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Robust Filtering With Randomly Varying Sensor
Delay: The Finite-Horizon Case
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Abstract—In this paper, we consider the robust filtering problem
for discrete time-varying systems with delayed sensor measure-
ment subject to norm-bounded parameter uncertainties. The de-
layed sensor measurement is assumed to be a linear function of a
stochastic variable that satisfies the Bernoulli random binary dis-
tribution law. An upper bound for the actual covariance of the un-
certain stochastic parameter system is derived and used for estima-
tion variance constraints. Such an upper bound is then minimized
over the filter parameters for all stochastic sensor delays and ad-
missible deterministic uncertainties. It is shown that the desired
filter can be obtained in terms of solutions to two discrete Riccati
difference equations of a form suitable for recursive computation
in online applications. An illustrative example is presented to show
the applicability of the proposed method.

Index Terms—Kalman filtering, parameter uncertainty, random
sensor delay, robust filtering, time-varying systems.

I. INTRODUCTION

K ALMAN filtering has proven to be very popular in a
number of research areas such as signal processing and

communication [1]. Guaranteeing the robust performance of
Kalman filters (especially in the presence of system parameter
uncertainties) has become an important research topic primarily
due to the Kalman filters’ sensitivity to model structure drift [1].
A large volume of literature has been published on the general
topic of robust and/or filtering problems for systems with
various parameter uncertainties; see, for example, [2], [5]–[7],
[9]–[11], [14], [15], [17], [20]–[22], [25], [26], [28], [32] and
the references therein.

There is an implicit assumption with the Kalman filtering ap-
proach that sensor data which may or may not be corrupted by
noise always contains information about the current state of the
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system. However, this is not always the case in engineering, bi-
ological, and economic systems, where system measurements
(or outputs) may be delayed. These delays could cause perfor-
mance degradation or instability with traditional Kalman filters
[12], [13]. Therefore, as can be seen in [4], [8], [16], [19], [23],
[29], [31], the filtering problem with delayed measurements has
received a great deal of research interest. However, most of the
publications assume that time delays in the measurement are
always deterministic. Unfortunately, time delays may occur in
a random way for a large class of practical applications. For
example, in real-time distributed decision-making and multi-
plexed data communication networks, the measurement device
or sensor is often randomly delayed. Alternatively, the measure-
ments are interrupted such that the measurements available to
the predictor mechanism are not up to date [19], [23], [30].
Hence, there is a need to develop new filtering methods for
signal processing problems in these delayed environments for
general network-based systems.

Recently, there have been several papers discussing the filter
design issue with randomly varying delayed measurements. In
[30], a linear unbiased state estimation problem has been ex-
amined for discrete-time systems with random sensor delays
over both finite and infinite horizons where the full and re-
duced-order filters were designed to achieve specific estimation
error covariances. The results of [30] were extended in [23] to
the case where parameter uncertainties (or modeling error) were
taken into account. However, in [23], only the stationary (or
infinite-horizon) robust filtering problem has been studied. It
is well known that finite-horizon filters could provide a better
transient performance for filtering process systems where noise
inputs are nonstationary. Our aim in this paper is therefore to
further study the finite-horizon counterpart of [23]. That is, we
intend to tackle the finite-horizon filtering problem for uncertain
discrete time-varying systems subject to both randomly varying
sensor delays and parameter uncertainties. Unlike the work of
[23], here the nominal system is also allowed to be time-varying,
and an optimization approach based on the solutions to two dis-
crete Riccati difference equations is used.

In this paper, we are concerned with the robust filtering
problem for discrete time-varying systems with delayed sensor
measurements subject to norm-bounded parameter uncertain-
ties. The delayed sensor measurement is assumed to be a linear
function of a stochastic variable that satisfies the Bernoulli
random binary distribution law. An upper bound for the actual
covariance of uncertain stochastic parameter systems is derived
and used for the estimation variance constraints. Such an upper
bound is then minimized over the filter parameters for all
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stochastic sensor delays and admissible deterministic uncer-
tainties. This unfortunately renders the filter design problem
suboptimal. A Riccati difference equation approach is devel-
oped to design the expected filter parameters. Such an approach
is suitable for recursive computation in online applications. We
illustrate the applicability of the proposed method by means of
a simulation example.

The remainder of this paper is organized as follows. The ro-
bust suboptimal filter design problem is formulated in Section II
for uncertain discrete-time systems subject to random sensor de-
lays. The covariance of uncertain stochastic parameter systems
is derived and the upper bound is provided in Section III. Suf-
ficient conditions for filter design are developed in Section IV
such that the upper bound state estimation error variance is
guaranteed while simultaneously minimized. A simulation
result is given in Section V to demonstrate the effectiveness of
the proposed method. Some concluding remarks are provided
in Section VI.

