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Abstract: This research is aimed at creating and presenting DisKnow, a data extraction system with the
capability of filtering and abstracting tweets, to improve community resilience and decision-making
in disaster scenarios. Nowadays most people act as human sensors, exposing detailed information
regarding occurring disasters, in social media. Through a pipeline of natural language processing
(NLP) tools for text processing, convolutional neural networks (CNNs) for classifying and extracting
disasters, and knowledge graphs (KG) for presenting connected insights, it is possible to generate
real-time visual information about such disasters and affected stakeholders, to better the crisis
management process, by disseminating such information to both relevant authorities and population
alike. DisKnow has proved to be on par with the state-of-the-art Disaster Extraction systems, and it
contributes with a way to easily manage and present such happenings.

Keywords: disaster management; natural language processing; information extraction; crowdsourcing;
automatic knowledge base construction; knowledge graphs

1. Introduction

Throughout the world, earthquakes, floods, fires, and other natural hazards cause tens of
thousands of deaths and billions of euros in economic losses each year [1]. These numbers only
rise if we take into consideration other risk-inducing disasters, like terrorism or even pandemics,
as we have seen in 2020 with the spread of COVID-19. Advances in information technology and
communications, combined with the introduction and upsurge of social media apps, have created
a new world of emergency and disaster management services by allowing impacted people to
produce real-time georeferenced information on critical incidents [2]. In social networks, such as
Twitter, Facebook, Instagram, and others, humans volunteer plentiful and free information about
their surrounding environments. This information can be leveraged as a category of sensor networks.
Social networks have been playing a huge role in disaster management. However, although they are
used to communicate emergency information and urgent requests between authorities and those
affected by disasters [3], this flow of information is still not without its flaws. A considerable
slice of relevant information is still being posted on these media, with no connection to the real
stakeholders of said disasters, and thus, very limited impact. Handling this information has the
potential to extract crowd-approved knowledge and use that knowledge to increase mass situational
awareness in disaster scenarios, but it does not come without its challenges. One of the obstacles of
being able to use this information is filtering it, considering social media posts tend to vary widely
in both their subjects and utility, ranging from off-topic to relevant disaster-related information.
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Gathering actionable information can improve disaster response and significantly reduce both property
and human casualties [4]. Today, due to the mobile devices people constantly have in their possession,
and sensing information they are continually posting, we can see social networks not only as a means
to socialize but also as vast networks of boundless information, waiting to be used in a vast range
of fields, including society-threatening scenarios. These apps allow people to register surrounding
events and essential related information, such as where they started, who is being affected, and what
kind of threats should the population and first responders expect to face. This activity could provide
useful information, in the form of alerts, towards competent authorities and help them act in these
crises. An example of these works is [5], where the authors applied social data extraction to flood
inundation, to gain in-depth insight into the situation. Out of these social networks, Twitter has been
widely used as a source of information. Around 140 million people use Twitter, with some redundancy,
as users reuse or modify posted tweets. Duplication drives the information to spread through the
service, and previous research has indicated that 29% to 47% of crisis-related tweets are re-tweets,
and that 60% to 75% of all tweets are near duplicates of at least one other tweet [6].

Twitter has been widely used as a source of information in several works. From 2010 on, it has
been seeing a growing usage as a source of useful information for disaster support management
systems [7], and in 2013, Williams, Terras, and Warwick pointed it out as having the most potential for
data extraction, when compared to other social networks [8]. Studies show that in disaster scenarios,
victims, responders, and volunteers increasingly use Twitter to share and access situation-awareness
reports, and to provide help during these crises. Relevant Examples of its application are: In 2010,
Li and Rao have shown that information about an earthquake in China had initially appeared
on Twitter, three minutes before the official authorities announced it [9]. In Japan 2011 the same
happened with information about an earthquake, reported in the work of Tatsubori [10]. Another
case happened in Paris 2015 terrorist attacks, where eyewitnesses sent tweets to notify others
about what was happening [11]. These examples are not, however, unique. Twitter has been
widely used in several types of disasters, such as wildfires and floods [12–15], terrorist attacks [16],
humanitarian aid [17], and other accidents [18]. Some studies even show that Twitter can provide
more accurate information than the one obtained through traditional data-collection methods [19,20].
Despite its perks, Twitter’s usage as an information source provides interesting challenges, due to very
high message volumes, lack of essential metadata, missing generalized georeferenced information,
and being in constant change.

