28 research outputs found

    Name Variants for Improving Entity Discovery and Linking

    Get PDF
    Identifying all names that refer to a particular set of named entities is a challenging task, as quite often we need to consider many features that include a lot of variation like abbreviations, aliases, hypocorism, multilingualism or partial matches. Each entity type can also have specific rules for name variances: people names can include titles, country and branch names are sometimes removed from organization names, while locations are often plagued by the issue of nested entities. The lack of a clear strategy for collecting, processing and computing name variants significantly lowers the recall of tasks such as Named Entity Linking and Knowledge Base Population since name variances are frequently used in all kind of textual content. This paper proposes several strategies to address these issues. Recall can be improved by combining knowledge repositories and by computing additional variances based on algorithmic approaches. Heuristics and machine learning methods then analyze the generated name variances and mark ambiguous names to increase precision. An extensive evaluation demonstrates the effects of integrating these methods into a new Named Entity Linking framework and confirms that systematically considering name variances yields significant performance improvements

    Named Entity Resolution in Personal Knowledge Graphs

    Full text link
    Entity Resolution (ER) is the problem of determining when two entities refer to the same underlying entity. The problem has been studied for over 50 years, and most recently, has taken on new importance in an era of large, heterogeneous 'knowledge graphs' published on the Web and used widely in domains as wide ranging as social media, e-commerce and search. This chapter will discuss the specific problem of named ER in the context of personal knowledge graphs (PKGs). We begin with a formal definition of the problem, and the components necessary for doing high-quality and efficient ER. We also discuss some challenges that are expected to arise for Web-scale data. Next, we provide a brief literature review, with a special focus on how existing techniques can potentially apply to PKGs. We conclude the chapter by covering some applications, as well as promising directions for future research.Comment: To appear as a book chapter by the same name in an upcoming (Oct. 2023) book `Personal Knowledge Graphs (PKGs): Methodology, tools and applications' edited by Tiwari et a

    FinMatcher at FinSim-2: hypernym detection in the financial services domain using knowledge graphs

    Get PDF
    This paper presents the FinMatcher system and its results for the FinSim 2021 shared task which is co-located with the Workshop on Financial Technology on the Web (FinWeb) in conjunction with The Web Conference. The FinSim-2 shared task consists of a set of concept labels from the financial services domain. The goal is to find the most relevant top-level concept from a given set of concepts. The FinMatcher system exploits three publicly available knowledge graphs, namely WordNet, Wikidata, and WebIsALOD. The graphs are used to generate explicit features as well as latent features which are fed into a neural classifier to predict the closest hypernym

    DisKnow: a social-driven disaster support knowledge extraction system

    Get PDF
    This research is aimed at creating and presenting DisKnow, a data extraction system with the capability of filtering and abstracting tweets, to improve community resilience and decision-making in disaster scenarios. Nowadays most people act as human sensors, exposing detailed information regarding occurring disasters, in social media. Through a pipeline of natural language processing (NLP) tools for text processing, convolutional neural networks (CNNs) for classifying and extracting disasters, and knowledge graphs (KG) for presenting connected insights, it is possible to generate real-time visual information about such disasters and affected stakeholders, to better the crisis management process, by disseminating such information to both relevant authorities and population alike. DisKnow has proved to be on par with the state-of-the-art Disaster Extraction systems, and it contributes with a way to easily manage and present such happenings.info:eu-repo/semantics/publishedVersio

