671 research outputs found

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    Design of One-Coincidence Frequency Hopping Sequence Sets for FHMA Systems

    Get PDF
    Department of Electrical EngineeringIn the thesis, we discuss frequency hopping multiple access (FHMA) systems and construction of optimal frequency hopping sequence and applications. Moreover, FHMA is widely used in modern communication systems such as Bluetooth, ultrawideband (UWB), military, etc. For these systems, it is desirable to employ frequency-hopping sequences (FHSs) having low Hamming correlation in order to reduce the multiple-access interference. In general, optimal FHSs with respect to the Lempel-Greenberger bound do not always exist for all lengths and frequency set sizes. Therefore, it is an important problem to verify whether an optimal FHS with respect to the Lempel-Greenberger bound exists or not for a given length and a given frequency set size. I constructed FHS satisfying optimal with respect to the Lempel-Greenberger bound and Peng-Fan bound for efficiency of available frequency. Parameters of a new OC-FHS set are length p^2-p over Z_(p^2 ) by using a primitive element of Z_p. The new OC-FHS set with H_a (X)=0 and H_c (X)=1 can be applied to several recent applications using ISM band (e.g. IoT) based on BLE and Zigbee. In the construction and theorem, I used these mathematical back grounds in preliminaries (i.e., finite field, primitive element, primitive polynomial, frequency hopping sequence, multiple frequency shift keying, DS/CDMA) in order to prove mathematically. The outline of thesis is as follows. In preliminaries, we explain algorithm for minimal polynomial for sequence, linear complexities, Hamming correlation and bounds for FHSs and some applications are presented. In section ???, algorithm for complexity, correlation and bound for FHSs and some applications are presented. In section ???, using information in section ??? and ???, a new construction of OC-FHS is presented. In order to prove the optimality of FHSs, all cases of Hamming autocorrelation and Hamming cross-correlation are mathematically calculated. Moreover, in order to raise data rate or the number of users, a new method is presented. Using this method, sequences are divided into two times of length and satisfies Lempel-Greenberger bound and Peng-Fan bound.clos

    Chip and Signature Interleaving in DS CDMA Systems

    Get PDF
    Siirretty Doriast

    New Spectrally Constrained Sequence Sets With Optimal Periodic Cross-Correlation

    Get PDF
    Spectrally constrained sequences (SCSs) play an important role in modern communication and radar systems operating over non-contiguous spectrum. Despite numerous research attempts over the past years, very few works are known on the constructions of optimal SCSs with low cross-correlations. In this paper, we address such a major problem by introducing a unifying framework to construct unimodular SCS families using circular Florentine rectangles (CFRs) and interleaving techniques. By leveraging the uniform power allocation in the frequency domain for all the admissible carriers (a necessary condition for beating the existing periodic correlation lower bound of SCSs), we present a tighter correlation lower bound and show that it is achievable by our proposed SCS families including multiple SCS sets with zero correlation zone properties

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Modélisation formelle des systÚmes de détection d'intrusions

    Get PDF
    L’écosystĂšme de la cybersĂ©curitĂ© Ă©volue en permanence en termes du nombre, de la diversitĂ©, et de la complexitĂ© des attaques. De ce fait, les outils de dĂ©tection deviennent inefficaces face Ă  certaines attaques. On distingue gĂ©nĂ©ralement trois types de systĂšmes de dĂ©tection d’intrusions : dĂ©tection par anomalies, dĂ©tection par signatures et dĂ©tection hybride. La dĂ©tection par anomalies est fondĂ©e sur la caractĂ©risation du comportement habituel du systĂšme, typiquement de maniĂšre statistique. Elle permet de dĂ©tecter des attaques connues ou inconnues, mais gĂ©nĂšre aussi un trĂšs grand nombre de faux positifs. La dĂ©tection par signatures permet de dĂ©tecter des attaques connues en dĂ©finissant des rĂšgles qui dĂ©crivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La dĂ©tection hybride repose sur plusieurs mĂ©thodes de dĂ©tection incluant celles sus-citĂ©es. Elle prĂ©sente l’avantage d’ĂȘtre plus prĂ©cise pendant la dĂ©tection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de rĂšgles de reconnaissance d’attaques. Le nombre d’attaques potentielles Ă©tant trĂšs grand, ces bases de rĂšgles deviennent rapidement difficiles Ă  gĂ©rer et Ă  maintenir. De plus, l’expression de rĂšgles avec Ă©tat dit stateful est particuliĂšrement ardue pour reconnaĂźtre une sĂ©quence d’évĂ©nements. Dans cette thĂšse, nous proposons une approche stateful basĂ©e sur les diagrammes d’état-transition algĂ©briques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de reprĂ©senter de façon graphique et modulaire une spĂ©cification, ce qui facilite la maintenance et la comprĂ©hension des rĂšgles. Nous Ă©tendons la notation ASTD avec de nouvelles fonctionnalitĂ©s pour reprĂ©senter des attaques complexes. Ensuite, nous spĂ©cifions plusieurs attaques avec la notation Ă©tendue et exĂ©cutons les spĂ©cifications obtenues sur des flots d’évĂ©nements Ă  l’aide d’un interprĂ©teur pour identifier des attaques. Nous Ă©valuons aussi les performances de l’interprĂ©teur avec des outils industriels tels que Snort et Zeek. Puis, nous rĂ©alisons un compilateur afin de gĂ©nĂ©rer du code exĂ©cutable Ă  partir d’une spĂ©cification ASTD, capable d’identifier de façon efficiente les sĂ©quences d’évĂ©nements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events
    • 

    corecore