
 information

Article

On Training Knowledge Graph Embedding Models

Sameh K. Mohamed 1,* , Emir Muñoz 1 and Vit Novacek 1,2

����������
�������

Citation: Mohamed, S.; Muñoz, E.;

Novacek, V. On Training Knowledge

Graph Embedding Models.

Information 2021, 12, 147. https://

doi.org/10.3390/info12040147

Academic Editor: Pierpaolo Basile

Received: 8 February 2021

Accepted: 22 March 2021

Published: 31 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Data Science Institute, National University of Ireland, H91 TK33 Galway, Ireland;
emir.munoz@insight-centre.org (E.M.); vit.novacek@insight-centre.org (V.N.)

2 Faculty of Informatics, Masaryk University, 602 00 Brno, Czech Republic
* Correspondence: sameh.kamal@insight-centre.org

Abstract: Knowledge graph embedding (KGE) models have become popular means for making
discoveries in knowledge graphs (e.g., RDF graphs) in an efficient and scalable manner. The key to
success of these models is their ability to learn low-rank vector representations for knowledge graph
entities and relations. Despite the rapid development of KGE models, state-of-the-art approaches
have mostly focused on new ways to represent embeddings interaction functions (i.e., scoring
functions). In this paper, we argue that the choice of other training components such as the loss
function, hyperparameters and negative sampling strategies can also have substantial impact on the
model efficiency. This area has been rather neglected by previous works so far and our contribution
is towards closing this gap by a thorough analysis of possible choices of training loss functions,
hyperparameters and negative sampling techniques. We finally investigate the effects of specific
choices on the scalability and accuracy of knowledge graph embedding models.

Keywords: loss functions; knowledge graph embeddings; link prediction

1. Introduction

The recent advent of knowledge graph embedding (KGE) models has allowed for
scalable and efficient manipulation of large knowledge graphs (KGs) such as RDF Graphs,
improving the results of a wide range of tasks such as link prediction [1–3], entity
resolution [4,5] and entity classification [6]. KGE models operate by learning embeddings
in a low-dimensional continuous space from the relational information contained in the KG
while preserving its inherent structure. Specifically, their objective is to rank knowledge
facts—relational triples (s, p, o) connecting subject and object entities s and o by a relation
type p—based on their relevance. Various interactions between their entity and relation
embeddings are used for computing the knowledge fact ranking. These interactions are
typically reflected in a model-specific scoring function.

For instance, TransE [1] uses a scoring function defined as the distance between the o
embedding and the translation of the embedding associated with s by the relation type p
embedding. DistMult [7], ComplEx [8] and HolE [9] use multiplicative composition of the
entity embeddings and the relation type embeddings. This leads to a better reflection of
the relational semantics and leads to state-of-the-art performance results (refer to [10] for a
review). Although there is a growing body of literature proposing different KG models
(mostly focusing on the design of new scoring functions), other parts of the knowledge
graph embedding learning process, e.g., loss functions, and negative sampling strategies
have not received much attention to date [11].

This has already been shown to influence the behaviour of the KGE models. For
instance, Ref. [12] observed that, despite the different motivations behind HolE and
CompleEx models, they have equivalent scoring functions. However, their performance
still differs. Trouillon et al. [13] have concluded that this difference is caused by the fact
that HolE uses a max-margin loss while ComplEx a log-likelihood loss. This shows that
cost functions are important for thorough understanding, and even improvement of the
performance of different KGE models.

Information 2021, 12, 147. https://doi.org/10.3390/info12040147 https://www.mdpi.com/journal/information

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/401881605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-2659-2406
https://orcid.org/0000-0002-0089-8135
https://doi.org/10.3390/info12040147
https://doi.org/10.3390/info12040147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12040147
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12040147?type=check_update&version=1

Information 2021, 12, 147 2 of 19

Other than loss function selection, the studies of Dettmers et al. [14] and Lacroix et al. [15]
have shown that using 1-vs.-all negative sampling strategy can significantly enhance
the accuracy of KGE models. Furthermore, Kadlec et al. [16] have also shown that the
accuracy of KGE models is sensitive to the training parameters where minor changes to the
parameters can significantly change the output models’ accuracy. Despite the importance
of all the previously mentioned parts of the KGE learning process, a comprehensive study
is still missing. This study is a step towards improving our understanding of the influence
of the different parts of the training pipeline on the behaviour of KGE models. Our analysis
specifically focuses on investigating the effects of training parts on both the scalability
and accuracy of KGE models. We first investigate KGE loss functions and their different
approaches, and we assess the effects of the loss function choice on different KGE models.
We then study KGE negative sampling strategies and effects on both accuracy and scalability.
We finally discuss the effects of training parameters such as the embedding size, batch size,
among others, on the scalability and accuracy of different KGE models.

Despite the growing number of KGE models and their different new approaches, we
limit our study to a basic set of models: the TransE [1], DistMult [7], TriModel [17], CP [18],
and Complex [8] models which represent the most popular and publicly available methods.
We use these methods as simple examples to examine and showcase the different parts of
the KGE learning process, where each of these model act as a representative of a unique class
of knowledge graph embedding models. For example, the TransE model is distance-based
model which update the knowledge graph embeddings based on the distance between
the entities in the vector space. On the other hand, the DistMult and ComplEx models
are factorization based models which operate using a matrix factorization procedure, the
complex model, however, belong to the class of the multi-vector embedding models where
it represents each entity and relation in the graph using two embedding vectors.

The summary of our contributions is as follows:

1. We provide a comprehensive analysis of training loss functions as used in several
state-of-the-art KGE models in Section 3. We also preform an empirical evaluation of
different KGE models with different loss functions and we show the effect of these
losses on the KGE models predictive accuracy.

2. We study negative sampling strategies and we examine their effects on the accuracy
and scalability of KGE models.

3. We study the effects of changes in the different hyperparameters and their effects on
the accuracy and scalability of KGE models during the training process.

2. Background

In this section, we discuss the concepts and notation used throughout the study.
We discuss knowledge graph embedding models, learn to rank training objectives and
the different metrics for evaluating knowledge graph embedding models in the task of
link prediction.

We use the following notation in the rest of the paper. Let X = {x1, x2, ..., xn} be a set of
objects (triples) to be ranked. Let l : X→ N be a labelling function where l(x) is the label of
object x (e.g., true/false or an arbitrary integer in case of multi-label problems). By default,
we assume a binary labelling for triples, l : X→ {0, 1}, where 0 and 1 represent false and
true labels, respectively.

Let F = { f1, f2, ..., fn} be the set of possible scoring functions. Given a KGE model,
f : X→ R is its scoring function, where f aims to score triples in X such that positive triples
are scored higher than negative ones, formally, ∀xi, x j ∈ X l(xi) > l(x j) =⇒ f (xi) > f (x j).
Finally, R(xi, f) denotes the rank position of element xi according to scoring function f , or
the position of score f (xi) in a descending order of all scores f (x) for all x ∈ X.

2.1. Loss Functions in Learning to Rank

In learning to rank, models typically use loss functions to learn the optimal scoring
function parameters from training data. The learning process then involves minimising a

Information 2021, 12, 147 3 of 19

loss function defined on the basis of the objects, their labels, and the scoring function. In
learning to rank models, the objective is to score a set of labelled objects such that: for each
two objects with different label values, the object with greater label value also has greater
model score. Next, we present the several approaches proposed in learning to rank to learn
optimal scoring functions.