Notation

The notation used here is fairly standard. and de-
note the -dimensional Euclidean space and the set of all
real matrices, respectively. The notation (respectively,

), where and are symmetric matrices, means that
is positive semi-definite (respectively, positive definite).

denotes diagonal block submatrix of matrix with respect
to the th row and th column. represents the th element of
vector . means the covariance of . The superscript
“ ” denotes the transpose. stands for the expectation of .

means the occurrence probability of the event “ ”. The
arguments of a function will be omitted in the analysis some-
times where no confusion should arise.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of uncertain linear discrete time-varying sys-
tems

(1)

where is a state vector and is a zero-mean
Gaussian white noise sequence with covariance . The
delayed sensor measurement is described by

(2)

(3)

where is an actual output vector, is a measured
output vector, and a zero-mean Gaussian white noise
sequence with covariance uncorrelated with . The
initial state has the mean and covariance and is uncor-
related with either ( ) or ( ). , , and are known real
time-varying matrices with appropriate dimensions. is a
real-valued uncertain matrix satisfying

(4)

Here, and are known time-varying matrices of appro-
priate dimensions and represents time-varying uncertainties.

The parameter uncertainty in is said to be admissible if (4)
holds.

The stochastic variable is a Bernoulli distributed
white sequence taking values on 0 or 1 with

(5)

where is a known time-varying positive scalar and
is assumed to be independent of , , and . Therefore,

we have

(6)

(7)

Remark 1: The system measurement mode (3) was intro-
duced in [19] and has been employed in [23] and [30]. In mea-
surement (3), the output produced at time is sent to the
filter via a communication channel and arrives at time . If
the sampling period is long compared with , there is no need
to consider the influence of the delay (i.e., ). If is
longer than one sampling period and shorter than two sampling
periods, the measurement is then . It can be seen
that, at the th sampling time, the actual system output takes
the value with probability and the value with prob-
ability . Obviously, long time delays would occur if the
binary stochastic variable takes the value 1 consecutively at
different sample times.

By defining

(8)

(9)

(10)

(11)

we combine the uncertain system (1) and the delayed sensor
measurement (2)–(3) as follows:

(12)

(13)

where is a zero-mean Gaussian white noise sequence with
covariance

(14)
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and is independent of , , and . Since and
involve the stochastic variable , (12)–(13) is actually a sto-
chastic parameter system.

Denoting

(15)

(16)

we can rewrite (13) as

(17)

where

(18)

(19)

(20)

(21)

It can be shown that and
are zero-mean stochastic matrix sequences. In this paper, a full-
order filter has structure

(22)

where is the state estimate of the stochastic parameter
system (12)–(17) and and are the filter parameters to be
determined.

Remark 2: The system under consideration is both stochastic
and uncertain, whereas the designed filter depends on neither
stochastic parameters nor parameter uncertainties. In order to
facilitate the implementation, the filter considered in this paper
is assumed to be linear without delays. It would be interesting
to explore in future research the possibility of designing a non-
linear filter that first detects whether delays occur and then pro-
ceeds according to the detection. Also, we are currently inves-
tigating how to deal with more general systems consisting of
multiple sensor delays and possible missing measurements.

The objective of this paper is twofold. First, we intend to de-
sign a finite-horizon filter (22) such that there exists a sequence
of positive-definite matrices satisfying

(23)

that is, a finite upper bound for the estimation error variance
is guaranteed. Second, we shall minimize the bound in the
sense of the matrix norm and then obtain an optimized filter.
This problem will be referred to as a finite-horizon robust fil-
tering problem.

III. COVARIANCE AND UPPER BOUNDS

It is noted in the last section that system parameters of (17)
contain stochastic terms due to delayed sensor measurement.
Therefore, we need to derive the estimation error covariance and
obtain a corresponding upper bound. For this purpose, we define
a new state vector

(24)

and then an augmented state-space model combining system
(12) and filter (22) can be expressed as

(25)

where

(26)

(27)

(28)

(29)

Note that , , , , and are deterministic param-
eters and and are stochastic parameters having zero
mean values. Hence, the augmented system (25) is a stochastic
parameter system. The state covariance matrix of the augmented
system (25) can be defined as

(30)

Since and are zero mean stochastic matrix sequences
in (25), we have the following Lyapunov equation that governs
the evolution of the covariance matrix from (25) as:

(31)

where
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(32)

(33)

with

(34)

It is noted that the deterministic uncertainty appears in
(31). Therefore, it is impossible to have the exact value of the
covariance matrix . An alternative approach is to find a set of
upper bounds for and then obtain the minimum with respect
to filter parameters and .

