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Abstract

This thesis is concerned with the Robust Model Predictive Control (RMPC) of linear

discrete-time systems subject to norm-bounded model-uncertainty, additive disturbances

and hard constraints on the input and state. The aim is to design tractable, feedback

RMPC algorithms that are based on linear matrix inequality (LMI) optimizations.

The notion of feedback is very important in the RMPC control parameterization

since it enables effective disturbance/uncertainty rejection and robust constraint sat-

isfaction. However, treating the state-feedback gain as an optimization variable leads

to non-convexity and nonlinearity in the RMPC scheme for norm-bounded uncertain

systems. To address this problem, we propose three distinct state-feedback RMPC al-

gorithms which are all based on (convex) LMI optimizations. In the first scheme, the

aforementioned non-convexity is avoided by adopting a sequential approach based on

the principles of Dynamic Programming. In particular, the feedback RMPC controller

minimizes an upper-bound on the cost-to-go at each prediction step and incorporates

the state/input constraints in a non-conservative manner. In the second RMPC algo-

rithm, new results, based on slack variables, are proposed which help to obtain convexity

at the expense of only minor conservatism. In the third and final approach, convexity

is achieved by re-parameterizing, online, the norm-bounded uncertainty as a polytopic

(additive) disturbance. All three RMPC schemes drive the uncertain-system state to a

terminal invariant set which helps to establish Lyapunov stability and recursive feasibility.

Low-complexity robust control invariant (LC-RCI) sets, when used as target sets,

yield computational advantages for the associated RMPC schemes. A convex algorithm

for the simultaneous computation of LC-RCI sets and the corresponding controller for

norm-bounded uncertain systems is also presented. In this regard, two novel results to

separate bilinear terms without conservatism are proposed. The results being general in

nature also have application in other control areas. The computed LC-RCI sets are shown

to have substantially improved volume as compared to other schemes in the literature.

Finally, an output-feedback RMPC algorithm is also derived for norm-bounded uncer-

tain systems. The proposed formulation uses a moving window of the past input/output

data to generate (tight) bounds on the current state. These bounds are then used to

compute an output-feedback RMPC control law using LMI optimizations. An output-

feedback LC-RCI set is also designed, and serves as the terminal set in the algorithm.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the robust control of linear systems subject to model-

uncertainty, additive disturbances/noise and constraints on the input and state. Such a

problem is motivated by the fact that most real-life processes involve constraints as well

as uncertain dynamics, both of which need to be taken into account within the control

system design.

It is well known that, in most cases, optimal performance of a process generally

requires its operation to be closer to the constraint boundaries [64]. Such constraints

arise naturally within most processes. For example, actuators are subject to saturation

which therefore limits the amount of force that they can apply; valves are restricted by

their maximum opening area which limits the flow rates; and key system parameters

(such as temperature and pressure etc) are often required to remain within their critical

limits. These constraints usually define a safe region of operation for the process and

their violation can often result in plant instability. On the other hand, some additional

process constraints may also be imposed by the designers/operators to obtain a desirable

level of performance. For example, the system states such as displacement and velocity

might be restricted between certain levels and motor actuator movements may be subject

to rate constraints to avoid excessive mechanical wear and tear. Any prospective control

system is therefore required to satisfy all the aforementioned process constraints whilst

delivering optimal performance. In this regard, a particularly suitable control algorithm

is known as Model Predictive Control [22].

Model Predictive Control (MPC), also known as Receding Horizon Control, refers to

a family of control schemes in which the current control action is obtained by solving

11



1.1 Motivation

Figure 1.1: Structure of MPC scheme.

online, a constrained finite horizon optimal control problem [64, 66]. This optimization

problem yields an optimal control sequence. Then, the first control in this sequence is

applied to the plant and the optimization is repeated at the next time step in a receding

horizon fashion. Figure 1.1 shows the basic structure of an MPC scheme [22].

MPC has been widely implemented as an advanced control technique within the pro-

cess industry [28, 73, 82]. This is primarily due to the fact that, unlike many traditional

control scheme (such as PID control), it explicitly takes account of process constraints

within its formulation. This enables the MPC algorithm to operate the plants closer

to their constraint boundaries (without violation) which, as mentioned above, results in

optimal performance and therefore increased profits. Other advantages of MPC include

its ability to handle multivariable, non-minimal phase and unstable processes, as well as

the relatively easy tuning of the controller.

In addition to constraint handling, another important consideration in the design of

any control system is robustness against any model-uncertainty and noise that maybe

present within the dynamics. In particular, a control algorithm is said to be robust if it

guarantees stability and maintains a prescribed level of system performance despite the

presence of model-uncertainty and disturbances [9]. To highlight the detrimental effects

of model-uncertainty that may be present within the system dynamics, let us investigate

a simple example from [5].

12



1.1 Motivation

Figure 1.2: Open-loop response (left) and closed-loop response of P1(s) and P2(s).

Consider a system P2(s) and its model representation denoted by P1(s), where

P2(s) =
100

(s+ 1)(0.025s+ 1)2
, P1(s) =

100

(s+ 1)
(1.1)

In (1.1), both system and the model representing it are stable, with the model ap-

propriately capturing the dominant system pole. Furthermore, the open-loop responses

of both P1(s) and P2(s) are almost identical (left plot in Figure 1.2), which can further

make the case for using P1(s) as an appropriate model for P2(s) in the control design.

However, when we look at the closed-loop response (right plot in Figure 1.2), we see

that the model’s output converges to a reference value while the actual system becomes

unstable. This shows the effect of ignoring the uncertainty (unmodeled dynamics) within

model P1(s) and thus emphasizes the importance of explicitly handling the same within

a robust control framework.

In the context of predictive control, it is important to note that MPC uses a mathe-

matical model to predict and optimize the plant’s future behaviour (see Figure 1.1). This,

coupled with the fact that MPC operates the process closer to the constraint boundaries,

means that any neglected disturbances/uncertainties can easily drive the system into an

infeasible or unstable region. This motivates research into a class of predictive control

algorithms known as Robust Model Predictive Control (RMPC) schemes [57].

RMPC schemes have received considerable amount of attention within the literature.

However, as we discuss in Section 1.2 below, there is a dearth of convex feedback RMPC

algorithms for systems that are subject to both ‘norm-bounded’ model-uncertainties and

additive disturbances within their dynamics, as well as constraints on their states and

input. In the light of the above discussion, this is clearly an important problem for

efficient process control and hence forms the subject of research in this thesis.

13



1.2 Literature Review

1.2 Literature Review

In this section, we present a review of the literature on state-feedback and output-

feedback RMPC schemes as well as robust control invariant sets.

1.2.1 State-feedback RMPC

RMPC schemes generally consider the control problem in a worst-case setting. That is,

the control design guards against the most detrimental realization of uncertainty and

disturbances in order to guarantee robust constraint satisfaction and stability.

Most of the robust predictive control schemes proposed in the literature can broadly

be classified into the following two categories (or their suitable combinations/variations):

open-loop MPC and feedback MPC. Open-loop schemes consider future control input

profile as a function of the current state only which, though computationally efficient,

is generally too conservative and often causes infeasibility [66]. On the other hand,

feedback RMPC schemes consider future control inputs as linear/nonlinear function of

future predicted states and have the advantage of mitigating the effect of disturbances.

To demonstrate the advantages of feedback in RMPC, we consider the following first

order system example from [91]:

xk+1 = xk + uk + wk (1.2)

where disturbance wk ∈ W :=
{
w ∈ R : −1 ≤ w ≤ 1

}
. The state constraints are given

by xk ∈ X :=
{
x ∈ R : −1.2 ≤ x ≤ 2

}
, ∀k, and the control input uk is unconstrained.

The prediction horizon is taken to be N = 3. At time k, the min-max open-loop MPC

scheme considers a control sequence U∗k := {u∗k, u∗k+1, u
∗
k+2} based (only) on the current

state xk, which is required to satisfy the state constraints whilst guarding against the

worst possible disturbance. By considering the two extreme disturbance profiles, w = +1

and w = −1, throughout the horizon, the terminal predicted state at time k, denoted by

xk+3|k, can either be given by

x+1
k+3|k = xk + u∗k + u∗k+1 + u∗k+2 + 3 or x−1

k+3|k = xk + u∗k + u∗k+1 + u∗k+2 − 3

Note that since x+1
k+3|k − x

−1
k+3|k = 6 > 2 > −1.2, therefore there cannot exist a single

control sequence U∗k such that both x+1
k+3|k ∈ X and x−1

k+3|k ∈ X. Hence, the open-loop

MPC problem becomes infeasible for the example in (1.2).

Let us now consider a feedback RMPC scheme where the future control inputs are

14



1.2 Literature Review

functions of future states such that the sequence U∗k := {u∗k(xk), u∗k+1(xk+1), u∗k+2(xk+2)}.
Then, it can be verified that by simply setting uk = −xk, we obtain xk+3|k = wk+2 ∈ X.