• Pointwise approach. The loss function is defined in terms of the difference between
the element’s predicted score and its actual label value. The formula is as follows:

L
pointwise

(f ; X, l) =
n∑

i=1

φ(f (xi) − l(xi)),

where φ is a transformation function, e.g., the square function φ(x) = x2 as in Bayes
optimal subset ranking [19] and RESCAL KGE model [4].

• Pairwise approach. The loss is defined as the summation of the differences between
the predicted score of an element and the scores of other elements with a smaller labels’
value. The formula is as follows:

L
pairwise

(f ; X, l) =
n−1∑
i=1

n∑
j=1,l(x j)<l(xi)

φ(f (xi) − f (x j)),

where the function φ can be the hinge function as in Translating Embeddings model [1]
or the exponential function as in RankBoost [20].

• Listwise approach. The loss is defined as a comparison between the rank permutation
probabilities of model scores and values of actual labels [21]. Let φ(x) be an increasing
and strictly positive function. We define the probability of an object being ranked on
the top (a.k.a. top one probability), given the scores of all the objects as:

P(f , xi) =
φ(f (xi))∑n

j=i φ(f (x j))
,

where f (xi) is the score of object i, i = 1, 2, . . . , n. The listwise loss can then be defined as:

L
listwise

(f ; X, l) =
n∑

i=1

Lm(P(f , xi), P(l, xi)),

where Lm is a model-dependent loss and l(x) is a labelling function which returns the
true label of x. Possible examples include cross-entropy in ListNet [21] or likelihood
loss as in ListMLE [22].

2.2. Knowledge Graph Embedding Process

Knowledge graph embedding models learn low rank vector representation i.e., embed-
dings for graph entities and relations. In the link prediction task, they learn embeddings in
order to rank knowledge graph facts according to their factuality. The process of learning
these embeddings consists of different phases as shown in Figure 1. First, they initialise
the embeddings of both relations and entities using random noise. These embeddings are
then used to score a set of true and false facts, where the scores of facts are generated by
computing the interaction between their subject, predicate and object embeddings using a
model dependent scoring function. Finally, embeddings are updated through a gradient
descent routine which minimises a training loss that usually represents a min-max loss over
the scored facts. The objective is then to maximise the scores of true facts and minimise the
scores of other facts.

Information 2021, 12, 147 4 of 19

x
�

�− x′

•

•

θx

θx′

η

η

≈

≈

f(x)

f(x′)

L ∇ N

input

(s, p, o)

Negative
Sampling

Lookup
Embeddings

Compute
Scores

Compute
Training Loss

Gradient
Update

Embedding
Normalisation

A triplet

− Corrupter

Corrupted triplet

• Triplet embeddings

� Embeddings lookup

η Scoring function

≈ Normalisation

L Loss function

Figure 1. An illustration of the process of training a knowledge graph embedding model over an
example triple x = (s, p, o)—the original triple—and x′ refers to a corrupted (negative) version of it.

2.2.1. Negative Sampling

In learning to rank approaches, models use a ranking loss, e.g., pointwise or pairwise
loss, to rank a set of true and negative instances [23], where negative instances are generated
by corrupting true training facts with a given ratio of negative to positive instances [1].
This corruption happens by changing either the subject or object of the true triple instance.
In this configuration, the ratio of negative to positive instances is traditionally learnt using
a grid search, where models compromise between the accuracy achieved by increasing the
ratio and the runtime required for training.

On the other hand, multi-class based models train to rank positive triples against all
their possible corruptions as a multi-class problem, where the range of classes is the set
of all entities. For example, training on a triple (s, p, o) is achieved by learning the right
classes “s” and “o” for the pairs (?, p, o) and (s, p, ?), respectively, where the set of possible
classes is E of size Ne. Despite the enhancement of predictions’ accuracy achieved by such
approaches [14,15], their negative sampling procedure is exhaustive and requires a high
space complexity due to the usage of the whole entity vocabulary per each triple.

2.2.2. Embedding Interactions

After KGE models produce negative samples from input triples, they generate scores for
both the true and negative (corrupted) triples. These scores are generated using embedding
interaction function, i.e., scoring functions. First, the model looks up the embeddings of
the subject, predicate and object of triples. Then, the model uses an embedding interaction
function to learn a score for each triple using its embeddings.

The embedding interaction functions are model-dependent and they operate using dif-
ferent approaches such as embedding translation [1], linear products [7] and convolutional
filters [14]. For example, the TransE model uses a translation-based scoring function which
encodes embedding interactions as a translation from the subject embedding vector to the
object embedding vector through the predicate vector [1]. Such an approach allowed highly
scalable knowledge graph embedding with linear time and space complexity. However, it
suffered from limited ability to encode 1-to-many predicates in knowledge graphs due to
dependence on direct additive translations [7]. Later models such as DistMult used a linear
product-based scoring functions which allowed better encoding of 1-to-many predicates
while preserving the linear time and space complexity. However, DistMult model’s scoring
function suffered of limited ability to preserve the predicate direction due to a dependence
on a symmetric operation [7].

More recent approaches, such as ComplEx [8], ConvE [14], TriModel [17], among
others, propose new scoring mechanisms which allow for encoding both 1-to-many relations
and preserve the predicate directionality within linear time and space complexity. Since
these scoring functions are well covered in previous studies, we will not discuss the details
of their mechanisms-of-action in our study. For further information and technical details
about these knowledge graph embedding scoring functions, we refer the readers to the
reviews of Nickel et al. [9] and Wang et al. [10].

Information 2021, 12, 147 5 of 19

In the following, we provide a further discussion and definition of the embedding
interaction functions of the models that we examine in our study, where we discuss them
within their embedding strategy.

• Distance-based embeddings’ interactions

The Translating Embedding model (TransE) [1] is one of the early models that use
distance between embeddings to generate triple scores. It interprets triple’s embeddings
interactions as a linear translation of the subject to the object such that es + wp = eo, and
generates a score for a triple as follows:

φTransE
spo = ‖es + wp − eo‖l1/l2, (1)

where true facts have zero score and false facts have higher scores. This approach
provides scalable and efficient embeddings learning as it has linear time and space
complexity. However, it fails to provide efficient representation for interactions in one-to-
many, many-to-many and many-to-one predicates as its design assumes one object per
each subject–predicate combination:

• Factorisation-based embedding interactions

Interactions based on embedding factorisation provide better representation for
predicates with high cardinality. They have been adopted in models like DistMult [24]
and ComplEx [8]. The DistMult model uses the bilinear product of embeddings of the
subject, the predicate, and the object as their interaction, and its scoring function is defined
as follows:

φDistMult
spo =

K∑
k=1

esk wpk eok (2)

where esk is the k-th component of subject entity s embedding vector es. DistMult achieved a
significant improvement in accuracy in the task of link prediction over models like TransE.
However, the symmetry of embedding scoring functions affects its predictive power on
asymmetric predicates as it cannot capture the direction of the predicate. On the other hand,
the ComplEx model uses embedding in a complex form to model data with asymmetry. It
models embeddings interactions using the the product of complex embeddings, and its
scores are defined as follows:

φ
ComplEx
spo = Re(

K∑
k=1

esk wpk eok)

=
K∑

k=1

er
sk

wr
pk

er
ok
+ ei

sk
wr

pk
ei

ok

+ er
sk

wi
pk

ei
ok
− ei

sk
wi

pk
er

ok

(3)

where Re(x) represents the real part of complex number x and all embeddings are in
complex form such that e, w ∈ C, er and ei are respectively the real and imaginary parts of e,
and eo is the complex conjugate of the object embeddings eo such that eo = er

o − iei
o and this

introduces asymmetry to the scoring function. Using this notation, ComplEx can handle
data with asymmetric predicates and keep scores in the real spaces; it only uses the real
part of embeddings’ product outcome. ComplEx preserves both linear time and linear
space complexities as in TransE and DistMult; however, it surpasses their accuracy in the
task of link prediction due to its ability to model a wider set of predicate types.