Information extraction techniques are, nowadays, one of the most relevant topics in disaster
management, and many researchers have examined these approaches in order to establish pre and
post-disaster response programs [21]. Its potential, however, does not come without challenges.
There is a massive scarcity of formalized data, such as domain-specific annotated data sets, as well
as severe problems regarding the use of social media data, such as the lack of methods to filter
trustful information and to exploit noisy social media data streams of high volume, in near
real-time [22]. Although geotagging is supported on Twitter, only approximately 1% of published
tweets are geotagged [23]. The short nature of tweets, having a maximum size of 280 characters,
makes applying the current state-of-the-art machine learning algorithms—that build latent topic
models—quite difficult.

Our major approach is to handle this useful information in the context of disaster scenarios to
provide knowledge to local operation authorities. This, however, requires a way to efficiently store
and connect data, which can be addressed by database technologies, such as graphs. Graphs are
extremely capable when extracting insight from data is a top priority, as they are mainly made of
nodes and connections, and translating that to the real world, it means we can have access to a logical
map of entities and their relationships. In addition to their structure, graphs are also very efficient
performance-wise, as in contrast to traditional databases, their performance stays nearly constant even
as their data grows. Their structure also allows for high flexibility when expanding to incorporate
new data.
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Taking into account the work performed on disaster monitoring through social media, and these
mentioned techniques, we identified a gap in the way knowledge is being delivered to stakeholders,
as most systems use social media for extracting data that only later is reported as a whole.
DisKnow aims to fill this gap. It improves on such systems by not only treating each piece of data
as possible new information, but also automatically connecting the knowledge it extracts. This is
made possible through the usage of state-of-the-art classifiers for filtering tweets that are related to
disasters, and graphs that allow for natural and automated representations of both pieces of individual
knowledge, and the connections between them. With these technologies combined, our system is
continuously learning from tweets, and therefore expanding its knowledge. This allows DisKnow to
present its contributions to disaster management stakeholders in a way that they can employ real-time
updated knowledge to make the best possible decisions, in scenarios where every second matters.

In this article, we will be presenting the current state-of-the-art for both disaster monitoring
through social media and Disaster Extraction techniques. We will then present our system,
whose pipeline will be divided and detailed. Lastly, we will provide both a comparison with other
Disaster Extraction techniques, and a simulated scenario, to set forth DisKnow’s contributions in what
would be a real emergency.

2. Related Work

2.1. Social Media for Disaster Management

A disaster can be defined as a source of danger, and its consequences can adversely affect the
world in different ways. Digital social networks have both emerged and evolved greatly in the 2000s,
and the large amount of information shared can be of great help in disaster management and in other
critical situations [24]. Major systematization work on Twitter messages was carried out by Steiger et al.
in 2015 [7], where they highlight that 46% of papers were about event detection. Furthermore, 71% of
the computer science reviewed studies have no specific application context, and are mainly focused on
creating system architectures. This led the authors to the conclusion that disaster management is an
opportunity to apply such knowledge to, and could significantly benefit from it, in order to strengthen
situation awareness and improve emergency response. It shows that event detection on Twitter is a
popular domain and plays an essential role in Twitter research. This is done based on a keyword search
directly over Twitter’s Application Programming Interface (API). It is usual to use control vocabularies
to identify specific predefined events to identify what tweets will be captured and retrieved through
the API. Examples of these approaches are the keyword-based filtering to identify predefined events
like forest fires [25], earthquakes [26], and floods [27]. Although keyword-based data extraction might
be useful, its standalone usage has several associated problems, like noise and bias. There is also a
high rate of false results associated with these methods, such as detecting that there is going to be a
fire in New York from the tweet “Arcade fire are going to be playing in NYC”. An example of these
problems is the work of Bosley et al. [28], where they identify that only 25% of the tweets generated by
their initial keyword search were related to their topic. In 2013, through a more detailed analysis of the
#TFF hashtag for the Tobacco Free Florida media campaign, the authors found that out of 3104 selected
tweets, only 1% were actually related to it [29]. Therefore, a need for methods that can go beyond
keyword filtering has been, and still is, one of the main focuses of Twitter research efforts to date.

