1,677 research outputs found

    Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Get PDF
    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design

    Robot Consciousness: Physics and Metaphysics Here and Abroad

    Get PDF
    Interest has been renewed in the study of consciousness, both theoretical and applied, following developments in 20th and early 21st-century logic, metamathematics, computer science, and the brain sciences. In this evolving narrative, I explore several theoretical questions about the types of artificial intelligence and offer several conjectures about how they affect possible future developments in this exceptionally transformative field of research. I also address the practical significance of the advances in artificial intelligence in view of the cautions issued by prominent scientists, politicians, and ethicists about the possible dangers of such sufficiently advanced general intelligence, including by implication the search for extraterrestrial intelligence

    Explanatory machine learning for sequential human teaching

    Full text link
    The topic of comprehensibility of machine-learned theories has recently drawn increasing attention. Inductive Logic Programming (ILP) uses logic programming to derive logic theories from small data based on abduction and induction techniques. Learned theories are represented in the form of rules as declarative descriptions of obtained knowledge. In earlier work, the authors provided the first evidence of a measurable increase in human comprehension based on machine-learned logic rules for simple classification tasks. In a later study, it was found that the presentation of machine-learned explanations to humans can produce both beneficial and harmful effects in the context of game learning. We continue our investigation of comprehensibility by examining the effects of the ordering of concept presentations on human comprehension. In this work, we examine the explanatory effects of curriculum order and the presence of machine-learned explanations for sequential problem-solving. We show that 1) there exist tasks A and B such that learning A before B has a better human comprehension with respect to learning B before A and 2) there exist tasks A and B such that the presence of explanations when learning A contributes to improved human comprehension when subsequently learning B. We propose a framework for the effects of sequential teaching on comprehension based on an existing definition of comprehensibility and provide evidence for support from data collected in human trials. Empirical results show that sequential teaching of concepts with increasing complexity a) has a beneficial effect on human comprehension and b) leads to human re-discovery of divide-and-conquer problem-solving strategies, and c) studying machine-learned explanations allows adaptations of human problem-solving strategy with better performance.Comment: Submitted to the International Joint Conference on Learning & Reasoning (IJCLR) 202

    Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales

    Full text link
    Tesis por compendio[ES] El mecanizado con brazos robots ha sido estudiado aproximadamente desde los años 90, durante este tiempo se han llevado a cabo importantes avances y descubrimientos en cuanto a su campo de aplicación. En general, los robots manipuladores tienen muchos beneficios y ventajas al ser usados en operaciones de mecanizado, tales como, flexibilidad, gran área de trabajo y facilidad de programación, entre otras, frente a las Máquinas Herramientas de Control numérico (MHCN) que necesitan de una gran inversión para trabajar piezas muy grandes o incrementar sus grados de libertad. Como desventajas, frente a las MHCN, los brazos robóticos poseen menor rigidez, lo que combinado con las altas fuerzas producidas en los procesos de mecanizado hace que aparezcan errores de precisión, desviaciones en las trayectorias, vibraciones y, por consiguiente, una mala calidad en las piezas fabricadas. Entre los brazos robots, los brazos colaborativos están en auge debido a su programación intuitiva y a sus medidas de seguridad, que les permiten trabajar en el mismo espacio que los operadores sin que estos corran riesgos. Como desventaja añadida de los robots colaborativos se encuentra la mayor flexibilidad que estos tienen en sus articulaciones, debido a que incluyen reductores del tipo Harmonic drive. El uso de un control de fuerza en procesos de mecanizado con brazos robots permite controlar y corregir en tiempo real las desviaciones generadas por la flexibilidad en las articulaciones del robot. Utilizar este método de control es beneficioso en cualquier brazo robot; sin embargo, el control interno que incluyen los robots colaborativos presenta ventajas que permiten que el control de fuerza pueda ser aplicado de una manera más eficiente. En el presente trabajo se desarrolla una propuesta real para la inclusión del control de esfuerzos en el brazo robot, así como también, se evalúa y cuantifica la capacidad de los robots industriales y colaborativos en tareas de mecanizado. La propuesta plantea cómo mejorar la utilización de un control de fuerza por bucle interior/exterior aplicado en un brazo colaborativo cuando se desconocen los pares reales de los motores del robot, así como otros parámetros internos que los fabricantes no dan a conocer. Este bucle de control interior/exterior ha sido utilizado en aplicaciones de pulido y lijado sobre diferentes materiales. Los resultados indican que el robot colaborativo es factible para realizar tales operaciones de mecanizado. Sus mejores resultados se obtienen cuando se utiliza un bucle de control interno por velocidad y un bucle de control externo de fuerza con algoritmos, Proporcional-Integral-Derivativo o Proporcional más Pre-Alimentación de la Fuerza.[CA] El mecanitzat amb braços robots ha estat estudiat aproximadament des dels anys 90, durant aquest temps s'han dut a terme importants avanços i descobriments en el que fa al seu camp d'aplicació. En general, els robots manipuladors tenen molts beneficis i avantatges al ser usats en operacions de mecanitzat, com ara, flexibilitat, gran àrea de treball i facilitat de programació, entre d'altres, davant de Màquines Eines de Control Numèric (MECN) que necessiten d'una gran inversió per treballar peces molt grans o incrementar els seus graus de llibertat. Com a desavantatges, enfront de les MECN, els braços robòtics posseeixen menor rigidesa, el que combinat amb les altes forces produïdes en els processos de mecanitzat fa que apareguin errors de precisió, desviacions en les trajectòries, vibracions i, per tant, una mala qualitat en les peces fabricades. Entre els braços robots, els braços col·laboratius estan en auge a causa de la seva programació intuïtiva i a les seves mesures de seguretat, que els permeten treballar en el mateix espai que els operadors sense que aquests corrin riscos. Com desavantatge afegida als robots col·laboratius es troba la major flexibilitat que aquests tenen en les seves articulacions, a causa de que inclouen reductors del tipus Harmonic drive. L'ús d'un control de força en processos de mecanitzat amb braços robots permet controlar, i corregir, en temps real les desviacions generades per la flexibilitat en les articulacions del robot. Utilitzar aquest mètode de control és beneficiós en qualsevol braç robot, però, el control intern que inclouen els robots col·laboratius presenta avantatges que permeten que el control de força es puga aplicar d'una manera més eficient. En el present treball es desenvolupa una proposta real per a la inclusió del control d'esforços en el braç robot, així com s'avalua i quantifica la capacitat dels robots industrials i col·laboratius en tasques de mecanitzat. La proposta planteja com millorar la utilització d'un control de força per bucle interior/exterior aplicat en un braç col·laboratiu, quan es desconeixen els parells reals dels motors del robot, així com altres paràmetres interns que els fabricants no donen a conèixer. Aquest bucle de control interior/exterior ha estat utilitzat en aplicacions de polit sobre diferents materials. Els resultats indiquen que el robot col·laboratiu és factible de realitzar aquestes operacions de mecanitzat. Els seus millors resultats s'obtenen quan s'utilitza un bucle de control intern per velocitat i un bucle de control extern de força amb els algoritmes Proporcional-Integral-Derivatiu o Proporcional més Pre-alimentació de la Força.[EN] Machining with robot arms has been studied approximately since the 90s; during this time, important advances and discoveries have been made in its field of application. In general, manipulative robots have many benefits and advantages when they are used in machining operations, such as flexibility, large work area, and ease of programming, among others, compared to Numerical Control Machine Tools (NCMT) that need a great investment to work very large pieces or increase their degrees of freedom. As for disadvantages, compared to NCMT, robotic arms have lower rigidity, which, combined with the high forces produced in machining processes, causes precision errors, path deviations, vibrations, and, consequently, poor quality in the manufactured parts. Among robot arms, collaborative arms are on the rise due to their intuitive programming and safety measures, which allow them to work in the same space without risk for the operators. An added disadvantage of collaborative robots is their flexibility in their joints because they include Harmonic drive type reducers. The use of force control in machining processes with robot arms makes possible to control and correct, in real-time, the deviations generated by the flexibility in the robot's joints. The use of this control method is beneficial for any robot arm. However, the internal control included in collaborative robots has advantages that allow the force control to be applied more efficiently. In this work, a real proposal is developed to include effort control in the robot arm. The capacity of industrial and collaborative robots in machining tasks is evaluated and quantified. The proposal recommends how to improve the use of an inner/outer force control loop applied in a collaborative arm, when the real torques of the robot's motors are unknown and other internal parameters that manufacturers do not disclose. This inner/outer control loop has been used in polishing and sanding applications on different materials. The results indicate that the collaborative robot is feasible to perform such machining operations. Best results are obtained using an internal velocity control loop and external force control loop with Proportional-Integral-Derivative or Proportional plus Feed Forward.The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE). This work was funded by the CONICYT PFCHA/DOCTORADO BECAS CHILE/2017 – 72180157.Pérez Ubeda, RA. (2022). Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182000TESISCompendi

    EEG-Based Empathic Safe Cobot

    Get PDF
    An empathic collaborative robot (cobot) was realized through the transmission of fear from a human agent to a robot agent. Such empathy was induced through an electroencephalographic (EEG) sensor worn by the human agent, thus realizing an empathic safe brain-computer interface (BCI). The empathic safe cobot reacts to the fear and in turn transmits it to the human agent, forming a social circle of empathy and safety. A first randomized, controlled experiment involved two groups of 50 healthy subjects (100 total subjects) to measure the EEG signal in the presence or absence of a frightening event. The second randomized, controlled experiment on two groups of 50 different healthy subjects (100 total subjects) exposed the subjects to comfortable and uncomfortable movements of a collaborative robot (cobot) while the subjects’ EEG signal was acquired. The result was that a spike in the subject’s EEG signal was observed in the presence of uncomfortable movement. The questionnaires were distributed to the subjects, and confirmed the results of the EEG signal measurement. In a controlled laboratory setting, all experiments were found to be statistically significant. In the first experiment, the peak EEG signal measured just after the activating event was greater than the resting EEG signal (p < 10−3). In the second experiment, the peak EEG signal measured just after the uncomfortable movement of the cobot was greater than the EEG signal measured under conditions of comfortable movement of the cobot (p < 10−3). In conclusion, within the isolated and constrained experimental environment, the results were satisfactory