2.3. Ranking Evaluation Metrics

Learning to rank models are evaluated using different ranking measures including
Mean Average Precision (MAP), Normalised Discounted Cumulative Gain (NDCG), and
Mean Reciprocal Rank (MRR) [25]. Below, we discuss MAP and MRR based on a set of

Information 2021, 12, 147 6 of 19

queries Q = {q1, q2, . . . , qn}. (Note that our experiments will also use Hits@k metric for the
model comparison; our proposed cost function design is independent of that metric and
therefore we do not provide detailed definitions here.)

• Mean Average Precision (MAP). MAP is a ranking measure that evaluates the quality
of a rank depending on the whole rank of its true (relevant) elements. First, we need
to define Precision at position k (denoted as P@k):

P@k(q, l) =
∑

i≤k I(l, xi)

k
,

where x ∈ q and I(l, x) is an indicator function that is equal to 1 when x is a relevant
element and 0 otherwise.
The Average Precision (AP) is defined by:

AP(q, l) =
∑n

i=1 P@k(q, l) · I(l, xi)

n1
,

where n is the total number of objects associated with query q, and n1 is the number of
objects with label one. The MAP is then defined as the mean of AP over all queries Q:

MAP(Q, l) =
∑n

i=1 AP(q, l)
n

. (4)

• Mean Reciprocal Rank (MRR). The Reciprocal Rank (RR) is a statistical measure used
to evaluate the response of ranking models depending on the rank of the first correct
answer. The MRR is the average of the reciprocal ranks of results for different queries
in Q. Formally, MRR is defined as:

MRR =
1
n

n∑
i=1

1
R(xi, f)

,

where xi is the highest ranked relevant item for query qi. Values of RR and MRR have
a maximum of 1 for queries with true items ranked first, and get closer to 0 when the
first true item is ranked in lower positions. Therefore, we can define the MRR error as
1−MRR. This error starts from 0 when the first true item is ranked first, and increases
towards 1 for less successful rankings.

• Hits@k. This metric represents the number of correct elements predicted among the
top-k elements in a rank, where we use Hits@1, Hits@3 and Hits@10. This metric
indicates that the model’s probability of ranking a relevant (true) fact in the top-k
element scores in the rank.

2.4. Experimental Evaluation

For this study, we have selected three highly studied models in the state of the art
and selected five commonly used datasets for link prediction. Our goal here is to learn
knowledge graph embeddings for each dataset applying different losses and analysing their
performance. We describe the setup of our experiments using the TransE [1], DistMult [7],
and ComplEx [8] KGE models. Then, we present the characteristics of the benchmarking
datasets, and also provide the relevant implementation details.

Table 1 contains statistics of the five benchmarking datasets used in our experiments
(All the benchmarking datasets can be downloaded using the following URL: https:
//doi.org/10.6084/m9.figshare.14213894, accessed on 20 March 2021). Three of them, namely,
WN18RR, FB15k-237, and YAGO10 are among the most frequently used datasets for
benchmarking KGE models. In addition, here we consider the NELL239 and PSE, which
contain a higher number of entities and triples for studying the scalability of KGE models.

https://doi.org/10.6084/m9.figshare.14213894
https://doi.org/10.6084/m9.figshare.14213894

Information 2021, 12, 147 7 of 19

Table 1. Statistics of entities, relations, and triples count per split of the benchmarking datasets which
we use in this study.

Dataset Entity Count Relation Count Train Valid Test

NELL239 48K 239 74K 3K 3K
WN18RR 41K 11 87K 3K 3K
FB15k-237 15K 237 272K 18K 20K
YAGO10 123K 37 1M 5K 5K

PSE 32K 967 3.7M 459K 459K

� Benchmarking Datasets. In our experiments, we use five knowledge graph bench-
marking datasets:

• NELL239: a subsets of the NELL dataset [26,27] which contains general knowledge
about people, places, teams, universities, among other entity types [17].

• WN18: a subset of the WordNet dataset [28] containing lexical information of the
English language [1,14].

• FB15k-237: a subset of the Freebase dataset [29] that contains information about
general human knowledge [30].

• YAGO10: a subset of the YAGO3 dataset [31] containing information mostly about
people and their citizenship, gender, and professions knowledge [32].

• PSE: a poly-pharmacy side-effects dataset [33] containing facts about drug com-
binations and their related side-effects. The dataset was introduced by Zitnik
et al. [33] to study modelling poly-pharmacy side-effects using knowledge graph
embedding models. Since the dataset is significantly larger than the available stan-
dard benchmark we use it to study the effects of hyperparameters and accuracy
of the knowledge graph embedding models.

� Evaluation Protocol. We evaluate the KGE models using a unified protocol that
assesses their performance in the task of link prediction. Let X be the set of facts, i.e.,
triples; ΘE be the embeddings of entities E, and ΘR be the embeddings of relations R.
The KGE evaluation protocol works in three steps:

(1) Corruption: For each x = (s, p, o) ∈ X, x is corrupted 2|E| − 1 times by replacing
its subject and object entities with all the other entities in E. The corrupted triples
can be defined as:

xcorr =
⋃
s′∈E

(s′, p, o)∪
⋃
o′∈E

(s, p, o′)

where s′ , s and o′ , o. These corruptions effectively provide negative examples
for the supervised training and testing process due to the Local Closed World
Assumption [34], frequently adopted for knowledge graph mining tasks.

(2) Scoring: Both original triples and corrupted instances are evaluated using a model-
dependent scoring function. This process involves looking up embeddings of
entities and relations, and computing scores depending on these embeddings.

(3) Evaluation: Each triple and its corresponding corruption triples are evaluated
using the RR ranking metric as a separate query, where the original triples repre-
sent true objects and their corruptions false ones. It is possible that corruptions
of triples may contain positive instances that exist among training or validation
triples. In our experiments, we alleviate this problem by filtering out positive
instances in the triple corruptions. Therefore, MRR and Hits@k are computed
using the knowledge graph original triples and non-positive corruptions only [1].

3. Loss Functions in KGE Models

Generally, KGE models are cast as learning to rank problems. They employ multiple
training loss functions that comply with the ranking loss approaches. In the state-of-the-art
KGE models, loss functions have been designed according to various pointwise and
pairwise approaches that we review next.

Information 2021, 12, 147 8 of 19

3.1. KGE Pointwise Losses

First, we discuss current pointwise loss functions for KGE models including SE, hinge,
and logistic losses. We then propose a new pointwise loss function, namely, the Pointwise
Square Loss (PSL) that combines the square growth of SE and the configurable margin of
hinge loss.

• Pointwise square error loss (SE). It is a pointwise ranking loss function used in
RESCAL [4]. It models training losses with the objective of minimising the squared
difference between model predicted scores for triples and their true labels:

L
SEPt

=
1
2

n∑
i=1

(f (xi) − l(xi))
2.

