reduce the norm of s, resulting in the previous discussion having a
smaller noise. Initially, ‖s‖1 ≤ n · q, as the elements of the secret key s are
sampled uniformly from Zq. As in [BGV12], vector decomposition uses two basic
operations BitDecomp and Powersof2.

Key switching is done as in Brakerski, Gentry and Vaikuntanathan’s
scheme. It also uses the operations BitDecomp and Powersof2 to define
SwitchKeyGen(s1, s2) and SwitchKey(τs1→s2 , c1).

3.5.4 Analysis

The performance of the [Bra12] scheme is as follows:

• Secret key: s ∈ Znq , with size n log q bits.

• Single ciphertext: c ∈ Zn+1
q , with size (n+ 1) log q bits.

• Public key: P ∈ ZN×nq , with size N · n log q bits. But N = O(n log q), so P

has size O(n2 log2 q) bits.

3.6 Fan and Vercauteren’s Scheme [FV12]

3.6.1 Overview

This scheme improves upon Brakerski’s scheme by using a more efficient scheme
that bases its assumptions on RLWE instead of LWE. Specifically, it contains a
modified version of the LPR scheme for optimization and easier analysis. Also,
there will be a relinearization process similar to that discussed in Brakerski, Gentry
and Vaikuntanathan’s scheme, so there will be a need to have an additional element
to the LPR scheme which is the relinearization key rlk. This relinearization key
will be used to compute the homomorphic multiplication cmult.

3.6.2 Encryption Scheme

Fan and Vercauteren uses the RLWE-based LPR scheme as follows [LPR10].

• R = Z[x]/(xd + 1), where d is a power of 2, and set the message space to be
Rt for some integer t > 1. Set ∆ = bq/tc.

• Secret key: s ∈ Rq, sampled from a noise distribution χ.

• Public key: (b = −(a · s+ e) mod q, a) ∈ R2
q , where a is sampled from Rq
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• Encryption: Suppose we want to encrypt m ∈ Rt.
Sample r, e1, e2 from χ. Return (u, v) where

u = a · r + e1 + ∆ ·m mod q,

v = b · r + e2 mod q.

• Decryption: First compute u + v · s = (r · e − s · e1 + e2) + ∆ ·m mod q.
Then multiply by t

q
and round to the nearest integer modulo t.

As in Brakerski’s scheme, we can show that decryption is correct for properly
encrypted ciphertexts. This is dealt with by the following lemma. One important
thing to note is that all norms used in this scheme is the infinity norm ‖.‖∞, not
the Euclidean norm as in the previous schemes. The expansion factor also uses
the infinity norm:

δR = max{ ‖a · b‖∞
‖a‖∞‖b‖∞

: a, b ∈ R}.

With this in mind, we can proceed to the lemma:

Lemma 3.5 If ||χ||∞ < B, then for some ||v||∞ ≤ 2 · δR ·B2 +B we have that

[u+ v · s]q = ∆ ·m + v. (1)

Moreover, if 2 · δR ·B2 +B < ∆/2, decryption works correctly.

.

Proof We will give a partial proof, which is more detailed, but use a claim in
[FV12]. Using the definitions from the encryption, we have

u+ v · s = a · r + e1 + ∆ ·m+ b · r · s+ e2 · s
= ∆ ·m+ (e · u+ e1 + e2 · s) mod q.

If we set v = e · r + e1 + e2 · s, then as ||x · y||∞ ≤ ‖x‖∞ · ‖y‖∞δR ≤ B2δR, we
have

v ≤ ‖e · r‖∞ + ‖e1‖∞ + ‖e2 · s‖∞
≤ δR ·B2 +B + δR ·B2

= 2 · δR ·B2 +B.

Let r be an element such that u + v · s = ∆ ·m+ v + q · r. Then we have

t

q
(u + v · s) = t/q ·∆ ·m+ (t/q) · v + t · r

= t/q · (q/t− ε) ·m+ (t/q) · v + t · r
= m+ (t/q) · (v − ε ·m) + t · r,
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where ε = q/t−∆ = q/t− bq/tc < 1.
Fan and Vercauteren claim that (t/q) ·‖v−ε ·m‖∞ < 1/2 [FV12]. With this claim,
and noting that m ∈ Rt, m+(t/q) · (v− ε ·m)+ t ·r mod t = m+(t/q) · (v− ε ·m)
rounds to m.