    Training Knowledge Graph Embedding Models

    Get PDF
    Knowledge graph embedding (KGE) models have become popular means for making discoveries in knowledge graphs (e.g., RDF graphs) in an efficient and scalable manner. The key to success of these models is their ability to learn low-rank vector representations for knowledge graph entities and relations. Despite the rapid development of KGE models, state-of-the-art approaches have mostly focused on new ways to represent embeddings interaction functions (i.e., scoring functions). In this paper, we argue that the choice of other training components such as the loss function, hyperparameters and negative sampling strategies can also have substantial impact on the model efficiency. This area has been rather neglected by previous works so far and our contribution is towards closing this gap by a thorough analysis of possible choices of training loss functions, hyperparameters and negative sampling techniques. We finally investigate the effects of specific choices on the scalability and accuracy of knowledge graph embedding models.Knowledge graph embedding (KGE) models have become popular means for making discoveries in knowledge graphs (e.g., RDF graphs) in an efficient and scalable manner. The key to success of these models is their ability to learn low-rank vector representations for knowledge graph entities and relations. Despite the rapid development of KGE models, state-of-the-art approaches have mostly focused on new ways to represent embeddings interaction functions (i.e., scoring functions). In this paper, we argue that the choice of other training components such as the loss function, hyperparameters and negative sampling strategies can also have substantial impact on the model efficiency. This area has been rather neglected by previous works so far and our contribution is towards closing this gap by a thorough analysis of possible choices of training loss functions, hyperparameters and negative sampling techniques. We finally investigate the effects of specific choices on the scalability and accuracy of knowledge graph embedding models

    AspectMMKG: A Multi-modal Knowledge Graph with Aspect-aware Entities

    Full text link
    Multi-modal knowledge graphs (MMKGs) combine different modal data (e.g., text and image) for a comprehensive understanding of entities. Despite the recent progress of large-scale MMKGs, existing MMKGs neglect the multi-aspect nature of entities, limiting the ability to comprehend entities from various perspectives. In this paper, we construct AspectMMKG, the first MMKG with aspect-related images by matching images to different entity aspects. Specifically, we collect aspect-related images from a knowledge base, and further extract aspect-related sentences from the knowledge base as queries to retrieve a large number of aspect-related images via an online image search engine. Finally, AspectMMKG contains 2,380 entities, 18,139 entity aspects, and 645,383 aspect-related images. We demonstrate the usability of AspectMMKG in entity aspect linking (EAL) downstream task and show that previous EAL models achieve a new state-of-the-art performance with the help of AspectMMKG. To facilitate the research on aspect-related MMKG, we further propose an aspect-related image retrieval (AIR) model, that aims to correct and expand aspect-related images in AspectMMKG. We train an AIR model to learn the relationship between entity image and entity aspect-related images by incorporating entity image, aspect, and aspect image information. Experimental results indicate that the AIR model could retrieve suitable images for a given entity w.r.t different aspects.Comment: Accepted by CIKM 202