The optimal score for true and false facts is 1 and 0, respectively. A nice to have
characteristic of the SE loss is that it does not require configurable training parameters,
shrinking the search space of hyperparameters compared to other losses (e.g., the
margin parameter of the hinge loss).

• Pointwise hinge loss. Hinge loss can be interpreted as a pointwise loss, where the
objective is to generally minimise the scores of negative facts and maximise the scores
of positive facts to a specific configurable value. This approach is used in HolE [9],
and it is defined as:

L
hingePt

=
∑
x∈X

[λ− l(x) · f (x)]+,

where Pt is an abbreviation for pointwise to clarify the type of the loss, l(x) = 1 if
x is true and −1 otherwise, and [x]+ denotes the max(x, 0) function. This effectively
generates two different loss slopes for positive and negative scores as shown in Figure 2.
Thus, the objective resembles a pointwise loss that minimises negative scores to reach
−λ, and maximises positives scores to reach λ.

• Pointwise logistic loss. The ComplEx [8] model uses a logistic loss, which is a smoother
version of pointwise hinge loss without the configurable margin parameter. Logistic
loss uses a logistic function to minimise the negative triples score and maximise the
positive triples score. This is similar to hinge loss, but uses a smoother linear loss slope
defined as:

L
logisticPt

=
∑
x∈X

log(1 + exp(−l(x) · f (x))),

where l(x) is the true label of fact x, which is equal to 1 for positive facts and equal to
−1 otherwise.

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Square Error Loss

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Hinge Loss

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Square Hinge Loss

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Logistic Hinge Loss

f (x′)
f (x)

Figure 2. Plot of the loss growth of different types of pointwise knowledge graph embedding
loss functions.

3.2. KGE Pairwise Losses

Here, we discuss established pairwise loss functions in KGE model which are sum-
marised in Figure 3.

Information 2021, 12, 147 9 of 19

• Pairwise hinge loss. Hinge loss is a linear learning to rank loss that can be implemented
in both a pointwise or pairwise loss settings. In both, the TransE [1] and DistMult [7]
models the hinge loss is used in its pairwise form and defined as follows:

L
hingePr

=
∑

x∈X+

∑
x′∈X−

[λ+ f (x′) − f (x)]+,

where the term Pr is an abbreviation for pairwise, X+ is the set of true facts, X− is the
set of false facts, and λ is a configurable margin that separates positive from negative
facts.

In this case, the objective is to minimise the marginal difference (difference of scores
with the added margin) between the scores of negative and positive instances. This
approach optimises towards having embeddings that satisfy ∀x∈X+∀x′∈X− f (x) > f (x′) as
shown in Figure 3.

• Pairwise logistic loss. Logistic loss can also be interpreted as pairwise margin based
loss following the same approach as in hinge loss. The loss is then defined as:

L
logisticPr

=
∑

x∈X+

∑
x′∈X−

log(1 + exp(f (x′) − f (x))),

where the objective is to minimise the marginal difference between negative and
positive scores with a smoother linear slope than hinge loss as shown in Figure 3.

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Pr. Hinge Loss

−4 −2 0 2 4

0

1

2

3

4

score

lo
ss

Pr. Logistic Loss

[f (x′)− f (x)]

Figure 3. Plot of the loss growth of different types of pairwise knowledge graph embedding loss
functions. The term Pr. is an abbreviation for pairwise.

3.3. KGE Multi-Class Losses

In the following, we discuss KGE loss functions that are used to cast the KGE process
into a multi-class classification problem.

• Binary cross entropy loss (BCE). The authors of the ConvE model [14] proposed a new
binary cross entropy multi-class loss to model the training error of KGE models in
link prediction. In this setting, the whole vocabulary of entities is used to train each
positive fact such that for a triple (s, p, o), all facts (s, p, o′) with o′ ∈ E and o′ , o are
considered false. The BCE loss can be defined as follows:

L
BCE
spo = −

1
N

∑
i

(lspo · log(φspo) + (1− lspo) · log(1−φspo′)), (5)

where lspo is the true label of triplet (s, p, o). Despite the extra computational cost of this
approach, it allowed ConvE to generalise over a larger sample of negative instances,
therefore surpassing other approaches in accuracy [14].

• Negative-log softmax loss (NLS). In a recent work, Lacroix et al. [15] introduced a
soft-max regression loss to model training error of the ComplEx model as a multi-class
problem. In this approach, the objective for each (s, p, o) triple is to minimise the
following loss:

Information 2021, 12, 147 10 of 19

L
NLS
spo = Lo′

spo +L
s′
spo, where

L
o′
spo = −φspo + log(

∑
o′

exp(φspo′)

L
s′
spo = −φspo + log(

∑
s′

exp(φs′po)

(6)

where φspo is the model score for the triple (s, p, o), and s′ ∈ E, s′ , s, o′ ∈ E and o′ , o.
This resembles a log-loss of the soft-max value of the positive triple compared to all
possible object and subject corruptions where the objective is to maximise positive fact
scores and minimise all other scores. This approach achieved significant improvement
to the prediction accuracy of ComplEx model over all benchmark datasets when used
with the 3-nuclear norm regularisation of embeddings [15].

3.4. Effects of Training Objectives on Accuracy

We performed an experimental evaluation for the effect of loss function on the accuracy
of KGE models in the link prediction task in terms of MRR and Hits@10. For simplicity, we
have only experimented with three KGE models: TransE, DistMult and ComplEx. These
models are used as examples where we assess their performance on different benchmarks
under different loss function configurations.

Table 2 summarises the outcome of our experiments, comparing the accuracy of the
models on both ranking and multi-class loss approaches in terms of MRR and Hits@10.
Interestingly, in the context of the ranking loss configuration, we can observe that the
default loss functions of the examined models do not always yield the best results. On the
contrary, The DistMult and ComplEx models which by default use the pointwise hinge and
logistic losses, respectively, obtain their best result using the pointwise square error loss
with all the examined benchmarks. This shows that changing the default loss function of
these models can help enhance their predictive accuracy. The results of the TransE model
also show that its default loss configuration achieves the best results on 4 out of 6 examined
evaluation metrics. On the other hand, the pairwise logistic loss configuration of TransE
achieves best results in 3 out of 6 of the examined evaluation metrics. Given that the
pairwise logistic loss does not require parameters—unlike the margin-based hinge loss—the
pairwise logistic loss can be a preferred configuration for TransE as it can significantly
reduce the grid search time.

Our results also show that the multi-class loss versions of the CP, DistMult, ComplEx
models have significantly better results than their ranking based losses. For example, on
the NELL239 dataset, the best performing ranking-based approach, the complex model
with the pointwise square error loss, achieves 0.35 and 0.52 scores in terms of MRR and
Hits@10, respectively, compared to its NLS loss version which achieves 0.40 and 0.58 scores,
respectively. The results also show that the best multi-class loss results are obtained using
the negative log soft-max loss. It is noteworthy that both multi-class based versions of the
DistMult and ComplEx achieve their best results using the negative soft-max loss.

3.5. Effects of Training Objectives on Scalability

We have shown that different training objectives yield significantly different results
for the same KGE models. Our experimental results also suggested that the multi-class
loss functions achieve the best results in terms of MRR and Hits@10 on all the investigated
datasets. However, this approach uses a 1-vs.-all negative sampling strategy which is
time-consuming due to its higher time and space complexity compared to usual 1-vs.-n
sampling. In the following, we compare the ranking losses and multi-class losses in terms
of the runtime required for training a KGE on different dataset size to study the scalability
of both approaches.