Before giving the upper bound, we present two lemmas.
Lemma 1: [28] Assume matrices , , , and with com-

patible dimensions such that . Let be a symmetric
positive definite matrix and let be an arbitrary positive
constant such that ; then, the following in-
equality holds:

(35)

Lemma 2: [21] For , suppose and
, . If there

exists such that

(36)

(37)

then applying solutions and to the following difference
equations:

(38)

satisfies .
The following corollary can be obtained immediately from

Lemma 1 and (31), which provides a matrix recursive inequality
for computing the actual covariance.

Corollary 1: If there exists an such that
, the following inequality:

(39)

holds from (31).
Corollary 1 has “eliminated” the uncertainty in matrix

(31). In order to design the quadratic filter associated with a pos-
itive definite matrix satisfying a Riccati-like inequality [28], we

proceed to propose the notion of an “identity quadratic filter”
for uncertain system (25). This “identity” is associated with a
sequence of positive definite matrices satisfying a Riccati-like
equation for all and .

Definition 1: [27] Filter (22) is said to be an identity quadratic
filter associated with a sequence of matrices

if, for some positive scalars , the
sequence satisfies

(40)

and
(41)

Remark 3: In this paper, our primary objective is to find an
upper bound for the state estimation error variance and then min-
imize it. It will be shown later that, if we could design an identity
quadratic filter of the form (22), there would exist positive def-
inite solutions to (40) and (41) such that is an expected
upper bound. Hence, it is important to investigate the existence
as well as the algorithm for the solution to recursive matrix (40).

Based on Definition 1 and Lemma 2, we have the following
conclusion that shows that solution to (40)–(41) indeed pro-
vides an upper bound for error covariance matrix in (31).

Theorem 1: Assume and satisfying (31) and
(40)–(41), respectively. If , then we have

(42)

Proof: From (31), we denote

where

Denote also from (40) that

where

It can be checked that functionals and defined above sat-
isfy the conditions in Lemma 2, hence the conclusion .

Furthermore, in light of Definition 1 and Theorem 1, we have
the following corollary.

Corollary 2: The inequality holds

(43)

From Theorem 1 and Corollary 2, it is clear that, if (40)
has symmetric positive definite solutions such that

, then the upper bound for the state estimation
error variance can be obtained as . Such solutions are of
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course not unique in general. In the next section, we will try
to solve (40) while selecting filter parameters and such
that the obtained upper bound is minimized.

IV. FINITE-HORIZON SUBOPTIMAL FILTER DESIGN

Here, we will design the filter based on the upper bound for
state estimation error variance. First, we will provide sufficient
conditions for existence of the identity quadratic filter (22) to
satisfy constraints for the upper bound of the actual state es-
timation error variance. Second, we will design the filter that
optimizes the upper bound of the actual state estimation error
variance.

An identity quadratic filter is found in the following theorem.
Theorem 2: Let be a sequence of positive scalars.

If the following two discrete-time Riccati-like difference equa-
tions:

(44)

(45)

have positive-definite solutions and such that

(46)

then there exists an identity quadratic filter (22) with parameters

(47)

(48)

where

(49)

such that the state estimation error variance satisfies the bound-
edness condition

(50)

Proof: First, we need to find a solution to (40). Suppose
that is of the form

(51)

where and are defined in (44) and (45), respectively.
To prove according to (44) and (45), we define

(52)

(53)

Functionals and satisfy the conditions in Lemma 2, and
thus it follows that . This concludes that
in (51) from condition . Also, from (46), we can obtain

(54)

which satisfies condition (41). It can be inferred that
.

It remains to be shown that (51) is a solution to (40). Sub-
stituting filter parameter expressions (47), (48), and (51) into
the right-hand side of (40) and considering conditions (44) and
(45), straightforward algebraic manipulations show that the
right-hand side of (40) is given by

(55)

This means that (51) is a solution to (40). Also, from Corollary
2, we can conclude that

(56)

In the following theorem, we will prove that filter (22) with
parameters (47) and (48) is optimal.

Theorem 3: If (44) and (45) have positive-definite solutions
and such that , then identity

quadratic filter (22) with parameters (47) and (48) minimizes
bound .