Therefore, an admissible control sequence does exist in this case and hence the feedback

RMPC problem is feasible. This example serves to show that disturbances/uncertainties

can only be effectively taken into account, in a minimally conservative manner, by opti-

mizing over feedback control policies within the so-called feedback RMPC schemes.

In the literature, a large number of feedback RMPC schemes deal with the control of

constrained linear, discrete time system that are subject (only) to disturbances. That is:

xk+1 = Axk +Buuk +Bwwk

xk ∈ X, uk ∈ U, wk ∈W
(1.3)

It is clear that within this class of RMPC algorithms, nonlinear feedback control remains

the least conservative choice due to its generality. In particular, the control law is con-

sidered as uk = fk(x0, · · · , xk), where fk is potentially a nonlinear function of all the

available states. However, computation of these nonlinear feedback policies is often very

difficult as there is no tractable method of parameterizing such a control law in the online

optimization problem [47]. To remedy this, several contributions in the literature employ

Dynamic Programming techniques [13] to obtain an algorithm which results in a piece-

wise affine state-feedback control law, see e.g [10, 32, 52, 69, 85]. However, in most cases,

the algorithm complexity grows exponentially with the problem data. This, therefore,

restricts the applicability of such schemes to problems of a smaller size. An alternative

approach is based on the computation of extreme disturbance profiles and assigning a

different control sequence to each of these profile with a certain causality constraint im-

posed, see e.g. [91]. Though this results in minimal conservatism, however, the resulting

RMPC scheme generally has a prohibitively high computational burden stemming from

the combinatorial nature of the online optimization. Due to these reasons, many RMPC

schemes are based on a linear feedback control law, which we discuss next.

In the literature, RMPC algorithms with linear feedback have been considered both

in the finite as well as infinite horizon context. Typically, infinite horizon MPC schemes,

such as [55, 77], have desirable stability properties associated with them. However, the

control law is generally restricted to a constant state-feedback throughout the horizon,

i.e. uk = Kxk, which can render the control algorithm conservative. On the other hand,

in the context of finite horizon (linear) state-feedback RMPC schemes, the aim is to

15



1.2 Literature Review

parameterize the control law as

uk = vk +

k∑
i=0

Kk,i xi , ∀k ∈ {0, 1, · · · , N − 1} (1.4)

where N > 0 is the prediction horizon, and matrices Kk,i and vk are both considered as

decision variables in the online optimization. However, it is easy to verify that this leads

to sequences of predicted states and inputs which are nonlinear, non-convex functions of

the control gains (Kk,i, vk) [46].

To make the linear feedback RMPC problem tractable, many scheme in the literature

fix the feedback gain K offline and optimize online with respect to control-perturbations

vk, see e.g. [7, 27, 51, 59]. However, there is no optimal method for computing the

feedback gain offline and hence the resulting scheme can be conservative depending upon

this choice of K.

More recently, algorithms based on Youla parameterization (sometimes also called

Q-parameterization) [108], to obtain convexity in feedback RMPC schemes with control

law (1.4) have also been proposed. For example, the scheme in [92] considers the use

of such methods for RMPC control of systems with stochastic disturbances. A special

case of Youla parameterization is the disturbance-feedback control structure, which was

first proposed in the context of RMPC in [61, 103]. These results were extended in [46],

where the authors showed that for systems of the form given in (1.3), under suitable as-

sumptions, linear state-feedback (1.4) is equivalent to the following disturbance-feedback

control parameterization:

uk = mk +

k−1∑
i=0

Fk,i wi , ∀k ∈ {0, 1, · · · , N − 1} (1.5)

where the disturbance wi ∈W, ∀i, and where matrices Fk,i, mk are treated as variables.

Here note that, since full state feedback is assumed, the past disturbances can simply

be computed by taking the difference between the predicted state and actual state. For

instance, assuming Bw as identity in (1.3) gives:

wk = xk+1 −Axk −Buuk , ∀k ∈ {0, 1, · · · , N − 1} (1.6)

In [46], it is shown that for systems (1.3) with polytopic disturbance sets W and certain

assumptions on the cost function, the equivalence between (1.4) and (1.5) implies that the

optimal linear feedback RMPC control law can be computed through convex optimization

16
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Figure 1.3: Basic structure of Tube-based MPC schemes [43]

problems. These results were extended in [45] to take account of more general convex

disturbances sets, e.g. ellipsoidal sets.

Another important approach for linear feedback RMPC control of system (1.3) is the

so-called tube-based MPC [58, 67]. Figure 1.3 shows the basic idea behind such schemes.

Tube-based MPC typically considers a control law of the form

uk = K(xk − x̄k) + gk (1.7)

where x̄k and gk respectively denote that state and control input for the corresponding

nominal system of (1.3), which is given by:

x̄k+1 = Ax̄k +Bugk

x̄k ∈ X̄k, gk ∈ Ūk

(1.8)

As shown in Figure 1.3, a key element of the tube-based MPC algorithm is the so-called

reachable sets. These sets represent the (smallest) region which contains the state of

the closed-loop uncertain system for any trajectory emanating from the origin [27]. In

the context of tube-based MPC, reachable sets - along with the corresponding (local)

control law K - are used to take account of the mismatch between the actual system

state and nominal system state (i.e. xk − x̄k), which arises due to the disturbances.

These sets and the control law K may be computed online, at each prediction step, to

take account of the disturbance, see e.g. [42]. Alternatively, a so-called robust invariant
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set, containing the sequence of reachable sets, maybe computed offline, see e.g. [58, 70].

The decision on which approach to adopt is based on the trade-off between conservatism

and computational complexity. For example, the advantage of computing the sets offline

lies in the reduced online computational burden. However, this comes at the cost of

an increased level of conservatism within the tube-based MPC scheme since the feasible

region is excessively reduced.

Once the reachable/invariant sets, call them Ri, and local controller K have been

computed, the original state constraint set X in (1.3) is tightened down the prediction

horizon for the nominal system (1.8), as shown in Figure 1.3. That is:

X̄k+i = X	 Rk+i, ∀i ∈ {0, 1, · · · , N} (1.9)

where 	 denotes the Pontryagin set difference (see Section 1.5). A similar procedure can

be adopted for the input constraints Ūk. Then, for the nominal system with tightened

constraints (1.8), the tube-based MPC scheme solves a Quadratic Program (QP) online

to compute gk. The resulting control law (1.7) is then applied to system (1.3) and the

cycle is repeated at the next time step.

The merit of tube-based MPC schemes such as [43, 58, 67] is the low computational

complexity since only a simple QP is solved online for the nominal system and feasibility

of the uncertain system (1.3) is guaranteed through constraint tightening procedure (1.9).

Despite their many advantages, the aforementioned feedback RMPC schemes cannot

easily be extended to systems that are subject to both (norm-bounded) model-uncertainty

and additive disturbances, which we consider in this thesis. That is, systems of the form:

xk+1 = (A+Bp∆Cq)xk + (Bu +Bp∆Dqu)uk +Bwwk

xk ∈ Xk, uk ∈ Uk, wk ∈W, ∆ ∈∆ := {diag(∆1, · · · ,∆r) : ∆i ∈ Rqi×qi , ‖∆‖ ≤ 1}
(1.10)

For instance, in the control parameterization (1.5), the past disturbances can no longer

be computed using (1.6) due to model-uncertainty in A and Bu matrices. Furthermore,

despite some recent results on tube-based MPC approaches for time-varying systems [42],

the computation of reachable sets, along with the local control law, becomes particularly

complex for norm-bounded uncertain system (1.10). This in turn is likely to add a degree

of conservatism and computational complexity to the resulting tube-based algorithm.

In the literature, RMPC schemes specifically for systems with model-uncertainty have

traditionally focused on linear dynamics with polytopic uncertainties. This is partly
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due to the fact that such a multi-model uncertainty structure fits well within the MPC

framework. Having said that, however, there are a few classes of feedback RMPC schemes

in the literature which deal with norm-bounded uncertain systems. For example, an

infinite-horizon RMPC scheme for systems of the form given in (1.10) - but without

the additive disturbances - is proposed in [55]. This algorithm has desirable stability

properties but, as mentioned above, the proposed control law uk = Kxk with K fixed

for the entire horizon can lead to excessive conservatism. An extension to this work was

presented in [24], where the control law is considered as uk = Kxk + ck. The feedback

gain K is computed offline and online optimization yields the control perturbation ck

which minimizes an upper bound on the worst-case (infinite horizon) quadratic cost.

The advantage of this scheme is that the number of inequality constraints grow only

linearly with the control horizon N . However, non-convexity is avoided at the expense of

conservatism through the offline choice of K. It is this non-convexity - associated with a

variable K formulation - within RMPC schemes which will be investigated in the thesis.