The research literature on social networking and social media applied to disasters and crisis
situations, is still quite limited. Some researchers, however, have examined these approaches in order
to establish pre and post-disaster response programs [21]. One example would be Sakaki et al. [30]
where Twitter was used to construct an earthquake reporting system in Japan, with an extremely
positive result of 96% of said earthquakes over Richter’ magnitude 3 being detected, directly through
monitoring tweets. In another example use-case, demonstrating that collecting trustworthy information
is crucial for disaster management, Uddin et al. [31] used Apollo [32] to collect and evaluate tens of
thousands of tweets about New York City’s gas availability during and shortly after 2012’s Hurricane
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Sandy to determine the accuracy of individual tweets, while considering unknown source reliability
and uncertain provenance. Their results have shown that 90% of the tweets believed by Apollo were
true, which is very relevant given that less than half of the tweets were actually true. CrisisTracker [33]
has also proven to be a great example of using social media in disaster management, and probably
one of the most successful ones. Although it has been used to monitor events like Fukushima’s
nuclear disaster, its largest field trial dealt with the 2012 civil war in Syria. During the 8-day study,
CrisisTracker processed an average of 446,000 tweets a day and managed to successfully reduce the
information to consumable stories, being successful in raising the situational awareness of such disaster
areas. In practice, it took about 30 min after an isolated incident occurred before CrisisTracker could
reduce the overload of social media information to a consumable story.

2.2. Disaster Classification

Disaster classification can be seen as a very specific application of event detection. The latter is a
task whose purpose is to identify related stories from a continuous stream of textual data, and considers
an event as being something that occurs at a certain time in a certain location. Farzindar and Wael [34]
have surveyed the methods used in event detection from social media, and have reported the usage of
various machine learning techniques, such as classifiers, clustering, and language models. Recently,
however, deep learning has emerged on most natural language processing (NLP) tasks, and event
detection was not an exception. Several works have introduced the application of deep learning
techniques to address event detection at a sentence level. This has been done by first identifying event
triggers—which, in a sentence can be for example verbs or derivational nominalizations—and then
classifying them into specific types.

Deep learning models have proven to be more tolerant to domain and context variations,
when compared with keyword-based models, one of the reasons being that the usage of word
embeddings allows for a more generic and richer representation of words and their relationship [35].
There is not, however, much work in regard to disaster classification in tweets using machine learning,
as this is generally done using keyword-based approaches, and labeled tweets for this task are scarce.
Nevertheless, a few works have been published in recent years, showing promising results.

In 2017, Burel et al. [36] contributed to the field with the use of a dual convolutional neural
network (Dual-CNN), to both see if tweets were, or not, related to a disaster, and which type of disaster
they were related to. This Dual-CNN has an additional semantic representation layer which vectorizes
information regarding the tweet’s detected named entities. The authors have reported very little
difference between applying Dual-CNN and a single CNN, for this specific task. Despite the semantic
knowledge used by the first, its results have not shifted, and in some tasks it has even performed
worse. More recently, in 2019, Sit et al. [37] applied long short-term memory (LSTM) neural networks
to the disaster relatedness task, while comparing its results with linear machine learning algorithms,
like support vector machines (SVM) and logistic regressions. Although the results have not improved
over Burel et al. [36], the deep learning approaches have clearly improved on the results achieved by
both SVM and logistic regression models. Additionally in 2019, Alam et al. [38] used several models
for the disaster type classification task, ranging from traditional machine learning models, such as
naïve Bayes classifier, random forests, and SVM, to a deep learning CNN. Although the CNN has
outperformed most models, the SVM has shown results on par with it, coming up to an impressive
93% accuracy.

