Learning with Errors is one of the fundamental problems in computational
learning theory and has in the last years become the cornerstone of
post-quantum cryptography. In this work, we study the quantum sample complexity
of Learning with Errors and show that there exists an efficient quantum
learning algorithm (with polynomial sample and time complexity) for the
Learning with Errors problem where the error distribution is the one used in
cryptography. While our quantum learning algorithm does not break the LWE-based
encryption schemes proposed in the cryptography literature, it does have some
interesting implications for cryptography: first, when building an LWE-based
scheme, one needs to be careful about the access to the public-key generation
algorithm that is given to the adversary; second, our algorithm shows a
possible way for attacking LWE-based encryption by using classical samples to
approximate the quantum sample state, since then using our quantum learning
algorithm would solve LWE