1.2.2 Output-feedback RMPC

As discussed above, MPC algorithms typically require full state information to com-

pute the control law. However, in many processes, only noisy output measurement are

available. The predictive control algorithms for uncertain systems which use only these

measured outputs within their formulation are called output-feedback RMPC schemes.

Traditionally, many output-feedback control schemes have been based on the concept

of certainty equivalence [71]. In particular, an estimate of the state is computed through

an observer, the dynamics of which are sufficiently faster than those of the control loop.

This state estimate is then used within the feedback control law. Similar ideas, with

consideration of the stability properties, have been employed in the context of output-

feedback RMPC, see e.g. [38], [82] and the references therein. In order to enlarge the

region of attraction and reduce the conservatism associated with such predictive control

schemes while still satisfying the constraints, it is important to characterize, and explicitly

take account of, the estimation error. In this regard, output-feedback MPC algorithms

based on (error) set-membership estimation [15, 89] have been proposed in [8] and [25].

A substantial body of output-feedback predictive control literature deals with linear

systems subject to process disturbances and measurement noise. That is:

xk+1 = Axk +Buk + wk, yk = Cxk + vk

xk ∈ X, uk ∈ U, wk ∈W, vk ∈ V
(1.11)
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where the pair (A,B) is assumed to be stabilizable and (A,C) detectable. For instance,

the output-feedback RMPC scheme for (1.11) given in [60] employs a Luenberger-type

observer:

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k) (1.12)

where x̂ denotes the state-estimate and L is the observer-gain. The control law is then

considered to be of the form:

uk = Fx̂k + ck, ∀k ∈ {0, 1, · · · , N − 1} (1.13)

The stabilizing feedback gain F and observer gain L are both computed offline, whereas

the control perturbation ck is optimized online. The bounds on the state-estimation error

(ek = xk − x̂k) are computed through an invariant set for the augmented state-vector,

which is composed of estimated state x̂ and error e. It is these invariant sets which

guarantee stability of the augmented system. Other variations of the above approach have

been proposed in, for example [87] and [25]. Note that all these schemes can essentially

be considered as the output-feedback versions of the (state-feedback) algorithms given in

[7, 27, 59] - which we have discussed in Section 1.2.1 above.

For system (1.11), an output-feedback extension of the aforementioned tube-based

MPC algorithm has also been proposed in [68]. The control law is similar to (1.7) with

the state replaced by its estimate x̂ from observer (1.12). That is:

uk = Kx̃k + gk (1.14)

with x̃k := x̂k − x̄k and where x̄k and gk represent the state and control input of the

nominal system (1.8). The estimation error ek and vector x̃k are bounded by their

respective invariant sets, namely X̄ and X̃, which are computed with the control law K.

Much the same way as in the state-feedback case, the idea is to solve the nominal MPC

problem with tightened state/input constraints:

X̄ = X	 (X̄ ⊕ X̃), Ū = U	KX̃ (1.15)

where ⊕ denotes the Minkowski sum (see Section 1.5). Robust stability of the tube-based

scheme [68] is ensured and the online computational burden remains almost the same as

that associated with the nominal MPC problem.

Extension of the ‘disturbance-feedback’ control parameterization (1.5) to the output-

feedback case has also been proposed in [44]. Within this work, it is first shown that the
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control law

uk = gk +
k−1∑
i=0

Kk,i yi , ∀k ∈ {0, 1, · · · , N − 1} (1.16)

yields non-convexity in the output-feedback RMPC algorithm for system (1.11). Then,

to remedy this, the following control parameterization based on the output error feedback

is considered

uk = ck +
k−1∑
i=0

Mk,i(yi − Cx̂i) = ck +
k−1∑
i=0

Mk,i(Cei + vi) (1.17)

where x̂i is the state-estimate computed from the observer (1.12). Such a control law,

based on the difference between measurement and predicted output, yields convexity in

the RMPC algorithm [44] and is in fact shown to be equivalent to the control paramter-

ization given in (1.16).

The aforementioned algorithms all consider systems of the form in (1.11). However,

some contributions on output-feedback RMPC control of norm-bounded uncertain sys-

tems (1.10) have also been recently proposed. For instance, the scheme in [62] extends

the results of [60] to linear systems with unstructured norm-bounded uncertainties (but

without disturbances). The algorithm considers suitable robust stability conditions and

computes online, the control perturbations ck which minimize an upper-bound on the

nominal cost. Similarly, the scheme in [36] extends the state-feedback algorithm of [24]

to uncertain systems (1.10). Here the feedback gain and observer are designed offline,

using bilinear matrix inequalities, to stabilize the augmented system. Then, the control

perturbation ck is computed online as a solution to linear matrix inequalities.

With the exception of [44], all the above mentioned schemes choose the control feed-

back gain K offline (to avoid non-convexity) and the disadvantage of doing so, namely

potential conservatism, has already been discussed in Section 1.2.1. Another particularly

important design parameter in the output-feedback RMPC schemes is the observer gain

L. It is clear that the level of (state) estimation error is directly dependent on the ob-

server dynamics (and hence on gain L). Therefore, the fact that all the above schemes

choose a stabilizing gain L offline is a potential source of algorithm infeasibilty/instability

since the control performance is heavily dependent on the estimated state. A possible

solution to these issues in the context of norm-bounded uncertain systems will also be

proposed within this thesis.
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1.2.3 Robust Control Invariant Sets

Robust Control Invariant (RCI) sets define a bounded state-space region to which the

system state can be confined, for all possible disturbances/uncertainties, through the

application of a (state-feedback) control law K. For system (1.3), RCI sets can formally

be defined as follows [16]:

Definition 1.1. Z ⊂ Rn is a Robust Control Invariant set for system (1.3) if there exists

a control law u = Kx ∈ U, such that (A+BuK)Z⊕BwW⊆Z.

Thus, if the initial state x0 belongs to the set Z, then all subsequent states will be

kept within this set by the control law u = Kx [91]. It follows that the set Z characterizes

the evolution of system (1.3) for all possible disturbances wk ∈W [54].

RCI sets are of great significance in the robustness analysis and synthesis of controllers

for uncertain systems. These sets play a fundamental role in establishing the stability

and recursive feasibility of RMPC schemes, see e.g. [66, 100] and the references therein.

As discussed in the previous sections, invariant sets form an important part of tube-

based MPC scheme [58, 70], as well as various output-feedback RMPC schemes [60,

68]. Furthermore, they also serve as suitable target sets in robust time-optimal control

schemes [14, 41, 65].

Invariant set computation has been the subject of extensive research over the past few

decades [16, 17]. The two invariant set structures most often considered in the literature

are ellipsoidal and polytopic [54]. For these set structures, the problem of computing

both the maximal and the minimal invariant set (or their suitable approximations) is

important.

Ellipsoidal RCI sets are generally given in the form [95]:

Z :=
{
x ∈ Rn : xTQx ≤ 1

}
(1.18)

where the matrix variable Q = QT � 0. As discussed in [80], the incorporation of

ellipsoidal invariant terminal sets (1.18) within linear MPC scheme transforms the opti-

mization problem into a Semidefinite program (as opposed to the standard QP). This,

in turn results in an increased online computational burden. Therefore, in the context

of MPC, polytopic RCI target sets generally represent a more viable option. These are

typically characterized as:

Z :=
{
x ∈ Rn : Gx ≤ p

}
(1.19)

where G is a matrix of appropriate dimensions and vector p > 0.
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For sets of the form (1.19), important results have been reported in [104], including

necessary and sufficient conditions for invariance using Farkas Lemma [50]. With regards

to optimality, the minimal robust invariant set for system (1.3), call it Z∞, under the

given control law u = Kx is characterized by [54]:

Z∞ = ⊕∞i=0(A+BuK)iBwW

Since Z∞ involves Minkowski’s sum of infinite many terms, it is generally intractable to

compute unless the system dynamics are nilpotent [65], i.e. (A+BuK)i = 0, ∀i > α. As

a result much of the research has been focused on computing (outer) invariant approx-

imations of Z∞ (and similarly the inner approximations of the maximal invariant set).

We briefly discuss these next.

Many schemes in the literature consider the problem of computing robust invariant

sets for a fixed control law [40, 80]. An algorithm to compute arbitrarily close (outer)

invariant approximations to Z∞, for a fixed K, has been proposed in [83]. While in

[34, 49], methods are derived to compute the (linear) control laws which render a fixed

set invariant. Clearly, a better approach for optimizing the size of the invariant set

is to simultaneously consider both the control law K and RCI set Z as variables of

optimization. In this regard, [84] proposes an optimization problem which yields both

RCI set and the (set-valued) feedback control law for systems with additive disturbances.

