
SIAM J. COMPUT. c© 2014 the authors
Vol. 43, No. 2, pp. 831–871

EFFICIENT FULLY HOMOMORPHIC ENCRYPTION FROM
(STANDARD) LWE∗

ZVIKA BRAKERSKI† AND VINOD VAIKUNTANATHAN‡

Abstract. A fully homomorphic encryption (FHE) scheme allows anyone to transform an en-
cryption of a message, m, into an encryption of any (efficient) function of that message, f(m), without
knowing the secret key. We present a leveled FHE scheme that is based solely on the (standard)
learning with errors (LWE) assumption. (Leveled FHE schemes are initialized with a bound on the
maximal evaluation depth. However, this restriction can be removed by assuming “weak circular
security.”) Applying known results on LWE, the security of our scheme is based on the worst-case
hardness of “short vector problems” on arbitrary lattices. Our construction improves on previous
works in two aspects: 1. We show that “somewhat homomorphic” encryption can be based on
LWE, using a new relinearization technique. In contrast, all previous schemes relied on complexity
assumptions related to ideals in various rings. 2. We deviate from the “squashing paradigm” used
in all previous works. We introduce a new dimension-modulus reduction technique, which shortens
the ciphertexts and reduces the decryption complexity of our scheme, without introducing addi-
tional assumptions. Our scheme has very short ciphertexts, and we therefore use it to construct an
asymptotically efficient LWE-based single-server private information retrieval (PIR) protocol. The
communication complexity of our protocol (in the public-key model) is k ·polylog(k)+log |DB| bits per
single-bit query, in order to achieve security against 2k-time adversaries (based on the best known
attacks against our underlying assumptions).

Key words. cryptology, public-key encryption, fully homomorphic encryption, learning with
errors, private information retrieval

AMS subject classifications. 94A60, 68P25

DOI. 10.1137/120868669

1. Introduction. Fully homomorphic encryption is one of the holy grails of
modern cryptography. In a nutshell, a fully homomorphic encryption (FHE) scheme
is an encryption scheme that allows evaluation of arbitrarily complex programs on
encrypted data. The problem was suggested by Rivest, Adleman, and Dertouzos
[RAD78] back in 1978, yet the first plausible candidate came thirty years later with
Gentry’s breakthrough work in 2009 [Gen09b, Gen10] (although there had been partial
progress in the meanwhile [GM82, Pai99, BGN05, IP07]).

Gentry’s breakthrough work demonstrated the first construction of fully homo-

∗Received by the editors March 5, 2012; accepted for publication (in revised form) December
23, 2013; published electronically April 29, 2014. A preliminary version of this paper appeared in
Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, 2011, pp.
97–106. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to do so, for U.S. Government purposes. The
views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of DARPA
or the U.S. Government.

http://www.siam.org/journals/sicomp/43-2/86866.html
†Computer Science Department, Weizmann Institute of Science, Rehovot 7610001 Israel (zvika.

brakerski@weizmann.ac.il). The majority of this work was done while this author was a student
at the Weizmann Institute of Science, Israel, and was supported by ISF grant 710267, BSF grant
710613, and NSF contracts CCF-1018064 and CCF-0729011.

‡Mathematical and Computational Sciences, University of Toronto, Mississauga, ON L5L 106,
Canada, and MIT CSAIL, Cambridge, MA 02139 (vinodv@csail.mit.edu). Part of this work was
done while this author was at Microsoft Research, Redmond. This author’s work was partially
supported by an NSERC Discovery grant, an Alfred P. Sloan Research Fellowship, a Connaught New
Researcher Award, and by DARPA under agreement FA8750-11-2-0225.

831

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/158414849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sicomp/43-2/86866.html
mailto:zvika.brakerski@weizmann.ac.il
mailto:zvika.brakerski@weizmann.ac.il
mailto:vinodv@csail.mit.edu

832 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

morphic encryption in 2009. However, his solution involved new and relatively untested
cryptographic assumptions. Our work aims to put fully homomorphic encryption on
firm grounds by basing it on the hardness of standard, well-studied mathematical
problems.

The main building block in Gentry’s construction (a so-called somewhat homo-
morphic encryption scheme) was based on the (worst-case, quantum) hardness of
problems on ideal lattices.1 Although lattices have become standard fare in cryptog-
raphy and lattice problems have been relatively well studied, ideal lattices are a special
breed that we know relatively little about. Ideals are a natural mathematical object
to use to build fully homomorphic encryption in that they natively support both addi-
tion and multiplication (whereas lattices are closed under addition only). Indeed, all
subsequent constructions of fully homomorphic encryption [SV10, DGHV10, BV11a]
relied on ideals in various rings in an explicit way. Our first contribution is the
construction of a “somewhat” homomorphic encryption scheme whose security relies
solely on the (worst-case, classical) hardness of standard problems on arbitrary (not
necessarily ideal) lattices.

Second, in order to achieve full homomorphism, Gentry had to go through a
so-called squashing step which forced him to make an additional, strong hardness
assumption, namely, the hardness of the (average-case) sparse subset-sum problem.
As if by a strange law of nature, all the subsequent solutions encountered the same
difficulty as Gentry did in going from a “somewhat” to a fully homomorphic encryp-
tion, and they all countered this difficulty by relying on the same sparse subset-sum
assumption. This additional assumption was considered to be the main caveat of
Gentry’s solution, and removing it has perhaps been the main open problem in the
design of FHE schemes. Our second contribution is to remove the necessity of this
additional assumption.

Thus, in a nutshell, we construct an FHE scheme whose security is based on the
classical hardness of solving standard lattice problems in the worst case. Specifically,
our scheme is based on the learning with errors (LWE) assumption that is known to be
at least as difficult as solving hard problems in general lattices. Thus our solution does
not rely on lattices directly and is fairly natural to understand and implement. Under
this assumption, we achieve a leveled FHE scheme, which can evaluate polynomial-size
circuits with a priori bounded (but arbitrary) depth. An FHE scheme independent
of the circuit depth can be obtained by making an additional “circular security”
assumption (see section 3).

To achieve our goals, we deviate from two paradigms that ruled the design of (a
handful of) candidate FHE schemes [Gen09b, SV10, DGHV10, BV11a]:

1. We introduce the relinearization technique and show how to use it to obtain
a somewhat homomorphic encryption that does not require hardness assump-
tions on ideals.

2. We present a dimension-modulus reduction technique that turns our some-
what homomorphic scheme into a fully homomorphic one, without the need
for the seemingly artificial squashing step and the sparse subset-sum assump-
tion.

We provide a detailed overview of these new techniques in sections 1.1 and 1.2 below.
Interestingly, the ciphertexts of the resulting fully homomorphic scheme are very

short. This is a desirable property which we use, in conjunction with other techniques,

1Roughly speaking, ideal lattices correspond to a geometric embedding of an ideal in a number
field. See [LPR10] for a precise definition.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 833

to achieve very efficient private information retrieval protocols. See also section 1.3
below.

1.1. Relinearization: Somewhat homomorphic encryption without ide-
als. The starting point of Gentry’s construction is a “somewhat” homomorphic en-
cryption scheme. For a class of circuits C, a C-homomorphic scheme is one that allows
evaluation of any circuit in the class C. The simple, yet striking, observation in Gen-
try’s work is that if a (slightly augmented) decryption circuit for a C-homomorphic
scheme resides in C, then the scheme can be converted (or “bootstrapped”) into an
FHE scheme.

It turns out that encryption schemes that can evaluate a nontrivial number of ad-
dition and multiplication operations2 are already quite hard to come by (even without
requiring that they be bootstrappable).3 Gentry’s solution to this was based on the
algebraic notion of ideals in rings. In a very high level, the message is considered
to be a ring element, and the ciphertext is the message masked with some “noise.”
The novelty of this idea is that the noise itself belonged to an ideal I. Thus, the
ciphertext is of the form m + xI (for some x in the ring). Observe right off the bat
that the scheme is born additively homomorphic; in fact, that will be the case with
all the schemes we consider in this paper. The ideal I has two main properties: first,
a random element in the ideal is assumed to “mask” the message; and second, it is
possible to generate a secret trapdoor that “annihilates” the ideal, i.e., implementing
the transformation m + xI → m. The first property guarantees security, while the
second enables decrypting ciphertexts. Letting c1 and c2 be encryptions of m1 and
m2, respectively,

c1c2 = (m1 + xI)(m2 + yI) = m1m2 + (m1y +m2x+ xyI)I = m1m2 + zI .

When decrypting, the ideal is annihilated and the product m1m2 survives. Thus, c1c2
is indeed an encryption of m1m2, as required. This nifty solution required, as per
the first property, a hardness assumption on ideals in certain rings. Gentry’s original
work relied on hardness assumptions on ideal lattices, while van Dijk et al. [DGHV10]
presented a different instantiation that considered ideals over the integers.

Our somewhat homomorphic scheme is based on the hardness of the “learning
with errors” (LWE) problem, first presented by Regev [Reg05]. The LWE assumption
states that if s ∈ Z

n
q is an n-dimensional “secret” vector, any polynomial number

of “noisy” random linear combinations of the coefficients of s are computationally
indistinguishable from uniformly random elements in Zq. Mathematically,{

ai, 〈ai, s〉+ ei
}poly(n)
i=1

c≈
{
ai, ui

}poly(n)
i=1

,

where ai ∈ Z
n
q and ui ∈ Zq are uniformly random, and the “noise” ei is sampled

from a noise distribution that outputs numbers much smaller than q (an example is
a discrete Gaussian distribution over Zq with small standard deviation).

2All known schemes, including ours, treat evaluated functions as arithmetic circuits. Hence we
use the terminology of “addition and multiplication” gates. The conversion to the Boolean model
(AND, OR, NOT gates) is immediate.

3We must mention here that we are interested only in compact FHE schemes, namely, those where
the ciphertexts do not grow in size with each homomorphic operation. We will also look at mildly
noncompact homomorphic encryption schemes where the ciphertexts grow as a sublinear function of
the size of the evaluated circuit. If we do allow the ciphertexts to grow linearly with the size of the
evaluated circuit, a number of solutions are possible. See, e.g., [SYY99, GHV10a, MGH10].

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

834 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

The LWE assumption does not refer to ideals, and indeed, the LWE problem is at
least as hard as finding short vectors in any lattice, as follows from the worst-case to
average-case reductions of Regev [Reg05] and Peikert [Pei09]. As mentioned earlier,
we have a much better understanding of the complexity of lattice problems (thanks
to [LLL82, Ajt98, Mic00] and many others), compared to the corresponding problems
on ideal lattices. In particular, despite considerable effort, the best known algorithms
for solving the LWE problem run in time nearly exponential in the dimension n.4

The LWE assumption also turns out to be particularly amenable to the construction
of simple, efficient, and highly expressive cryptographic schemes (see, e.g., [Reg05,
GPV08, AGV09, ACPS09, CHKP10, ABB10] and many others). Our construction
of an FHE scheme from LWE is perhaps a very strong testament to its power and
elegance.

Constructing a (secret-key) encryption scheme whose security is based on the LWE
assumption is rather straightforward. To encrypt a bit m ∈ {0, 1} using secret key
s ∈ Z

n
q , we choose a random vector a ∈ Z

n
q and a “noise” e and output the ciphertext

c = (a, b = 〈a, s〉+ 2e+m) ∈ Z
n
q × Zq .

The key observation in decryption is that the two “masks”—namely, the secret
mask 〈a, s〉 and the “even mask” 2e—do not interfere with each other.5 That is, one
can decrypt this ciphertext by annihilating the two masks, one after the other: The
decryption algorithm first recomputes the mask 〈a, s〉 and subtracts it from b, resulting
in 2e+m (mod q).6 If we choose e to be small enough, then 2e+m (mod q) = 2e+m.
Removing the even mask is now easy—simply compute 2e+m modulo 2.7

As we will see below, the scheme is naturally additive homomorphic, yet multi-
plication presents a thorny problem. In fact, a recent work of Gentry, Halevi, and
Vaikuntanathan [GHV10b] showed that (a slight variant of) this scheme supports
just a single homomorphic multiplication, but at the expense of a huge blowup to the
ciphertext which made further advance impossible.

To better understand the homomorphic properties of this scheme, let us shift our
focus away from the encryption algorithm, onto the decryption algorithm. Given a
ciphertext (a, b), consider the symbolic linear function fa,b : Z

n
q → Zq defined as

fa,b(x) = b− 〈a,x〉 (mod q) = b−
n∑

i=1

a[i] · x[i] ∈ Zq ,

where x = (x[1], . . . ,x[n]) denotes the variables, and the ciphertext (a, b) defines the
public coefficients of the linear equation. Clearly, decryption of the ciphertext (a, b)
is nothing but evaluating this function on the secret key s (and then taking the result

4The nearly exponential time is for a large enough error (i.e., one that is a 1/poly(n) fraction of
the modulus q). For smaller errors, as we will encounter in our scheme, there are better—but not
significantly better—algorithms. In particular, if the error is a 1/2n

ε
fraction of the modulus q, the

best known algorithm runs in time approximately 2n
1−ε

.
5We remark that using 2e instead of e as in the original formulation of LWE does not adversely

impact security, so long as q is odd (since in that case 2 is a unit in Zq , and thus the transformation
(a, b) → (2a, 2b) is injective). This property has been used previously in [GHV10b].

6Throughout this paper, we use x (mod q) to denote the unique residue of x in the interval
[−q/2, q/2).

7Although our simplified presentation of Gentry’s scheme above seems to deal with just one
mask (the “secret mask”), in reality, the additional “even mask” existed in the schemes of [Gen09b,
DGHV10] as well. Roughly speaking, they needed this to ensure semantic security, as we do.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 835

modulo 2).8

Homomorphic addition and multiplication can now be described in terms of
this function f . Adding two ciphertexts corresponds to the addition of two linear
functions, which is again another linear function. In particular, f(a+a′,b+b′)(x) =
fa,b(x) + f(a′,b′)(x) is the linear function corresponding to the “homomorphically
added” ciphertext (a + a′, b + b′). Similarly, multiplying two such ciphertexts cor-
responds to a symbolic multiplication of these linear equations,

f(a,b)(x) · f(a′,b)(x) =
(
b−

∑
a[i]x[i]

)
·
(
b′ −

∑
a′[i]x[i]

)
= h0 +

∑
hi · x[i] +

∑
hi,j · x[i]x[j] ,

which results in a degree-2 polynomial in the variables x = (x[1], . . . ,x[n]), with coef-
ficients hi,j that can be computed from (a, b) and (a′, b′) by opening the parentheses
of the expression above. Decryption, as before, involves evaluating this quadratic ex-
pression on the secret key s (and then reducing modulo 2). We now run into a serious
problem—the decryption algorithm has to know all the coefficients of this quadratic
polynomial, which means that the size of the ciphertext just went up from n + 1
elements to (roughly) n2/2.

This is where our relinearization technique comes into play. Relinearization is a
way to reduce the size of the ciphertext back down to n + 1. The main idea is the
following: imagine that we publish “encryptions” of all the linear and quadratic terms
in the secret key s, namely, all the numbers s[i] as well as s[i]s[j], under a new secret
key t. Thus, these ciphertexts (for the quadratic terms) look like (ai,j , bi,j), where

bi,j = 〈ai,j , t〉+ 2ei,j + s[i] · s[j] ≈ 〈ai,j , t〉+ s[i] · s[j] , 9

where the expression x ≈ y means that the absolute difference between x and y is
small.

