57,397 research outputs found

    Robust feedback model predictive control of norm-bounded uncertain systems

    Get PDF
    This thesis is concerned with the Robust Model Predictive Control (RMPC) of linear discrete-time systems subject to norm-bounded model-uncertainty, additive disturbances and hard constraints on the input and state. The aim is to design tractable, feedback RMPC algorithms that are based on linear matrix inequality (LMI) optimizations. The notion of feedback is very important in the RMPC control parameterization since it enables effective disturbance/uncertainty rejection and robust constraint satisfaction. However, treating the state-feedback gain as an optimization variable leads to non-convexity and nonlinearity in the RMPC scheme for norm-bounded uncertain systems. To address this problem, we propose three distinct state-feedback RMPC algorithms which are all based on (convex) LMI optimizations. In the first scheme, the aforementioned non-convexity is avoided by adopting a sequential approach based on the principles of Dynamic Programming. In particular, the feedback RMPC controller minimizes an upper-bound on the cost-to-go at each prediction step and incorporates the state/input constraints in a non-conservative manner. In the second RMPC algorithm, new results, based on slack variables, are proposed which help to obtain convexity at the expense of only minor conservatism. In the third and final approach, convexity is achieved by re-parameterizing, online, the norm-bounded uncertainty as a polytopic (additive) disturbance. All three RMPC schemes drive the uncertain-system state to a terminal invariant set which helps to establish Lyapunov stability and recursive feasibility. Low-complexity robust control invariant (LC-RCI) sets, when used as target sets, yield computational advantages for the associated RMPC schemes. A convex algorithm for the simultaneous computation of LC-RCI sets and the corresponding controller for norm-bounded uncertain systems is also presented. In this regard, two novel results to separate bilinear terms without conservatism are proposed. The results being general in nature also have application in other control areas. The computed LC-RCI sets are shown to have substantially improved volume as compared to other schemes in the literature. Finally, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The proposed formulation uses a moving window of the past input/output data to generate (tight) bounds on the current state. These bounds are then used to compute an output-feedback RMPC control law using LMI optimizations. An output-feedback LC-RCI set is also designed, and serves as the terminal set in the algorithm.Open Acces

    Advances in Reachability Analysis for Nonlinear Dynamic Systems

    Get PDF
    Systems of nonlinear ordinary differential equations (ODEs) are used to model an incredible variety of dynamic phenomena in chemical, oil and gas, and pharmaceutical industries. In reality, such models are nearly always subject to significant uncertainties in their initial conditions, parameters, and inputs. This dissertation provides new theoretical and numerical techniques for rigorously enclosing the set of solutions reachable by a given systems of nonlinear ODEs subject to uncertain initial conditions, parameters, and time-varying inputs. Such sets are often referred to as reachable sets, and methods for enclosing them are critical for designing systems that are passively robust to uncertainty, as well as for optimal real-time decision-making. Such enclosure methods are used extensively for uncertainty propagation, robust control, system verification, and optimization of dynamic systems arising in a wide variety of applications. Unfortunately, existing methods for computing such enclosures often provide an unworkable compromise between cost and accuracy. For example, interval methods based on differential inequalities (DI) can produce bounds very efficiently but are often too conservative to be of any practical use. In contrast, methods based on more complex sets can achieve sharp bounds, but are far too expensive for real-time decision-making and scale poorly with problem size. Recently, it has been shown that bounds computed via differential inequalities can often be made much less conservative while maintaining high efficiency by exploiting redundant model equations that are known to hold for all trajectories of interest (e.g., linear relationships among chemical species in a reaction network that hold due to the conservation of mass or elements). These linear relationships are implied by the governing ODEs, and can thus be considered redundant. However, these advances are only applicable to a limited class of system in which pre-existing linear redundant model equations are available. Moreover, the theoretical results underlying these algorithms do not apply to redundant equations that depend on time-varying inputs and rely on assumptions that prove to be very restrictive for nonlinear redundant equations, etc. This dissertation continues a line of research that has recently achieved very promising bounding results using methods based on differential inequalities. In brief, the major contributions can be divided into three categories: (1) In regard to algorithms, this dissertation significantly improves existing algorithms that exploit linear redundant model equations to achieve more accurate and efficient enclosures. It also develops new fast and accurate bounding algorithms that can exploit nonlinear redundant model equations. (2) Considering theoretical contributions, it develops a novel theoretical framework for the introduction of redundant model equations into arbitrary dynamic models to effectively reduce conservatism. The newly developed theories have more generality in terms of application. For example, complex nonlinear constraints that involve states, time derivatives of the system states, and time- varying inputs are allowed to be exploited. (3) A new differential inequalities method called Mean Value Differential Inequalities (MVDI) is developed that can automatically introduce redundant model equations for arbitrary dynamic systems and has a second-order convergence rate reported the first time among DI-based methods

    A Statistical Learning Theory Approach for Uncertain Linear and Bilinear Matrix Inequalities

    Full text link
    In this paper, we consider the problem of minimizing a linear functional subject to uncertain linear and bilinear matrix inequalities, which depend in a possibly nonlinear way on a vector of uncertain parameters. Motivated by recent results in statistical learning theory, we show that probabilistic guaranteed solutions can be obtained by means of randomized algorithms. In particular, we show that the Vapnik-Chervonenkis dimension (VC-dimension) of the two problems is finite, and we compute upper bounds on it. In turn, these bounds allow us to derive explicitly the sample complexity of these problems. Using these bounds, in the second part of the paper, we derive a sequential scheme, based on a sequence of optimization and validation steps. The algorithm is on the same lines of recent schemes proposed for similar problems, but improves both in terms of complexity and generality. The effectiveness of this approach is shown using a linear model of a robot manipulator subject to uncertain parameters.Comment: 19 pages, 2 figures, Accepted for Publication in Automatic

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Robust filtering with randomly varying sensor delay: The finite-horizon case

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method

    On the Sample Size of Random Convex Programs with Structured Dependence on the Uncertainty (Extended Version)

    Full text link
    The "scenario approach" provides an intuitive method to address chance constrained problems arising in control design for uncertain systems. It addresses these problems by replacing the chance constraint with a finite number of sampled constraints (scenarios). The sample size critically depends on Helly's dimension, a quantity always upper bounded by the number of decision variables. However, this standard bound can lead to computationally expensive programs whose solutions are conservative in terms of cost and violation probability. We derive improved bounds of Helly's dimension for problems where the chance constraint has certain structural properties. The improved bounds lower the number of scenarios required for these problems, leading both to improved objective value and reduced computational complexity. Our results are generally applicable to Randomized Model Predictive Control of chance constrained linear systems with additive uncertainty and affine disturbance feedback. The efficacy of the proposed bound is demonstrated on an inventory management example.Comment: Accepted for publication at Automatic
    corecore