3. Proposed Approach

DisKnow was jointly developed at Iscte—Instituto Universitário de Lisboa and INOV INESC
Inovação. It is a system that retrieves tweets in real-time, filtering noisy data to better its performance
and reliability. It then processes these tweets, using a language independent approach, and translates
them to English, subsequently applying deep learning techniques to classify whether a tweet refers to
real disasters or not. For relevant tweets, the extracted information is connected and related as different
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types of nodes, that are represented in the knowledge base, for a noise-free concise representation
available to both population and decision makers. This knowledge is constantly being expanded
and updated, thus achieving a desired level of adaptability to real threat scenarios, which are also
continuously evolving, and require swift and informed responses.

The knowledge base consists of a dynamic knowledge graph [39]. This allows us to structure
entities as a knowledge graph in which new nodes and relationships are constantly being added
as new context is detected, to expand and upgrade its knowledge in real-time. This knowledge is
disaster-centered, as disaster occurrences are represented by specific nodes which then connect to
locations, dates, people, organizations, etc. In addition to having several node types, such as the
disasters and locations, each node also has several attributes. This allows for flexibility when dealing
with various types of data associated with entities. As for its management, our knowledge base usesthe
Neo4j (https://neo4j.com/) graph database management system. The interactions with it are done
through in-house developed custom methods, using a mixture of the Cypher query language, and the
Py2neo (https://py2neo.org/v4/) toolkit. An overview on DisKnow’s architecture is presented
in Figure 1.

Figure 1. DisKnow’s process pipeline.

1. Tweet Extraction and Filtering: The first step of our pipeline is the extraction of tweets and their
related information, from the social media Twitter. To avoid overloading the system, these tweets
are gathered through periodic API calls with several filters on them. These filters include the
tweets’ language and geolocation, which is done by defining a center and a radius, and calculating,
for each tweet, the geodesic distance between the tweet’s location and the defined center. Both the
tweet’s location and defined center are geocoded using data from OpenStreetMap [40], allowing
for the computation of the mentioned geodesic distance. Relevant tweet information, such as
each tweet’s posting datetime and full text is also saved for further use.

2. Tweet Preprocessing: This step focuses on cleaning the textual content that is specific to tweets.
As we have previously mentioned, one of the challenges of using social media information,
is the huge amount of noisy data it pertains. This processing pipeline uses hand-made
techniques, such as regex rules, that aim to take care of specific tweet noise, such as retweeting
information, hyperlinks, user mentions, and hashtags. Firstly, any information regarding
retweeting, hyperlinks, and user mentions is removed, and secondly hashtag symbols are removed
and their content is split by upper-case starting words.

3. Translating: Translation is a natural step here, as DisKnow is being implemented as a component
of a European project (grant agreement n833088) which aims to be put into effect in several
countries. With this in mind, and to be able to use state-of-the-art models, which mostly exist for
English, the input language is firstly detected, and then the cleaned text is translated to English.
This is done using Google’s Neural Machine Translation (GNMT) [41], which consists in a deep
LSTM using both residual and attention connections. This model has achieved a BLEU [42]
score of 38.95 in the commonly evaluated en-fr translation task, with a vocabulary size of around

https://neo4j.com/
https://py2neo.org/v4/
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32,000 words. It is also reported to reduce translation errors by more than 60%, when compared
to its competition, the Phrase-based Machine Translation (PBMT) models [41].

4. Text Preprocessing: Preprocessing is an essential step for natural language algorithms.
Although activities like Named Entity Recognition (NER) benefit from inputting entire texts
with punctuation and the original formatting, most algorithms benefit from further processed
text. This step focuses on additionally preparing tweets for Disaster Extraction. It starts
by tokenizing the tweets using Natural Language Toolkit (https://www.nltk.org/) (NLTK)
algorithms, and proceeds to using regex rules to lowercase all the tokenized words. Lastly,
English stop words are removed, as to lessen the noise inputted to the following steps.
Although lemmatization or stemming are also frequently used, in our case we found that our
Disaster Extraction algorithm slightly benefited from not using them.

5. Named Entity Recognition: NER is used as a tool to extract entities from the aforementioned
tweets. These entities can be person names, companies, geographical locations, times, dates, etc.
Their role is to complement a detected threat, in order to give users more insight. For this purpose,
our system makes use of Spacy (https://spacy.io/) NER pipeline. As this pipeline is open, we are
able to add new layers to it, to better embrace specific disaster detection characteristics, such as
detailed locations and local businesses.