Now, the sum h0 +
∑
hi · s[i] +

∑
hi,j · s[i]s[j] can be written (approximately) as

h0 +
∑

hi(bi − 〈ai, t〉) +
∑
i,j

hi,j · (bi,j − 〈ai,j , t〉) ,

which, lo and behold, is a linear function in t! The bottom line is that multiplying the
two linear functions f(a,b) and f(a′,b′) and then relinearizing the resulting expression
results in a linear function (with n+1 coefficients), whose evaluation on the new secret
key t results in the product of the two original messages (upon reducing modulo 2).
The resulting ciphertext is simply the coefficients of this linear function, of which
there are at most n+1. This ciphertext will decrypt to m ·m′ using the secret key t.

In this semiformal description, we ignored an important detail which has to do
with the fact that the coefficients hi,j are potentially large. Thus, even though (bi,j −
〈ai,j , t〉) ≈ s[i]s[j], it may be the case that hi,j · (bi,j −〈ai,j , t〉) �≈ hi,j · s[i]s[j]. This is
handled by considering the binary representation of hi,j , namely, hi,j =

∑�log q�
τ=0 2τ ·

hi,j,τ . If, for each value of τ , we had a pair (ai,j,τ , bi,j,τ) such that

bi,j,τ = 〈ai,j,τ , t〉+ 2ei,j,τ + 2τs[i] · s[j] ≈ 〈ai,j,τ , t〉+ 2τs[i] · s[j] ,

8The observation that an LWE-based ciphertext can be interpreted as a linear equation of the
secret was also used in [BV11a].

9Actually, calling these “encryptions” is inaccurate: s[i]·s[j] ∈ Zq is not a single bit, and therefore
the “ciphertext” cannot be decrypted. However, we feel that thinking of these as encryptions may
benefit the reader’s intuition.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

836 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

then indeed

hi,j · s[i]s[j] =
�log q�∑
τ=0

hi,j,τ2
τs[i]s[j] ≈

�log q�∑
τ=0

hi,j,τ (bi,j,τ − 〈ai,j,τ , t〉)

since hi,j,τ ∈ {0, 1}. That is, the solution is to publish the “encryptions” of all the
2τ -multiples of s[i]s[j], instead of just the encryptions of s[i]s[j]. This increases the
number of pairs we need to post by a factor of (�log q	+ 1), which is polynomial.

This process allows us to do one multiplication without increasing the size of
the ciphertext and obtain an encryption of the product under a new secret key. But
why stop at two keys s and t? Posting a “chain” of L secret keys (together with
encryptions of quadratic terms of one secret key using the next secret key) allows us
to perform up to L levels of multiplication without blowing up the ciphertext size. It
is possible to achieve multiplicative depth L = ε logn (which corresponds to a degree
D = nε polynomial) for an arbitrary constant ε < 1 under reasonable assumptions,
but beyond that, the growth of the error in the ciphertext kicks in and destroys the
ciphertext. Handling this requires us to use the machinery of bootstrapping, which
we explain in the next section.

In conclusion, the above technique allows us to remove the need for “ideal as-
sumptions” and obtain somewhat homomorphic encryption from LWE. This scheme
will be a building block towards our full construction and is formally presented in
section 4.1.

1.2. Dimension-modulus reduction: Fully homomorphic encryption
without squashing. As explained above, the “bootstrapping” method for achiev-
ing full homomorphism requires a C-homomorphic scheme whose decryption circuit
resides in C. All prior somewhat homomorphic schemes fell short in this category
and failed to achieve this requirement in a natural way. Thus Gentry, followed by
all subsequent schemes, resorted to “squashing”: a method for reducing the decryp-
tion complexity at the expense of making an additional and fairly strong assumption,
namely, the sparse subset-sum assumption.

We show how to “upgrade” our somewhat homomorphic scheme (explained in
section 1.1) into a scheme that enjoys the same amount of homomorphism but has a
much smaller decryption circuit. All of this is done without making any additional
assumption (beyond LWE)!

Our starting point is the somewhat homomorphic scheme from section 1.1. Recall
that a ciphertext in that scheme is of the form (a, b = 〈a, s〉 + 2e +m) ∈ Z

n
q × Zq,

and decryption is done by computing (b − 〈a, s〉 mod q) (mod 2). One can verify
that this computation, presented as a polynomial in the bits of s, has degree at
least max(n, log q), which is more than the maximal degree D that our scheme can
homomorphically evaluate. The bottom line is that decryption complexity is governed
by (n, log q), which are too big for our homomorphism capabilities.

Our dimension-modulus reduction idea enables us to take a ciphertext with pa-
rameters (n, log q) as above, and convert it into a ciphertext of the same message,
but with parameters (k, log p), which are much smaller than (n, log q). To give a hint
as to the magnitude of improvement, we typically set k to be of size the security
parameter and p = poly(k). We can then set n = kc for essentially any constant c,
and q = 2n

ε

. We will thus be able to homomorphically evaluate functions of degree
roughlyD = nε = kc·ε, and we can choose c to be large enough so that this is sufficient
to evaluate the (k, log p) decryption circuit.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 837

In order to understand dimension-modulus reduction technically, we go back to
relinearization. We showed above that, posting proper public parameters, one can
convert a ciphertext (a, b = 〈a, s〉+ 2e+m) that corresponds to a secret key s into a
ciphertext (a′, b′ = 〈a′, t〉+2e′+m) that corresponds to a secret key t.10 The crucial
observation is that s and t need not have the same dimension n. Specifically, if we
choose t to be of dimension k, the procedure still works. This brings us down from
(n, log q) to (k, log q), which is a big step but still not sufficient.

Having the above observation in mind, we wonder whether we can take t to have
not only low dimension but also small modulus p, thus completing the transition from
(n, log q) to (k, log p). This is indeed possible using some additional ideas, where the
underlying intuition is that Zp can “approximate” Zq by simple scaling, up to a small
error.

The public parameters for the transition from s to t will be (ai,τ , bi,τ) ∈ Z
k
p ×Zp,

where

bi,τ = 〈ai,τ , t〉+ e+

⌊
p

q
· 2τ · s[i]

⌉
.11

Namely, we scale 2τ · s[i] ∈ Zq into an element in Zp by multiplying by p/q and
rounding. The rounding incurs an additional error of magnitude at most 1/2. It
follows that

2τ · s[i] ≈ q

p
· (bi,τ − 〈ai,τ , t〉) ,

which enables converting a linear equation in s into a linear equation in t. The result
of dimension-modulus reduction, therefore, is a ciphertext (â, b̂) ∈ Z

k
p × Zp such that

b̂ − 〈â, t〉 = m + 2ê. For security, we need to assume the hardness of LWE with
parameters k, p. We can show that in the parameter range we use, this assumption is
as hard as that used for the somewhat homomorphic scheme.12

In conclusion, dimension-modulus reduction allows us to achieve a bootstrappable
scheme, based on the LWE assumption alone. We refer the reader to section 4 for the
formal presentation and full analysis of our entire solution. Specifically, dimension-
modulus reduction is used for the scheme in section 4.2.

As a nice byproduct of this technique, the ciphertexts of the resulting fully ho-
momorphic scheme become very short! They now consist of (k+1) log p = O(k log k)
bits. This is a desirable property which is also helpful in achieving efficient private
information retrieval protocols (see below).

1.3. Near-optimal private information retrieval. Private information re-
trieval (PIR) was introduced in the seminal work of Chor et al. [CKGS98]. In (single-
server) PIR protocols, a very large database is maintained by a sender (the sender
is also sometimes called the server, or the database). A receiver wishes to obtain

10In the previous section, we applied relinearization to a quadratic function of s, while here we
apply it to the ciphertext (a, b) that corresponds to a linear function of s. This only makes things
easier.

11A subtle technical point refers to the use of an error term e, instead of 2e as we did for re-
linearization. The reason is roughly that q

p
· 2 is noninteger. Therefore we “divide by 2” before

performing the dimension reduction and “multiply back” by 2 after.
12For the informed reader we mention that while k, p are smaller than n, q and therefore seem to

imply lesser security, we are able to use much higher relative noise in our k, p scheme since it need
not support homomorphism. Hence the two assumptions are of roughly the same hardness.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

838 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

a specific entry in the database, without revealing any information about the entry
to the server. Typically, we consider databases that are exponential in the security
parameter, and hence we wish that the receiver’s running time and communication
complexity are polylogarithmic in the size of the database N (at least logN bits are
required to specify an entry in the database). Chor et al. [CKGS98] showed that with-
out computational assumptions, any single-server PIR protocol has to communicate
Ω(N) bits. Kushilevitz and Ostrovsky [KO97] were the first to break this barrier: they
constructed a single-server PIR protocol with communication complexity O(N ε) (for
any ε > 0), under the quadratic residuosity assumption [GM82]. The first polylog-
arithmic candidate protocol was presented by Cachin, Micali, and Stadler [CMS99],
and additional polylogarithmic protocols were introduced by Lipmaa [Lip05] and by
Gentry and Ramzan [GR05]. The last one achieves the best communication com-

plexity of O(log3−o(1)(N)).13 The latter two protocols achieve constant amortized
communication complexity when retrieving large consecutive blocks of data. See a
survey in [OS07] for more details on these schemes.

Fully homomorphic, or even somewhat homomorphic, encryption is known to
imply polylogarithmic PIR protocols.14 Most trivially, the receiver can encrypt the
index it wants to query, and the database will use that to homomorphically evaluate
the database access function, thus retrieving an encryption of the answer and sending
it to the receiver. The total communication complexity of this protocol is the sum of
lengths of the public key, encryption of the index, and output ciphertext. However,
the public key is sent only once, it is independent of the database and the query, and
it can be used for many queries. Therefore it is customary to analyze such schemes in
the public-key model, where sending the public key does not count towards the com-
munication complexity. Gentry [Gen09a] proposes using his somewhat homomorphic
scheme towards this end, which requires O(log3N) bit communication.15 We show
how, using our somewhat homomorphic scheme, in addition to new ideas, we can bring
down communication complexity to a near optimal logN · polyloglogN (one cannot

do better than logN). To obtain the best parameters, one needs to assume 2
˜Ω(k)-

hardness of polynomial-factor approximation for short vector problems in arbitrary
dimension k lattices, which is supported by current knowledge. Details follow.

A major obstacle in the naive use of somewhat homomorphic encryption for PIR
is that homomorphism is obtained with respect to the Boolean representation of the
evaluated function. Therefore, the receiver needs to encrypt the index to the database
in a bit-by-bit manner. The query is then composed of logN ciphertexts, which
necessitate at least log2N bits of communication. As a first improvement, we notice
that the index need not be encrypted under the somewhat homomorphic scheme.
Rather, we can encrypt using any symmetric encryption scheme. The database will
receive an encrypted symmetric key (under the homomorphic scheme), which will
enable it to convert symmetric ciphertexts into homomorphic ciphertexts without
additional communication. The encrypted secret key can be sent as a part of the public

13It is hard to compare the performance of different PIR protocols due to the multitude of pa-
rameters. To make things easier to grasp, we compare the protocols on equal grounds: We assume
that the database size and the adversary’s running time are exponential in the security parameter
and assume the maximal possible hardness of the underlying assumption against known attacks. We
also assume that each query retrieves a single bit. We will explicitly mention special properties of
individual protocols that are not captured by this comparison.

14To be precise, one needs such schemes to be subexponentially secure.
15Gentry does not provide a detailed analysis of this scheme; the above is based on our analysis

of its performance.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 839

key, as it is independent of the query. This, of course, requires that our somewhat
homomorphic scheme can homomorphically evaluate the decryption circuit of the
symmetric scheme. Fully homomorphic schemes will certainly be adequate for this
purpose, but known somewhat homomorphic schemes are also sufficient (depending on
the symmetric scheme to be used). Using the most communication efficient symmetric
scheme, we bring down the query complexity to O(logN). This technique is in fact
generic and can be used to reduce the communication complexity in other applications
of homomorphic encryption (see section 5.3).

The improvement we achieve in the length of the sender’s response comes from the
fact that our dimension-modulus reduction technique guarantees very short cipher-
texts (essentially as short as nonhomomorphic LWE-based schemes). This translates
into logN · polyloglogN bits per ciphertext, and the communication complexity of
our protocol follows. We remark that in terms of retrieving large blocks of consecu-
tive data, one can slightly reduce the overhead to O(logN) bits of communication for
every bit of retrieved data. We leave it as an open problem to bring the amortized
communication down to a constant. See section 5 for the full details.

Prior to this work, it was not at all known how to achieve even polylogarithmic
PIR under the LWE assumption. We stress that even if the size of the public key does
count towards the communication complexity, our protocol still has polylogarithmic
communication.

1.4. Dual-Regev encryption and identity-based encryption. Gentry, Peik-
ert, and Vaikuntanathan [GPV08] present a “dual” LWE-based encryption scheme,
where the roles of the key generation and the encryption procedure are reversed.
Interestingly, their ciphertext takes the same form as in Regev’s scheme (namely,
(a, b = 〈a, s〉 + 2e +m), albeit with higher dimensional vectors and different distri-
bution of a, e). All of our techniques can therefore be applied just as well to the
dual scheme, resulting in a scheme with slightly longer parameters but with other
interesting properties.

Using the above observation, and using any of the known LWE-based identity-
based encryption (IBE) constructions (see, e.g., [GPV08, CHKP10, ABB10]), we can
derive a limited form of fully homomorphic identity-based encryption (FH-IBE): A
scheme where encrypting messages for a user requires only his identity and (global)
public parameters, but performing homomorphic operations on this ciphertext re-
quires additional (user-specific) “homomorphism parameters,” which can be computed
using the (individual) secret key.

While limited FH-IBE can be achieved generically by combining any IBE scheme
with any fully homomorphic scheme,16 the above construction is more natural and
can hopefully be a stepping stone towards full-fledged FH-IBE. Indeed, very recently,
Gentry, Sahai, and Waters [GSW13] realized the aforementioned outline using a vari-
ant of our scheme.

1.5. Other related work.
First generation. The first generation of fully homomorphic encryption includes

Gentry’s scheme (and a variant thereof by Smart and Vercauteren [SV10] and an op-
timization by Stehlé and Steinfeld [SS10]), as well as two followup works that followed
similar principles [DGHV10, BV11a]. These works followed Gentry’s blueprint and
presented somewhat homomorphic encryption schemes which were not bootstrappable
and required the use of squashing. Once squashing is applied, the scheme can be boot-

16We thank Benny Applebaum for pointing this out to us.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

840 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

strapped and leveled fully homomorphic encryption can be obtained. For a nonleveled
scheme, a weak circular security assumption needed to be made. The security of these
first generation schemes relied on that of the somewhat homomorphic component, in
addition to the sparse subset-sum assumption (and weak circular security to remove
the “leveled” constraint).

The novelty in [DGHV10, BV11a] was the construction of new somewhat homo-
morphic components, which were different from Gentry’s. The first of these schemes
is due to van Dijk et al. [DGHV10]. Their scheme works over the integers and relies on
a new assumption which, roughly speaking, states that finding the greatest common
divisor of many “noisy” multiples of a number is computationally hard. They cannot,
however, reduce their assumption to worst-case hardness. The second is a recent work
of Brakerski and Vaikuntanathan [BV11a], who construct a somewhat homomorphic
encryption scheme based on the ring LWE problem [LPR10] whose security can be
reduced to the worst-case hardness of problems on ideal lattices.

The efficiency of implementing Gentry’s scheme also gained much attention. Smart
and Vercauteren [SV10], as well as Gentry and Halevi [GH11b], conduct a study on
reducing the complexity of implementing the scheme.

Second generation. This work puts forth a second generation of fully homomor-
phic schemes that do not require squashing, as described above.

In a recent independent work, Gentry and Halevi [GH11a] showed how the sparse
subset-sum assumption can be replaced by either the (decisional) Diffie–Hellman as-
sumption or an ideal lattice assumption, by representing the decryption circuit as an
arithmetic circuit with only one level of (high fan-in) multiplication.