3.6.3 Ideas

The encryption scheme is a modified version of the LPR scheme, where the s, u
are sampled from R2 instead of χ. Fan and Vercauteren argue that assuming the
results for the LWE setting carry over to the RLWE setting, this modification will
have minor security implications. This will imply ‖s‖∞ = ‖r‖∞ = 1, and the
bound in the previous lemma becomes

v ≤ δR‖e‖∞ · ‖r‖∞ + ‖e1‖∞ + δR‖e2‖∞ · ‖s‖∞
≤ δR ·B · 1 +B + δR ·B · 1
= 2 · δR ·B +B.

The main invariant is given in (1), where if we interpret the elements of the ci-
phertext as the coefficients of the polynomial ct(x) (that is, ct(x) = u+ v · s), then
evaluating this polynomial with x = s will give us:

[ct(s)]q = ∆ ·m+ v,

which using the previous lemma enables us to correctly recover the message m.

3.6.3.1 Homomorphic Properties

Additive homomorphism. An appropriate operation for additive homo-
morphism can be seen directly. First note that if [cti(s)]q = ∆ ·mi + vi, then we
have that

[ct1(s) + ct2(s)]q = ∆ · [m1 + m2]t + v1 + v2 − ε · t · r

where ε = q/t − ∆ = q/t − bq/tc < 1. Moreover, using the modified version,
‖r‖∞ ≤ 1, so the noise grows additively with maximum ‖t · r‖∞ ≤ t. So we can
define:

cadd(ct1, ct2) = ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q)

Multiplicative homomorphism. Finding an operation for multiplicative
homomorphism is not so straightforward. First we define

cti = ∆ ·mi + vi + q · ri.
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Then multiplying for i = 1, 2 gives us:

(ct1 · ct2)(s) = (∆ ·m1 + v1 + q · r1) · (∆ ·m2 + v2 + q · r2)
= ∆2 ·m1 ·m2 + ∆ · (m1 · v2 +m2 · v1) + q(v1 · r2 + v2 · r1)
+ v1 · v2 + q ·∆ · (m1 · r2 +m2 · r1) + q2 · r1 · r2.

We can see that to get an encryption of [m1 · m2]t, we must divide the above
equation by ∆. However, this might create errors in rounding, as ∆ does not
necessarily divide q. To prevent rounding errors, we instead divide by q/t (or
equivalently multiply by t/q). Let ct1(x) + ct2(x) = c0 + c1 · x + c2 · x2. Then we
can get the approximation:

t

q
· (ct1 · ct2)(s) = bt · c0/qe+ bt · c1/qe · s + bt · c2/qe · s2 + ra

where

ra = (bt · c0/qe − t · c0/q) + (bt · c1/qe − t · c1/q) · s + (bt · c2/qe − t · c2/q) · s2

and by the triangle inequality and the fact that ‖a− bae‖ −∞ ≤ 1/2 for all real
numbers a, we have

‖ra‖∞ ≤ ‖bt · c0/qe − t · c0/q‖∞ + ‖(bt · c1/qe − t · c1/q) · s‖∞
+‖(bt · c2/qe − t · c2/q) · s2‖∞

≤ 1/2 + 1/2 · δR · ‖s‖∞ + 1/2 · δ2R · ‖s‖2∞
< 1/2 + ·δR · ‖s‖∞ + 1/2 · δ2R · ‖s‖2∞
= (δR · ‖s‖∞ + 1)2/2.

This gives an idea of a homomorphic multiplication where ct1, ct2 each with two
elements is multiplied into a result with three elements.

cbasicmult(ct1, ct2) =
t

q
· (ct1 · ct2)(s)

Fan and Vercauteren analyze the noise using the following lemma [FV12].

Lemma 3.6 Let cti for i = 1, 2 be two ciphertexts, with [cti(s)]q = ∆ ·mi + vi
and E such that ‖vi‖∞ < E < ∆/2. Let ct1(x) + ct2(x) = c0 + c1 ·x+ c2 ·x2. Then

[bt · c0/qe+ bt · c0/qe · s + bt · c2/qe · s2]q = ∆ · [m1m2]t + v3

with ‖v3‖∞ < 2 · δR · t · E · (δR · ‖s‖∞ + 1) + 2 · t2 · δ2R · (‖s‖∞ + 1)2.