    Entities with quantities : extraction, search, and ranking

    Get PDF
    Quantities are more than numeric values. They denote measures of the world’s entities such as heights of buildings, running times of athletes, energy efficiency of car models or energy production of power plants, all expressed in numbers with associated units. Entity-centric search and question answering (QA) are well supported by modern search engines. However, they do not work well when the queries involve quantity filters, such as searching for athletes who ran 200m under 20 seconds or companies with quarterly revenue above $2 Billion. State-of-the-art systems fail to understand the quantities, including the condition (less than, above, etc.), the unit of interest (seconds, dollar, etc.), and the context of the quantity (200m race, quarterly revenue, etc.). QA systems based on structured knowledge bases (KBs) also fail as quantities are poorly covered by state-of-the-art KBs. In this dissertation, we developed new methods to advance the state-of-the-art on quantity knowledge extraction and search.Zahlen sind mehr als nur numerische Werte. Sie beschreiben Maße von Entitäten wie die Höhe von Gebäuden, die Laufzeit von Sportlern, die Energieeffizienz von Automodellen oder die Energieerzeugung von Kraftwerken - jeweils ausgedrückt durch Zahlen mit zugehörigen Einheiten. Entitätszentriete Anfragen und direktes Question-Answering werden von Suchmaschinen häufig gut unterstützt. Sie funktionieren jedoch nicht gut, wenn die Fragen Zahlenfilter beinhalten, wie z. B. die Suche nach Sportlern, die 200m unter 20 Sekunden gelaufen sind, oder nach Unternehmen mit einem Quartalsumsatz von über 2 Milliarden US-Dollar. Selbst moderne Systeme schaffen es nicht, Quantitäten, einschließlich der genannten Bedingungen (weniger als, über, etc.), der Maßeinheiten (Sekunden, Dollar, etc.) und des Kontexts (200-Meter-Rennen, Quartalsumsatz usw.), zu verstehen. Auch QA-Systeme, die auf strukturierten Wissensbanken (“Knowledge Bases”, KBs) aufgebaut sind, versagen, da quantitative Eigenschaften von modernen KBs kaum erfasst werden. In dieser Dissertation werden neue Methoden entwickelt, um den Stand der Technik zur Wissensextraktion und -suche von Quantitäten voranzutreiben. Unsere Hauptbeiträge sind die folgenden: • Zunächst präsentieren wir Qsearch [Ho et al., 2019, Ho et al., 2020] – ein System, das mit erweiterten Fragen mit Quantitätsfiltern umgehen kann, indem es Hinweise verwendet, die sowohl in der Frage als auch in den Textquellen vorhanden sind. Qsearch umfasst zwei Hauptbeiträge. Der erste Beitrag ist ein tiefes neuronales Netzwerkmodell, das für die Extraktion quantitätszentrierter Tupel aus Textquellen entwickelt wurde. Der zweite Beitrag ist ein neuartiges Query-Matching-Modell zum Finden und zur Reihung passender Tupel. • Zweitens, um beim Vorgang heterogene Tabellen einzubinden, stellen wir QuTE [Ho et al., 2021a, Ho et al., 2021b] vor – ein System zum Extrahieren von Quantitätsinformationen aus Webquellen, insbesondere Ad-hoc Webtabellen in HTML-Seiten. Der Beitrag von QuTE umfasst eine Methode zur Verknüpfung von Quantitäts- und Entitätsspalten, für die externe Textquellen genutzt werden. Zur Beantwortung von Fragen kontextualisieren wir die extrahierten Entitäts-Quantitäts-Paare mit informativen Hinweisen aus der Tabelle und stellen eine neue Methode zur Konsolidierung und verbesserteer Reihung von Antwortkandidaten durch Inter-Fakten-Konsistenz vor. • Drittens stellen wir QL [Ho et al., 2022] vor – eine Recall-orientierte Methode zur Anreicherung von Knowledge Bases (KBs) mit quantitativen Fakten. Moderne KBs wie Wikidata oder YAGO decken viele Entitäten und ihre relevanten Informationen ab, übersehen aber oft wichtige quantitative Eigenschaften. QL ist frage-gesteuert und basiert auf iterativem Lernen mit zwei Hauptbeiträgen, um die KB-Abdeckung zu verbessern. Der erste Beitrag ist eine Methode zur Expansion von Fragen, um einen größeren Pool an Faktenkandidaten zu erfassen. Der zweite Beitrag ist eine Technik zur Selbstkonsistenz durch Berücksichtigung der Werteverteilungen von Quantitäten

    Towards Semantically Enabled Complex Event Processing

    Full text link

    Photogrammetric surveys and geometric processes to analyse and monitor red coral colonies

    Get PDF
    This article describes the set of photogrammetric tools developed for the monitoring of Mediterranean red coral Corallium rubrum populations. The description encompasses the full processing chain: from the image acquisition to the information extraction and data interpretation. The methods applied take advantage of existing tools and new, innovative and specific developments in order to acquire data on relevant ecological information concerning the structure and functioning of a red coral population. The tools presented here are based on: (i) automatic orientation using coded quadrats; (ii) use of non-photorealistic rendering (NPR) and 3D skeletonization techniques; (iii) computation of distances between colonies from a same site; and (iv) the use of a plenoptic approach in an underwater environment. © 2018 by the authors.This work is partially done in the framework of the PERfECT project, funded by the Foundation TOTAL, project 2014/257. The plenoptic camera was bought in the frame of the DGA RAPID LORI project (LOcalisation et Reconnaissance d’objets Immergés

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications
    corecore