Followup work. We now describe some followup work that appeared since the pub-
lication of the conference version of this paper [BV11b]. First, the work of Brakerski,
Gentry, and Vaikuntanathan [BGV12] presented a considerable refinement and sim-
plification of our modulus reduction technique and used it to construct a leveled FHE
scheme without bootstrapping. Whereas we use modulus reduction in “one shot” to
reduce the size of the ciphertext, their main insight is to use it in an “iterative” way to
carefully manage the growth of noise in the ciphertext and ultimately achieve leveled
fully homomorphic encryption without using bootstrapping altogether. We point out
that in order to achieve a true (nonleveled) FHE scheme, both our methods as well as
the result of [BGV12] need bootstrapping and, consequently, “circular security”-type
assumptions. Removing these remains a very important open problem in the design
of fully homomorphic encryption. Brakerski [Bra12] simplified this construction and
improved the underlying assumptions.

Our relinearization and dimension-modulus reduction techniques are quite gen-
eral, and they can be applied to a number of other somewhat homomorphic encryption
schemes. We list two such examples below.

Most notably, the work of Gentry, Halevi, and Smart [GHS12b, GHS12a] presents
a number of clever optimization techniques that apply to the ring LWE-based scheme
from [BV11a] combined with the modulus reduction technique from this work, in
order to encrypt and operate on many bits at once (the so-called SIMD mode).

FHE schemes operate on ciphertexts encrypted under the same key. Quite re-
cently, Lopéz-Alt, Tromer, and Vaikuntanathan [LATV12] constructed a multikey
FHE scheme that can operate on encryptions under different, unrelated public keys.
The resulting ciphertext after homomorphic evaluation can be decrypted using the
knowledge of all the constituent secret keys. Their construction is based on the NTRU
encryption scheme [HPS98] and uses our relinearization and modulus reduction tech-
niques to turn NTRU into a (multikey) FHE scheme.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 841

As mentioned above, Gentry, Sahai, and Waters [GSW13] recently showed how to
achieve an FHE scheme that does not require additional auxiliary information for the
homomorphic evaluation. This scheme uses matrices for ciphertexts instead of vec-
tors. This allows them to implement our outline above to achieve fully homomorphic
identity-based encryption, as well as fully homomorphic attribute-based encryption.

Our FHE schemes are based on the hardness of subexponential approximations to
the lattice shortest vector problem (more precisely, gapSVP), whereas the improved
scheme of [BGV12] and followup works [GHS12b, GHS12a, GSW13] are based on
the hardness of quasi-polynomial approximations. Building on the work of Gentry,
Sahai, and Waters [GSW13], Brakerski and Vaikuntanathan [BV14] recently showed
how to obtain a leveled FHE scheme assuming the classical hardness of O(n2+ε)-
approximating (or the quantum hardness of O(n1.5+ε)-approximating) gapSVP on n-
dimensional lattices (for any ε > 0), matching the best known approximation factors
for regular, nonhomomorphic, public-key encryption [Reg05] to within ε.

Our modulus reduction technique has also found other applications outside of fully
homomorphic encryption. A recent work of Brakerski et al. [BLP+13] uses insights
from the modulus reduction technique in order to show classical reductions between
instances of the LWE problem of different moduli. In particular, this implies a classical
reduction from worst-case gapSVP to LWE of any modulus, which was previously only
known for exponentially large moduli [Pei09].

1.6. Paper organization. Some preliminaries and notation are described in
section 2. We formally define somewhat and fully homomorphic encryption and
present the bootstrapping theorem in section 3. The main technical section of this
paper is section 4, where our scheme is presented and fully analyzed. Finally, our PIR
protocol is presented in section 5.

2. Preliminaries.
Notation. Let D denote a distribution over some finite set S. Then, x

$← D will

denote the fact that x is chosen from the distribution D. When we write x
$← S,

we simply mean that x is sampled from the uniform distribution over S. Unless
explicitly mentioned, all logarithms are to base 2. All arithmetics are performed over
the integers (or reals). Modular arithmetic will be explicitly pointed out.

In this work, we utilize “noise” distributions over integers. The only property
of these distributions we use is their magnitude. Hence, we define a B-bounded
distribution to be a distribution over the integers where the magnitude of a sample is
bounded. A definition follows.

Definition 2.1 (B-bounded distributions). A distribution ensemble {χn}n∈N is
called B-bounded if it is only supported over Z ∩ [−B,B].

We denote scalars in plain lowercase (e.g., x), vectors in bold lowercase (e.g., v),
and matrices in bold uppercase (e.g., A). The �i norm of a vector is denoted by
‖v‖i. Inner product is denoted by 〈v,u〉; recall that 〈v,u〉 = vT · u. Let v be an
n-dimensional vector. For all i = 1, . . . , n, the ith element in v is denoted by v[i]. We
use the convention that v[0] � 1.

We use the following variant of the leftover hash lemma [ILL89], stated in terms
of distinguishing advantage.

Lemma 2.2 (matrix-vector leftover hash lemma). Let κ ∈ N, n ∈ N, q ∈ N, and

m ≥ n log q + 2κ. Let A
$← Z

m×n
q be a uniformly random matrix, let r

$← {0, 1}m,

and let y
$← Z

n
q . Then for any function f ,∣∣Pr[f(A,AT r) = 1]− Pr[f(A,y) = 1]

∣∣ ≤ 2−κ .

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

842 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

Computational model. Throughout this work, our model of efficient computation
is families of polynomial time algorithms, which can be uniform or nonuniform. All
algorithms and security reductions we present are uniform and thus preserve the
uniformity of the underlying security assumption. Our running time analysis will
always be asymptotic. For the sake of readability, “an efficient algorithm A” will refer
to an ensemble indexed by the security parameter {Aκ}κ∈N. Similarly “an algorithm
A running in time t” will refer to an ensemble {Aκ}κ∈N in which each Aκ runs in
time at most t(κ). In a uniform setting A is a Turing machine, and Aκ = A(1κ).

2.1. Learning with errors (LWE). The LWE problem was introduced by Regev
[Reg05] as a generalization of “learning parity with noise.” For positive integers n
and q ≥ 2, a vector s ∈ Z

n
q , and a probability distribution χ on Zq, let As,χ be the

distribution obtained by choosing a vector a
$← Z

n
q uniformly at random and a noise

term e
$← χ and outputting (a, 〈a, s〉+ e) ∈ Z

n
q × Zq. A formal definition follows.

Definition 2.3 (LWE). For an integer q = q(n) and an error distribution χ =
χ(n) over Zq, the LWE problem LWEn,m,q,χ is defined as follows: Given m independent
samples from As,χ (for some s ∈ Z

n
q), output s with noticeable probability.

The (average-case) decision variant of the LWE problem, denoted by DLWEn,m,q,χ,
is to distinguish (with nonnegligible advantage) m samples chosen according to As,χ

(for uniformly random s
$← Z

n
q) from m samples chosen according to the uniform

distribution over Z
n
q × Zq. We denote by DLWEn,q,χ the variant where the adversary

gets oracle access to As,χ and is not a priori bounded in the number of samples.
For an algorithm B and security parameter κ, we denote

DLWEn,q,χAdv[B] �
∣∣∣Pr [BAs,χ(1κ) = 1

]
− Pr

[
BU(Zn

q ×Zq)(1κ) = 1
]∣∣∣ .

For cryptographic applications, we are primarily interested in the average case

decision problem DLWE, where s
$← Z

n
q . There are known quantum [Reg05] and classi-

cal [Pei09] reductions between DLWEn,m,q,χ and approximating short vector problems
in worst-case lattices. Specifically, these reductions take χ to be (discretized versions
of) the Gaussian distribution. These distributions can easily be made B-bounded for
an appropriate B by rejection sampling without affecting the validity of the reduction.
Since the exact distribution χ does not matter for our results, we state a corollary of
the results of [Reg05, Pei09] in terms of the bound on the distribution.

Corollary 2.4 (see [Reg05, Pei09]). Let q = q(n) ∈ N be a product of co-
prime numbers q =

∏
qi such that for all i, qi = poly(n), and let B ≥ n. Then

there exists an efficiently sampleable B-bounded distribution χ such that if there is
an efficient algorithm that solves the (average-case) DLWEn,q,χ problem, then there
exists an efficient algorithm that approximates short vector problems in n-dimensional
lattices to within an Õ(n

√
n · q/B) factor. Specifically, we have the following:

• There is a quantum algorithm that solves SIVP
˜O(n

√
n·q/B) and gapSVP

˜O(n
√
n·q/B)

on any n-dimensional lattice and runs in time poly(n).
• There is a classical algorithm that solves the ζ-to-γ decisional shortest vector
problem gapSVPζ,γ, where γ = Õ(n

√
n · q/B), and ζ = Õ(q

√
n), on any

n-dimensional lattice and runs in time poly(n).
We refer the reader to [Reg05, Pei09] for the formal definition of these lattice

problems, as they have no direct connection to this work. We note here only that
the best known algorithms for these problems run in time nearly exponential in the
dimension n [AKS01, MV10]. More generally, the best algorithms that approximate

these problems to within a factor of 2k run in time 2Õ(n/k) [Sch87].

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 843

2.2. Symmetric encryption. A symmetric encryption scheme SYM =
(SYM.Keygen, SYM.Enc, SYM.Dec), over message space M = {Mκ}κ∈N, is a triple
of ppt algorithms as follows. We always denote the security parameter by κ.

• Key generation. The algorithm sk←SYM.Keygen(1κ) takes a unary rep-
resentation of the security parameter and outputs symmetric encryption/de-
cryption key sk.
• Encryption. The algorithm c←SYM.Encsk(μ) takes the symmetric key sk
and a message μ ∈Mκ and outputs a ciphertext c.
• Decryption. The algorithm μ∗←SYM.Decsk(c) takes the symmetric key sk
and a ciphertext c and outputs a message μ∗ ∈Mκ.

Correctness and security against chosen plaintext attacks (IND-CPA security) are
defined as follows.

Definition 2.5. A symmetric scheme SYM is correct if for all μ ∈ Mκ and all
sk←SYM.Keygen(1κ),

Pr[SYM.Decsk(SYM.Encsk(μ)) �= μ] = negl(κ) ,

where the probability is over the coins of SYM.Keygen, SYM.Enc.
Definition 2.6. Let t = t(κ), ε = ε(κ) be some functions. A symmetric scheme

SYM is (t, ε)-IND-CPA secure if for any adversary A that runs in time t it holds that∣∣∣Pr[ASYM.Encsk(·)(1κ) = 1]− Pr[ASYM.Encsk(0)(1κ) = 1]
∣∣∣ ≤ ε(κ) ,

where the probability is over sk←SYM.Keygen(1κ), the coins of SYM.Enc, and the
coins of the adversary A.

Namely, no adversary can distinguish between an oracle that encrypts messages of
its choice and an oracle that returns only encryptions of 0 (where 0 is some arbitrary
element in the message space).

3. Homomorphic encryption: Definitions and tools. In this section we
discuss the definition of homomorphic encryption and its properties, as well as some
related subjects. We start by defining homomorphic and fully homomorphic encryp-
tion in section 3.1. Then, in section 3.2 we discuss Gentry’s bootstrapping theorem.

We note that there are a number of ways to define homomorphic encryption and
to describe the bootstrapping theorem. We chose the definitions that best fit our
constructions, and we urge even the knowledgeable reader to go over them so as to
avoid confusion in interpreting our results.

3.1. Homomorphic encryption—definitions. We now define homomorphic
encryption and its desired properties. Throughout this section (and this work) we use
κ to indicate the security parameter. In addition, all schemes in this paper encrypt
bit by bit, and therefore our definitions refer only to this case. The generalization to
an arbitrary message space is immediate.

A homomorphic (public-key) encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of ppt algorithms as follows.
• Key generation. The algorithm (pk, evk, sk)←HE.Keygen(1κ) takes a unary

representation of the security parameter and outputs a public encryption key
pk, a public evaluation key evk, and a secret decryption key sk.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

844 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

• Encryption. The algorithm c←HE.Encpk(μ) takes the public key pk and a
single bit message μ ∈ {0, 1} and outputs a ciphertext c.
• Decryption. The algorithm μ∗←HE.Decsk(c) takes the secret key sk and a
ciphertext c and outputs a message μ∗ ∈ {0, 1}.
• Homomorphic evaluation. The algorithm cf←HE.Evalevk(f, c1, . . . , c�)
takes the evaluation key evk, a function f : {0, 1}� → {0, 1}, and a set of
� ciphertexts c1, . . . , c� and outputs a ciphertext cf .
The representation of the function f is an important issue. Since the represen-
tation can vary between schemes, we leave this issue outside of this syntactic
definition. We remark, however, that in this work, f will be represented by
an arithmetic circuit over GF(2).

We note that while one can treat the evaluation key as a part of the public key, as
has been done in the literature so far, we feel that there is an expository value to
treating it as a separate entity and to distinguishing between the public elements that
are used for encryption and those that are used only for homomorphic evaluation.

The only security notion we consider in this work is semantic security, namely,
security with respect to passive adversaries. We use its widely known formulation as
IND-CPA security, defined as follows.

Definition 3.1 (CPA security). A scheme HE is IND-CPA secure if for any
polynomial time adversary A it holds that

AdvCPA[A] � |Pr[A(pk, evk,HE.Encpk(0)) = 1]

− Pr[A(pk, evk,HE.Encpk(1)) = 1]| = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ).
In fact, based on the best known about lattices, the schemes we present in this

paper will be secure against even stronger adversaries. In order for our reductions
to make sense for such adversaries as well, we also consider a parameterized version
of CPA security. There, we allow the adversary to run in time t (which is typically
superpolynomial) and succeed with probability ε (which is typically subpolynomial).

Definition 3.2 ((t, ε)-CPA security). A scheme HE is (t, ε)-IND-CPA secure if
for any adversary A that runs in time t for t = t(κ) it holds that

AdvCPA[A] � |Pr[A(pk, evk,HE.Encpk(0)) = 1]

− Pr[A(pk, evk,HE.Encpk(1)) = 1]| ≤ ε = ε(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ).
We move on to define the homomorphism property. Note that we do not define

the “correctness” of the scheme as a separate property, but rather (some form of)
correctness will follow from our homomorphism properties.

We start by defining C-homomorphism, which is homomorphism with respect to a
specified class C of functions. This notion is sometimes also referred to as “somewhat
homomorphism.”

Definition 3.3 (C-homomorphism). Let C = {Cκ}κ∈N be a class of functions
(together with their respective representations). A scheme HE is C-homomorphic (or
homomorphic for the class C) if for any sequence of functions fκ ∈ Cκ and respective
inputs μ1, . . . , μ� ∈ {0, 1} (where � = �(κ)), it holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , c�)) �= f(μ1, . . . , μ�)] = negl(κ) ,

where (pk, evk, sk)←HE.Keygen(1κ) and ci←HE.Encpk(μi).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 845

We point out two important properties that the above definition does not require.
First of all, we do not require that the ciphertexts ci be decryptable themselves, only
that they become decryptable after homomorphic evaluation.17 Second, we do not
require that the output of HE.Eval undergo additional homomorphic evaluation.18

Before we define full homomorphism, let us define the notion of compactness.
Definition 3.4 (compactness). A homomorphic scheme HE is compact if there

exists a polynomial s = s(κ) such that the output length of HE.Eval(· · ·) is at most s
bits long (regardless of f or the number of inputs).

