169 research outputs found

    Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    Get PDF
    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies

    Novel implementations of faraday rotation spectroscopy - from in-situ radical detection to studies of environmental nitrogen cycling

    Get PDF
    Radical species play an important role in various chemical processes spanning atmospheric chemistry (e.g. ozone formation), bio-medical science, and combustion. These highly reactive chemicals usually occur at very low concentration levels, and are difficult to quantify in experiments1^{1}. Generally, laser-based techniques rely on careful selection of the target transition to minimize spectral interference and achieve high selectivity. In case of complex gas mixtures (such as air) a possibility of spectral interference always exists. Since Faraday rotation spectroscopy (FRS) is sensitive only to paramagnetic species (radicals), it can simultaneously provide ultra-high sensitivity and selectivity. \newline In this talk an overview of novel designs of FRS instrumentation as well as applications of FRS sensing will be provided. Examples will be given for FRS systems that routinely operate at the fundamental limits of optical detection, cavity-enhanced FRS detection schemes for sensitivity enhancement towards sub-pptv detection limits2^{2}, and high-accuracy FRS spectrometers designed specifically for ratiometry of nitrogen isotopes (14^{14}N, 15^{15}N)3^{3}. Prospects for the FRS technology to monitor important atmospheric molecules such as HOx radicals (atmospheric "cleansing" agents) will be discussed. \newline References:\newline 1. Wennberg et al., "Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals," Rev. Sci. Instrum. 65, 1858-1876 (1994).\newline 2. Westberg et al., "Optical feedback cavity-enhanced Faraday rotation spectroscopy for oxygen detection," in CES2015(Boulder, CO, 2015).\newline 3. Zhang, "Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer," Sensors 15, 25992 (2015)

    Laser spectroscopy for breath analysis : towards clinical implementation

    Get PDF
    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe

    Report on active and planned spacecraft and experiments

    Get PDF
    Information is presented, concerning active and planned spacecraft and experiments known to the National Space Science Data Center. The information included a wide range of disciplines: astronomy, earth sciences, meteorology, planetary sciences, aeronomy, particles and fields, solar physics, life sciences, and material sciences. These spacecraft projects represented the efforts and funding of individual countries as well as cooperative arrangements among different countries

    The worldwide ionospheric data base

    Get PDF
    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory

    OGO program summary

    Get PDF
    An overview of the OGO program is presented. Brief descriptions of the six OGO spacecraft, and the experiments on each are included

    43rd Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Final program, abstracts, and information about the 43rd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 29 - August 2, 2001

    Laser Spectroscopy for Atmospheric and Environmental Sensing

    Get PDF
    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs)

    Data catalog series for space science and applications flight missions. Volume 6: Master index volume

    Get PDF
    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA, and other U.S. government agencies. This volume contains the Master Index. The following spacecraft are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided

    Low-Temperature CO-Oxidation Catalysts for Long-Life CO2 Lasers

    Get PDF
    Low-temperature CO-oxidation catalysts are necessary for closed-cycle pulsed CO2 lasers as well as for other applications, including air purification. The papers presented in this volume discuss several such catalysts, including information on catalyst preparation, techniques for enhancing catalyst performance, laboratory and laser test results, and mechanistic considerations
    corecore