However, as the authors point out in their conclusion [84], it is not straightforward to

extend these results to the case of systems which are subject to both model uncertainty

and disturbances, such as (1.10).

RCI set computation algorithms for linear systems with ‘polytopic’ uncertainty have

been proposed in [6, 18]. In these contributions, the idea is to compute an initial RCI

set and then iteratively enlarge its volume to yield an (inner) approximation to the

maximal robust invariant set, along with the corresponding control law. In [23], a scheme

is presented for computing the maximal feasible invariant low-complexity polytope for

nonlinear systems.

It is worth mentioning here that none of the aforementioned invariant set algorithms

can be directly applied to systems which contain both norm-bounded model-uncertainty

and additive disturbances. Clearly, the efficient computation of an RCI set, and the

corresponding control law, for systems (1.10) is an important problem in the context of

robust predictive control. Therefore, this problem will be considered within the thesis.

Set invariance for systems (1.10) under output-feedback will also be investigated.
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1.3 Thesis Organization and Highlights

In this section, we provide a brief description as well as contributions of each of the

following chapters.

Chapter 2: Theoretical Background

Convex optimization problems are of great significance in the design and synthesis of

robust predictive control laws. Therefore, in this chapter, we present some basic concepts

from optimization theory including convex sets and functions, linear matrix inequalities

(LMI), semidefinite programs and relaxations. We also discuss the S-procedure which

is an effective technique to re-formulate non-convex optimizations into (convex) LMI

problems, and is of key importance to the developments of the following chapters.

Chapter 3: Robust Feedback MPC for Systems with Parametric Uncertainty

In this chapter, feedback RMPC control of linear systems subject to parametric model-

uncertainties, polytopic (additive) disturbances and constraints is considered. In par-

ticular, a dual-mode control scheme that consists of an outer as well as an inner con-

troller is presented. The outer (RMPC) controller consists of a state-feedback gain and

a control-perturbation, both of which are explicitly considered as decision variables in

the online optimization. The non-convexity associated with such a parameterization (see

Section 1.2.1) is avoided by adopting a sequential approach based on the principles of

Dynamic Programming. The RMPC controller minimizes an upper-bound on the cost-

to-go at each prediction step and is responsible for steering the uncertain system-state

to a designed terminal invariant set. The (hyper-rectangle) terminal RCI set and corre-

sponding (inner) controller are both simultaneously computed in one step as solutions to

an LMI optimization. To improve robustness, the disturbance is negatively weighted in

the cost function (as in H∞-MPC). Furthermore, conditions are derived on the terminal

cost so as to guarantee Lyapunov stability of the closed-loop system. Effectiveness of the

proposed RMPC scheme is illustrated through numerical examples from the literature,

including a paper making process. The work in this chapter is mostly based on [100].
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Chapter 4: Low-complexity Invariant Sets for Uncertain Systems

RCI terminal sets play an important role in establishing stability and recursive feasibility

of RMPC algorithms. As discussed in [18], low-complexity RCI (LC-RCI) sets hold

several computational advantages (for the associated RMPC scheme) as compared to

ellipsoidal and more general polytopic invariant sets. Therefore, in this chapter, we derive

an algorithm for the efficient computation of LC-RCI sets, along with the corresponding

control law, for systems (1.10), which are subject to (general) norm-bounded model-

uncertainty and additive disturbances. We first show that this problem is nonlinear and

non-convex (including bilinear and triple product terms in the formulation) due to the

presence of model-uncertainty as well as the fact the both the set and controller are being

considered as decision variables. To remedy this, we propose two new results to separate

the bilinear terms in the diagonal and non-diagonal matrix entries, respectively, without

introducing extra conservatism. Both results are general in nature and thus have potential

application in other important control problems, such as Lyapunov stability. The volume

of the invariant set is maximized/minimized through iteratively solving a convex/LMI

optimization. The volume enlargement/reduction (for maximal/minimal RCI sets) and

recursive feasibility properties of the iterative procedure are also guaranteed. Numerical

examples show improvement over the results obtained in [18] and [98]. The formulation

in this chapter is mostly based on [101].

Chapter 5: State-feedback Parameterizations in RMPC of Uncertain Systems

Two state-feedback RMPC schemes for norm-bounded uncertain systems (1.10) are pre-

sented in this chapter. The RMPC control law is of the form (1.4), consisting of a

lower-triangular feedback matrix (to ensure causality) and control-perturbation, both to

which are considered as optimization variables. Unlike the formulation in Chapter 3,

in which non-convexity is circumvented by adopting a sequential approach, this chap-

ter considers a ‘stacked’ formulation (as in standard MPC) and presents new results to

remove the associated non-convexity.

An initial formulation for uncertain systems shows that the RMPC problem is highly

nonlinear and non-convex in the feedback gains (though it is convex for systems with

only disturbances). Therefore, in the first approach, we re-cast the disturbance as an

uncertainty to concentrate the nonlinearities. Then, we extend the results in [35] to

propose a new theorem, using slack-variables, which enables the convexification of the
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RMPC problem at the expense of only minor conservatism in the formulation.

In the second approach, uncertainty is re-parameterized as a disturbance, through

the online computation of polytopic bounds. Then, the S-procedure is used to derive an

LMI problem for the computation of RMPC control law.

Stability and recursive feasibility of both schemes is ensured through the incorpora-

tion of a suitable RCI terminal set (Chapter 4). Finally, numerical examples from the

literature are used to demonstrate the advantages of the RMPC schemes. The algorithms

in this chapter are based on [99].

Chapter 6: Output-feedback RMPC for Norm-bounded Uncertain Systems

In this chapter, we extend the results of Chapter 5 to propose an output-feedback RMPC

scheme for norm-bounded uncertain systems (1.10) with only noisy output measurements

available. The algorithm considers two sub-problems, namely the estimation of the cur-

rent state, and computation of the output-feedback RMPC control law.

Unlike most schemes in the predictive control literature which employ a fixed gain

observer (see Section 1.2.2), we use a moving window of the past input/output data, in a

manner reminiscent of moving horizon estimation, to compute upper- and lower-bounds

on the current state. For systems with uncertainty, these bounds are computed (online)

through LMI optimization, and are shown to be tight under certain conditions. It is also

shown that for systems with only disturbances (and no uncertainty), tight bounds can

be computed by solving a linear program.

The (current) state bounds are subsequently used within the RMPC control scheme

to compute the output-feedback gain and perturbation online through LMI optimiza-

tions. We also propose a convex problem for the computation of an ‘output-feedback’

RCI terminal set, and corresponding control law, by extending the results of Chapter 4.

Numerical examples from the literature highlight the output-feedback control perfor-

mance as well as the accuracy of the computed state-bounds. The work in this chapter

is mostly based on [96].

Chapter 7: Conclusions

This chapter provides a summary of the main contributions of the thesis and suggests

some future research directions.
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1.5 Notation

The notation we use in this thesis is fairly standard. R denotes the set of real numbers,

Rn denotes the space of n-dimensional (column) vectors whose entries are in R, Rn×m

denotes the space of all n × m matrices whose entries are in R and Dn×n denotes the

space of diagonal matrices in Rn×n. For A ∈ Rn×m, AT denotes the transpose of A. If

A ∈ Rn×n is symmetric, λ(A) denotes the smallest eigenvalue of A and we write A � 0

if λ(A) ≥ 0 and A � 0 if λ(A) > 0. Analogous definitions apply to λ(A), A � 0

and A ≺ 0. We define the (spectral) norm of A ∈ Rn×m as ‖A‖ =
√
λ(AAT ). For

x, y ∈ Rn, x < y (and similarly ≤, > and ≥) is interpreted element-wise. Given two sets

M and V, such that M ⊂ Rn and V ⊂ Rn, the Minkowski (vector) sum is defined by

M ⊕ V:= {m+ v|m ∈M, v ∈ V} and the Pontryagin difference is defined by M ∼ V:=

{m|m+ v ∈M,∀v ∈ V}. If U ∈ Rn×m is a set, then BU denotes the unit ball of U.

Notation Iq denotes a q × q identity matrix; the subscript is omitted when it can be

inferred from the context. Furthermore, ei denotes the ith column of an appropriate

identity matrix. Let z ∈ Rn and denote the i-th element of z by zi. Then, diag(z) is the

diagonal matrix whose (i, i) entry is zi. For square matrices A1, . . . , Am, diag(A1, . . . , Am)

denotes a block diagonal matrix whose i-th diagonal block is Ai. Finally, for matrices A

and B, A⊗B denotes the Kronecker product.
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Chapter 2

Theoretical Background

In this chapter, we present some background material that is relevant in the context of

Robust MPC formulations. In particular, a few basic concepts from optimization theory

are briefly discussed, including convex optimization problems, semidefinite programming,

linear matrix inequalities and the S-procedure.