6. Disaster Extraction: The next step is, without any doubt, one of the most critical steps of our
system. It consists of two sequential tasks: Firstly, classifying tweet relatedness to disasters,
that is, classifying if a tweet’s content is referring to a disaster event. Secondly, classifying the
disaster type a tweet is referring to. To accomplish both of these tasks we have implemented
two distinct convolutional neural networks (CNNs). The first CNN takes care of the first task,
and if it classifies the tweet as being related to disasters, the second CNN then classifies which
disaster it is, out of a predefined set of disasters it has been trained with, which are fire, flood,
earthquake, explosion, and none. This last category exists as a double-check, seeing that the first
CNN can detect disaster events that are not modeled by the second CNN. The second neural
network outputs a list of confidence levels regarding all disaster classes.

In the event of the second CNN classifying, a tweet with close confidence levels, Conf1−Conf2 <

ConfMargin, where Conf1 refers to the highest confidence the CNN outputs, Conf2 refers to the
second highest confidence, and Conf2 refers to the minimum margin set in the model, a weighted
check is triggered. This check consists of adding to each of these confidence levels the confidence
of a lexicon-based model. This model involves the preprocessing of the message with the use of
tokenization and stemming techniques, and then comparing its result with predefined lexicons for
each type of disaster. The results, LexCount, then go through a min-max normalization:

LexCount’ =
LexCount − min(LexCount)

max(LexCount)− min(LexCount)
(1)

Lastly, a weighted ponderation of these values is added to the output confidence of the neural
network, allowing for a better classification of the disaster a tweet refers to. This component’s pipeline
is also represented in Figure 2.

Figure 2. Disaster extraction component pipeline.

The data used to train both networks were obtained as a subset of two CrisisLex [43] disaster datasets:

https://www.nltk.org/
https://spacy.io/
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1. CrisisLexT6 (https://crisislex.org/data-collections.html#CrisisLexT6);
2. CrisisLexT26 (https://crisislex.org/data-collections.html#CrisisLexT26).

Although they do not have the same data, as a set, they have English tweets across more than
30 large disasters which took place between 2012 and 2013. These include, for the sake of example,
the 2012 Colorado Wildfires and the famous 2013 Boston Marathon Bombings. On top of this, to better
comprehend the domain where they are being applied, our classification models use the 200d Glove [44]
Twitter embeddings (https://nlp.stanford.edu/projects/glove/). These pretrained embeddings have
explicitly been trained from more than 2 billion tweets, with about 30 billion tokens, and more
than 1.2 million unique vocabulary, where each word is represented as a 200-dimensional vector.
The usage of these embeddings is a huge advantage in tweet information extraction, as most pretrained
embeddings are either trained with Wikipedia data, web crawling data, or news.

As shown in Figure 3, our CNNs are fed integer encoded tweets, which have formerly been
padded to 26 words to guarantee homogeneity. The embedding layer is responsible for converting
these integer vectors into 26 by 200 matrices, where 200 represents the vectorial depiction of each tweet’s
word, according to the embeddings we have used. Following the embedding layer, the CNNs have a
convolutional layer with a Rectified Linear Unit (ReLU) activation where 128 feature detectors slide
through the data in one dimension—hence being a 1D convolutional layer—for 5 steps. The global max
pooling layer follows, which is responsible for the dimensionality reduction of the data. The network
then has a set of three dense layers—that also use ReLU activation—with decreasing number of nodes
and dropout rates, which help us prevent overfitting our data. This is extremely important because we
are dealing with data relating to particular scenarios/disasters, so we want to keep our models from
overfitting specific data, which can be done, to some extent, by ignoring random neurons during the
training phase. The network’s output is then yielded through a dense layer, which varies from having
one node and a sigmoid activation in the relatedness classification CNN and having five nodes and a
softmax activation in the type classification CNN.

Figure 3. Threat type classification convolutional neural network (CNN).