Note that a C-homomorphic scheme is not necessarily compact.
We give the minimal definition of fully homomorphic encryption, which suffices

for most applications.
Definition 3.5 (fully homomorphic encryption). A scheme HE is fully homo-

morphic if it is both compact and homomorphic for the class of all arithmetic circuits
over GF (2).

As in the definition of C-homomorphism, one can require that the outputs of
HE.Eval again be used as inputs for homomorphic evaluation (“multihop homomor-
phism”). Indeed, any bootstrappable scheme (see section 3.2 below), including ours,
has this additional property. However, due to the complexity of the formal definition
in this case, we refrain from presenting a formal definition.

An important relaxation of fully homomorphic encryption is the following.
Definition 3.6 (leveled fully homomorphic encryption). A leveled FHE scheme

is a homomorphic scheme where the HE.Keygen gets an additional input 1L (now
(pk, evk, sk)←HE.Keygen(1κ, 1L)) and the resulting scheme is homomorphic for all
depth-L binary arithmetic circuits. The bound s(κ) on the ciphertext length must
remain independent of L.

In most cases, the only parameter of the scheme that becomes dependent on L is
the bit-length of the evaluation key evk.

3.2. Gentry’s bootstrapping technique. In this section we formally define
the notion of a bootstrappable encryption scheme and present Gentry’s bootstrap-
ping theorem [Gen09b, Gen09a], which implies that a bootstrappable scheme can be
converted into a fully homomorphic one.

Definition 3.7 (bootstrappable encryption scheme). Let HE be C-homomorphic,
and let fadd and fmult be the the augmented decryption functions of the scheme defined
as

f c1,c2
add (s) = HE.Decs(c1) XOR HE.Decs(c2)

and

f c1,c2
mult (s) = HE.Decs(c1) AND HE.Decs(c2) ,

where c1, c2 are either properly encrypted ciphertexts of the scheme, or outputs of the
homomorphic evaluation function, applied to such.

Then E is bootstrappable if

{f c1,c2
add , f c1,c2

mult }c1,c2 ⊆ C .

17Jumping ahead, while this may seem strange at first, this notion of somewhat homomorphism is
all that is really required in order to bootstrap into full homomorphism, and it also makes our schemes
easier to describe. Finally, note that one can always perform a “blank” homomorphic operation and
then decrypt, so functionality is not hurt.

18This is termed “1-hop homomorphism” in [GHV10a].

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

846 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

Namely, the scheme can homomorphically evaluate fadd and fmult.
We describe two variants of Gentry’s bootstrapping theorem. The first implies

leveled fully homomorphic encryption but requires no additional assumption, while
the second makes an additional (weak) circular security assumption and achieves the
stronger (nonleveled) variant of Definition 3.5.

The first variant follows.
Theorem 3.8 (see [Gen09b, Gen09a]). Let HE be a bootstrappable scheme; then

there exists a leveled FHE scheme as per Definition 3.6.
Specifically, the leveled homomorphic scheme is such that only the length of the

evaluation key depends on the level L. All other parameters of the scheme are dis-
tributed identically regardless of the value of L.

For the second variant, we need to define circular security.
Definition 3.9 (weak circular security). A public-key encryption scheme

(Gen,Enc,Dec) is weakly circular secure if it is IND-CPA secure even for an adversary
with auxiliary information containing encryptions of all secret key bits: {Encpk(sk[i])}i.

Namely, no polynomial time adversary can distinguish an encryption of 0 from
an encryption of 1 even given the additional information.

We can now state the second theorem.
Theorem 3.10 (see [Gen09b, Gen09a]). Let HE be a bootstrappable scheme that

is also weakly circular secure. Then there is an FHE scheme as per Definition 3.5.
Finally, we want to make a statement regarding the ciphertext length of a boot-

strapped scheme. The following is implicit in [Gen09b, Gen09a].
Lemma 3.11. If a scheme FH is obtained from applying either Theorems 3.8 or

3.10 to a bootstrappable scheme HE, then both FH.Enc and FH.Eval produce ciphertexts
of the same length as HE.Eval (regardless of the length of the ciphertext produced by
HE.Enc).

4. The new FHE scheme. In this section, we present our FHE scheme and
analyze its security and performance. We present our scheme in a gradual manner.
First, in section 4.1 we present an LWE-based somewhat homomorphic scheme, SH,
that will serve as the building block for our construction (that scheme by itself is not
sufficient to achieve full homomorphism). The main technique used here is relineariza-
tion. Our bootstrappable scheme, BTS, which utilizes dimension-modulus reduction,
is presented in section 4.2. We then turn to analyzing the properties of BTS. In sec-
tion 4.3 we prove the security of the scheme based on LWE and discuss the worst-case
hardness that is implied by known reductions. In section 4.4 we analyze the homo-
morphic properties of SH and BTS, which enables us to prove (in section 4.5) that the
bootstrapping theorem is indeed applicable to BTS, and obtain a fully homomorphic
scheme based on LWE. We then discuss the parameters and efficiency of our scheme.

4.1. The scheme SH: A somewhat homomorphic encryption scheme.
We present a somewhat homomorphic public-key encryption scheme, based on our
relinearization technique, whose message space is GF(2).19 Let κ ∈ N be the security
parameter. The scheme is parameterized by a dimension n ∈ N, a positive integer
m ∈ N, an odd modulus q ∈ N (note that q need not be prime), and a noise distribution
χ over Zq, all of which are inherited from the LWE assumption we use. An additional
parameter of the scheme is a number L ∈ N which is an upper bound on the maximal

19It is quite straightforward to generalize the scheme to work over a message space GF(t), where
t is relatively prime to q. Since we mostly care about the binary case, we choose not to present this
generalization.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 847

multiplicative depth that the scheme can homomorphically evaluate.
During the exposition of the scheme, we invite the reader to keep the following

range of parameters in mind: the dimension n is polynomial in the security parameter
κ,m ≥ n log q+2κ is a polynomial in n, the modulus is an odd number, q ∈ [2n

ε

, 2·2nε

)
is subexponential in n (where ε ∈ (0, 1) is some constant), χ is some noise distribution
that produces small samples (say, of magnitude at most n) in Zq, and the depth bound
is L ≈ ε logn.
• Key generation SH.Keygen(1κ): For key generation, sample L+1 vectors s0, . . . , sL

$← Z
n
q and compute, for all � ∈ [L], 0 ≤ i ≤ j ≤ n, and τ ∈ {0, . . . , �log q	}, the

value
(1)

ψ�,i,j,τ :=

(
a�,i,j,τ , b�,i,j,τ :=〈a�,i,j,τ , s�〉+2·e�,i,j,τ+2τ ·s�−1[i]·s�−1[j]

)
∈ Z

n
q×Zq ,

where a�,i,j,τ
$← Z

n
q , e�,i,j,τ

$← χ (recall that, according to our notational conven-

tion, s�−1[0] � 1). We define Ψ � {ψ�,i,j,τ}�,i,j,τ to be the set of all these values.20

At this point, it may not yet be clear what the purpose of the 2τ factors is; indeed,
this will be explained later when we explain homomorphic multiplication.
Recalling our intuition from section 1.1, the keys s0, . . . , sL will correspond to
the L levels of homomorphic evaluation, and ψ�,i,j,τ are auxiliary parameters that
allow us to relinearize level �− 1 ciphertexts after homomorphic evaluation.

The key-generation algorithm proceeds to choose a uniformly random matrix A
$←

Z
m×n
q and a vector e

$← χm and compute b:=As0 + 2e (mod q) ∈ Z
m
q .

It then outputs the secret key sk = sL, the evaluation key evk = Ψ, and the public
key pk = (A,b).21

• Encryption SH.Encpk(μ): Recall that pk = (A,b). To encrypt a message μ ∈
GF(2), sample a vector r

$← {0, 1}m and set (just like in Regev’s scheme)

v:=AT r (mod q) and w:=bT r+ μ (mod q) .

The output ciphertext contains the pair (v, w), in addition to a “level tag” which
is used during homomorphic evaluation and indicates the “multiplicative depth”
where the ciphertext has been generating. For freshly encrypted ciphertext, there-
fore, the level tag is zero. Formally, the encryption algorithm outputs c:=((v, w), 0).
• Homomorphic evaluation SH.Evalevk(f, c1, . . . , ct) where f : {0, 1}t → {0, 1}: We
require that f be represented by a binary arithmetic circuit with “+” gates of
arbitrary fan-in and “×” gates with fan-in 2. We further require that the circuit
be layered, namely, that it be composed of homogeneous layers of either all “+”
gates or all “×” gates (it is easy to see that any arithmetic circuit can be converted
to this form). Finally, we require that the multiplicative depth of the circuit (the
total number of “×” layers) be exactly L.22

We homomorphically evaluate the circuit f gate by gate. Namely, we will show
how to perform homomorphic addition (of arbitrarily many ciphertexts) and ho-

20A knowledgeable reader may notice that the above is similar to encryptions of 2τ ·s�−1[i]·s�−1[j]
(mod q) via an LWE-based scheme, except this “ciphertext” is not decryptable since the “message”
is not a single bit value.

21The public key pk is essentially identical to the public key in Regev’s scheme.
22Jumping ahead, in the analysis we will only prove correctness for a specific subclass of these

circuits.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

848 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

momorphic multiplication (of two ciphertexts). Combining the two, we will be
able to evaluate any such function f .

Ciphertext structure during evaluation. During the homomorphic evaluation,
we will generate ciphertexts of the form c = ((v, w), �), where the tag � indicates
the multiplicative level at which the ciphertext has been generated (hence fresh
ciphertexts are tagged with 0). The requirement that f be layered will make sure
that throughout the homomorphic evaluation all inputs to a gate have the same
tag. In addition, we will keep the invariant that the output of each gate evaluation
c = ((v, w), �) is such that

(2) w − 〈v, s�〉 = μ+ 2 · e (mod q) ,

where μ ∈ GF(2) is the correct plaintext output of the gate, and e is a noise
term that depends on the gate’s input ciphertexts. Note that it always holds that
� ≤ L due to the bound on the multiplicative depth and that the output of the
homomorphic evaluation of the entire circuit is expected to have � = L.

Homomorphic evaluation of gates.
− Addition gates. Homomorphic evaluation of a “+” gate on inputs c1, . . . , ct,

where ci = ((vi, wi), �), is performed by outputting

cadd = ((vadd, wadd), �):=

((∑
i

vi,
∑
i

wi

)
, �

)
.

Informally, one can see that

wadd−〈vadd, s�〉 =
∑
i

(wi−〈vi, s�〉) =
∑
i

(μi+2ei) =
∑
i

μi+2
∑
i

ei (mod q) ,

where μi is the plaintext corresponding to ci. So long as the term
∑

i μi+2
∑

i ei
is less than q/2 (in absolute value), it will hold that cadd will be decrypted to
μadd =

∑
i μi (mod 2) as desired.

− Multiplication gates. We show how to multiply ciphertexts c, c′ where c =
((v, w), �) and c′ = ((v′, w′), �) (recall that multiplication gates have fan-in 2)
to obtain an output ciphertext cmult = ((vmult, wmult), �+1). Note that the level
tag increases by 1.
We first consider an n-variate symbolic polynomial over the unknown vector x:

(3) φ(x) = φ(w,v),(w′,v′)(x) � (w − 〈v,x〉) · (w′ − 〈v′,x〉) (mod q) .

We symbolically open the parentheses of this quadratic polynomial and express
it as

φ(x) =
∑

0≤i≤j≤n

hi,j · x[i] · x[j] (mod q) ,

where hi,j ∈ Zq are known (we can compute them from (v, w), (v′, w′) by
opening the parentheses in (3)).23

For technical reasons (related to keeping the error growth under control), we
want to express φ(·) as a polynomial with small coefficients. We consider the

23We once again remind the reader that because of the notational trick of setting x[0] � 1,
this expression captures the constant term in the product, as well as all the linear terms, thus
homogenizing the polynomial φ(x).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 849

binary representation of hi,j , letting hi,j,τ be the τth bit in this representation.
In other words

hi,j =

�log q�∑
τ=0

hi,j,τ · 2τ (mod q)

for hi,j,τ ∈ {0, 1}.
We can therefore express φ as

φ(x) =
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ ·
(
2τ · x[i] · x[j]

)
(mod q) .24

We recall that the evaluation key evk = Ψ contains elements

ψ�,i,j,τ = (a�,i,j,τ , b�,i,j,τ)

such that

2τs�[i]s�[j] ≈ b�+1,i,j,τ − 〈a�+1,i,j,τ , s�+1〉 (mod q) .

The homomorphic multiplication algorithm will thus set

vmult:=
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · a�+1,i,j,τ (mod q)

and

wmult =
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · b�+1,i,j,τ (mod q) .

The final output ciphertext will be

cmult:=((vmult, wmult), � + 1) .

Note that the level tag is increased by one as expected. Let us now verify that

24This can be interpreted as a polynomial with small coefficients whose variables are (2τ ·x[i]·x[j]).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

850 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

our invariant as per (2) still holds for the new ciphertext:

wmult − 〈vmult, s�+1〉
=

∑
0≤i≤j≤n

τ∈{0,...,�log q�}

hi,j,τ · (b�+1,i,j,τ − 〈a�+1,i,j,τ , s�+1〉)

=
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · 2τ · s�[i] · s�[j] + 2 · hi,j,τ · e�+1,i,j,τ

= φ(s�) +
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

2 · hi,j,τ · e�+1,i,j,τ

= (w − 〈v, s�〉) · (w′ − 〈v′, s�〉) +
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

2 · hi,j,τ · e�+1,i,j,τ

= (μ+ 2e)(μ′ + 2e′) +
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

2 · hi,j,τ · e�+1,i,j,τ

= μμ′ + 2

⎛⎜⎜⎝μe′ + μ′e + 2ee′ +
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · e�+1,i,j,τ

⎞⎟⎟⎠ ,(4)

where all equalities are modulo q.
Indeed, we get the plaintext output μμ′ in addition to a noise term that is
inherited from the input ciphertexts and from the evaluation key.

• Decryption SH.DecsL(c): To decrypt a ciphertext c = ((v, w), L) (recall that we
are only required to decrypt ciphertexts that are output by SH.Eval(· · ·), and those
will always have level tag L), compute

(w − 〈v, sL〉 (mod q)) (mod 2) .(5)

4.2. The scheme BTS: A bootstrappable scheme. We now utilize the
dimension-modulus reduction technique to present the scheme BTS, which uses SH as
a building block and inherits its homomorphic properties. However, BTS has much
shorter ciphertexts and lower decryption complexity, which will enable us to apply
the bootstrapping theorem to obtain full homomorphism.

Our bootstrappable scheme is parameterized by (n,m, q, χ, L), which are the pa-
rameters for SH, and additional parameters (k, p, χ̂), which are the “smaller” param-
eters. n, q ∈ N are referred to as the “long” dimension and modulus, respectively,
while k, p are the “short” dimension and modulus. χ, χ̂ are the long and short noise
distributions over Zq and Zp, respectively. The parameter m ∈ N is used towards
public-key generation. The parameter L is an upper bound on the multiplicative
depth of the evaluated function.

While we discuss parameter values below, we encourage the reader to consider
the following (nonoptimal but easier to understand) settings as a running example:
k = κ, n = k4, q ≈ 2

√
n, L = 1/3 logn = 4/3 logk, p = (n2 log q) · poly(k) = poly(k),

m = O(n log q). The distributions χ, χ̂ can be thought of as being n- and k-bounded,
respectively.

• Key generation BTS.Keygen(1κ): Run SH.Keygen(1κ) to obtain the secret key
sL, evaluation key Ψ, and public key (A,b) of SH.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 851

Recall that sL ∈ Z
n
q , (A,b) ∈ Z

m×n
q ×Zm

q , and Ψ ∈ (Zn
q×Zq)

(n+1)2·(�log q�+1)·L.