2.1 Convex Optimization Problems

As discussed in Chapter 1, MPC is an optimization-based control technique. In par-

ticular, an optimization problem is solved online, at each sampling instant, to compute

the optimal control sequence. Therefore, it is essential that the formulated optimization

problem is such that it can be solved in an efficient manner - within the sampling interval.

One such class of problems are the convex optimization problems [20].

Recall that convex optimization problems are of the general form:

minimize f(x)

subject to gi(x) ≤ di , i = 1, · · · ,m (2.1)

where gi(x) ≤ di represents convex constraints and f(x) is the convex cost function to

be minimized. These two components of optimization (2.1) are quite significant and we

briefly discuss each of them below.

Convex sets can be defined as follows [20]:

Definition 2.1. A set C is convex if, for any x1, x2 ∈ C, and α such that 0 ≤ α ≤ 1,

the following relation holds

αx1 + (1− α)x2 ∈ C (2.2)
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Similarly, a convex function can be defined as follows.

Definition 2.2. A function f : Rn → R is convex if the domain of f is a convex set and

if for every pair of points x1, x2 in the domain of f , and α such that 0 ≤ α ≤ 1, the

following inequality is satisfied:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (2.3)

Recall that in the context of (2.1), the advantage of minimizing a convex function

subject to convex constraints is that any local minimum of the problem is also a global

minimum. Furthermore, for strictly convex functions (i.e. functions for which inequality

(2.3) is strict), the minimum (if it exists) is unique. Algorithms, such as interior point

methods [11], exploit these properties and are thus able to solve convex problems in an

efficient, fast and reliable manner.

Convex optimization methods also play an important role in solving non-convex prob-

lems. Algorithms for solving non-convex and nonlinear optimization problems are gener-

ally inefficient. One approach to solving such problems is to consider local optimization

methods which yield a locally optimal solution. However, these methods require an ini-

tial solution of the decision variables as a starting point, which is a critical factor in

the algorithm convergence. In such cases, an approximate convex formulation can be

obtained for the original non-convex problem (see Section 2.3). Then, the solution of

the (approximate) convex problem, which is easily computed, can be used as the initial

condition for the local optimization.

Convex optimization subsumes a large class of problems. For example, an important

type of problems are the so-called Linear Programs (LP). These are of the form:

minimize cTx

subject to aTi x ≤ bi , i = 1, · · · ,m (2.4)

where the vectors c, ai ∈ Rn and scalars bi ∈ Rn. Note that the cost function and con-

straints in (2.4) are both linear and, therefore, convex. Another key class of optimization

problems are the convex Quadratic Programs (QP), which can be written as [20]:

minimize
1

2
xTQx+ cTx+ d

subject to Gx ≤ f

Px = r (2.5)
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where Q ∈ Rn×n is a symmetric, positive semidefinite matrix and G, P , which represent

affine problem constraints, are matrices of appropriate dimensions.

In the context of robust optimization and RMPC formulations, a particularly impor-

tant class of convex optimization problems are the so-called semidefinite programs, which

we discuss next.

2.2 Semidefinite Programs

Semidefinite programming has attracted substantial research interest over the past few

decades [30]. This is because semidefinite programs (SDPs) have extensive application

in system and control theory as well as other fields such as combinatorial and robust op-

timization. Also, importantly, there exist efficient algorithms to solve SDPs, for instance

interior point methods [2].

SDPs are convex optimization problems which involve the minimization of a linear

function subject to a constraint that requires a symmetric matrix - which is affine in the

decision variables - to be positive semidefinite. In particular, an SDP can be written as:

minimize cTx

subject to F (x) � 0 , (2.6)

with

F (x) := F0 +
n∑
i=1

xiFi (2.7)

where x ∈ Rn is the decision variable, with xi denoting the ith entry of the vector, and

symmetric matrices F0 , Fi ∈ Rm×m ,∀i, are given. Note that for the case when all the

matrices F0 · · ·Fn are diagonal, the constraint in (2.6) becomes equivalent to m linear

inequalities. Hence, in this case, the SDP problem simply reduces to a linear program of

the form given in (2.4).

The constraint in (2.6) is more generally known as a Linear Matrix Inequality and

we briefly discuss these next.

2.2.1 Linear Matrix Inequalities

Linear Matrix Inequality (LMI) techniques play an important role in the formulation of

various problems within system and control theory [19]. For instance, one of the most

widely used LMI conditions is the Lyapunov inequality for establishing stability of linear
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2.2 Semidefinite Programs

continuous-time systems, which is given by:

ATP + PA ≺ 0

and for discrete-time systems, it becomes

ATPA+ P ≺ 0

The robust predictive control algorithms proposed in this thesis are also mostly based on

LMI constraints, which are formally defined as:

F (x) := F0 +

n∑
i=1

xiFi � 0 (2.8)

Note that the symmetric matrix F (x) is affine in variable x ∈ Rn and is required to

be positive semidefinite, i.e. yTF (x)y � 0, ∀y. Furthermore, (2.8) represents a convex

constraint on x. Strict inequalities (i.e. positive definite or negative definite) or negative

semidefinite inequalities can also be defined analogously.

In certain cases, optimization problems involve multiple LMI constraints, for instance:

minimize cTx

subject to F k(x) � 0 , k = 1, · · · , p (2.9)

with

F k(x) := F k0 +

n∑
i=1

xiF
k
i , i = 1, · · · , n (2.10)

Such problems can be readily transformed to an SDP of standard form (2.6), as follows:

minimize cTx

subject to L(x) := diag(F 1(x), F 2(x), · · · , F p(x)) � 0 (2.11)

Finally, an important LMI result, which will be used extensively in the development

throughout this thesis is known as the Schur complement [21]. This is a result to represent

convex nonlinear matrix inequalities in the form of LMIs without any conservatism, and

is given by the following lemma [21]:
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Lemma 2.1. Define matrices A = AT , C = CT and B of appropriate dimensions and

let

L :=

[
A B

BT C

]
Then, for C � 0, the matrix L � 0 if and only if A − BC−1BT � 0. Similarly, for

A � 0, the matrix L � 0 if and only if C − BTA−1B � 0. Furthermore, the following

three statements are also equivalent

(i) L � 0,

(ii) A � 0 and C −BTA−1B � 0

(ii) C � 0 and A−BC−1BT � 0

Analogous results hold for the case when L(x) is negative definite or semidefinite.

2.3 Semidefinite Relaxations

In various fields of engineering, such as robust control design, communications and sig-

nal processing, one often encounters many important optimization problems that are

computationally intractable (for example nonlinear non-convex problems). For such op-

timizations, it is generally very difficult to compute the (global) solution, that is if one

even exists [74]. In these cases, semidefinite relaxation provides a useful technique to

obtain an (approximate) convex formulation for the original non-convex optimization

problem, in the form of an SDP (2.6), see e.g. [63, 102]. The solution of the SDP gen-

erally serves as a good approximation to the actual optimal solution for the non-convex

problem. In fact, under certain conditions, semidefinite relaxation does not introduce any

conservatism and hence, the SDP solution corresponds exactly to the optimal solution.

As we will show in this thesis, feedback RMPC formulations for uncertain systems of

the form (1.10) also result in optimization problems which are nonlinear and non-convex

in the decision variables (the control gain K). Therefore, we propose to obtain convexity

through the application of semidefinite relaxation techniques to derive RMPC algorithms

based on SDP problems. Such an approach has the advantage that the resulting SDPs

are solved very efficiently using interior point methods [19]. This, therefore means that

the proposed RMPC control law can easily be computed online in polynomial time [55].
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2.3 Semidefinite Relaxations

2.3.1 The S-Procedure

The S-procedure is a technique that is used to relax nonlinear, non-convex optimizations

and obtain their SDP approximations [21, 37]. It has found great application in many

problem areas within control theory. The S-procedure can formally be defined as follows

[21, Page 23].

Lemma 2.2. Let F0, · · · , Fp be quadratic functions of the variable x ∈ Rn such that:

Fi := xTTix+ 2uTi x+ vi, i = 0, · · · , p, (2.12)

where Ti = T Ti . Then, the following condition

F0(x) ≥ 0 for all x such that Fi(x) ≥ 0, i = 1, · · · , p (2.13)

holds if there exist τ1 ≥ 0, · · · , τp ≥ 0 such that[
T0 u0

uT0 v0

]
−

p∑
i=1

τi

[
Ti ui

uTi vi

]
� 0. (2.14)

Furthermore, when p = 1, the converse also holds provided that there exists an x1 such

that F1(x1) > 0.

Remark 2.1. If the functions Fi, i = 0, · · · , p, are convex in x, then (2.13) and (2.14)

become equivalent. This is the so-called Farkas’ Theorem [81]. Furthermore, if the func-

tion Fi are affine, then the equivalence of (2.13) and (2.14) is known as the Farkas’

Lemma [50].