1. Threat Object Generation: The second to last step of our pipeline consists of joining all of
the information extracted from the previous steps. That is, the tweet information extracted by
the Tweet Extraction and Filtering module, all of the entities extracted by the Named Entity
Recognition module, and the threat type classified by the Disaster Extraction, are all combined
to form a disaster object. This step is essential, as it creates a sense of identity for the detected
disasters, joining their occurrences to all of the information that define them. We consider the
location, date, and type of threat to be the minimum necessary information for creating and
comparing a threat. Therefore, this module also serves as an extra filtering phase, as it discards
any threats the system has not been able to extract enough information from.

2. Knowledge Base Integration: Lastly, the detected disasters must be included in our knowledge
graph. This step involves all validations regarding the previous existence of our gathered data,
as well as the creation of new nodes and relationships between them, to express the identity of

https://crisislex.org/data-collections.html#CrisisLexT6
https://crisislex.org/data-collections.html#CrisisLexT26
https://nlp.stanford.edu/projects/glove/
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the extracted disasters in a way that facilitate human consumption and future system integrations.
To further deal with social media unreliability, all disaster nodes have an attribute which is
incremented when the same disaster is detected from different tweets. This attribute can then be
used as a detection threshold, to allow for better filtering of relevant threats. If new information
regarding an already existing disaster is extracted from the previous steps, it is also validated and
then connected with that disaster. This mechanic allows for our system to be continually learning,
expanding its knowledge, and bettering the knowledge it already has.

4. Evaluation

Our system is evaluated in two specific tasks: Disaster Extraction, and top-down testing.
Disaster Extraction aims to compare our disaster classification algorithms with the current
state-of-the-art systems, in terms of model evaluation metrics. The top-down testing, however, consists
of a presentation of our system’s behavior when confronted with a set of tweets having both relevant
and noisy information.

4.1. Disaster Extraction Algorithms

To compare our models with the current state-of-the-art literature on tweet disaster classification,
we have divided this information in the two aforementioned classes: Event relatedness classification
and Event type classification. We have then selected the best results of each relevant publication,
being essential to highlight that all of these have been published between 2018 and 2019. The compared
models use different algorithms and implementation techniques, but all of them use subsets of the
same datasets—crisisLex—to train.

Although not all the compared studies have shown their accuracy, precision, or recall, we have
decided to also include these measures, as they may prove to be interesting in comparison with future
works. To compare with the state-of-the-art however, as it is the most common measure for text
classification, we use the F1-Score. This measure considers both precision and recall, and is often
preferred in the field of information retrieval, as it offers a better estimate of wrongly classified cases,
when compared to accuracy.

F1-score = 2 × Precision × Recall
Precision + Recall

(2)

Our models have been trained using a subset of close to 20,000 labeled tweets. These tweets were
balanced for the relatedness classification task, having around 54% related tweets and the remaining
46% unrelated. For the second task, however, there was a need to use under-sampling techniques to
balance major classes—as our models were greatly overfitting those same classes—ending up with
close to 5000 tweets.

DisKnow’s CNN related classifier has fared exceptionally well in this task. We have achieved an
increase of almost 10 p.p of F1-Score when compared to the current state-of-the-art [36], with a test
F1-Score of 92. This improvement can be explained by the usage of Twitter-specific embeddings,
and variations in the model’s architecture, such as pre-processing methods—which change the
input and reduce the noise the network is exposed to—and the neural network architecture as well.
Detailed results are shown in Table 1.

Table 1. Comparative results of the event relatedness classification task.

Model Test Accuracy Test Precision Test Recall Test F1-Score

CNN [36] - - - 0.838
LSTM [37] 0.748 - - 0.751

CNN—DisKnow 0.903 0.921 91.9 0.920

As for the second task, disaster type classification, DisKnow has also achieved good results,
although not as good as the state-of-the-art. A deep investigation on these results led us to believe
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that our type-classification CNN has a slight overfit to the flood class, sometimes misclassifying
unrelated tweets. This problem is, however, fixed with the lexicon-based model that was presented
in the proposed approach, although not reflected in these results, as to correctly compare the
models. Despite this, further improvements may be needed in the implementation of this model.
Detailed results are shown in Table 2.

Table 2. Comparative results of the event type classification task.