By using this lemma, and noting that the term 2 · δR · t · E · (δR · ‖s‖∞ + 1) + 2 ·
t2 · δ2R · (‖s‖∞ + 1)2 is dominated by 2 · t2 · δ2R · ‖s‖2∞, we can see that the noise is
multiplied roughly by 2 · t · δ2R · ‖s‖∞. Using the optimization stated before with
‖s‖∞ = 1, the noise is multiplied roughly by a much smaller factor 2 · t · δ2R after
multiplication.
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3.6.3.2 Relinearization. The previous lemma shows that we can do multi-
plication, at the cost of increasing the size of the ciphertext. To keep the number
of ciphertext elements down, Fan and Vercauteren use relinearization like in the
previous schemes. The goal is to transform a degree 2 ciphertext we obtained from
basic multiplication, ct = [c0, c1, c2] into a degree 1 ciphertext ct′ = [c′0, c

′
1], such

that
[c0 + c1 · s + c2 · s2]q = [c′0 + c′1 · s + r]q

where ‖r‖ is a small error, meaning that ct and ct′ will both correctly decrypt to
the same message m ∈ Rt. This step will require a relinearization key rlk. Fan
and Vercauteren have two different ideas of relinearization that they propose.

Relinearization version 1. The first idea is to further generalize the key
switching technique in [BGV12], by decomposing into a base T (the previous

schemes use T = 2). This is done by writing c2 in base T , that is c2 =
l∑

i=0

T i · c(i)2

mod q. Generalizing the relinearization key in the previous schemes, the relin-
earization key rlk will consist of elements T is2 masked with some noise:

rlk = [([−(ai · s+ ei) + T i · s2]q, ai) : i ∈ [0...l].

Here, the relinearization key rlk uses l + 1 bits, with l = blogT qe. This means
that when T increases, logT q = log q

log T
decreases, and hence the relinearization key

is smaller.

Relinearization version 2. The second idea uses some form of modulus
switching, by switching from modulo q to modulo p ·q for some integer p. The idea
here is that it is sufficient to approximate c2 · s2 modulo q, that is find c2,0, c2,1
such that c2,0 + c2,0 · s = c2 · s2 + r for a small r. So the relinearization key is of
the form:

rlk = ([−(a · s+ e) + p · s2]p·q, a), a ∈ Rp·q, e← χ.

Redefinition of homomorphic multiplication. By using one of these two
relinearization techniques, we can define homomorphic multiplication such that
evaluating a multiplication still results in two elements.
In the first version, we have

cmult = (c′0, c
′
1),
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where

c′0 = [c0 +
l∑

i=0

rlk[i][0] · c(i)2 ]q,

c′1 = [c1 +
l∑

i=0

rlk[i][1] · c(i)2 ]q,

and rlk = [([−(ai · s+ ei) + T i · s2]q, ai) : i ∈ [0...l].
In the second version, we have

cmult = ([c0 + c2,0]q, [c1 + c2,1]q),

where

c2,0 = [bc2 · rlk[0]

p
e]q,

c2,1 = [bc2 · rlk[0]

p
e]q,

and rlk = ([−(a · s+ e) + p · s2]p·q, a).

3.6.3.3 Towards Fully Homomorphic Encryption. The previous idea
gives us a somewhat homomorphic encryption scheme, as it can only evaluate
functions up to some maximum level before the noise becomes too big. To turn
the scheme into a fully homomorphic encryption scheme, Fan and Vercauteren use
Gentry’s bootstrapping technique. Here, the decryption function of the somewhat
homomorphic scheme is evaluated homomorphically to obtain an encryption of the
same message as before, but with a smaller noise (according to the depth of the
decryption circuit.) Fan and Vercauteren consider two cases: the optimized case
which gives the simplest decryption function, and a general case.

Optimized case: q = 2n and t = 2n−k, k > 0. Then we can write ∆ = 2k,
so any division by ∆ will be a simple right shift. Also, since

t

q
· [c0 + c1 · s]q =

[c0 + c1 · s]q
∆

,

decryption can be done fast.
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General Case. This case is dealt with by reducing to the optimized case by
a form of modulus switching. From section 3.6.3.1 and lemma 3.5, a ciphertext ct
satisfies ct[0] + ct[1] · s = ∆ ·m+v + q · r, with ‖v‖∞ < ∆/2. Assuming the noise
v has not reached is maximal size, we can switch from modulus q to modulus 2n

where 2n ≤ q < 2n+1 by multiplying the ciphertext by 2n/q. So if we set

c0 = b2n · ct[0]/qe,
c1 = b2n · ct[1]/qe,

and note that 2n

q
· q
t

= 2n

t
and 2n

q
· q = 2n, we get that

c0 + c1 · s = b2n · ct[0]/qe+ b2n · ct[1]/qe · s

= b2
n

t
cm+ e + 2n · r.

