2,023 research outputs found

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Nature Inspired Range Based Wireless Sensor Node Localization Algorithms

    Get PDF
    Localization is one of the most important factors highly desirable for the performance of Wireless Sensor Network (WSN). Localization can be stated as the estimation of the location of the sensor nodes in sensor network. In the applications of WSN, the data gathered at sink node will be meaningless without localization information of the nodes. Due to size and complexity factors of the localization problem, it can be formulated as an optimization problem and thus can be approached with optimization algorithms. In this paper, the nature inspired algorithms are used and analyzed for an optimal estimation of the location of sensor nodes. The performance of the nature inspired algorithms viz. Flower pollination algorithm (FPA), Firefly algorithm (FA), Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) for localization in WSN is analyzed in terms of localization accuracy, number of localized nodes and computing time. The comparative analysis has shown that FPA is more proficient in determining the coordinates of nodes by minimizing the localization error as compared to FA, PSO and GWO

    Comparative study between metaheuristic algorithms for internet of things wireless nodes localization

    Get PDF
    Wireless networks are currently used in a wide range of healthcare, military, or environmental applications. Wireless networks contain many nodes and sensors that have many limitations, including limited power, limited processing, and narrow range. Therefore, determining the coordinates of the location of a node of the unknown location at a low cost and a limited treatment is one of the most important challenges facing this field. There are many meta-heuristic algorithms that help in identifying unknown nodes for some known nodes. In this manuscript, hybrid metaheuristic optimization algorithms such as grey wolf optimization and salp swarm algorithm are used to solve localization problem of internet of things (IoT) sensors. Several experiments are conducted on every meta-heuristic optimization algorithm to compare them with the proposed method. The proposed algorithm achieved high accuracy with low error rate (0.001) and low power consumption

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm

    Improved Accurate Localization using PSO and the Weighted Dijkstra Algorithm in Software Defined Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are crucial in various fields, including monitoring the environment, surveillance, and healthcare. They rely on localization services for accurate data transfer and optimal network performance. Traditional WSN techniques struggle to adapt to dynamic environmental changes beyond the intended task scope. A synergy between Software-Defined Networking (SDN) and WSN has been suggested to address this issue. This research paper presents proposed approach for machine learning-based localization in Software Defined Wireless Sensor Networks (SDWSNs) using Particle Swarm Optimization (PSO) technique and the Weighted Dijkstra algorithm. PSO technique is used for clustering, the weighted Dijkstra algorithm (WDA) for finding the shortest path and sending data packets, and machine learning algorithms like AdaBoost and Naïve Bayes for data classification. The effectiveness of the proposed approach is measured using energy consumption, throughput, network lifespan, and packet delivery ratio, outperforming existing models like OEERP, LEACH, DRINA, and BCDCA. The machine learning algorithms' performance is also evaluated, with Naïve Bayes achieving the highest accuracy of 78.24% and AdaBoost 98.90%

    Controlling Interferences in Smart Building IoT Networks using Machine Learning

    Get PDF

    Energy Efficient Error Rate Optimization Transmission in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network is a collection of independent nodes and create a network for monitoring purposes in various scenarios like military operation, environmental operation etc. WSN network size is increasing very rapidly these days, due to large network size energy consumption is also increased and it has small battery, lifetime of network   decreases due to early death of nodes and it impact the overall system performance. Clustering is a technique for enhance the network lifetime in WSN. Here in this paper we propose a new multi-objective adaptive swarm optimization (MASO) technique for clustering and computes the maximum number of clusters, which is best suited for the network. Each cluster has cluster head and cluster members and performed the task of local information extraction. Cluster head gathers all the extracted information from member nodes and send it to the base station, where base station performed global information extraction from all the cluster head nodes and generate some useful result. In MASO technique, object is used to find the best global position for the node and compare with existing position value. If new value is better than the old value, than node moves to a new position and object update their table for this new position. We are considering error probability in transmission of data packet in one hop communication. Here obtained the results are compared with other research in terms of overall network lifetime and effect on network lifetime when the size of the network is changed. We have fine tuned the node’s decay rate and throughput of the network
    corecore