Information 2021, 12, 147 11 of 19

Table 2. Link prediction results for KGE models with different loss functions on standard benchmark-
ing datasets. The abbreviations MC, Pr, Pt stand for multi-class, pairwise and pointwise, respectively.
The * mark is used to denote the model’s original loss function as first proposed by the authors. In
the ranking losses, the best results are computed per model and highlighted using bold font, and
underlined values represent the best result in each respective loss approach.

Model Loss
NELL239 WN18RR Fb15k-237

MRR H10 MRR H10 MRR H10
R

an
ki

ng
Lo

ss

TransE

Pr * Hinge 0.28 0.43 0.20 0.47 0.27 0.43
Logistic 0.27 0.43 0.21 0.48 0.26 0.43

Pt
Hinge 0.19 0.32 0.12 0.34 0.12 0.25

Logistic 0.17 0.31 0.11 0.31 0.01 0.23
SE 0.01 0.02 0.00 0.00 0.01 0.01

DistMult

Pr Hinge 0.20 0.32 0.40 0.45 0.10 0.16
Logistic 0.26 0.40 0.39 0.45 0.19 0.36

Pt
* Hinge 0.25 0.41 0.43 0.49 0.21 0.39
Logistic 0.28 0.43 0.43 0.50 0.20 0.39

SE 0.31 0.48 0.43 0.50 0.22 0.40

ComplEx

Pr Hinge 0.24 0.38 0.39 0.45 0.20 0.35
Logistic 0.27 0.43 0.41 0.47 0.19 0.35

Pt
Hinge 0.21 0.36 0.41 0.47 0.20 0.39

* Logistic 0.14 0.24 0.36 0.39 0.13 0.28
SE 0.35 0.52 0.47 0.53 0.22 0.41

M
ul

ti
-c

la
ss

lo
ss

es CP MC BCE - - - - - -
NLS - - 0.08 0.12 0.22 0.42

DistMult MC BCE - - 0.43 0.49 0.24 0.42
NLS 0.39 0.55 0.43 0.50 0.34 0.53

ComplEx MC BCE - - 0.44 0.51 0.25 0.43
NLS 0.40 0.58 0.44 0.52 0.35 0.53

We execute an experiment using the YAGO10 benchmark, where we train KGE models
on different percentages of the dataset and study the relation between the growth of the
dataset size and the required training runtime. Moreover, we compare the training runtime
of different KGE models with the negative soft-max loss (NLS) and the pointwise square
error loss as representatives of their respective loss class.

Figure 4 shows the outcomes of our experiments, presenting a series of plots which
describe the relation between the growth of the dataset size and the growth of training
runtime of both ranking and multi-class loss approaches. As expected, the results show
that the multi-class losses have significantly higher training runtime than ranking losses
for all the KGE models. The runtime of the ranking loss functions appears to be constant;
however, it is growing with a constant increase related to the growth of the training data.
On the other hand, the multi-class loss functions have a linear growth which correlates to
the growth of the training data. This shows the significant difference between both training
loss approaches in terms of the scalability of the training process.

The results also show that the multi-class losses have different growth slopes than
the DistMult, ComplEx and TriModel approaches. These different results from their
different techniques in modelling embedding interactions that have a significant effect on
the training time with 1-vs.-all negative sampling (multi-class losses). The different slopes
corresponding to the DistMult, ComplEx and TriModel are a result of the different number
of embedding vectors they use. While the DistMult model uses one embedding vector, the
ComplEx model uses two and the TriModel uses three, which affects their scalability.

Information 2021, 12, 147 12 of 19

0 .2M .4M .6M .8M 1M
0

1k

2k

3k

4k

Data size

R
un

tim
e

(Y
A

G
O

10
)

(A) TransE

0 .2M .4M .6M .8M 1M
0

1k

2k

3k

4k

Data size

(B) DistMult

0 .2M .4M .6M .8M 1M
0

1k

2k

3k

4k

Data size

(C) ComplEx

0 .2M .4M .6M .8M 1M
0

1k

2k

3k

4k

Data size

(D) TriModel

Ranking Loss Multi-class NLS

Figure 4. A set of plots that describe the relation between the training runtime (in seconds) and
the dataset size for the multi-class and ranking losses for different models on the YAGO10 dataset.
The results reported in this figure are acquired by training KGE models with a small embedding of
dimension 10 for 20 iterations. The TransE model’s plot reports only results for ranking loss functions.

4. KGE Training Hyperparameters

In this section, we discuss the effects of training hyperparameters on both the accuracy
and scalability of knowledge graph embedding models. We first discuss the effects in terms
of scalability and we then discuss the implications of changes of hyperparameters on the
accuracy of KGE models in the task of link prediction.

4.1. Training Hyperparameters Effects on KGE Scalability

Knowledge graph embedding models are famous for their high quality predictions
with high scalability [34]. Most of the KGE methods employ linear transformations such as
vector translations and vector diagonal products to learn interactions between embeddings,
therefore, they operate within linear time and space complexity [8,15,17].

Despite the high scalability of the training process KGE models, they require the
hyperparameters’ training routine which is time consuming due to the large hyperpa-
rameters’ search space. Traditionally, the hyperparameters search is executed using grid
search to find the best hyperparameters for each model on each new dataset. The training
hyperparameters of KGE models include embedding size, negative samples per positive,
batch size, etc. Kadlec et al. [16] have shown that minor changes to these hyperparameters
can yield significantly different results in terms of the models’ resulting accuracy. The
changes in these hyperparameters also have an impact on their runtime where changes in
hyperparameters such as the embedding size and the number of sampled negatives can
affect the memory space used during training.

We performed an experimental evaluation for four different KGE models: TransE,
DistMult, Complex and TriModel, where we examine the effects of changes of the training
hyperparameters and data size on their training runtime. We use the PSE benchmarking
dataset [33]—our largest benchmarking dataset—to show the effect of hyperparameters on
training runtimes of KGE models.

Figure 5 shows the outcome results of our experiments across the different investigated
training hyperparameters. In these experiments, we use a set of fixed hyperparameters
(embedding size = 150, batch size = 2048, negative samples = 2, training iterations = 500)
and we use a set of values for each of the investigated hyperparameter in their respective
experiment to show the relation between the changes of the hyperparameters and the
KGE model’s accuracy and runtime. The plot “A” shows the relation between the training
runtime and the size of the processed data. The plot shows that all the four investigated
models have a linear relation between their training runtime and the data size. We can also
observe that the models have a consistent growth in terms of their runtime across all the
data sizes. The DistMult model consistency achieves the smallest runtime followed by the
TransE, TriModel and ComplEx models.

Information 2021, 12, 147 13 of 19

0 0.25 0.5 0.75 1
0

50

100

150

200

(A) Data Size (×106)
R

un
tim

e
(P

SE
)

0 50 100 150 200
0

0.5k

1k

1.5k

2k

(B) Embedding Size

0 5 10 15 20
0

1k

2k

3k

4k

(C) Negative samples

0 1k 2k 3k 4k
0

2.5k

5k

7.5k

10k

(D) Batch size

TransE (PrLog) DistMult (PtSE) ComplEx (PtLog) TriModel (PtLog)

Figure 5. A set of line plots which describe the changes of training data sizes and training
hyperparameters and their effects on the training runtime of the TransE, DistMult, TriModel and
ComplEx models on the PSE dataset. The runtime is reported in second for all the plots.