2.3.2 An Example Problem

In this section, let us consider an example problem so as to clarify the application of the

S-procedure.

Let us first define the objective function J := eT1 [(A + BuK)x + Bww], where x ∈ X :=

{x ∈ Rn : −d ≤ x ≤ d}, w ∈W := {w ∈ Rnw : −v ≤ w ≤ v}, e1 denotes the first column

of an n× n identity matrix and d, v are known vectors. Suppose we wish to compute a

matrix K, if it exists, such that

eT1 [(A+BuK)x+Bww]− γ ≤ 0, ∀x ∈ X, w ∈W (2.15)

Note that the feasibility problem would require finding a K for a given γ, whereas the
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2.3 Semidefinite Relaxations

optimization problem consists of computing a K that minimizes γ. However, in both

cases, it is clear that (2.15) requires nonlinear optimization techniques. To remedy this,

we now use the S-procedure to obtain an equivalent SDP formulation for the above

problem (see also Remark 2.2).

Theorem 2.1. There exists K and γ such that (2.15) is satisfied if and only if there

exist diagonal positive semidefinite matrices Dx ∈ Rn×n and Dw ∈ Rnw×nw as solutions

to the following SDP:

minimize γ

subject to L(γ,K,Dx, Dw) :=


Dx 0 −1

2(A+BuK)T e1

? Dw −1
2B

T
we1

? ? γ − dTDxd− vTDwv

 � 0 (2.16)

Proof. As given in (2.15), we consider a variable γ ∈ R such that

eT1 [(A+BuK)x+Bww]− γ ≤ 0 (2.17)

Then, for any Dx ∈ Rn×n and Dw ∈ Rnw×nw , the left hand side of inequality (2.17) can

be written as

eT1 [(A+BuK)x+Bww]− γ = −(d− x)TDx(x+ d)− (v − w)TDw(v + w)

− [−(d− x)TDx(x+ d)− (v − w)TDw(v + w)− eT1 (A+BuK)x− eT1 Bww + γ]

Representing the square-bracket terms of the above equation in a matrix form yields:

eT1 [(A+BuK)x+Bww]− γ =

Jx︷ ︸︸ ︷
−(d− x)TDx(x+ d)

Jw︷ ︸︸ ︷
−(v − w)TDw(v + w)

− [xT wT 1]L(γ,K,Dx, Dw)

xw
1

 (2.18)

where L(γ,K,Dx, Dw) is the LMI defined in (2.16).

Notice that Jx ≤ 0 and Jw ≤ 0 for any diagonal, positive semidefinite matrices Dx and

Dw. Then, using the S-procedure (Farkas’ Theorem) [81], it follows that the existence of

such Dx and Dw such that L(γ,K,Dx, Dw) � 0, is a necessary and sufficient condition

for (2.17). Therefore, the SDP problem in (2.16) follows.

35



2.3 Semidefinite Relaxations

Remark 2.2. It is worth mentioning here that in order to simplify the presentation, we

skipped a step, in Theorem 2.1, of defining the functions F0 and Fi to represent (2.15) in

the form (2.13), which allows the use of Lemma 2.2, along with Remark 2.1, to arrive at

(2.16) that corresponds to (2.14). Note that the diagonal entries of Dx and Dw simply

correspond to the τi in (2.14).

The S-procedure (Farkas’ Theorem) used in Theorem 2.1 does not introduce any

gap/conservatism within the formulation. However note that, in comparison to (2.15),

the SDP (2.16) can be solved much more efficiently. We would like to mention that

throughout the thesis, SDP problems such as (2.16), will be referred to as LMI (opti-

mization) problems.

Similar or appropriately modified versions of the procedure given in Theorem 2.1, in

conjunction with other techniques such as slack-variable identities, will be employed in the

thesis to help overcome non-convexity associated with robust optimization formulations.

In addition, we will also be making use of the following version of the Farkas’ Lemma

[50] (see also Remark 2.1).

Lemma 2.3. Let c ∈ Rn, d ∈ R, A ∈ Rm×n and b ∈ Rm. Suppose there exists ŷ such

that Aŷ < b. Then the following two statements are equivalent:

(1) cT y ≤ d ∀y such that Ay ≤ b.

(2) ∃µ ∈ Rm such that µ ≥ 0, ATµ = c and bTµ ≤ d.
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Chapter 3

Robust Feedback MPC for

Systems with Parametric

Uncertainty

3.1 Introduction

In this chapter, we consider the RMPC control of linear, discrete-time systems subject

to (scalar) parametric model-uncertainties and bounded disturbances along with hard

constraints on the input and state. The proposed algorithm consists of an outer (RMPC)

controller which is responsible for steering the uncertain system state to a designed

terminal invariant set. Once the state is in this set, the inner (terminal) controller takes

over and maintains it within the set despite the action of persistent uncertainty and

disturbances.

As discussed in Section 1.2, the notion of feedback within the RMPC control law

is important since it provides an effective method of mitigating the effect of uncer-

tainty/disturbances whilst maintaining control feasibility. However, in order to avoid

nonlinearity and non-convexity in the formulation, many RMPC schemes from the liter-

ature design the feedback gain offline and perform online optimization with respect to the

control-perturbations [7, 27, 59]. Such an approach can be conservative depending upon

the offline feedback design. Therefore, in this chapter, we propose an RMPC controller

that consists of a state-feedback component as well as a control-perturbation, both of

which are explicitly considered as decision variables in the online optimization at each

time step. The nonlinearity and non-convexity associated with such a control structure

is circumvented by adopting a sequential approach in the formulation which is based, in
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3.2 RMPC Problem

part, on the principles of Dynamic Programming [13].

This chapter extends the preliminary results of [97] to design a unified RMPC frame-

work which handles both additive disturbances and (parametric) model-uncertainties si-

multaneously. In order to improve disturbance rejection in the formulation, we consider

an H2/H∞-based cost function, which is minimized by the outer (RMPC) controller.

The overall algorithm is based on a sequence of low-dimensional LMI optimizations which

helps to reduce the online computational burden as compared to nonlinear feedback MPC

schemes such as [91] and [106].

Recursive feasibility of the proposed RMPC algorithm is ensured through the incor-

poration of a terminal invariant set, which - along with its corresponding control law

- is computed in one step as solution to an LMI optimization problem. Furthermore,

conditions to guarantee Lyapunov stability of the closed-loop system are also derived

[66]. Finally, the applicability of the algorithm is illustrated through numerical examples

taken from the literature. The results in this chapter are primarily based on [100].

3.2 RMPC Problem

In this section, we provide a description of the system and constraints followed by the

cost function. We also derive an upper bound on the cost function which is minimized

by the RMPC controller.

3.2.1 System Description and Constraints

We consider a linear, discrete-time uncertain system of the form:

xk+1 = (A+ δαAδ)xk + (Bu + δβBδ)uk +Bwwk (3.1)

where xk ∈ Rn, uk ∈ Rnu , wk ∈ Rnw are the state, input and bounded disturbance

vectors at prediction step k; A is the system matrix and Bu and Bw are the input and

disturbance distribution matrices, respectively. Here δα and δβ, together with Aδ and Bδ,

represent the (parametric) model-uncertainty in the system. We assume that the pair

(A, Bu) is stabilizable and the state xk is measured. The prediction step k belongs to

the time set TN = {0, 1, · · · , N − 1}, where N > 0 is the prediction horizon. We consider

polytopic disturbance is of the form

wk ∈W :=
{
w ∈ Rnw : −v ≤ w ≤ v

}
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3.2 RMPC Problem

where v > 0. The model-uncertainty is characterized by:

δα ∈ Dα :=
{
δ ∈ R : |δ| ≤ α

}
, δβ ∈ Dβ :=

{
δ ∈ R : |δ| ≤ β

}
.

Remark 3.1. In the context of process control, an uncertainty description of the form

given in (3.1) frequently arises as a result of imprecise system-parameter values or various

simplifying approximations, for example model-order reduction. For practical examples

of such systems, see [56, 78] and the references therein.

Due to the presence of uncertainty and disturbances, the system (3.1) cannot be

controlled to the origin. The uncertain-system state can, at best, be confined to an RCI

set Z [16]. To promote such convergence as well as to establish stability of the proposed

scheme, we include in our formulation, the terminal state constraint xN ∈ Z together

with other hard constraints on the input and state. All these are summarized below:

xk ∈ Xk :=
{
x ∈ Rn : xk ≤ Cx ≤ xk

}
, ∀k ∈ TI := {1, 2, · · · , N − 1} (3.2)

xN ∈ Z :=
{
x ∈ Rn : −z ≤ Cf x ≤ z

}
(3.3)

uk ∈ Uk :=
{
u ∈ Rnu : uk ≤ u ≤ uk

}
,∀k ∈ TN (3.4)

where RCI set polytope z > 0 and the matrices Cf , C ∈ Rny×n - assumed to have a full

row rank - can be chosen to represent polytopic constraints on individual states and/or

their linear combinations (e.g. outputs).