Proceed by sampling the “short” secret key ŝ
$← Z

k
p and computing additional

parameters for the evaluation key: For all i ∈ [n], τ ∈ {0, . . . , �log q	}, sample

âi,τ
$← Z

k
p, êi,τ

$← χ̂ and compute

b̂i,τ :=〈âi,τ , ŝ〉+ êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉
(mod p) .

Set ψ̂i,τ :=(âi,τ , b̂i,τ) ∈ Z
k
p × Zp, and

Ψ̂:={ψ̂i,τ}i∈[n],τ∈{0,...,�log q�} .

This is very similar to the generation of Ψ in the scheme SH, but now ψ̂i,τ

“encodes” scaled linear terms, rather than quadratic terms.
Finally, output the secret key sk = ŝ, evaluation key evk = (Ψ, Ψ̂), and public
key pk = (A,b). Note that the public key is identical to that of SH.
• Encryption BTS.Encpk(μ): Use the same encryption algorithm as SH. To
encrypt a bit μ ∈ {0, 1}, compute c←SH.Enc(A,b)(μ) and output c as the
ciphertext.
• Homomorphic evaluation BTS.Evalevk(f, c1, . . . , ct), where f : {0, 1}t → {0, 1}:
Recall that evk = (Ψ, Ψ̂). To perform homomorphic evaluation, we will use
the homomorphic evaluation function of SH. We thus require that f be rep-
resented by a binary arithmetic circuit which is a legal input for SH.Eval.
The first step in the homomorphic evaluation is computing

cf←SH.EvalΨ(f, c1, . . . , ct) .

This results in a ciphertext of the form cf = ((v, w), L) ∈ Z
n
q × Zq × {L}.

Next, we reduce the dimension and modulus of cf to k, p as follows. Consider
the following function from Z

n into the rationals modulo p:

φ(x) � φv,w(x) �
p

q
·
(
q + 1

2
· (w − 〈v,x〉)

)
(mod p) .

Rearranging, one can find h0, . . . , hn ∈ Zq such that

φ(x) =
n∑

i=0

hi ·
(
p

q
· x[i]

)
(mod p) .

Let hi,τ be the τth bit of hi for all τ ∈ {0, . . . , �log q	}. Then

φ(x) =

n∑
i=0

�log q�∑
τ=0

hi,τ ·
(
p

q
· 2τ · x[i]

)
(mod p) .

Using the parameters in Ψ̂, we create a new ciphertext ĉ = (v̂, ŵ) ∈ Z
k
p × Zp

by setting

v̂:=2 ·
n∑

i=0

�log q�∑
τ=0

hi,τ · âi,τ (mod p) ∈ Z
k
p ,

ŵ:=2 ·
n∑

i=0

�log q�∑
τ=0

hi,τ · b̂i,τ (mod p) ∈ Zp .

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

852 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

The output of BTS.Eval is the new ciphertext ĉ ∈ Z
k
p × Zp. Note that the

bit-length of ĉ is (k + 1) log p.
Recall the invariant we enforce on the structure of ciphertexts of SH (see (2)).
We show that a similar invariant holds for ĉ, namely, that if cf is such that
w − 〈v, sL〉 = μ+ 2e (mod q), then

ŵ − 〈v̂, ŝ〉 = μ+ 2ê (mod p) ,

where ê is proportional to p
q e (an appropriately scaled version of e) plus some

additional noise.
To see the above, recall that (p+1)/2 is the inverse of 2 modulo p and notice
that25

p+ 1

2
(ŵ − 〈v̂, ŝ〉) =

n∑
i=0

�log q�∑
τ=0

hi,τ ·
(
b̂i,τ − 〈âi,τ , ŝ〉

)
(mod p)

=

n∑
i=0

�log q�∑
τ=0

hi,τ

(
êi,τ +

⌊
p

q
·
(
2τ · sL[i]

)⌉)
(mod p)

= φ(sL) +
n∑

i=0

�log q�∑
τ=0

hi,τ (êi,τ + ω̂i,τ)︸ ︷︷ ︸
� δ1

(mod p) ,(6)

where we define

ω̂i,τ �
⌊
p

q
·
(
2τ · sL[i]

)⌉
− p

q
·
(
2τ · sL[i]

)
,

and notice that |ω̂i,τ | ≤ 1/2. Since hi,τ ∈ {0, 1} and êi,τ is small, δ1 (defined
in (6)) is “small” as well.
Now, letting w = 〈v, sL〉 + 2e + μ (mod q), we wish to examine φ(sL) �
φ(v,w)(sL) more closely as follows:

φ(sL) �
p

q
·
(
q + 1

2
· (w − 〈v, sL〉)

)
(mod p)

=
p

q
·
(
q + 1

2
· (2e+ μ+Mq)

)
(mod p) (where M ∈ Z)

=
p

q
·
(
q + 1

2
μ+ e+M ′q

)
(mod p) (where M ′ ∈ Z)

=
p

q
· q + 1

2
μ+

p

q
· e (mod p)

=
p+ 1

2
· μ+

(
p

q
− 1

)
· μ
2
+
p

q
· e︸ ︷︷ ︸

�δ2

(mod p)

=
p+ 1

2
· μ+ δ2 ,(7)

25While the following sequence of derivations might seem like an indirect way to prove what we
need, the way we choose to do it will be useful later.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 853

and notice that if p ≤ q (as is the case in our setting), |δ2| ≤ p
q |e|+

1
2 .

Putting together (6) and (7), we see that

(8)
p+ 1

2
(ŵ − 〈v̂, ŝ〉) = p+ 1

2
· μ+ (δ1 + δ2) .

Multiplying by 2, we have

(9) ŵ − 〈v̂, ŝ〉 = μ+ 2(δ1 + δ2) .

Now defining ê � δ1 + δ2, the invariant follows.
It is important to notice that, while not immediate from its definition, ê =
δ1+δ2 is an integer. To see this, note that it can be represented as a difference
between integers:

δ1 + δ2 =
p+ 1

2
(ŵ − 〈v̂, ŝ〉)− p+ 1

2
· μ .

• Decryption BTS.Decŝ(ĉ): To decrypt ĉ = (v̂, ŵ) ∈ Z
k
p×Zp (recall, again, that

we need only decrypt ciphertexts that are output by BTS.Eval), compute

μ∗:= (ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2) .

If indeed ŵ − 〈v̂, ŝ〉 = μ + 2ê (mod p), then μ∗ = μ as long as ê is small
enough.

4.3. Security analysis. In this section, we analyze the security of BTS based
on LWE and then, using known connections, based on worst-case hardness of lattice
problems.

The following theorem asserts the security of BTS based on two DLWE problems:
one with modulus q, dimension n, and noise χ, and one with modulus p, dimension
k, and noise χ̂.

Theorem 4.1 (security). Let n = n(κ), k = k(κ), q = q(κ), p = p(κ), and
L = L(κ) be functions of the security parameter. Let χ, χ̂ be some distributions over
the integers, and define m � n log q + 2κ.

The scheme BTS is CPA secure under the DLWEn,q,χ and the DLWEk,p,χ̂ assump-
tions. In particular, if both the DLWEn,q,χ and the DLWEk,p,χ̂ problems are (t, ε)-hard,
then the scheme is (t−poly(κ), 2(L+3) · (2−κ+ ε))-semantically secure for some poly-
nomial poly(·).

Essentially, the view of a CPA adversary for our scheme is very similar to Regev’s
scheme, with the exception that our adversary also gets to see the evaluation key.
However, the evaluation key contains a sequence of LWE instances which, based on
our assumption, are indistinguishable from uniform. Therefore our reduction will
perform a sequence of L hybrids to replace the Ψ component of the evaluation key
with a set of completely uniform elements. Then, an additional hybrid will imply the
same for Ψ̂. Once this is done, we will use the known proof techniques from Regev’s
scheme and get the security of our scheme. A formal proof follows.

Proof. As explained above, we prove by a sequence of hybrids. Let A be an IND-
CPA adversary for BTS that runs in time t. We consider a sequence of hybrids; in
each hybrid the adversary A is given pk, evk, c, where pk, evk are generated according
to a distribution specific to the hybrid, and c is generated by applying the encryption
algorithm using pk on a message μ. We let PrH,μ[A] denote the probability that the
adversary A outputs 1 in the experiment defined by hybrid H where the message μ
is encrypted.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

854 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

• Hybrid ĤL+1: This is identical to the IND-CPA game, where the adver-
sary gets properly distributed keys pk, evk, generated by BTS.Keygen, and an
encryption of either 0 or 1 computed using BTS.Enc. By definition,

(10) AdvCPA[A] =
∣∣PrĤL+1,0

[A]− PrĤL+1,1
[A]

∣∣ .
• Hybrid HL+1: This hybrid is identical to ĤL+1, except in the generation

of Ψ̂. In this hybrid, Ψ̂ is not generated as prescribed but is rather sampled

uniformly. Namely, for all i, τ we set ψ̂i,τ
$← Z

k
p × Zp.

Consider B̂μ(1k), an adversary for the DLWEk,p,χ̂ problem defined as follows

(for μ ∈ {0, 1}). The algorithm B̂ will sample all vectors s0, . . . , sL by itself
and generate pk,Ψ. Now, note that given sL, it is possible to generate Ψ̂
efficiently using polynomially many samples from the distribution Aŝ,χ̂. Fur-
thermore, if Aŝ,χ̂ is replaced with a uniform oracle, the same process will

result in a completely uniform Ψ̂.
The algorithm B̂ will draw sufficiently many samples from its oracle, and
it will generate Ψ̂ as if this oracle were indeed Aŝ,χ̂. Finally, it will return
A(pk, evk,BTS.Encpk(μ)) (i.e., call A on the keys it generated and an encryp-
tion of μ).
It holds that

Pr[B̂Aŝ,χ̂
μ (1κ)] = PrĤL+1,μ

[A] ,

Pr[B̂U(Zk
p×Zp)

μ (1κ)] = PrHL+1,μ[A] .(11)

• Hybrid H� for � ∈ [L]: Hybrid H� is identical to H�+1, except for a
change in the Ψ component of the evaluation key. Specifically, we change
each of the components ψ�,i,j,τ for all i, j, τ : Instead of computing ψ�,i,j,τ as
prescribed (i.e., (a�,i,j,τ , 〈a�,i,j,τ , s�〉+2e�,i,j,τ+2τ ·s�−1[i]·s�−1[j])), we sample

it uniformly. Namely, we set ψ�,i,j,τ
$← Z

n
q × Zq.

We now define a procedure B�,μ, for � ∈ [L], μ ∈ {0, 1}, that attempts to
solve DLWEn,q,χ. The procedure B�,μ will work as follows: It will first sample

vectors s0, . . . , s�−1
$← Z

n
q , and will generate pk and the values ψ�′,i,j,τ , for

all �′ < � properly, according to the prescribed distribution. It will further
sample ψ�′,i,j,τ for �′ > � uniformly in Z

n
q ×Zq and ψ̂i,τ uniformly in Z

k
p×Zp.

Now, we notice that given s�−1, it is possible to generate ψ�,i,j,τ for all i, j, τ ,
given oracle access to As�,χ. This is less obvious than in the previous hybrid
since we require the noise element in ψ to be even. However, notice that for

an odd q, if x
$← Zq, then 2x is uniform in Zq as well. Therefore, taking a

sample (a, b)
$← As�,χ and considering (2a, 2b) (mod q), we have that 2b =

〈2a, s�〉+2e (mod q). Given such samples and access to s�−1, the generation
of ψ�,i,j,τ is straightforward. Furthermore, if As�,χ is replaced with a uniform
oracle, then the above process will result in uniformly distributed elements
ψ�,i,j,τ .
The procedure B�,μ will draw samples from its oracle as if it were indeed
As�,χ and complete the generation of Ψ as described above. Finally, given
the generated pk, evk, the procedure will return A(pk, evk,BTS.Encpk(μ))
(i.e., call A on the keys it generated and an encryption of μ).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 855

It holds that

Pr[BAs�,χ

�,μ (1κ)] = PrH�+1,μ[A] ,

Pr[BU(Zn
q ×Zq)

�,μ (1κ)] = PrH�,μ[A] .(12)

Note that in the hybrid H1, the evaluation key evk = (Ψ, Ψ̂) is completely
uniform, and hence the adversary A gets the same information as in Regev’s
encryption scheme.
• Hybrid H0: Hybrid H0 is identical to H1, except that the vector b in
the public key is chosen uniformly at random from Z

m
q , rather than being

computed as A · s0 + 2e.
We define the procedure B0,μ for the problem DLWEn,q,χ, where μ ∈ {0, 1}.
This procedure will start by sampling evk = (Ψ, Ψ̂) uniformly. Now, we notice
that given an oracle to As0,χ, it is possible to efficiently generate pk (this
requires multiplying the samples by 2 as in the previous hybrid). Furthermore,
if a uniform oracle is given instead, this will result in completely uniform
(A,b) ∈ Z

m×n
q × Z

m
q .

The procedure B0,μ will draw samples from its oracle as if it were indeed
As0,χ, to generate pk. Finally, given the generated pk, evk, the procedure will
return A(pk, evk,BTS.Encpk(μ)) (i.e., call A on the keys it generated and an
encryption of μ).
It holds that

Pr[BAs0,χ

0,μ (1κ)] = PrH1,μ[A] ,

Pr[BU(Zn
q ×Zq)

0,μ (1κ)] = PrH0,μ[A] .(13)

Furthermore, notice that since an encryption of μ is computed as (AT ·r,bT ·
r+μ), and since m > (n+1) log q+2κ, we can apply the leftover hash lemma
(Lemma 2.2), which implies that

(14) |PrH0,0[A]− PrH0,1[A]| ≤ 2−κ .

Putting together (11), (12), (13), we get that for any μ ∈ {0, 1},

(15) PrĤL+1,μ
[A]− PrH0,μ[A]

=
(
Pr[B̂Aŝ,χ̂

μ (1κ)]− Pr[B̂U(Zk
p×Zp)

μ (1κ)]
)
+

L+1∑
�=0

(
Pr[BAs,χ

�,μ]− Pr[BU(Zn
q ×Zq)

�,μ]
)
.

This leads to the following definitions of adversaries B̂,B for DLWEk,p,χ̂, DLWEn,q,χ

(respectively):

• The adversary B̂ for DLWEk,p,χ̂ will sample μ
$← {0, 1} and return μ⊕B̂(·)

μ (1κ)

(namely, it will run B̂ and either return the same result or flip it based on the
value of μ). Note that the running time is a poly(κ) plus the running time of
A.
• The adversary B for DLWEn,q,χ will sample μ

$← {0, 1} and � $← {0, . . . , L+1}
and return μ⊕B(·)

�,μ(1
κ). The running time, again, is poly(κ) plus the running

time of A.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

856 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

It follows that

(16)
∣∣∣(PrĤL+1,0

[A]− PrĤL+1,1
[A]

)
− (PrH0,0[A]− PrH0,1[A])

∣∣∣
≤ 2DLWEk,p,χ̂Adv[B̂] + 2(L+ 2)DLWEn,q,χAdv[B] .

On the other hand, putting together (10), (14), we get that

(17)
∣∣∣(PrĤL+1,0

[A]− PrĤL+1,1
[A]

)
− (PrH0,0[A]− PrH0,1[A])

∣∣∣ ≥ AdvCPA[A]−2−κ .