As long as the new error ‖e‖∞ < b2n/tc/2, lemma 3.5 says we will now obtain a
valid ciphertext modulus 2n. By considering (c0, c1) as the ciphertext to decrypt,
decryption now becomes as simple as the optimized case.

3.6.4 Analysis

The performance of the [FV12] scheme is as follows:

• Secret key: The secret key s is sampled from a distribution χ overR, so its
size will be a function of d and λ. With the optimization that s is sampled
from R2, we have that the secret key is d bits.

• Single ciphertext: The ciphertext is two elements in Rq, so it has size 2d log q
bits.

• Public key: The public key is also two elements in Rq, so it has size 2d log q
bits.

• Relinearization version 1:

– Relinearization key: As discussed in Section 3.6.3.2, the relinearization
key rlk uses l + 1 bits, with l = blogT qe. So the relinearization key is
approximately logT q bits.

– Number of operations: The formula shown in Section 3.6.3.2 shows
that c0 and c1 each do l = blogT qe multiplications and 1 addition. So
there are approximately 2 · logT q multiplications and 2 additions in the
relinearization.
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Here T is the base used in relinearization.

• Relinearization version 2:

– Relinearization key: Only 2 elements in Rp·q are used, where p is the
parameter for the relinearization. So the relinearization key is 4d log p · q
bits.

– Number of operations: The formula shown in Section 3.6.3.2 shows that
c0 and c1 each do one multiplication, one division, and one rounding .
So there are 2 multiplications, 2 divisions, and 2 roundings.

Here we use the fact that λ is the security parameter, and that elements in R have
degree at most d.

3.7 Comparison of Fully Homomorphic Encryption
Schemes

In this section we will give a comparison of the latest fully homomorphic encryption
schemes discussed in this section. Table 1 compares the key and ciphertext sizes
for each scheme. Note that while [BGV12] has instantations for both LWE and
RWLE, we only use the result of the more efficient RLWE case.

Scheme Based on Secret key size Ciphertext size Public key size

[BV11] LWE n log q (n+ 1) log q O(n2 log2 q)
[BGV12] LWE and

RLWE
2d log q 2d log q 2dn log q

[Bra12] LWE n log q (n+ 1) log q O(n2 log2 q)
[FV12] RLWE d 2d log q 2d log q

Table 1: Comparison of key and ciphertext sizes (in bits).

From this table we can see the similarities between the schemes based on the
same assumption, with respect to key and ciphertext sizes. The schemes [BGV12]
and [FV12] that are based on RWLE, use less bits than [BV11] and [Bra12] that
are based on LWE. The [FV12] scheme uses the least bits overall, due to the
optimization of the secret key, and a much smaller public key that is not a matrix,
in contrast to the other schemes.

We will now take a look at the ideas and improvements for each work. Brakersi
and Vaikuntanathan’s work introduced the following concepts:
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1. An LWE-based scheme with security that is better studied than Gentry’s
scheme that used ideal lattices.

2. Relinearization as a way of keeping the ciphertext size constant, and create
a somewhat homomorphic scheme.

3. Modulus switching as a way to manage the noise and remove the need for
the expensive squashing step as in Gentry’s scheme.

Meanwhile, Brakersi, Gentry, and Vaikuntanathan’s work introduced the following
concepts:

1. A general scheme with both LWE-based and RLWE-based instantiations,
with the RLWE version more efficient than Brakersi and Vaikuntanathan’s
scheme.

2. Relinearization generalized into key switching .

3. Modulus switching that is better implemented to reduce noise without boot-
strapping.

4. Better analysis on noise than in [BV11].

Brakersi’s work introduced the following concepts:

1. An LWE-based scheme that has classical reduction to GapSVP. This is in
contrast with previous schemes that only have quantum reduction.

2. Invariant perspective, where the noise isn’t squared by multiplication but
only multiplied by a fixed polynomial .

3. Key switching as in [BGV12].

Finally, Fan and Vercauteren’s work introduced the following concepts:

1. A scheme that extends Brakerski’s idea to the RLWE setting. This scheme
is more efficient than all the other schemes discussed.

2. Two variations of relinearization to make the scheme somewhat homomor-
phic. The first version is a generalization of the key switching in [BGV12].
While the second one uses a method similar to modulus switching.

3. A simpler decryption circuit with simpler analysis than previous work. The
simplicity comes from reducing all cases to the optimal case, where scaling
is implemented by binary right shift.
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The following table gives an overview of the main ideas of the FHE schemes.