Model Test Accuracy Test Precision Test Recall Test F1-Score

SVM [36] - - - 0.997
CNN [38] 0.930 - - 0.928

CNN—DisKnow 0.884 0.888 0.876 0.882

4.2. Top-Down Demonstration

Our top-down demonstration consists in a simulation that was led in the municipality of Barreiro,
a Portuguese city nearby Lisbon. This scenario aims to show what DisKnow’s normal operation
would be like, in a real scenario, from the moment it retrieves tweets, to the representation of the
extracted information, in the Knowledge graph. As a result of the sheer impossibility of creating a
large scale disaster for testing purposes, we had to resort to a simulated demonstration. Despite its
smaller scale, this demonstration aims to show the contribution of DisKnow in disaster scenarios,
automatically providing filtered and summed-up information to both local relevant authorities and
population. In this demonstration, we have posted six relevant tweets at different moments. One
hundred and thirty-six tweets were gathered by DisKnow. These tweets included the six tweets that we
created and 130 other unknown tweets. Out of all these tweets, only the original six have successfully
had impact in DisKnow’s knowledge base, the remaining having been filtered through the system’s
pipeline, by either the Disaster Extraction or the Threat Object Generation component. Table 3 shows
the amount of tweets outputted by each filtering component of the system.

Table 3. Information filtering throughout the system.

Component Number of Tweets

Tweet Extraction and Filtering 136
Disaster Extraction (First CNN) 9

Disaster Extraction (Second CNN) 7
Threat Object Generation 6

The simulation starts with a fire in the middle of a local factory called FISIPE. The flames are
seen by three citizens that were passing by, and each posts a different tweet reporting the occurrence,
using different levels of expressiveness. A few minutes later, someone reports that the fire has also
spread to the nearby Vodafone store. Eventually, local news report tweets about the factory director
having got a third-degree burn from the strong flames. About ten minutes after the fire started,
a citizen also reports that the local Remax shop has been flooded at 12:30, and two of its workers have
been injured.

Figures 4–6 lay out the knowledge base on different moments of the simulation. Out of the initial
three detections, two were written in Portuguese, and one in French. The follow-up tweets were all
sent in Portuguese, and were written with different styles, to encompass what a real scenario would
be like. Excluding all unrelated tweets, and keeping the order described in the scenario, the tweets
detected by DisKnow were:

1. Estão chamas no telhado da FISIPE Barreiro!
2. Au secours ! Fisipe brûle à Barreiro
3. #Chamas #FISIPE fogo no Barreiro!
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4. O incêndio da FISIPE espalhou-se para a loja da Vodafone do Barreiro
5. #Catástrofe #Fogo O director da fábrica FISIPE Barreiro João Alberto ficou com queimaduras de

3o grau devido às fortes labaredas
6. #Ajuda Está a transbordar água na Remax do Barreiro desde as 12h30. A Marta Almeida e a

Fernanda Torre estão feridas

After the extraction and filtering, the next steps in DisKnow’s pipeline are related to processing
and translating the tweets, as well as extracting both named entities and referred disasters. These steps
are represented in DisKnow’s second to fifth modules, and the output is shown in Table 4.

Table 4. Processed tweets and extracted information.

Translated Tweet Entities Disaster

1. Flames are on the roof of FISIPE Barreiro FISIPE (Org)
Barreiro (GPE) Fire

2. Help ! Fisipe burns in Barreiro Fisipe (ORG)
Barreiro (GPE) Fire

3. Flames FISIPE fire in Barreiro FISIPE (ORG)
Barreiro (GPE) Fire

4. The FISIPE fire was spread to the Vodafone do Barreiro
store

FISIPE (ORG)
Vodafone (ORG)
Barreiro (GPE)

Fire

5. Fire catastrophe FISIPE factory director Barreiro João
Alberto suffered 3rd degree burns due to strong flames

FISIPE (ORG)
Barreiro (GPE)
João Alberto (PER)

Fire

6. Help Water is overflowing at Remax do Barreiro since
12:30 pm Marta Almeida and Fernanda Torre are injured

Remax (Org)
Barreiro (GPE)
12:30 (TIME)
Marta Almeida (PER)
Fernanda Torre (PER)