In conclusion,

AdvCPA[A] ≤ 2DLWEk,p,χ̂Adv[B̂] + 2(L+ 2)DLWEn,q,χAdv[B] + 2−κ ,

and the theorem follows.
Specific parameters and worst-case hardness. The parameters we require for ho-

momorphism (see Theorem 4.3 below) are as follows. We require that q = 2n
ε

for
some ε ∈ (0, 1), χ be n-bounded, p = 16nk log(2q), and χ̂ be k-bounded. In order
to achieve the best lattice reduction, we will choose q as a product of polynomially
bounded co-prime numbers. Applying known results (see Corollary 2.4), DLWEn,q,χ

translates into approximating short vector problems in worst-case n-dimensional lat-
tices to within a factor of Õ

(√
n · 2nε)

, while DLWEk,p,χ̂ translates to approximating

k-dimensional lattice problems to within an Õ
(
n1+ε · k1.5

)
factor.26 These problems

are essentially incomparable as the hardness of the problem increases, as the dimen-
sion increases on the one hand but decreases as the approximation factor increases
on the other. The best known algorithms solve the first problem in time (roughly)

2
˜O(n1−ε) and the second in time 2

˜O(k).
The relation between n and k is determined based on the required homomorphic

properties. In this work, we prove only that there exists a constant C such that
setting n = kC/ε implies fully homomorphic encryption. Given the value of C, setting
ε ≈ 1− 1

C+1 will make the two problems equally hard (at least based on the current
state of the art).

4.4. Homomorphic properties of SH and BTS. In this section we analyze
the homomorphic properties of SH and BTS. Both schemes have essentially the same
homomorphic properties, but BTS has the additional advantage of having low decryp-
tion complexity (as analyzed in section 4.5). Thus, BTS will be our main focus, and
the properties of SH will follow as a byproduct of our analysis.

We start by formally defining the class of functions for which we prove homomor-
phism and proceed by stating the homomorphic properties and proving them.

The function class Arith[L, T]. We define the function class for which we prove
somewhat homomorphism of our scheme. Essentially, this is the class of arithmetic
circuits over GF(2) with bounded fan-in and bounded depth, with an additional final
“collation”: a high fan-in addition gate at the last level. We require that the circuit
be structured in a canonical “layered” manner as we describe below.

Definition 4.2. Let L = L(κ), T = T (κ) be functions of the security parameter.
The class Arith[L, T] is the class of arithmetic circuits over GF(2), with {+,×} gates,

26We do not mention the specific lattice problem or the specific type of reduction (quantum vs.
classical) since, as one can observe from Corollary 2.4, the approximation factor we get is essentially
the same for all problems, and the state of the art is roughly the same as well.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 857

with the following structure. Each circuit contains exactly 2L + 1 layers of gates
(numbered 1, . . . , 2L+1 starting from the input level), and gates of layer i+1 are fed
only by gates of layer i. The odd layers contain only “+” gates, and the even layers
contain only “×” gates. The gates at layers 1, . . . , 2L have fan-in 2, while the final
addition gate in layer 2L+ 1 is allowed to have fan-in T .

We note that Arith[L, T] conforms with the requirements on the evaluated function
imposed by SH.Eval and BTS.Eval. Indeed, the multiplicative depth of any circuit in
Arith[L, T] is exactly L, and hence homomorphic evaluation is well defined on any
such function.

To motivate the choice of this function class, we first note that any arithmetic
circuit of fan-in 2 and depth D can be trivially converted into a circuit in Arith[D, 1].27

This will be useful for the purpose of bootstrapping. Jumping ahead, the collation
gate will be useful for constructing a PIR protocol, where we will need to evalu-
ate polynomials with a very large number of monomials and fairly low degree. The
collation gate will thus be used for the final aggregation of monomials.

Our goal is now to prove that with the appropriate choice of parameters, SH and
BTS are Arith[L, T]-homomorphic.

Theorem 4.3. Let n = n(κ) ≥ 5 be any polynomial, let q ≥ 2n
ε ≥ 3 for some

ε ∈ (0, 1) be odd, let χ be any n-bounded distribution, and let m = (n+ 1) log q + 2κ.
Let k = κ, let p = 16nk log(2q) (odd), and let χ̂ be any k-bounded distribution. Then
SH and BTS are both Arith[L = Ω(ε logn), T =

√
q]-homomorphic.

Not surprisingly, the homomorphism class depends only on n and not on k. This is
because, recalling the definition of BTS.Eval, the homomorphism property is inherited
from SH.Eval. We note that it is possible to further generalize the class of circuits
that we can homomorphically evaluate (for example, circuits with high multiplicative
depth but low multiplicative degree); however, since this is not required for our results,
and since the proof will use the exact same tools, we choose not to further complicate
the theorem statement and proof.

To prove the theorem, we introduce a sequence of lemmas as follows. Recall that
the encryption algorithms of both schemes are identical and that BTS.Eval first calls
SH.Eval on all its inputs. We first analyze the growth of the noise in the execution of
SH.Eval in Lemma 4.4 (which will imply the theorem for SH), and then, in Lemma 4.5,
we complete the noise calculation of BTS.Eval, which will complete the proof of the
theorem.

To track the growth of the noise, we define, for any ciphertext c = ((v, w), �), a
noise measure η(c) ∈ Z as follows. We let e ∈ Z be the smallest integer (in absolute
value) such that

μ+ 2e = w − 〈v, sd〉 (mod q)

and define η(c) � μ+ 2e (note that η(c) is defined over the integers, and not modulo
q). We note that as long as |η(c)| < q/2, the ciphertext is decryptable. We can now
bound the error in the execution by bounding η(cf) of the output ciphertext.

Lemma 4.4. Let n = n(κ) ≥ 5, let q = q(κ) ≥ 3, let χ be B-bounded, let L =
L(κ), and let f ∈ Arith[L, T], f : {0, 1}t → {0, 1} (for some t = t(κ)). Then for any
input μ1, . . . , μt ∈ {0, 1}, if we let (pk, evk, sk)←SH.Keygen(1κ), ci←BTS.Encpk(μi) =

27One way to do this is to separate each level of the circuit into two levels—an addition level and
a multiplication level—and, finally, adding a dummy fan-in-1 addition gate at the top. This gives
us a 2D+1 depth circuit with alternating addition and multiplication levels, or, in other words, the
transformed circuit belongs to Arith[D,1].

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

858 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

SH.Encpk(μi) and we further let cf = ((v, w), L)←SH.Evalevk(f, c1, . . . , ct) be the en-
cryption of f(μ1, . . . , μt), it holds that

|η(cf)| ≤ T · (16nB log q)2
L

.

Proof. Recall that all samples of χ are of magnitude at most B. We track the
growth of noise as the homomorphic evaluation proceeds.

• Fresh ciphertexts. Our starting point is level-0 ciphertexts ((v, w), 0) that
are generated by the encryption algorithm. By definition of the encryption
algorithm we have that

w−〈v, s0〉 = rT ·b+μ−rT ·A ·s0 = μ+rT ·(b−As0) = μ+2rT ·e (mod q).

Since
∣∣μ+ 2rT · e

∣∣ ≤ 1 + 2nB, it follows that

(18) |η(c)| ≤ 2nB + 1.

• Homomorphic addition gates. When evaluating “+” on ciphertexts c1, . . . , ct
to obtain cadd, we just sum their (v, w) values. Therefore

|η(cadd)| ≤
∑
i

|η(ci)| .

• Homomorphic multiplication gates. When evaluating “×” on c = ((v, w), �),
c′ = ((v′, w′), �) to obtain cmult = ((vmult, wmult), �+ 1), we get that by (4)

wmult −〈vmult, s�+1〉 = η(c) · η(c′) + 2
∑

0≤i≤j≤n
τ∈{0,...,�log q�}

hi,j,τ · e�+1,i,j,τ (mod q) .

It follows that

|η(cmult)| ≤ |η(c)| · |η(c′)|+ 2 · (n+ 1)(n+ 2)

2
·B(log q + 1) .

If we define

E � max
{
|η(c)| , |η(c′)| , (n+ 2)

√
B log(2q)

}
,

then |η(cmult)| ≤ 2E2.
Let

E0 = max
{
2nB + 1, (n+ 2)

√
B log(2q)

}
≤ 2nB log q

be an upper bound on |η(c)| of fresh ciphertexts.
Then it holds that a bound E2� on |η(c)| of the outputs of layer 2� (recall that

the even layers contain multiplication gates) is obtained by

E2� ≤ 2(2E2(�−1))
2 ,

and therefore, recursively,

E2L ≤ (8E0)
2L ≤ (16nB log q)2

L

.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 859

And after the final collation gate it holds that

|η(cf)| ≤ T · (16nB log q)2
L

.

We now similarly define η̂(ĉ) for ĉ = (v̂, ŵ) ∈ Z
k
p × Zp that encrypts μ. We let

ê ∈ Z be the smallest integer (in absolute value) such that

μ+ 2ê = ŵ − 〈v̂, ŝ〉 (mod p)

and define η̂(ĉ) � μ+ 2ê (note that, as before, η̂ is defined over the integers, and not
modulo p). As long as |η̂(ĉ)| < p/2, BTS.Dec will decrypt ĉ correctly. In the next
lemma, we bound |η̂(ĉ)| of the output of BTS.Eval.

Lemma 4.5. Let n = n(κ) ≥ 5, let q = q(κ) ≥ 3, let χ be B-bounded, and
let L = L(κ). Let p = p(κ), let k = k(κ), and let χ̂ be B̂-bounded. Consider a
homomorphic evaluation ĉ←BTS.Evalevk(f, c1, . . . , ct) and the terms δ1, δ2 defined in
(6) and (7), respectively. Let cf ∈ Z

n
q × Zq × {L} be the intermediate value returned

by the call to SH.Eval. Then

|δ1 + δ2| ≤
p

2q
|η(cf)|+ 2nB̂ log(2q) .

Proof. Recall that all samples from χ̂ are of magnitude at most B̂. By definition
(recall that δ1, δ2 have been defined over the rationals), we have that

|δ1| =

∣∣∣∣∣∣
n∑

i=0

�log q�∑
τ=0

hi,τ (êi,τ + ω̂i,τ)

∣∣∣∣∣∣ ≤ (n+ 1) log(2q)(B̂ + 1/2)

and

|δ2| =
∣∣∣∣(pq − 1

)
· μ
2
+
p

q
· e
∣∣∣∣

=

∣∣∣∣pq · μ+ 2e

2
− μ

2

∣∣∣∣
≤ p

2q
|η(cf)|+ 1/2 .

Adding the terms together, the result follows.
We can now finally prove Theorem 4.3.
Proof of Theorem 4.3. Let us consider the homomorphism claim about BTS

(the argument for SH will follow as byproduct): A sufficient condition for ciphertext
ĉ = (v̂, ŵ) to decrypt correctly is that ê < p/4. By Lemma 4.5, it is sufficient to prove
that

p/4 >
p

2q
|η(cf)|+ 2nB̂ log(2q) ≥ p

2q
|η(cf)|+ p/8 .

Thus it is sufficient to prove that

|η(cf)| < q/4 .

We note that if we prove this, then it also follows that cf is decryptable, and hence
the claim about the homomorphism of SH holds as well.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

860 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

Plugging in the bound from Lemma 4.4, we get

T · (16nB log q)2
L

< q/4 ,

and plugging in all the parameters and T =
√
q, we need

(16n2+ε)2
L

< 2n
ε/2/4 ,

which clearly holds for some L = Ω(ε logn).

4.5. Bootstrapping and full homomorphism. We now show how to apply
Gentry’s bootstrapping theorem (Theorems 3.8 and 3.10) to achieve full homomor-
phism. In order to do this, we first need to bound the complexity of an augmented
decryption circuit. Since our decryption is essentially a computation of inner product,
we bound the complexity of this operation.

Lemma 4.6. Let (v̂, ŵ) ∈ Z
k
p ×Zp. There exists an arithmetic circuit with fan-in

2 gates and O(log k + log log p) depth that on input ŝ ∈ Z
k
p (in binary representation)

computes

(ŵ − 〈v̂, ŝ〉 (mod p)) (mod 2).

Proof. We let ŝ[i](j) denote the jth bit of the binary representation of ŝ[i] ∈ Zp.
We notice that

ŵ − 〈v̂, ŝ〉 = ŵ −
k∑

i=1

ŝ[i]v̂[i] (mod p)

= ŵ −
k∑

i=1

�log p�∑
j=0

ŝ[i](j) · (2j · v̂[i]) (mod p) .

Therefore computing ŵ−〈v̂, ŝ〉 (mod p) is equivalent to summing up k(1+ �log p)+
1 numbers in Zp and then taking the result modulo p. The summation (over the
integers) can be done in depth O(log k+log log p) using the standard “3 to 2” method
(see, e.g., [KR88]). In order to take modulo p, one needs to subtract, in parallel, all
possible multiples of p (there are at most O(k log p) options) and check whether the
result is in Zp. This requires depth O(log k + log log p) again. Then a selection tree
of depth O(log k + log log p) is used to choose the correct result. Once this is done,
outputting the least significant bit implements the final modulo 2 operation.

The total depth is thus O(log k + log log p) as required.
We can now apply the bootstrapping theorem to obtain a fully homomorphic

scheme.
Lemma 4.7. There exists C ∈ N such that setting n = kC/ε and the rest of the

parameters as in Theorem 4.3, BTS is bootstrappable as per Definition 3.7.
Proof. Lemma 4.6 guarantees that the decryption circuit is in Arith[O(log k), 1]

(note that log log p = o(log k)); since the augmented decryption circuit adds just 1 to
the depth, it follows that the augmented decryption circuits are also in Arith[O(log k), 1].

Theorem 4.3, conversely, guarantees homomorphism for any Arith[Ω(ε logn),
√
q]

function. Taking a large enough C, Arith[O(log k), 1] ⊆ Arith[Ω(ε logn),
√
q] will hold,

and the lemma follows.
Finally, we conclude that there exists an LWE-based fully homomorphic encryp-

tion based on Theorem 4.1 and Lemma 4.7.
Corollary 4.8. There exists a leveled fully homomorphic encryption based on

the DLWEn,q,χ and DLWEk,p,χ̂ assumptions.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 861

Furthermore, if BTS is weakly circular secure (see Definition 3.9), then there
exists a fully homomorphic encryption based on the same assumptions.

Efficiency of the scheme. Interestingly, our scheme is comparable to nonhomo-
morphic LWE-based schemes (e.g., Regev’s) in terms of encryption, decryption, and
ciphertext sizes. Namely, as long as one does not use the homomorphic properties
of the scheme, she does not need to “pay” for it. To see why this is the case, we
observe that our scheme’s secret key has length k log p = O(κ log κ) and the cipher-
text length is (k + 1) log p = O(κ log κ). The decryption algorithm is essentially the
same as Regev’s. As far as encryption is concerned, it may seem more costly. The
public key as we describe it contains (n + 1)((n + 1) log q + 2κ) log q bits, and en-
cryption requires performing operations over Zq. However, we note that one can

think of sampling a public key (Â, b̂) where Â
$← Z

m×k
p , b̂ = Âŝ + 2ê ∈ Z

m
p (where

m = ((k + 1) log p + 2κ)). This will enable generating short ciphertexts that will be
“bootstrapped up” during the homomorphic evaluation. If such a short public key is
used, then encryption also becomes comparable to Regev’s scheme.

Homomorphic evaluation is where we pay the price. The evaluation key has size
O(Ln2 log2 q + n log q log p) = Õ(n2+2ε). Considering the fact that n = κC/ε, this
accumulates to a fairly long evaluation key, especially considering that in a leveled
scheme, this size increases linearly with the depth of the circuit to be evaluated. The
bright side, as we mention above, is that evk need only be known to the homomorphic
evaluator and is not needed for encryption or decryption.