Proof: We prove that the filter’s parameters given in (47)
and (48) are optimal in the sense that they optimize upper bound

. From (27), (29), (40), and (51), we have

(57)

Obviously, is dependent on the parameters and .
In order to determine optimal filter parameters and that
minimize , we take the first variation to (57) and obtain

(58)
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and

(59)

From (58) and facts

we can determine optimal filter parameter as

which is identical to (47).
Our next task is to derive optimal filter parameter from

(59) and show that it is actually (48). By using

we have

(60)

Substituting (60) into (59), optimal filter parameter is
given by

(61)

where

(62)

Note that (61) is identical to (48). It becomes clear now that
filter parameters given in (47) and (48) are indeed optimal and
minimize the upper-bound for the actual estimation error
variance.

Remark 4: Theorems 2 and 3 provide the optimal filter de-
sign by optimizing the upper bound for state estimation error
variance. One-step-ahead variance bound is optimized by se-
lecting the filter parameters and as in (47) and (48) under
given scaling parameter . The optimization is step by step
by solving the Riccati-like difference (44) and (45). Since the

-dimensional system with randomly varying sensor delays is
converted into a stochastic parameter system with dimension of

, two -dimensional recursive Riccati-like difference (44)
and (45) will be computed in the filter design algorithm.

Remark 5: Note that the Riccati-like difference (44) and (45)
involve scalar parameter . Detailed discussions on the feasi-
bility and convergent properties of such kind of Riccati-like dif-
ference equations can be found in [32]. A simple tuning time-
varying scaling parameter has been realized for variance con-
straint in [11]. As seen from (44)–(46), a smaller would make
it easier for (44) and (45) to have positive-definite solutions and
the positive-definite condition in (46) is easier to be satisfied.
As a cost, the upper bounds could be less tighter. Notice that
a larger could lead to the possibility that (44) and (45) have
no positive-definite solutions and the positive-definite condition
in (46) is not satisfied. Such a phenomenon is confirmed in the
example of Section V. Therefore, it is important to choose an ap-
propriate . Note that a semi-definite programming approach
to optimizing multiple scaling parameters has been proposed in
[5] where thorough studies have been conducted on how the
scaling parameters affect estimation performance. Finally, we
point out that although there have been several algorithms avail-
able for tuning time-varying scaling parameter in [5], [11],
[32] the question of how to correctly utilize the scenario with
respect to these parameters is still an open problem deserving
further study.
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Fig. 1. Actual variances � and � as well as their upper bounds � and
� in the case of � � � and � � ����.

V. NUMERICAL EXAMPLE

Consider a target tracking system

where is the sample period, the state is
composed of the position and the velocity of the target at time

, is the measured output, is a deterministic perturbation
matrix satisfying , and and are mutually inde-
pendent zero-mean Gaussian white noise sequences with unity
covariances.

In order to estimate the position and velocity of the tracked
target, measured output is sent to the monitoring center via
network-based communication. Due to the limited bandwidth of
the communication channel, the measured output arrives with
the following random transmission delay

where stochastic variable is a Bernoulli distributed
white sequence taking values on 0 or 1 with

.
In the simulation, sample period is chosen as 0.1 s and
as . Initial values are set as ,

, and . The simulation results are obtained
by solving (44) and (45) in Theorem 2 with parameters and

. The plots of upper bounds and (solid lines) as well
as the actual variances for the states and

(dashed lines) are given in Figs. 1–3. It
can be seen from Figs. 1 and 2 that the upper bounds become
tighter as increases, but there could be no solutions to (44)
and (45) if is too large. Therefore, the best choice for
is to make it as large as possible providing (44) and (45) are
feasible. In addition, the case of misestimating is investigated
in Fig. 3. When and we misestimate it as 0.7, the

Fig. 2. Actual variances � and � as well as their upper bounds � and
� in the case of � � � and � � ����.

Fig. 3. Actual variances � and � as well as their upper bounds � and
� in the case of � � � and � � ��� (misestimation of � as 0.7).

requirements that the actual variances for the states stay below
their upperbounds are not satisfied, which implies the proposed
algorithm is sensitive to the misestimation of .

VI. CONCLUSION

In this paper, a new robust filtering problem with delayed
sensor measurements has been considered for discrete time-
varying systems subject to norm-bounded parameter uncertain-
ties. An algorithm has been provided for designing a finite-
horizon filter which guarantees an optimized upper bound on the
state estimation error variance, for all stochastic sensor delays
and admissible deterministic uncertainties. Simulation results
demonstrate the feasibility of our algorithm. Our future research
topics would include the design of a reduced-order filter within
the same framework and the design of a nonlinear filter that first
detects whether delays occur and then proceeds according to the
detection.
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