The RMPC controller we consider in this chapter has the form: uk = Fkxk +mk.

Note that the control structure consists of both a state-feedback component (Fk) as well

as an open-loop component (mk).

Remark 3.2. Similar to tube-based MPC [58], a constraint tightening approach can also

be adopted in this algorithm to enhance robustness and convergence, see e.g. [88]. One

possible method of selecting a tightening set is also given in Remark 3.12.

Remark 3.3. Many RMPC schemes incorporate the idea of a terminal invariant set

[59, 91]. However, it is often difficult to compute suitable invariant sets as it generally

requires iterative computations [12, 18, 83]. Furthermore, as discussed in Section 1.2.3,

many existing algorithms compute invariant sets for a fixed control law, see e.g. [40, 80].

In our scheme, despite being a conservative structure, we have chosen the RCI set (3.3)
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to be a hyper-rectangle. This is because, as shown in Section 3.3, such a structure enables

us to efficiently compute the optimal invariant set and the corresponding inner controller

(simultaneously) in one step by solving a single LMI optimization problem. A formulation

for more general RCI set structures is also presented in Chapter 4.

3.2.2 Cost Function

We consider the following cost function:

J(x0, u, w, δα, δβ) :=xTNPNxN +
N−1∑
k=0

xTkQxk + uTkRuk − γ2wTk wk − ε2 (3.5)

where x0 is the given current state, PN = P TN � 0, Q = QT � 0 and R = RT � 0 are

known matrices and where

u =


u0

u1

...

uN−1

 ∈ RnuN , w =


w0

w1

...

wN−1

 ∈ RnwN

Here, γ2 and ε2 are known positive constants used to regulate/constrain the effect of

disturbances and open-loop control component mk (see Remarks 3.5 and 3.6 below).

By inserting the outer controller structure uk = Fkxk +mk into (3.5), we obtain:

J(x0, F,m,w, δα, δβ) := xTNPNxN +
N−1∑
k=0

g(xk, Fk,mk, wk) (3.6)

where g(xk, Fk,mk, wk) is the stage cost at each prediction step and is defined as:

g(xk, Fk,mk, wk) := xTk (Q+ F Tk RFk)xk+mT
kRmk+2mT

kRFkxk − γ2wTk wk −ε2;

and F =
[
F T0 F T1 · · · F TN−1

]T ∈ RnuN×n and m =
[
mT

0 mT
1 · · · mT

N−1

]T ∈ RnuN are the

stacked feedback gain matrix and the control-perturbation vector, respectively.

Remark 3.4. A number of RMPC schemes in the literature consider a stage cost which

is positive outside Z and zero within it (see e.g. [26, 90, 91]). This approach renders

the cost function discontinuous. The proposed scheme, on the other hand, penalizes the

terminal state xN which keeps the cost function continuous with respect to the state. Also,

importantly, this enables us to derive conditions (in Section 3.4.4) under which terminal

weighting matrix PN can be chosen to guarantee stability of the RMPC scheme [66].
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Remark 3.5. Note that in the cost function (3.6), the disturbance is negatively weighted

through the introduction of the constant γ2. Predictive control schemes involving such

a term in their cost are known as H∞-MPC algorithms, see e.g. [53, 66, 69] and the

references therein. In this framework, γ2 represents a prescribed H∞ disturbance rejection

measure to improve the robustness of the algorithm. The impact of γ2 will be further

clarified through numerical examples in Section 3.5.

Bearing in mind that the system response is due to x0 and wk, the design specifications

can be summarized as follows:

For a prescribed disturbance rejection measure γ � 0, find an admissible F and m (i.e.

ones that satisfy the constraints (3.2)-(3.4) which achieve the following requirements:

(S1) J(0, F, 0, w, δα, δβ) ≤ 0, ∀w,∀δα, δβ.

(S2) J?(x0) := minF,m maxw, δα, δβ
J(x0, F,m,w, δα, δβ).

In view of the above specifications, we will assume (and, in Section 3.4.2, derive sufficient

conditions for) the existence of matrices Pk = P Tk � 0 such that ∀k ∈ TN [55]:

g(xk, Fk,mk, wk) ≤ xTk Pkxk − xTk+1Pk+1xk+1, ∀wk ∈W, δα ∈ Dα, δβ ∈ Dβ (3.7)

Summing the inequality in (3.7) for all k ∈ TN and subsequently adding the terminal

cost to both sides yields the following upper bound on the cost function:

J(x0, F,m,w, δα, δβ) ≤ xT0 P0x0 , ∀w, ∀δα,∀δβ. (3.8)

It follows immediately that the requirement in (3.7) is sufficient for design specification

(S1). In view of design specification (S2), the proposed outer controller is chosen so as

to minimize the upper bound (3.8) on the cost function.

Remark 3.6. Note that (3.8) can be written as: xTNPNxN +
∑N−1

k=0 x
T
kQxk + uTkRuk ≤

Nε2 + γ2wTw + xT0 P0x0. From this, we see that the conventional MPC cost (left hand

side of the inequality) has three upper-bound components, namely: xT0 P0x0 due to the

initial state, γ2wTw due to the disturbance and Nε2 due to mk. In particular, ε2 is used

to regulate the influence of the open-loop component mk in the overall control input (uk).

So, for example, choosing a small ε2 will nullify the effect of mk. This relationship will

be further clarified in Section 3.4.2.

Remark 3.7. The design specification (S1), i.e. energy of the system driven only by the

disturbance should be less or equal to zero, is a typical requirement in H∞ design. On the
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other hand, design specification (S2) and the minimization of the cost upper bound xT0 P0x0

represent the H2 component of the problem and emphasizes performance. Therefore, cost

function (3.6) shapes the considered RMPC problem into a mixed H2/H∞ framework.

3.3 RCI Set Formulation

As discussed in Section 1.2.3, RCI sets play a fundamental role in the RMPC control of

uncertain systems [79]. An RCI set for system (3.1) can be defined as follows [16]:

Definition 3.1. Z ⊂ Rn is a Robust Control Invariant (RCI) set of system (3.1) if there

exists a control law u = Kx, such that (A+ DαAδ)Z⊕ (Bu + DβBδ)KZ⊕BwW⊆Z.

We will now derive an LMI optimization problem to compute the largest/smallest perime-

ter hyper-rectangle invariant set (3.3) - which is a subset of the maximal/minimal RCI

set [79, 95] - along with the corresponding inner controller K, subject to the following

state and input constraints

z ∈ Xf := {z ∈ Rny : Ez ≤ f} , u = Kx ∈ Uf :=
{
u ∈ Rnu : uf ≤ u ≤ uf

}
(3.9)

where E ∈ Rnz×ny , Xf ⊂ Xk, ∀k, and Uf ⊂ Uk, ∀k.

Theorem 3.1. There exists a constraint admissible RCI set Z and controller K if there

exist K̂ ∈ Rnu×ny , diagonal matrix Zd � 0 and vectors ρjx, ρjx, µ
i
x, µ

i
p ∈ Rny , µiq ∈Rny and

µiw ∈ Rnw , i ∈ Ny := {1, · · · , ny}, j ∈ Nu := {1, · · · , nu}, such that the following linear

inequality constraints are satisfied:

ρjx ≥ 0, ρjx + K̂T euj ≥ 0,

eTujuf − 2eTρjx − eT K̂T euj ≥ 0, (3.10a)

ρj
x
≥ 0, ρj

x
− K̂T euj ≥ 0,

− eTujuf − 2eTρj
x

+ eT K̂T euj ≥ 0, (3.10b)

µiw ≥ 0, µiw +BT
wC

T
f ei ≥ 0,

µix ≥ 0, µix + (ACTLZd +BuK̂)TCTf ei ≥ 0,

µip ≥ 0, µip + (AδC
T
LZd)

TCTf ei ≥ 0,

µiq ≥ 0, µiq + (BδK̂)TCTf ei ≥ 0,

eTi Zde− vT (2µiw +BT
wC

T
f ei)− eT (2µix + (ACTLZd +BuK̂)TCTf ei) · · ·

− αeT (2µip + (AδC
T
LZd)

TCTf ei)− βeT (2µiq + (BδK̂)TCTf ei) ≥ 0, (3.10c)

EZde− f ≤ 0 (3.10d)
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where CL := (CfC
T
f )−1Cf , ei denotes the ith column of the ny × ny identity matrix,

euj denotes the jth column of the nu × nu identity matrix and e is the ny-dimensional

vector of ones. If the inequalities (3.10) are satisfied, then RCI set polytope z = Zde and

controller K is a solution to K̂ = KCTLZd.