Circuit privacy. A property that is sometimes desired in the context of fully
homomorphic encryption is circuit privacy. A scheme is circuit private if the out-
put of a homomorphic evaluation reveals no information on the evaluated function
(other than the output of the function on the encrypted message). Circuit privacy
for our scheme can be achieved by adding additional noise to the ciphertext cf , right
before applying dimension-modulus reduction. Similar techniques were used in pre-
vious schemes [Gen09a, Gen09b, DGHV10], and thus we feel that a more elaborate
discussion is unnecessary here.

5. LWE-based private information retrieval. In this section, we present a
single-server private information retrieval (PIR) protocol with nearly optimal com-
munication complexity.

A connection between homomorphic encryption and PIR already appears in the
literature. We formalize it in section 5.2 using our notation. We then, in section 5.3,
present a generic method for reducing the “outgoing” communication complexity of
homomorphic encryption, using hybrid encryption. Finally, in section 5.4, we instan-
tiate all components using our homomorphic encryption scheme BTS and analyze the
resulting PIR protocol. (We present our notation and definitions in section 5.1.)

5.1. Definitions of single-server PIR. We define single-server PIR in the
public-key setting. In this setting, there is a public key associated with the receiver
(who holds the respective secret key). This public key is independent of the query
and of the database, it can be generated and sent (or posted) before the interaction
begins, and it may be used many times. Thus, the size of the public key is not counted
towards communication complexity of the scheme. We formalize this by an efficient
setup procedure that runs before the protocol starts and generate this public key.

Let κ be the security parameter, and let N ∈ N be the database size (we allow
an arbitrary relation between N and κ, although it is customary to assume that
N ≤ 2poly(κ)). An efficient PIR protocol PIR, in the public-key setting, is defined by a

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

862 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

tuple of polynomial-time computable algorithms (PIR.Setup,PIR.Query,PIR.Response,
PIR.Decode) as follows (note that the only efficiency requirement is that the algorithms
run in polynomial time in their respective inputs):

0. Setup. The protocol begins in an off-line setup phase that does not depend
on the index to be queried or on the contents of the database (only on its
size).
The receiver runs the setup algorithm

(params, setupstate)←PIR.Setup(1κ, N) .

It thus obtains a public set of parameters params (the public key) that is
sent to the sender and a secret state setupstate that is kept private.
Once the setup phase is complete, the receiver and sender can run the re-
mainder of the protocol an unbounded number of times.

1. Query. When the receiver wishes to receive the ith element in the database
DB[i], it runs

(query, qstate)←PIR.Query(1κ, setupstate, i) .

The query message query is then sent to the sender, and qstate is a query-
specific secret information that is kept private.

2. Answer. The sender has access to a database DB ∈ {0, 1}N . Upon receiving
the query message query from the receiver, it runs the “answering” algorithm

resp←PIR.Response(1κ, DB, params, query) .

The response resp is then sent back to the receiver.
3. Decode. Upon receiving resp, the receiver decodes the response by running

x←PIR.Decode(1κ, setupstate, qstate, resp) .

The output x ∈ {0, 1} is the output of the protocol.
We note that while in general a multiround interactive protocol is required for each

database query, the protocols we present are of the simple form of a query message
followed by a response message. Hence, we chose to present the simple syntax above.

The communication complexity of the protocol is defined to be |query|+ |resp|,
namely, the number of bits being exchanged to transfer a single database element
(excluding the setup phase). We sometime analyze the query length and the response
length separately.

Correctness and security are defined as follows.
• Correctness. For all κ ∈ N, DB ∈ {0, 1}∗ where N � |DB|, and i ∈ [N], it
holds that

Pr[PIR.Decode(1κ, setupstate, qstate, resp) �= DB[i]] = negl(κ) ,

where (params, setupstate)←PIR.Setup(1κ, N),

(query, qstate)←PIR.Query(1κ, setupstate, i) ,

and resp←PIR.Response(1κ, DB, params, query).
We note that in this work we present PIR protocols with perfect correctness,
namely, where PIR.Decode(1κ, setupstate, qstate, resp) = DB[i] always holds.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 863

• (t, ε)-Privacy. For all κ ∈ N, N ∈ N and for any adversary A running in
time t = tκ,N , it holds that

max
i=(i1,...,it),

j=(j1,...,jt)∈[N]t

∣∣Pr[A(params, i, queryi) = 1]

− Pr[A(params, j, queryj) = 1]
∣∣ ≤ ε (= εκ,N

)
,

where (params, setupstate)←PIR.Setup(1κ, N), and the queries are generated
by running, for all � ∈ [t], (queryi� , qstatei�)←PIR.Query(1κ, setupstate, i�)
and (queryj� , qstatej�)←PIR.Query (1κ, setupstate, j�).

We note that the definition of privacy above differs from that usually found in
literature. The standard definition refers to vectors i, j of dimension 1. That is, only
allow the adversary to see one query to the database. A hybrid argument can show
that with proper degradation in parameters, this guarantees some security also for
the case of many queries. However, in the public-key setting, where the same public
key is used for all queries, this hybrid argument no longer works. Thus, we must
require that the adversary be allowed to view many query strings.28 In fact, one
could consider even stronger attacks in the public-key setting, which is outside the
scope of this work.

The definition of privacy deserves some further discussion. We note that we did
not define the ranges of parameters for (t, ε) for which the protocol is considered “pri-
vate.” Indeed there are several meaningful ways to define what it means for a protocol
to be private. Let us discuss two options and provide corresponding definitions.

i. The first approach is to argue that the resources of the adversary are similar
to those of an honest server (we can think of an adversary as a “server gone
bad”). Thus, in this approach the adversary can run in polynomial time in
N, κ and must still not succeed with nonnegligible probability in N, κ. We
say that a scheme is (i)-private if it is (p(κ,N), 1/p(κ,N))-private for any
polynomial p(·, ·).

ii. The second approach argues that the security parameter is the “real” measure
for privacy. Thus the protocol needs to be exponentially secure in the security
parameter. Thus a scheme is (ii)-private if it is (2Ω(κ), 2−Ω(κ))-private.

Comparing the two notions heavily depends on the context and the relation be-
tween N and κ. While the first one is stronger for large values of N , the latter is
stronger when N becomes smaller (subexponential in κ). If N = poly(κ), the latter
implies subexponential hardness. Further discussion is beyond the scope of this work.

5.2. PIR from homomorphic encryption. In this section we describe the
standard construction of PIR from homomorphic encryption. This construction is
fairly straightforward and appears in prior literature (see, e.g., [Gen09a]); we bring it
here for the sake of completeness.

Given a homomorphic encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

with message space [N] and sufficient homomorphic capacity (as described below),
a PIR scheme PIR = (PIR.Setup,PIR.Query,PIR.Response,PIR.Decode) is defined as
follows:

28We feel that our definition captures the essence of an attack on a PIR protocol more than the
standard one-time definition, even in the usual setting. As we mention above, converting between the
definitions incurs a linear blowup in the adversary’s advantage, so a (t, ε)-private scheme according
to the old definition is only (t, tε)-private according to ours.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

864 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

• PIR.Setup(1κ, N): In the setup procedure, we generate keys for the somewhat
homomorphic scheme (hpk, hevk, hsk)←HE.Keygen(1κ). The parameter N is
implicitly required in order to initialize the homomorphic scheme with the
required homomorphic capabilities.
The setup procedure then outputs the public parameters

params:=(hevk)

and the secret state

setupstate:=(hpk, hsk) .

• PIR.Query(1κ, setupstate, i): To generate a query string, we just encrypt i.
Recall that setupstate = (hpk, hsk); then

query←HE.Enchpk(i) .

In our scheme, no additional information need be saved per query: qstate:=φ.
• PIR.Response(1κ, DB, params, query): Upon receiving a query, a response is
computed as follows. Recall that params = (hevk). The response is com-
puted by homomorphically evaluating the function DB[·] that takes an index
i and outputs DB[i]:

resp←HE.Evalhevk(DB[·], query) .

Note that resp should correspond to a decryptable ciphertext of DB[i].
• PIR.Decode(1κ, setupstate, qstate, resp): Recall that setupstate = (hpk, hsk)
and that qstate is null. To decode the answer to the query, we decrypt the
ciphertext associated with resp, outputting

b←HE.Dechsk(resp) .

The following lemmas (which are folklore) state the correctness and security of
the resulting protocol.

Lemma 5.1. Let HE be a C-homomorphic encryption scheme such that C ⊇
{DB[·] : DB ∈ {0, 1}N}. Then the above PIR protocol is correct.

Proof. By definition it holds that

Pr[PIR.Decode(1κ, setupstate, qstate, resp) �= DB[i]]

= Pr[HE.Eval(DB[·],HE.Enchpk(i)) �= DB[i]] ,

and the latter is negligible by correct homomorphism.
The next lemma establishes security. Note that we assume that the native message

space of HE is [N]. If the message space is {0, 1}, then an additional reduction
is required (essentially to show that encrypting the index bit by bit will leave the
scheme CPA secure).

Lemma 5.2. Let HE be a (t, ε)-IND-CPA secure. Then the PIR protocol above is
(t, t · ε)-private.

Proof. It is by a standard hybrid argument, replacing the adversary’s queries by
encryptions of 0 one by one, and hence the t factor in the success probability.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 865

5.3. Hybrid homomorphic encryption. In this section we show how to use
hybrid encryption in order to reduce the ciphertext length of homomorphic encryption
schemes. The basic idea is fairly simple, given a message μ to be encrypted; rather
than using the homomorphic encryption scheme, draw a key symsk for a symmetric
encryption scheme and encrypt μ using symsk. Then, encrypt symsk itself under the
homomorphic encryption scheme. This way, instead of encrypting μ, which can be
very long, using the homomorphic scheme, we encrypt it using a symmetric scheme
with potentially much shorter ciphertext size, and all we need to encrypt using the
homomorphic scheme is symsk which is independent of the message length. This
idea can be improved further: the encryption of symsk can be done once and for
all during the key generation and put in the evaluation key of the new scheme. To
perform homomorphic operations, the evaluation function will first use the encryption
of symsk to implicitly decrypt the incoming ciphertext, obtaining an encryption of μ,
but now under the homomorphic scheme. Homomorphic evaluation can then proceed
as usual. It is important to note that the output of the homomorphic operation is in
the form of a ciphertext of the original homomorphic scheme, and not the symmetric
scheme. Therefore, we save only on the “outgoing” communication complexity. A
formal presentation and analysis follow.

Given a homomorphic encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

and a symmetric encryption scheme SYM = (SYM.Keygen, SYM.Enc, SYM.Dec) with
message spaceM, we present a new homomorphic encryption scheme

HE′ = (HE′.Keygen,HE′.Enc,HE′.Dec,HE′.Eval)

with message spaceM as follows.
• HE′.Keygen(1κ): We start by generating a symmetric key

symsk←SYM.Keygen(1κ)

and keys for the somewhat homomorphic scheme

(hpk, hevk, hsk)←HE.Keygen(1κ) .

The symmetric key is then encrypted using the homomorphic public key to
create a ciphertext

csymsk←HE.Enchpk(symsk) .

We note that if HE is a bit encryption scheme, then symsk is encrypted bit
by bit.
The keys of the new scheme are hpk′:=hpk, hevk′:=(hevk, csymsk), hsk

′:=hsk.
• HE′.Enchpk′ (μ): To encrypt a message m ∈Mk, we just encrypt it using the
symmetric scheme

c←SYM.Encsymsk(μ) .

• HE′.Evalhevk′ (f, c1, . . . , ct): The scheme will only support homomorphic eval-
uation of c1, . . . , ct that are freshly encrypted ciphertexts (this is only for the
sake of simplicity; this obstacle can be overcome fairly simply). We recall
that hevk′ = (csymsk, hevk).

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

866 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

Consider the function

Composef,c1,...,ct(x) � f(SYM.Decx(c1), . . . , SYM.Decx(ct)) ,

and return

HE.Evalhevk(Composef,c1,...,ct , csymsk) .

Note that for the output to be meaningful, the function Composef,c1,...,ct(·)
must be homomorphically evaluable by the original scheme HE. Further note
that while the inputs to this operation are SYM ciphertexts, the output is an
HE ciphertext.
• HE′.Dechsk′(c): To decrypt, we recall that hsk′ = hsk. We use the standard
homomorphic decryption to return

HE.Dechsk(c) .

Note that freshly encrypted ciphertexts cannot be correctly decrypted using
this procedure. Rather, this applies only to ciphertexts that are the output
of a homomorphic evaluation. (Typically this will not be a problem since one
can always evaluate the identity function and then decrypt.)

The following lemmas state the homomorphism and security properties of HE′.
Lemma 5.3. Let SYM,HE,HE′ be as above such that HE is C-homomorphic and

T is SYM’s ciphertext space. Then HE′ is C′-homomorphic for

C′ � {f : ∀c1, . . . , ct ∈ T . Composef,c1,...,ct ∈ C} .

Proof. This follows immediately by definition. Letting (hpk′, hevk′, hsk′)←
HE′.Keygen(1κ), f ∈ C′, ci←HE′.Enchpk′(μi), it holds that

HE′.Evalhevk′ (f, c1, . . . , ct) = HE.Evalhevk(Composef,c1,...,ct , csymsk) ,

and therefore by the union bound

Pr[HE′.Evalhevk′ (f, c1, . . . , ct) �= f(μ1, . . . , μt)]

≤ Pr[HE.Evalhevk(Composef,c1,...,ct , csymsk) �= Composef,c1,...,ct(symsk)]

+ Pr[Composef,c1,...,ct(symsk) �= f(μ1, . . . , μt)] .

The first term is negligible by the C-homomorphism of HE, whereas the second is
negligible by the correctness of SYM.

Lemma 5.4. Let SYM,HE,HE′ be as above such that HE, SYM are (t, ε)-IND-CPA
secure. Then HE′ is (t, poly(κ) · ε)-IND-CPA secure for some polynomial poly(·).

Proof. The proof is by a standard hybrid argument. We consider a CPA adversary
for HE′ and track its distinguishing advantage while changing the distributions of keys.

• Hybrid H0. In this hybrid the distributions of all elements in HE′ are as
prescribed, and the adversary’s advantage is as it is against HE′.
• Hybrid H1. We change the key generation process, and we set csymsk←
HE.Enchpk(0) instead of HE.Enchpk(symsk). A hybrid argument over the bits
of symsk, using the CPA security of HE, shows that the advantage of any
adversary here cannot deviate by more than poly(κ) · ε from the advantage
in H0 (where the polynomial is the length of symsk).
We further note that in H1, the CPA advantage of any adversary can be
translated to the same advantage against SYM. It follows that this advantage
is at most ε. The result thus follows.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 867

5.4. Instantiating the components: Our PIR protocol. Combining sec-
tions 5.2 and 5.3, an efficient PIR protocol will follow from a combination of an
adequate symmetric encryption scheme and a homomorphic encryption scheme. We
now show how to instantiate these primitives in two different ways. In the first, a
specific LWE-based encryption scheme is used as the symmetric encryption compo-
nent. This will allow us to use the scheme BTS as the homomorphic component. The
second is more general and uses pseudorandom functions to instantiate the symmetric
encryption. Since we do not have an explicit bound on the decryption depth of such a
circuit (in particular, it can be ω(log k)), the scheme BTS may not be able to handle
its decryption circuit. However, one can use a bootstrapped version of BTS to eval-
uate any circuit. Hence, the latter solution requires bootstrapping and is therefore
not as clean, but on the other hand it provides the best asymptotic communication
complexity.

We emphasize that the edge of our protocols comes from two factors: First, the
hybrid method, presented in section 5.3, allows us to reduce the query communication
complexity. Second, our scheme is the first where the ciphertext length is quasi-linear
in the security parameter (i.e., ciphertext length κ ·polylog(κ) to achieve security 2κ),
which allows low communication complexity for the response.

