5,094 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    New developments in prosthetic arm systems

    Get PDF
    Absence of an upper limb leads to severe impairments in everyday life, which can further influence the social and mental state. For these reasons, early developments in cosmetic and body-driven prostheses date some centuries ago, and they have been evolving ever since. Following the end of the Second World War, rapid developments in technology resulted in powered myoelectric hand prosthetics. In the years to come, these devices were common on the market, though they still suffered high user abandonment rates. The reasons for rejection were trifold - insufficient functionality of the hardware, fragile design, and cumbersome control. In the last decade, both academia and industry have reached major improvements concerning technical features of upper limb prosthetics and methods for their interfacing and control. Advanced robotic hands are offered by several vendors and research groups, with a variety of active and passive wrist options that can be articulated across several degrees of freedom. Nowadays, elbow joint designs include active solutions with different weight and power options. Control features are getting progressively more sophisticated, offering options for multiple sensor integration and multi-joint articulation. Latest developments in socket designs are capable of facilitating implantable and multiple surface electromyography sensors in both traditional and osseointegration-based systems. Novel surgical techniques in combination with modern, sophisticated hardware are enabling restoration of dexterous upper limb functionality. This article is aimed at reviewing the latest state of the upper limb prosthetic market, offering insights on the accompanying technologies and techniques. We also examine the capabilities and features of some of academia’s flagship solutions and methods

    2019 September 20 – Board of Trustees Agenda and Minutes

    Get PDF

    MEMS 411: Dog Mobility Aid

    Get PDF
    Henry, an 8-year-old dog, suffers from an angular limb deformity. We created a mobility aid for Henry to improve his quality of life. This device functions similarly to a crutch attached to the affected arm to eliminate compressive forces on his metacarpals

    Scoping Research Report on Assistive Technology - On The Road For Universal Assistive Technology Coverage

    Get PDF
    Over one billion people – largely disabled people and older people – are currently in need of Assistive Technology (AT). By 2050, this number is predicted to double. Despite the proven advantages of AT for disabled and older people, their families, and society, there is still a vast and stubborn gap between the need and the supply; currently only 10% of those who need AT currently have access to it. This Scoping Research Report on Assistive Technology (AT) seeks to unpick and understand the multi-layered and multifaceted ways in which economic, social, and political factors interplay and interact to create barriers to AT for those who need it the most. Through primary and secondary research, they explore the current landscape, the limitations, and current initiatives, ultimately answering the question: “How best should a target intervention around AT sphere affect positive change for poor, disabled and older people in Global South priority countries?”. To understand this question, the research team asked two specific questions: What are the barriers which prevent access to AT for the people that need it, with a focus on those living in low resource settings within DFID priority Global South countries? How should DFID, in partnership with others best direct its intervention toward overcoming these barriers? The work reveals that, while levels of AT market development vary across countries, key barriers are common. These barriers can be classified into 5 main categories related to both supply and demand factors and across the 5Ps of People, Products, Provision, Personnel, and Policy. This work is part of the ‘Frontier Technology Livestreaming’ programm

    Suggested approach for establishing a rehabilitation engineering information service for the state of California

    Get PDF
    An ever expanding body of rehabilitation engineering technology is developing in this country, but it rarely reaches the people for whom it is intended. The increasing concern of state and federal departments of rehabilitation for this technology lag was the stimulus for a series of problem-solving workshops held in California during 1977. As a result of the workshops, the recommendation emerged that the California Department of Rehabilitation take the lead in the development of a coordinated delivery system that would eventually serve the entire state and be a model for similar systems across the nation

    The Development and Future of Prosthetics Controlled by Myoelectrical Impulses

    Get PDF
    Objective: To document the developmental history of prostheses to better understand the circumstances that led to enabling amputees to experience touch through sensory reinnervation surgery in conjunction with an innovative bionic arm; and to prove that sensory reinnervation is the key to further progress. Methods: The topic was researched extensively using scholarly databases and read relevant accounts of experimental studies and outcomes. Results: By examining the progress made in the field of prostheses, it has been determined that a sensory reinnervation technique is at the forefront of bionic limb technology and predict that it will continue to be utilized and perfected in the future

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197
    corecore