Flood

After the first three tweets were successfully processed, DisKnow has deemed them as referring
to the same threat, which is done in the knowledge base integration module. The system’s translating
module allows for DisKnow to process information in any of the 109 languages GNMT supports [41],
as demonstrated with the language variation in the second tweet. In Figure 4, we can see the
representation of the threat, as nodes and connections. There is a central node that represents the threat
occurrence, and this node is connected through a specific relationship to each of the five adjacent nodes,
which have different types and attributes. In Figure 4, we can see these adjacent nodes representing
dates, times, locations, threat types, and organizations, each of these nodes matching information
extracted from the NER and Disaster Extraction modules of DisKnow. The representation of adjacent
knowledge helps decision makers to not only know that a threat—in this case a fire—is ongoing,
but to also know when and where it was first reported, and who is being affected by it. After the first
detection, each subsequent tweet reporting that same threat incremented the “detections” attribute of
the node, thus showing that it has had been confirmed by several citizens.



Appl. Sci. 2020, 10, 6083 11 of 15

Figure 4. Knowledge graph after the first 3 tweets.

The impact of the fourth and fifth tweet is demonstrated in Figure 5. These tweets also referred to
the same threat, but added new information, which was the fire spreading to a nearby store, and the
director of the factory being injured. DisKnow correctly detected that this was an already reported
occurrence, and proceeded to extract new information, which was then represented in the knowledge
graph, by creating the new person and organization nodes and connecting them to the ongoing fire
threat, with the AFFECTED relationship.

Figure 5. Knowledge graph after the first 5 tweets.

Lastly, in Figure 6 the result of the sixth tweet is included. This tweet refers to a completely
different threat that was reported. Seeing that the citizen specified a start time for the flood,
DisKnow used that value, instead of the time the tweet was published at. It is also interesting
to observe that both threats are connected by their location and date, which is extremely valuable,
as these connections can later be used for inference.
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Figure 6. Knowledge graph after all 6 tweets.

5. Conclusions

Disaster related casualties have an extensive impact in our society. Disaster management focuses
on preventing and minimizing the risks these scenarios face humanity with. Social media, although raw,
presents a way of using humans as sensors to detect such hazards with the utmost brevity.

DisKnow builds upon existing tools, contributing with a dynamic way of extracting
and representing spatial and temporal relationships, as well as providing this knowledge to
decision-makers, in real-time. Its capability to detect disasters and related information, through social
media, and then create intelligible representations, can be a powerful tool when dealing with
scenarios requiring real-time decision-making, as every single bit of extra information can make
the difference. The extraction and connection of related information allow our system to present
a strong contribution, that is further expanded by the capacity of our knowledge graph to grow
and encompass new information and update its own, presenting a reliable and up-to-date source
of knowledge, and allowing for quicker and more informed decisions in scenarios where scarcity
of time is often an issue. DisKnows relevance has been evaluated by the administrative division of
the municipality of Barreiro, representing an end-user, according to its role as the local authority
of civil protection in the city of Barreiro and surrounding areas. The feedback has had a positive
focus on the ability of using citizens as a network of volunteer sensors to correctly extracting and
generating real-time knowledge about occurring threats, as well as the potential for learning during
disaster responses.

Despite the good results and feedback, there is still much work to be done. Future improvements
to DisKnow should include a way to filter trustworthy information, besides the sheer number of
detections a disaster has. Other existing components such as the classification models and the NER
component are also a continuous effort and should see some improvements which would better
the system’s extracted information. These improvements should also be complemented with the
introduction of new node types to the graph architecture, as to expand the information DisKnow
can offer its end users. Finally, we have seen that with its growth, a knowledge graph becomes
incomprehensible for direct human usage. With this in mind, DisKnow also needs an automatic way to
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communicate its knowledge to decision makers, whether it be general population, or first-responders.
Digital assistants are a suitable contender for this task, in a nearby future.

DisKnow’s contribution can prove to be very useful in providing overview knowledge in disaster
scenarios. As a tool, with few scenario-related tweaks, it is ready for implementation in real disasters
that might happen in the nearby future, or even current ones, like the 2020 COVID-19 pandemic.
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