An explicit LWE-based solution. The first idea is to use an optimized, symmetric-
key LWE-based encryption as the symmetric encryption scheme in the PIR protocol,
together with our scheme BTS as the homomorphic scheme. Specifically, using the
same parameters k, p as in our bootstrappable scheme, we get a symmetric scheme
whose decryption is almost identical to that of our bootstrappable scheme.

In particular, we apply an optimization of [PVW08, ACPS09] to get ciphertexts
of length O(logN)+O(k log k) to encrypt logN bits of the index. Roughly speaking,
the optimization is based on two observations: first, rather than encrypting a single
bit using an element of Zp, we can “pack in” O(log p) bits if we set the error in the
LWE instances to be correspondingly smaller (but still a 1/poly(k) fraction of p).
Second, observe that in a symmetric ciphertext (v, w) ∈ Z

k
p × Zp, most of the space

is consumed by the vector v. The observation of [PVW08, ACPS09] is that v can be
reused to encrypt multiple messages using different secret keys s1, . . . , s�. Using these
optimizations, the resulting PIR protocol has query length of O(k log k + logN) bits
and response length O(k log k) for k = poly(κ). The following corollary summarizes
the properties of this scheme.

Corollary 5.5 (see [PVW08, ACPS09]). Let p, k, χ̂ be as in Theorem 4.3. Then
there exists a DLWEk,p,χ̂-secure symmetric encryption scheme whose ciphertext length
is O(k log k + �) for �-bit messages and whose decryption circuit has the same depth
as that of BTS.Dec.

We now prove that indeed the function ComposeDB[·],c, where c is an encryption
of an index, is indeed within the homomorphic capacity of BTS. Recall the definition
of the class Arith from section 4 and the definition of Compose from section 5.3.

Lemma 5.6. Let SYM be the scheme from Corollary 5.5; then for all i ∈ [N],
c←SYM.Encsymsk(i), it holds that ComposeDB[·],c ∈ Arith[O(log k) + log logN,N].

Proof. An Arith[O(log k) + log logN,N] circuit that implements ComposeDB[·],c(x)
is presented. First, we decrypt the value of c to obtain an index i. Then, we compute
the function

∑
j∈[N] DB[j]·�i=j (where �E is an indicator variable for the eventE). The

decryption circuit is implemented in depth O(log k) as in Lemma 4.6. The function
�i=j is implemented using a comparison tree of depth log logN . Finally, a collation
gate of fan-in N is used to compute the final sum. The result follows.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

868 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

This means that we can choose n in BTS to be large enough so that ComposeDB[·],c
is correctly evaluated.

Theorem 5.7. There exists a PIR protocol with communication complexity
O(k log k+logN) based on the DLWEn,q,χ and DLWEk,p,χ̂ assumptions for n = poly(k)
and the remainder of the parameters as in Theorem 4.3.

Proof. We choose n such that L = Ω(ε logn) > O(log k)+ log logN and such that√
q = 2n

ε/2 ≥ N . This will result in n = poly(k, logN) (recall that the communication
complexity depends only on k). The result follows from Theorems 4.1 and 4.3.

For the best currently known attacks on LWE (see [MR09, LP11, RS10]), this
protocol is (2Ω(k/polylogk), 2−Ω(k/polylogk))-private. Thus, going back to our definitions
in section 5.1 and setting k = κ · polylog(κ), we get a (ii)-private PIR scheme with
a total communication complexity of O(logN) + O(κ · polylog(κ)) and a (i)-private
scheme with communication complexity logN · polyloglog(N) by setting κ = logN ·
polyloglog(N) = ω(logN).

An almost optimal solution using pseudorandom functions. A second instanti-
ation aims to bring the (ii)-private communication complexity down to logN + κ ·
polylog(κ). This can be done by instantiating the symmetric encryption scheme above
with an optimal symmetric encryption scheme with ciphertexts of length logN + κ ·
polylog(κ). Such a scheme follows immediately given any pseudorandom function
(PRF).

If we want to base security solely on LWE, we can use the LWE-based PRF
that is obtained by applying the GGM transformation [GGM86] to an LWE-based
pseudorandom generator. Note that using such instantiation, we cannot argue that
ComposeDB[·],c ∈ Arith[L, T] for reasonable L, T (since the complexity of evaluating the
PRF might be high). However, we can use our leveled fully homomorphic scheme to
support the required circuit depth of any function, and in particular the aforemen-
tioned PRF.

The complexity of transmitting the public parameters. Finally, we note that the
parameters produced in the setup phase of our protocol are of length poly(κ, logN).
Thus our protocol can be trivially modified to work in a setting without setup,
with communication complexity poly(κ, logN) (under the (ii)-private notion) and
polylog(N) (under the (i)-private notion).

Acknowledgment. We thank Shafi Goldwasser for her seemingly unlimited en-
thusiasm for this work and the technical advice, as well as numerous comments that
considerably improved the presentation.

REFERENCES

[ABB10] S. Agrawal, D. Boneh, and X. Boyen, Efficient lattice (H)IBE in the standard
model, in EUROCRYPT, Springer, Berlin, 2010, pp. 553–572.

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, Fast cryptographic primitives
and circular-secure encryption based on hard learning problems, in CRYPTO, Lec-
ture Notes in Comput. Sci. 5677, S. Halevi, ed., Springer, Berlin, 2009, pp. 595–618.

[AGV09] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, Simultaneous hardcore bits
and cryptography against memory attacks, in TCC, Lecture Notes in Comput.
Sci. 5444, O. Reingold, ed., Springer, Berlin, 2009, pp. 474–495.

[Ajt98] M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract), in STOC, ACM, New York, 1998, pp. 10–19.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar, A sieve algorithm for the shortest lattice
vector problem, in STOC, ACM, New York, 2001, pp. 601–610.

[BGN05] D. Boneh, E.-J. Goh, and K. Nissim, Evaluating 2-DNF formulas on ciphertexts, in
TCC, Lecture Notes in Comput. Sci. 3378, Springer, Berlin, 2005, pp. 325–341.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 869

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (Leveled) fully homomorphic
encryption without bootstrapping, in ITCS, S. Goldwasser, ed., ACM, New York,
2012, pp. 309–325.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, Classical hard-
ness of learning with errors, in STOC, D. Boneh, T. Roughgarden, and J. Feigen-
baum, eds., ACM, New York, 2013, pp. 575–584.

[Bra12] Z. Brakerski, Fully homomorphic encryption without modulus switching from classi-
cal GapSVP, in CRYPTO, Lecture Notes in Comput. Sci. 7417, R. Safavi-Naini
and R. Canetti, eds., Springer, Berlin, 2012, pp. 868–886.

[BV11a] Z. Brakerski and V. Vaikuntanathan, Fully homomorphic encryption from ring-
LWE and security for key dependent messages, in CRYPTO, Lecture Notes in
Comput. Sci. 6841, P. Rogaway, ed., Springer, Berlin, 2011, pp. 501–521.

[BV11b] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from
(standard) LWE, in FOCS, R. Ostrovsky, ed., IEEE, Piscataway, NJ, 2011, pp. 97–
106.

[BV14] Z. Brakerski and V. Vaikuntanathan, Lattice-based FHE as secure as PKE, in
ITCS, M. Naor, ed., ACM, New York, 2014, pp. 1–12.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, Bonsai trees, or how to delegate
a lattice basis, in EUROCRYPT, Springer, Berlin, 2010, pp. 523–552.

[CKGS98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, Private information re-
trieval, J. ACM, 45 (1998), pp. 965–981.

[CMS99] C. Cachin, S. Micali, and M. Stadler, Computationally private information re-
trieval with polylogarithmic communication, in EUROCRYPT, Springer, Berlin,
1999, pp. 402–414.

[DGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic
encryption over the integers, in EUROCRYPT, Springer, Berlin, 2010, pp. 24–43;
also available online from http://eprint.iacr.org/2009/616.pdf.

[Gen09a] C. Gentry, A Fully Homomorphic Encryption Scheme, Ph.D. thesis, Stanford Univer-
sity, Stanford, CA, 2009; available online from http://crypto.stanford.edu/craig.

[Gen09b] C. Gentry, Fully homomorphic encryption using ideal lattices, in STOC, ACM, New
York, 2009, pp. 169–178.

[Gen10] C. Gentry, Toward basing fully homomorphic encryption on worst-case hardness, in
CRYPTO 2010, Springer, Berlin, pp. 116–137.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,
J. ACM, 33 (1986), pp. 792–807.

[GH11a] C. Gentry and S. Halevi, Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits, in FOCS, R. Ostrovsky, ed., IEEE, Piscataway, NJ,
2011, pp. 107–109.

[GH11b] C. Gentry and S. Halevi, Implementing gentry’s fully-homomorphic encryption
scheme, in EUROCRYPT, Springer, Heidelberg, 2011, pp. 129–148.

[GHS12a] C. Gentry, S. Halevi, and N. P. Smart, Better bootstrapping in fully homomorphic
encryption, in Public Key Cryptography, Lecture Notes in Comput. Sci. 7293, M.
Fischlin, J. Buchmann, and M. Manulis, eds., Springer, Heidelberg, 2012, pp. 1–16.

[GHS12b] C. Gentry, S. Halevi, and N. P. Smart, Fully homomorphic encryption with polylog
overhead, in EUROCRYPT, Lecture Notes in Comput. Sci. 7237, D. Pointcheval
and T. Johansson, eds., Springer, Heidelberg, 2012, pp. 465–482.

[GHV10a] C. Gentry, S. Halevi, and V. Vaikuntanathan, i-hop homomorphic encryption and
rerandomizable Yao circuits, in CRYPTO, Springer, Berlin, 2010, pp. 155–172.

[GHV10b] C. Gentry, S. Halevi, and V. Vaikuntanathan, A simple BGN-type cryptosystem
from LWE, in EUROCRYPT, Springer, Berlin, 2010, pp. 506–522.

[GM82] S. Goldwasser and S. Micali, Probabilistic encryption and how to play mental poker
keeping secret all partial information, in STOC, ACM, New York, 1982, pp. 365–
377.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and
new cryptographic constructions, in STOC, C. Dwork, ed., ACM, New York, 2008,
pp. 197–206.

[GR05] C. Gentry and Z. Ramzan, Single-database private information retrieval with con-
stant communication rate, in ICALP, Lecture Notes in Comput. Sci. 3580, L.
Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds., Springer,
Berlin, 2005, pp. 803–815.

[GSW13] C. Gentry, A. Sahai, and B. Waters, Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based, in CRYPTO,

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://eprint.iacr.org/2009/616.pdf
http://crypto.stanford.edu/craig

870 ZVIKA BRAKERSKI AND VINOD VAIKUNTANATHAN

Lecture Notes in Comput. Sci. 8042, R. Canetti and J. A. Garay, eds., Springer,
Berlin, 2013, pp. 75–92.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based public key cryp-
tosystem, in ANTS, Lecture Notes in Comput. Sci. 423, J. Buhler, ed., Springer,
Berlin, 1998, pp. 267–288.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby, Pseudo-random generation from one-way
functions (extended abstract), in STOC, ACM, New York, 1989, pp. 12–24.

[IP07] Y. Ishai and A. Paskin, Evaluating branching programs on encrypted data, in TCC,
Lecture Notes in Comput. Sci. 4392, S. P. Vadhan, ed., Springer, Berlin, 2007, pp.
575–594.

[KO97] E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database,
computationally-private information retrieval, in FOCS, IEEE, Piscataway, NJ,
1997, pp. 364–373.

[KR88] R. M. Karp and V. Ramachandran, A Survey of Parallel Algorithms for Shared-
Memory Machines, Technical Report UCB/CSD-88-408, EECS Department, Uni-
versity of California, Berkeley, CA, 1988.

[LATV12] A. López-Alt, E. Tromer, and V. Vaikuntanathan, On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption, in STOC, H. J.
Karloff and T. Pitassi, eds., ACM, New York, 2012, pp. 1219–1234.

[Lip05] H. Lipmaa, An oblivious transfer protocol with log-squared communication, in ISC,
Lecture Notes in Comput. Sci. 3650, J. Zhou, J. Lopez, R. H. Deng, and F. Bao,
eds., Springer, Berlin, 2005, pp. 314–328.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovãsz, Factoring polynomials with rational
coefficients, Math. Ann., 261 (1982), pp. 515–534.

[LP11] R. Lindner and C. Peikert, Better key sizes (and attacks) for LWE-based encryption,
in CT-RSA, Lecture Notes in Comput. Sci. 6558, A. Kiayias, ed., Springer, Berlin,
2011, pp. 319–339.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with
errors over rings, in EUROCRYPT, Springer, Berlin, 2010, pp. 1–23.

[MGH10] C. Aguilar Melchor, P. Gaborit, and J. Herranz, Additively homomorphic en-
cryption with d-operand multiplications, in CRYPTO, Springer, Berlin, 2010, pp.
138–154.

[Mic00] D. Micciancio, The shortest vector in a lattice is hard to approximate to within some
constant, SIAM J. Comput., 30 (2001), pp. 2008–2035.

[Mic10] D. Micciancio, A first glimpse of cryptography’s holy grail, Comm. ACM, 53 (2010),
pp. 96–96.

[MR09] D. Micciancio and O. Regev, Lattice-based cryptography, in Post-Quantum Cryp-
tography, Springer, Berlin, 2009, pp. 147–191.

[MV10] D. Micciancio and P. Voulgaris, A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations, in STOC, L. J.
Schulman, ed., ACM, New York, 2010, pp. 351–358.

[OS07] R. Ostrovsky and W. E. Skeith, III, A survey of single-database private information
retrieval: Techniques and applications, in Public Key Cryptography, Lecture Notes
in Comput. Sci. 4450, T. Okamoto and X. Wang, eds., Springer, Berlin, 2007, pp.
393–411.

[Pai99] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes,
in EUROCRYPT, Springer, Berlin, 1999, pp. 223–238.

[Pei09] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract, in STOC, M. Mitzenmacher, ed., ACM, New York, 2009, pp.
333–342.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters, A framework for efficient and
composable oblivious transfer, in CRYPTO, Springer, Berlin, 2008, pp. 554–571.

[RAD78] R. Rivest, L. Adleman, and M. Dertouzos, On data banks and privacy homomor-
phisms, in Foundations of Secure Computation, Academic Press, New York, 1978,
pp. 169–177.

[Reg05] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
in STOC, H. N. Gabow and R. Fagin, eds., ACM, New York, 2005, pp. 84–93.

[RS10] M. Rückert and M. Schneider, Estimating the Security of Lattice-based Cryptosys-
tems, Cryptology ePrint Archive, Report 2010/137, 2010; available online from
http://eprint.iacr.org/.

[Sch87] C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,
Theoret. Comput. Sci., 53 (1987), pp. 201–224.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://eprint.iacr.org/

FULLY HOMOMORPHIC ENCRYPTION FROM LWE 871

[SS10] D. Stehlé and R. Steinfeld, Faster fully homomorphic encryption, in ASIACRYPT,
Lecture Notes in Comput. Sci. 6477, M. Abe, ed., Springer, Berlin, 2010, pp. 377–
394.

[SV10] N. P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively
small key and ciphertext sizes, in Public Key Cryptography, Lecture Notes in
Comput. Sci. 6056, P. Q. Nguyen and D. Pointcheval, eds., Springer, Berlin, 2010,
pp. 420–443.

[SYY99] T. Sander, A. Young, and M. Yung, Non-interactive cryptocomputing for NC1, in
FOCS, IEEE, Piscataway, NJ, 1999, pp. 554–567.

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