Scheme Main Ideas
[BV11] Relinearization, modulus switching, LWE-based
[BGV12] Key switching, better modulus switching, LWE and RLWE-based
[Bra12] Invariant perspective, key switching, LWE-based, classical reduc-

tion to GapSVP
[FV12] Two versions of relinearization, more efficient RLWE-based cryp-

tosystem, simpler decryption circuit

Table 2: Main ideas of FHE schemes

41



4 Possible Improvements

4.1 Finding a Good Upper Bound for the Expansion Fac-
tor

In Brakerski, Gentry and Vaikuntanathan’s scheme [BGV12], some of the bounds
use the fact that the expansion factor γR ≤

√
d. However, various experiments has

led to the conjecture that the upper bound for the expansion factor is less than√
d. If it were possible to find a tighter upper bound for the expansion factor, it

will lead to improvements in all bounds that are related to the expansion factor,
such as the lemmas about modulus switching in [BGV12]. This will be a topic for
future work.

4.2 Batching

The idea of batching is to compute many functions in parallel by only evaluating
a single function with a larger modulus, using the idea of the Chinese Remainder
Theorem. In the previous schemes based on RLWE, we used R = Z[x]/(xd + 1)
plaintext space of R2. However, there is an alternative which is to use Rp which
is isomorphic to Rp1 × · · · × Rpd [BGV12]. Here, evaluating a function over Rp

using the input m ∈ Rn
p will evaluate the same function over Rpi using the input

[m]pi ∈ Rn
pi

for i = 1, · · · , d.
The advantage of using batching is that one can encrypt d sets of plaintext at

once and perform d simultaneous evaluations on them, at the cost of one evaluation
modulo p. The result will be a value that can be decomposed into d tuples, each
containing the intended output. The one restriction is that all these d evaluations
perform the same function, and take the same number of parameters.
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5 Applications

Some possible applications of fully homomorphic encryption are as follows.

5.1 Secure two-party computation [DFH12]

Fully homomorphic encryption can be used to implement a two-party computation
protocol that is secure both against honest-but-curious adversaries, and against
malicious adversaries. The protocol consists of one round with sublinear commu-
nication complexity, with the following basic idea:
The first party P1 sends its encrypted input to the second party P2, who uses
the homomorphic property to compute ciphertexts that contain the output of the
specified circuit when evaluated on P1’s (encrypted) input and his own private
input. These ciphertexts are sent to P1 who can decrypt and learn the result.

This idea alone is not secure in the malicious model, as P2 can just perform
a different function than the one intended. This can be solved by asking P2

to provide a non-interactive zero-knowledge proof (NIZK) that he returns a
ciphertext containing the correct result (without giving away any additional
information). To keep the solution communication-efficient, the NIZK can be
based on fully homomorphic encryption: the prover sends an encryption of his
proof, the verifier then computes, using homomorphic evaluation, a ciphertext
containing a bit that is 1 if and only if the proof is correct. Finally the prover
gives a standard NIZK that the corresponding ciphertext indeed contains the bit 1.

5.2 Oblivious databases [LNV11, BV11]

Suppose we want to store data in the cloud. The owner of the data would like to
have privacy, so that all his input data, and outputs of all operations on that data
will remain secret. This can be done using fully homomorphic encryption. Users
can store private data in the cloud as ciphertexts c1, · · · , cn, all encrypted using
their own public key. Then all operations or aggregate functions f(c1, · · · , cn) on
them are done as homomorphic evaluations, using the techniques described in this
text, without leaking anything to the server. The output is sent back to the user,
who can get his required result by using the decryption function on this output.

Efficient private information retrieval can also be implemented, where the user
can retrieve a stored value ci from the server without the server knowing any-
thing about the value i. One such implementation, which requires a somewhat
homomorphic and symmetric encryption, can be seen in [BV11].
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6 Conclusion

We have seen the significance of having an efficient fully homomorphic encryption
scheme. We have also analyzed several fully homomorphic encryption schemes,
which have some common elements:

1. An efficient lattice-based cryptosystem, with security based on the hardness
of well-known lattice problems.

2. An evaluation function with definitions for cadd and cmult, such that the noise
does not rapidly increase.

3. Techniques to make the scheme fully homomorphic with this evaluation func-
tion.

We started with Gentry’s scheme, the first fully homomorphic encryption
scheme, and techniques such as the use of bootstrapping that have helped the
rapid development of similar schemes. Gentry also provided the blueprint to con-
struct fully homomorphic schemes:

1. Construct an encryption scheme that is somewhat homomorphic.

2. Simplify the decryption function as much as possible by the squashing tech-
nique.

3. Do bootstrapping, which is to evaluate the resulting decryption function
homomorphically using the evaluation function.