    Development of the UMAC-based control system with application to 5-axis ultraprecision micromilling machines

    Get PDF
    Increasing demands from end users in the fields of optics, defence, automotive, medical, aerospace, etc. for high precision 3D miniaturized components and microstructures from a range of materials have driven the development in micro and nano machining and changed the manufacturing realm. Conventional manufacturing processes such as chemical etching and LIGA are found unfavourable or limited due to production time required and have led mechanical micro machining to grow further. Mechanical micro machining is an ideal method to produce high accuracy micro components and micro milling is the most flexible enabling process and is thus able to generate a wider variety of complex micro components and microstructures. Ultraprecision micromilling machine tools are required so as to meet the accuracy, surface finish and geometrical complexity of components and parts. Typical manufacturing requirements are high dimensional accuracy being better than 1 micron, flatness and roundness better than 50 nm and surface finish ranging between 10 and 50 nm. Manufacture of high precision components and parts require very intricate material removal procedure. There are five key components that include machine tools, cutting tools, material properties, operation variables and environmental conditions, which constitute in manufacturing high quality components and parts. End users assess the performance of a machine tool based on the dimensional accuracy and surface quality of machined parts including the machining time. In this thesis, the emphasis is on the design and development of a control system for a 5-axis bench-type ultraprecision micromilling machine- Ultra-Mill. On the one hand, the developed control system is able to offer high motion and positioning accuracy, dynamic stiffness and thermal stability for motion control, which are essential for achieving the machining accuracy and surface finish desired. On the other hand, the control system is able to undertake in-process inspection and condition monitoring of the machine tool and process. The control of multi-axis precision machines with high-speed and high-accuracy motions and positioning are desirable to manufacture components with high accuracy and complex features to increase productivity and maintain machine stability, etc. The development of the control system has focused on fast, accurate and robust positioning requirements at the machine system design stage. Apart from the mechanical design, the performance of the entire precision systems is greatly dependent on diverse electrical and electronics subsystems, controllers, drive instruments, feedback devices, inspection and monitoring system and software. There are some variables that dynamically alter the system behaviour and sensitivity to disturbance that are not ignorable in the micro and nano machining realm. In this research, a structured framework has been developed and integrated to aid the design and development of the control system. The framework includes critically reviewing the state of the art of ultraprecision machining tools, understanding the control system technologies involved, highlighting the advantages and disadvantages of various control system methods for ultraprecision machines, understanding what is required by end-users and formulating what actually makes a machine tool be an ultraprecision machine particularly from the control system perspective. In the design and development stage, the possession of mechatronic know-how is essential as the design and development of the Ultra-Mill is a multidisciplinary field. Simulation and modelling tool such as Matlab/Simulink is used to model the most suitable control system design. The developed control system was validated through machining trials to observe the achievable accuracy, experiments and testing of subsystems individually (slide system, tooling system, monitoring system, etc.). This thesis has successfully demonstrated the design and development of the control system for a 5-axis ultraprecision machine tool- Ultra-Mill, with high performance characteristics, fast, accurate, precise, etc. for motion and positioning, high dynamic stiffness, robustness and thermal stability, whereby was provided and maintained by the control system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Industrial, Collaborative and Mobile Robotics in Latin America: Review of Mechatronic Technologies for Advanced Automation

    Get PDF
    Mechatronics and Robotics (MaR) have recently gained importance in product development and manufacturing settings and applications. Therefore, the Center for Space Emerging Technologies (C-SET) has managed an international multi-disciplinary study to present, historically, the first Latin American general review of industrial, collaborative, and mobile robotics, with the support of North American and European researchers and institutions. The methodology is developed by considering literature extracted from Scopus, Web of Science, and Aerospace Research Central and adding reports written by companies and government organizations. This describes the state-of-the-art of MaR until the year 2023 in the 3 Sub-Regions: North America, Central America, and South America, having achieved important results related to the academy, industry, government, and entrepreneurship; thus, the statistics shown in this manuscript are unique. Also, this article explores the potential for further work and advantages described by robotic companies such as ABB, KUKA, and Mecademic and the use of the Robot Operating System (ROS) in order to promote research, development, and innovation. In addition, the integration with industry 4.0 and digital manufacturing, architecture and construction, aerospace, smart agriculture, artificial intelligence, and computational social science (human-robot interaction) is analyzed to show the promising features of these growing tech areas, considering the improvements to increase production, manufacturing, and education in the Region. Finally, regarding the information presented, Latin America is considered an important location for investments to increase production and product development, taking into account the further proposal for the creation of the LATAM Consortium for Advanced Robotics and Mechatronics, which could support and work on roboethics and education/R+D+I law and regulations in the Region. Doi: 10.28991/ESJ-2023-07-04-025 Full Text: PD
    • …
    corecore