Plot “B” shows the relationship between the training runtime and the model embedding
size. The plot shows that all the investigated models have a linear growth of their training
runtime corresponding to the growth of the embeddings size. However, the growth rate
of the TransE and DistMult models is considerably smaller than the growth of both the
ComplEx and TriModel models. This occurs as both the TransE and DistMult models use
a single vector to represent each of their embeddings while the ComplEx and TriModel
models use two and three vectors, respectively. Despite the better scalability of both the
TransE and DistMult models, the ComplEx and TriModel models generally achieve better
predictive accuracy [17].

The plot “C” shows the relation between the runtime of KGE models and the number
of negative samples they use during training. The plot shows that there is a positive linear
relation between training runtime and the number of negative samples—where all the
KGE models have similar results across all the investigated sampling sizes. The TriModel,
however, consistently have the highest runtime compared to other models.

Plot “D” shows the effects of the size of the batch on the training runtime. The plot
shows an exponential decay of the training runtime with the linear growth of the data
batch size. The KGE models process all the training data for each training iteration (i.e.,
epoch), where the data are divided into batches for scalability and generalisation purposes.
Therefore, the increase of the training data batch sizes leads to a decrease of the number
of model executions for each training iteration. Despite the high scalability that can be
achieved with large batch sizes, the best predictive accuracy is often achieved using small
data batch sizes. Usually, the most efficient training data batch size is chosen during a
hyperparameter grid search along with other hyperparameters such as the embedding size
and the number of negative samples.

The runtime of the models reported in Figure 5 looks very similar or almost identical
for all the models as they all operate using the same training procedure, where they differ
only on the way they represent the embeddings and compute their interactions. This is
significantly shown in the plot (B) in Figure 5, which shows a significant difference in terms
of runtime between models that use single embedding vectors such as TransE and DistMult
and other models which use multi-vector embeddings such as ComplEx and TriModel.

The reported predictive accuracy of the models in terms of the MRR scores in Figure 6
looks similar as the models parameters were not properly tuned. The reported models
are also known to produce very similar or almost identical results on the WN18RR
benchmark [17]. The purpose of the figure is also to study the change of the models
predictive accuracy in relation to the change of the values of the models’ hyperparameters
and not the best possible model accuracy.

Information 2021, 12, 147 14 of 19

0 250 500 750 1k
0

0.1

0.2

0.3

0.4

N
E

L
L

23
9

(M
R

R
)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0 1k 2k 3k 4k
0

0.1

0.2

0.3

0.4

0 250 500 750 1k
0.0

0.12

0.24

0.36

0.48

W
N

18
R

R
(M

R
R

)

0 50 100 150 200
0.0

0.12

0.24

0.36

0.48

0 5 10 15 20
0.0

0.12

0.24

0.36

0.48

0 1k 2k 3k 4k
0.0

0.12

0.24

0.36

0.48

0 250 500 750 1k
0.0

0.06

0.12

0.18

0.24

FB
15

k-
23

7
(M

R
R

)

0 50 100 150 200
0.0

0.06

0.12

0.18

0.24

0 5 10 15 20
0.0

0.06

0.12

0.18

0.24

0 1k 2k 3k 4k
0.0

0.06

0.12

0.18

0.24

0 250 500 750 1k
0.0

0.12

0.24

0.36

0.48

(A) Epoch count

YA
G

O
10

(M
R

R
)

0 50 100 150 200
0.0

0.12

0.24

0.36

0.48

(B) Embedding size

0 5 10 15 20
0.0

0.12

0.24

0.36

0.48

(C) Negative samples

0 1k 2k 3k 4k
0.0

0.12

0.24

0.36

0.48

(D) Batch size

TransE (PrLog) DistMult (PtSE) ComplEx (PtLog) TriModel (PtLog)

Figure 6. A set of plots which describe the effects of training hyperparameters of KGE models and their effects on the
models’ accuracy in terms of MRR on different benchmarking datasets. The base hyperparameters for our experiments
are: embedding size (k = 150), negative samples per positive (n = 2), batch size (b = 2048), number of epochs (e = 500),
optimizer (AMSgrad), learning rate (lr = 0.01).

Analysis of the Predictive Scalability Experiments

Our experiments on the effects of training parameters of KGE models on the models’
scalability suggest the following:

• The results confirm that KGE models have linear time complexity as shown in Figure 5
where the models’ runtime grows linearly corresponding to increase of both data size
and embedding vector sizes.

• The results also confirm that models such as the TriModel and Complex model which
have more than one embedding vector for each entity, and relations require more
training time compared to models with only one embedding vector.

• The results also show that the training batch size has a significant effect on the training
runtime, therefore, using larger batch sizes are suggested to significantly decrease the
training runtime of the training of KGE models.

Information 2021, 12, 147 15 of 19

4.2. Training Hyperparameters’ Effects on KGE Accuracy

In the following, we study the relation between changes in different training hyperpa-
rameters and the accuracy of KGE models. We perform an experimental evaluation where
we examine the changes of the accuracy of KGE models in terms of MRR compared to
the changes of the model’s training hyperparameters. Figure 6 shows the outcome of our
experiments where the plots present the changes on MRR corresponding to changes of the
training hyperparameters of different KGE models on the NELL239, WN18RR, FB15k-237
and YAGO10 datasets.

The datasets reported in Figure 6 are sorted in a descending order from top to down
in terms of the number of facts contained in the dataset (dataset size). The first row of
plots corresponds to the experiments which are done on the NELL239 dataset (the smallest
dataset); these results show that changing the number of training iteration (epochs) and
the embedding size has a significant effect on models’ accuracy. On the other hand, the
negative samples and batch size hyperparameters have less effect on the models’ MRR
score where the change in the batch size and the number of negative samples insignificantly
affects the MRR score—except by the TransE model which has a positive MRR score relation
with the number of negative samples.

The results corresponding to the WN18RR dataset also show that the epoch count
and embedding size have a significant effect of the model’s accuracy. We can also observe
that both hyperparameters have a positive relation with the MRR score of KGE models
compared to the variable relation on the NELL dataset. The results also show that the
MRR score of KGE models stabilises after 250 training iterations with an embedding size of
50—increases above these values do not have significant effects on the MRR score of models.
Similar to the results on the NELL239, the negative samples and batch size hyperparameters
show no significant relation with the MRR scores of different KGE models.

The results of the FB15k-237 dataset have a different relation pattern corresponding
to the number of training iterations compared to other datasets where the MRR scores
of different KGE models have negative or no relation with the changes of the number
of training iterations. For example, the MRR scores TransE and DistMult approximately
have the sample values corresponding to all the different values of the number of training
iterations. On the other hand, the TriModel and ComplEx models have a negative relation
with the number of training iteration where their MRR scores decrease with the growth of
the training iterations count. The changes of the embedding size on KGE models on the
FB15k-237 dataset also show variant patterns where different KGE models have different
relation to the change of the size of the embeddings.

On the other hand, the changes of the batch size and number of negative samples
follow a similar pattern as in the NELL239 dataset: the models’ MRR scores have no
significant relation with the changes of both hyperparameters. However, an exception was
observed for the TransE model, which has a positive MRR score relation with the number
of negative samples.