Brakerski and Vaikuntanathan’s scheme built on this by introducing a cryptosys-
tem based on learning with errors (LWE), and using new techniques relineariza-
tion and modulus switching. Brakerski, Gentry and Vaikuntanathan’s scheme
further improved on this by using a cryptosystem based on ring learning with
errors (RLWE), and modifying the techniques by Brakerski and Vaikuntanathan.
This is done by generalizing the relinearization technique into something called key
switching, and using modulus switching in such a way that bootstrapping is not
required. Brakerski’s scheme, based on LWE, used an invariant perspective where
modulus switching is not required, but the secret keys used for key switching is
larger than in Brakerski, Gentry and Vaikuntanathan’s scheme. Finally, we saw
Fan and Vercauteren’s scheme which used used the ideas from Brakerski’s scheme
but used the LPR encryption scheme based on RLWE, which proved to be more
efficient than Brakerski’s scheme.

Fully homomorphic encryption has many applications, and we have discussed
some of them that relate to other problems in cryptography. It is still far from
practical, but there are many paths that have not been fully explored in making
improvements to the existing schemes.
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Ülevaade täielikult homomorfsest krüpteerimisest

Magistritöö (30 EAP)

Prastudy Mungkas Fauzi

Resümee

Täielikult homomorfne krüpteerimine on krüptosüsteem, mille puhul üks osapool
saab enda valdusesse krüpteeritud andmed ning saab nende andmetega tõhusalt
sooritada erinevaid operatsioone. Operatsioone saab teha hoolimata sellest, et
andmed jäävad krüpteerituks ning seega ei ole ka vajalik teada dekrüpteerimisvõtit.
Selline süsteem oleks äärmiselt kasulik, näiteks tagades andmete privaatsuse, mis
on saadetud kolmanda osapoole teenusele. Täielikult homomorfne krüpteerim-
ine on vastandiks krüptosüsteemidele nagu Paillier, kus ei ole võimalik teostada
krüpteeritud andmete peal korrutamist ilma neid enne dekrüpteerimata, või ElGa-
mal, kus ei saa sooritada krüpteeritud andmete liitmist enne andmete dekrüpteer-
imist.

Täielikult homomorfne krüpteerimine on väga uus uurimisala: esimese taolise
süsteemi lõi Gentry aastal 2009. Gentry läbimurdest alates on olnud palju
tema tööst inspireeritud edasiminekuid. Kõik viimased täielikult homomorfsed
krüptosüsteemid kasutavad avaliku võtmega krüptograafiat ja põhinevad võredel.
Võre-põhine krüptograafia äratab üha enam huvi oma turvalisuse püsimisega kvan-
tarvutites ning oma halvima juhu turvagarantiidega. Siiski jääb püsima peamine
probleem: süsteemidel ei ole veel tõhusat teostust, mis säilitaks adekvaatsed turval-
isuse nõuded. Selles valguses vaadatuna, viimased edasiminekud täielikult homo-
morfses krüpteerimises kas täiendavad eelnevate süsteemide tõhusust või pakuvad
välja uue parema efektiivsusega skeemi.

Antud uurimus on ülevaade hiljutistest täielikult homomorfsetest
krüptosüsteemidest. Õpime tundma mõningaid viimaseid täielikult homo-
morfseid krüptosüsteeme, analüüsime ning võrdleme neid. Neil süsteemidel on
teatud ühised elemendid:

1. Tõhus võre-põhine krüptosüsteem turvalisusega, mis põhineb üldteada
võreprobleemide keerulisusel.

2. Arvutusfunktsioon definitsioonidega homomorfsele liitmisele ja korru-
tamisele müra kasvu piiramiseks.

3. Meetodid, et muuta süsteem täielikult homomorfseks selle arvutusfunkt-
siooniga.
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Niipea kui võimalik, kirjutame nende süsteemide peamised tulemused ümber
detailsemas ja loetavamas vormis. Kõik skeemid, mida me arutame, välja arvatud
Gentry, on väga uued. Kõige varasem arutletav töö avaldati oktoobris aastal 2011
ning mõningad tööd on veel kättesaadavad ainult elektroonilisel kujul. Loodame,
et käesolev töö aitab lugejail olla kursis täielikult homomorfse krüpteerimisega,
rajades teed edasistele arengutele selles vallas.
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