The results of the YAGO10 dataset (the largest dataset in this experiment) show a
positive relation between the number of training iterations and the MRR score of the
TransE, TriModel and ComplEx models. Conversely, the DistMult model has a negative
relation with the the number of training iterations. These results show that all models
have a positive relation between their MRR scores and the size of the embeddings. For the
batch size and negative samples’ hyperparameters, we can observe that there is a lower
correlation to the MRR scores as in the previous dataset; however, there is a noticeable low
positive correlation between the number of negative samples and the MRR scores of the
TransE, TriModel and ComplEx models.

Finally, based on the observations previously presented, we can provide a list of
practical suggestions for anyone experimenting with KGE models:

• Changes on the embedding vectors’ size have the biggest effect on the predictive
accuracy of KGE models. Thus, we suggest to carefully select this parameter by

Information 2021, 12, 147 16 of 19

searching through a larger search space, which can help with ensuring that the models
can reach their best representations of the knowledge graph.

• The increased number of training iterations can sometimes have a negative effect on
the outcome predictive accuracy. Thus, we suggest using early stopping techniques to
decide when to stop model training before accuracy starts to decrease.

• Both the number of negative samples and batch sizes showed a small effect on the
predictive accuracy of KGE models. Thus, this parameter can either be assigned fixed
values or be found using a small search spaces to help decrease the hyperparameters
search space, and thus the hyperparameters’ tuning runtime.

5. Discussion

In this section, we discuss the compromise between scalability and accuracy in the
training of KGE models. We also discuss the properties of some datasets and their relation
with KGE interaction functions. We finally discuss the compatibility between specific KGE
scoring and loss functions.

5.1. The Compromise between Scalability and Accuracy

We have shown that KGE models achieve their best result in terms of accuracy using
multi-class loss functions. However, these functions depend on the 1-vs.-all negative
sampling which is time-consuming as we have shown in Section 3.5. On the other hand,
KGE models with ranking-based loss function are significantly more scalable, but they
have less accurate predictions compared to the multi-class losses. This variability between
the capabilities of the two approaches results in a compromise between the scalability and
accuracy of KGE models when choosing loss functions for KGE models. In our experiments,
we found that the training runtime of multi-class loss functions is affected by the entity
count in the dataset along with the dataset size where datasets with a higher number of
entities require more training time than others even if they have the same size.

We ran all our experiments on GPU where we found out that the multi-class based
models consume a large amount of the GPU memory. This, therefore, forced us to use
small training batch sizes to fit to the GPU’s memory especially on large datasets. The use
of these smaller batches resulted in longer training runtime due to the increased number
of training iterations over the batches. Wang et al. [10] provided a detailed study of the
theoretical time-complexity of such approaches. On the other hand, ranking based loss
functions have significantly lower GPU memory consumption compared to the multi-class
loss functions. However, the memory consumption grows positively with relation to the
number of used negative samples.

We thus suggest that KGE models with multi-class losses can be used comfortably
used for training of small size (less than 5M facts) knowledge graphs. We also recommend
using multiple GPUs when available for running the grid-search process of KGE models
with multi-class objectives.

5.2. The Relationship between Datasets and Embedding Interaction Functions

From our experiments, it is noticeable that the tensor factorisation based methods such
as the DistMult, TriModel and ComplEx models consistently have better accuracy than
distance based models such as the TransE model on all benchmark in the ranking losses’
configuration. However, we can also see that the TransE model significantly outperforms
all other ranking based models on the FB15k-237 dataset.

A further study of Nguyen et al. [35] also shows that translation based methods
achieve significantly higher accuracy than tensor factorisation based methods in terms of
both MRR and Hits@10. We think that this can be due to specific properties of the dataset
which is compatible with translation based embedding interaction approaches compared to
tensor factorisation methods. We also intend to study this specific relation in future works
where we intend to investigate different properties of knowledge graph and their possible
relations to specific KGE embedding components.

Information 2021, 12, 147 17 of 19

5.3. Compatibility between Scoring and Loss Functions

In the ranking loss functions experiments, we can see that the TransE model achieves
its best result using pairwise loss functions while its version with the pointwise loss
function has significantly worse results. On the other hand, other tensor factorisation
based approaches such as the DistMult and ComplEx models achieve their best results with
their version which uses pointwise loss functions such as the pointwise squared error and
logistic losses. The pairwise loss function versions of these models also have significantly
worse results in terms of both the MRR and Hits@10 metrics on all benchmarks as shown
in Table 2.

5.4. Limitations of Knowledge Graph Embedding Models

Despite the high accuracy and scalability of knowledge graph embedding models,
they suffer from various limitations that we discuss in the following:

• Lack of interpretability. In knowledge graph embedding models, the learning
objective is to model nodes and edges of the graph using low-rank vector embeddings
that preserve the graph’s coherent structure. The embedding learning procedure
operates mainly by transforming noise vectors to useful embeddings using gradient
decent optimisation on a specific objective loss. These procedures, however, work as
a black box that is hard to interpret compared to other association rule mining and
graph traversal approaches that can be interpreted based on the features they use.

• Sensitivity to data quality. KGE models generate vector representations of entities
according to their prior knowledge. Therefore, the quality of this knowledge affects
the quality of the generated embeddings.

• Hyperparameter sensitivity. The outcome predictive accuracy of KGE embeddings is
sensitive to their hyperparameters [16]. Therefore, minor changes in these parameters
can have significant effects on the outcome predictive accuracy of KGE models. The
process of finding the optimal parameters of KGE models is traditionally achieved
through an exhausting brute-force parameter search. As a result, their training may
require rather time-consuming grid search procedures to find the right parameters for
each new dataset.

5.5. Future Directions

We intend to extend the scope of this study to examine a new set of models such as
the convolution based models and graph neural network based KGE models to further
validate the findings of our study. We also intend to examine re-evaluating state-of-the-art
approaches with various loss function configurations to see how these loss objectives can
affect their predictive accuracy on the standard evaluation benchmarks.

6. Conclusions

In this study, we have examined different approaches for defining training objectives
in KGE models where we have studied their effects on the models’ accuracy and scalability.
We have then shown by experimental evaluation that most of the studied KGE models
achieve better accuracy in the link prediction task using a different loss function than their
originally published functions.

We have also studied the differences between multi-class based loss functions and
ranking based loss functions and their associated negative sampling strategies with a focus
on their relation to the scalability and accuracy of the KGE models. Finally, we have studied
the hyperparameter tuning process in the KGE models’ training process, and we examined
the effect of different training hyperparameters on KGE models’ accuracy and scalability.

Author Contributions: S.K.M. and E.M. theoretical study, analysis, findings and wrote the manuscript.
V.N. fund acquisition, design review, manuscript review and supervise; All authors discussed the
results and contributed to the final manuscript. All authors have read and agreed to the published
version of the manuscript.

Information 2021, 12, 147 18 of 19

Funding: Insight Centre for Data Analytics at the National University of Ireland Galway, Ireland is
supported by the Science Foundation Ireland grant (12/RC/2289_P2).

Data Availability Statement: All the benchmarking datasets used in this study can be downloaded
using the following URL: https://doi.org/10.6084/m9.figshare.14213894, accessed on 20 March 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational

Data. In Proceedings of the Neural Information Processing Systems (NIPS) 2013, Lake Tahoe, NV, USA, 5–10 December 2013;
pp. 2787–2795.

2. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes. In Proceedings of the
AAAI Conference on Artificial Intelligence 2014, Quebec City, QC, Canada, 27–31 July 2014; pp. 1112–1119.

3. Nie, B.; Sun, S. Knowledge graph embedding via reasoning over entities, relations, and text. Future Gener. Comp. Syst. 2019,
91, 426–433. [CrossRef]

4. Nickel, M.; Tresp, V.; Kriegel, H. A Three-Way Model for Collective Learning on Multi-Relational Data. In Proceedings of the
28th International Conference on International Conference on Machine Learning, Washington, DC, USA, 28 June–2 July 2011;
pp. 809–816.

5. Bordes, A.; Glorot, X.; Weston, J.; Bengio, Y. A semantic matching energy function for learning with multi-relational data—
Application to word-sense disambiguation. Mach. Learn. 2014, 94, 233–259. [CrossRef]

6. Nickel, M.; Tresp, V.; Kriegel, H. Factorizing YAGO: Scalable machine learning for linked data. In Proceedings of the 21st
international conference on World Wide Web 2012, Lyon, France, 16–20 April 2012; pp. 271–280.

7. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
In Proceedings of the International Conference on Learning Representations (ICLR) 2015, San Diego, CA, USA, 7–9 May 2015.

8. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction. In Proceedings of
the International Conference on Machine Learning 2016, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 2071–2080.

9. Nickel, M.; Rosasco, L.; Poggio, T.A. Holographic Embeddings of Knowledge Graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, ZA, USA, 12–17 February 2016; pp. 1955–1961.

10. Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2724–2743. [CrossRef]

11. Mohamed, S.K.; Novácek, V.; Vandenbussche, P.; Muñoz, E. Loss Functions in Knowledge Graph Embedding Models.
In DL4KG@ESWC—CEUR Workshop Proceedings, Proceedings of the 16th European Semantic Web Conference, Portoroz, Slovenia,
2 June 2019; CEUR-WS.org: Aachen, Germany, 2019; Volume 2377, pp. 1–10.

12. Hayashi, K.; Shimbo, M. On the Equivalence of Holographic and Complex Embeddings for Link Prediction. In Proceedings of
the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017; pp. 554–559.

13. Trouillon, T.; Nickel, M. Complex and Holographic Embeddings of Knowledge Graphs: A Comparison. arXiv 2017, arXiv:1707.01475.
14. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the

AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
15. Lacroix, T.; Usunier, N.; Obozinski, G. Canonical Tensor Decomposition for Knowledge Base Completion. arXiv 2018,

arXiv:1806.07297.
16. Kadlec, R.; Bajgar, O.; Kleindienst, J. Knowledge Base Completion: Baselines Strike Back. In Proceedings of the Rep4NLP@ACL.

Association for Computational Linguistics, Vancouver, BC, Canada, 28 April 2017, pp. 69–74.
17. Mohamed, S.K.; Novácek, V. Link Prediction Using Multi Part Embeddings. In Lecture Notes in Computer Science, Proceedings of the

European Semantic Web Conference, Portorož, Slovenia, 2–6 June 2019; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11503,
pp. 240–254.

18. Hitchcock, F.L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927, 6, 164–189. [CrossRef]
19. Cossock, D.; Zhang, T. Statistical Analysis of Bayes Optimal Subset Ranking. IEEE Trans. Inf. Theory 2008, 54, 5140–5154.

[CrossRef]
20. Freund, Y.; Iyer, R.D.; Schapire, R.E.; Singer, Y. An Efficient Boosting Algorithm for Combining Preferences. J. Mach. Learn. Res.

2003, 4, 933–969.
21. Cao, Z.; Qin, T.; Liu, T.; Tsai, M.; Li, H. Learning to rank: From pairwise approach to listwise approach. In Proceedings of the

24th International Conference on Machine Learning 2007, Corvallis, OR, USA, 13–15 April 2007; Volume 227; pp. 129–136.
22. Xia, F.; Liu, T.; Wang, J.; Zhang, W.; Li, H. Listwise approach to learning to rank: Theory and algorithm. In Proceedings of the

International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; Volume 307, pp. 1192–1199.
23. Chen, W.; Liu, T.; Lan, Y.; Ma, Z.; Li, H. Ranking Measures and Loss Functions in Learning to Rank. Adv. Neural Inf. Process. Syst.

2009, 22, 315–323.
24. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Learning Multi-Relational Semantics Using Neural-Embedding Models. arXiv 2015,

arXiv:1411.4072.
25. Liu, T. Learning to Rank for Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2011.

https://doi.org/10.6084/m9.figshare.14213894
http://doi.org/10.1016/j.future.2018.09.040
http://dx.doi.org/10.1007/s10994-013-5363-6
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1002/sapm192761164
http://dx.doi.org/10.1109/TIT.2008.929939

Information 2021, 12, 147 19 of 19

26. Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang, B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.; Kisiel, B.; et al.
Never-ending learning. Commun. ACM 2018, 61, 103–115. [CrossRef]

27. Gardner, M.; Mitchell, T.M. Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Extraction. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September
2015; pp. 1488–1498.

28. Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
29. Bollacker, K.D.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring

human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 10–12 June 2008; pp. 1247–1250.

30. Toutanova, K.; Chen, D.; Pantel, P.; Poon, H.; Choudhury, P.; Gamon, M. Representing Text for Joint Embedding of Text and
Knowledge Bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon,
Portugal, 17–21 September 2015; pp. 1499–1509.

31. Mahdisoltani, F.; Biega, J.; Suchanek, F.M. YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proceedings of the 7th
Biennial Conference on Innovative Data Systems Research 2014, Asilomar, CA, USA, 4–7 January 2015.

32. Bouchard, G.; Singh, S.; Trouillon, T. On approximate reasoning capabilities of low-rank vector spaces. In Proceedings of the
AAAI Spring Syposium on Knowledge Representation and Reasoning (KRR): Integrating Symbolic and Neural Approaches, Palo
Alto, CA, USA, 23–25 March 2015.

33. Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics
2018, 34, i457–i466. [CrossRef] [PubMed]

34. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE 2016,
104, 11–33. [CrossRef]

35. Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D. A Novel Embedding Model for Knowledge Base Completion Based
on Convolutional Neural Network. In Proceedings of the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), New Orleans, LA, USA, 1–6 June 2018;
pp. 327–333.

http://dx.doi.org/10.1145/3191513
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1093/bioinformatics/bty294
http://www.ncbi.nlm.nih.gov/pubmed/29949996
http://dx.doi.org/10.1109/JPROC.2015.2483592

	Introduction
	Background
	Loss Functions in Learning to Rank
	Knowledge Graph Embedding Process
	Negative Sampling
	Embedding Interactions

	Ranking Evaluation Metrics
	Experimental Evaluation

	Loss Functions in KGE Models
	KGE Pointwise Losses
	KGE Pairwise Losses
	KGE Multi-Class Losses
	Effects of Training Objectives on Accuracy
	Effects of Training Objectives on Scalability

	KGE Training Hyperparameters
	Training Hyperparameters Effects on KGE Scalability
	Training Hyperparameters' Effects on KGE Accuracy

	Discussion
	The Compromise between Scalability and Accuracy
	The Relationship between Datasets and Embedding Interaction Functions
	Compatibility between Scoring and Loss Functions
	Limitations of Knowledge Graph Embedding Models
	Future Directions

	Conclusions
	References