Proof. The input constraints in (3.9) can be written as:

eTujKx ≤ eTujuf , (3.11)

eTujKx ≥ eTujuf , (3.12)

for all x ∈ Z, where j ∈ Nu.

By applying Lemma 2.3, it can be shown that (3.11) is satisfied if and only if there exist

ρjx, ρ
j
x ∈ Rny such that

ρjx ≥ 0 , ρjx ≥ 0, (3.13a)

CTf ρ
j
x = CTf ρ

j
x +KT euj , (3.13b)

eTujuf − zTρjx − zTρjx ≥ 0. (3.13c)

Pre-multiplying (3.13b) by CL := (CfC
T
f )−1Cf and subsequently eliminating ρjx from

(3.13), yields the following equivalent conditions

ρjx ≥ 0 , ρjx + CLK
T euj ≥ 0,

eTujuf − 2zTρjx − zTCLKT euj ≥ 0. (3.14)

Note that (3.14) is nonlinear in z and K. By defining Zd := diag(z) � 0 so that z = Zde,

pre-multiplying the first and second inequality by Zd and introducing the re-definitions

ρjx := Zdρ
j
x and K̂ := KCTLZd results in the inequalities (3.10a), which are linear in all

the variables.

Analogous to the above procedure, using Lemma 2.3 on (3.12) followed by the lin-

earization results in (3.10b).

Now, since the sets Z, Dα, Dβ and W are symmetric, the invariance constraint in

Definition 3.1 can be written as:

eTi Cf [(A+BuK)x+Aδ p+BδK q +Bww] ≤ eTi z, (3.15)

for all x ∈ Z, w ∈ W, p ∈ P, q ∈ Q, i ∈ Ny, where p := δαx, q := δβx and P and Q are
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defined by

P :=
{
p ∈ Rn : −αz ≤ Cfp ≤ αz

}
,

Q :=
{
q ∈ Rn : −βz ≤ Cfq ≤ βz

}
.

It follows from Lemma 2.3 that (3.15) is satisfied if and only if there exist µiw, µ
i
w ∈ Rnw

and µix, µ
i
x, µ

i
p, µ

i
p, µ

i
q, µ

i
q ∈ Rny such that

µix ≥ 0, µix ≥ 0, µip ≥ 0, µip ≥ 0, µiq ≥ 0, µiq ≥ 0 (3.16a)

CTf µ
i
x = CTf µ

i
x + (A+BuK)TCTf ei , (3.16b)

CTf µ
i
p = CTf µ

i
p + (Aδ)

TCTf ei , (3.16c)

CTf µ
i
q = CTf µ

i
q + (BδK)TCTf ei (3.16d)

µiw ≥ 0 , µiw ≥ 0 , µiw = µiw +BT
wC

T
f ei, (3.16e)

eTi z − vT (µiw + µiw)− zT (µix + µix)− αzT (µip + µip)− βzT (µiq + µiq) ≥ 0. (3.16f)

Pre-multiplying (3.16b)-(3.16d) by CL and subsequently eliminating µix, µip, µ
i
q, µ

i
w from

the above inequalities yields:

µix ≥ 0 , µix + CL(A+BuK)TCTf ei ≥ 0 ,

µip ≥ 0, µip + CL(Aδ)
TCTf ei ≥ 0 ,

µiq ≥ 0, µiq + CL(BδK)TCTf ei ≥ 0 ,

µiw ≥ 0 , µiw +BT
wC

T
f ei ≥ 0 ,

eTi z − vT (2µiw +BT
wC

T
f ei)− zT (2µix + CL(A+BuK)TCTf ei) · · ·

− αzT (2µip + CL(Aδ)
TCTf ei)− βzT (2µiq + CL(BδK)TCTf ei) ≥ 0. (3.17)

Pre-multiplying the first six inequalities in (3.17) by Zd and using the re-definitions

µix := Zdµ
i
x, µip := Zdµ

i
p, µ

i
q := Zdµ

i
q and K̂ := KCTLZd yields the nine inequalities in

(3.10c). Finally, using z = Zde, state constraint in (3.9) can be rewritten as (3.10d).

Let us define the following linear inequalities:

ζ −
ny∑
i=1

eTi Zdei ≤ 0 (3.18a)

ζ −
ny∑
i=1

eTi Zdei ≥ 0. (3.18b)
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3.4 RMPC Controller

Then, using Theorem 3.1, it can be verified that an inner approximation to the largest

hyper-rectangle RCI set Z (perimeter-wise) and corresponding K can be obtained by

solving the following LMI optimization problem:

ζ̄o = max{ ζ : (3.10a, 3.10b, 3.10c, 3.10d, 3.18a) are satisfied for some

ρjx, ρ
j
x
, µix, µ

i
p, µ

i
q ∈ Rny , µiw ∈ Rnw and i ∈ Ny, j ∈ Nu}. (3.19)

Similarly, an outer approximation to the smallest hyper-rectangle RCI set Z (perimeter-

wise) and corresponding K can be obtained by solving the following LMI problem:

ζ̄o = min{ ζ : (3.10a, 3.10b, 3.10c, 3.10d, 3.18b) are satisfied for some

ρjx, ρ
j
x
, µix, µ

i
p, µ

i
q ∈ Rny , µiw ∈ Rnw and i ∈ Ny, j ∈ Nu}. (3.20)

Remark 3.8. For systems subject to only disturbances without model-uncertainty (i.e.

δα = δβ = 0), the conditions in Theorem 3.1 become both necessary and sufficient for

the existence of set Z and K. This is because for such systems, (3.15) is equivalent to

the invariance constraint in Definition 3.1. Therefore, ζo, the optimal Z and K can be

computed exactly.

Remark 3.9. Solving LMI problems (3.19) and (3.20) yields the optimal Zd (:= diag(z))

and K̂. Note that all possible solutions (K) to equation K̂ = KCTLZd ensure control

invariance. For instance, one possible choice of the control law is: K = K̂Z−1
d Cf .

Remark 3.10. For a given K, the RCI set Z can be computed through a Linear Program.

Let y = [zT µ1T
w · · · µ

nyT
w µ1T

x · · · µ
nyT
x µ1T

p · · · µ
nyT
p µ1T

q · · · µ
nyT
q ρ1T

x · · · ρnuTx ρ1T
x
· · · ρnuT

x
]T

and define a column vector c whose first ny elements are 1 while the rest are 0 i.e.

c := [1, . . . , 1, 0, . . . , 0]T . Now, for the case with a fixed K, all the conditions in The-

orem 3.1 can be linearized (e.g. by re-defining ρjx := Zdρ
j
x in (3.14) and similarly in

other conditions). Hence, the optimization in (3.19) and (3.20) can be transformed into

a simple Linear Program with cost function cT y subject to constraints of the form Ty ≤ g.

3.4 RMPC Controller

In this section, we derive the (outer) RMPC controller which is responsible for steering

the system state towards the terminal invariant set Z.

Recall that the proposed outer controller structure (uk = Fkxk + mk) results in

nonlinearities and non-convexity if the problem is formulated in the standard way [46].
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3.4 RMPC Controller

Therefore, in order to avoid such issues, we formulate the RMPC problem in a more

sequential manner. In some sense, the proposed approach is reminiscent of our RCI

set formulation since the state constraints (3.2 − 3.3) and input constraints (3.4) can

respectively be written as (with a slight abuse of notation):

[A+ DαAδ ⊕ (Bu + DβBδ)Fk]Xk ⊕ (Bu + DβBδ)mk +BwW ⊆ Xk+1 (3.21)

FkXk +mk ⊆ Uk (3.22)

for all k ∈ TN , where X0 is simply the initial state x0 and XN is the RCI set Z.

3.4.1 LMI Conditions for the Constraints

Our approach is to derive necessary and sufficient LMI conditions for the robust satis-

faction of state and input constraints, (3.21) and (3.22) respectively. Subsequently, we

will incorporate the cost function in the algorithm.

Theorem 3.2. Let all definitions and variables be as defined above. Then, there exists

an admissible feedback-gain matrix (F ) and a perturbation vector (m), satisfying (3.21

- 3.22), if and only if there exist positive-definite matrices D
i
x, D

i
x ∈ Dny×ny , D

i
w, D

i
w ∈

Dnw×nw , D
i
α, D

i
α, D

i
β, D

i
β ∈ R, µiw, µ

i
w
∈ Rnw , µiα, µ

i
α
, µiβ, µ

i
β
∈ R, i ∈ Ny := {1, · · · , ny},

ρjkx, ρ
j
kx ∈ Rny , j ∈ Nu := {1, · · · , nu}, as solutions to the following LMIs:



CTD
i
xC 0 −1

2A
T
δ C

T ei −1
2F

T
k B

T
δ C

T ei −1
2C

TD
i
x(xk + xk)− 1

2A
T
kC

T ei

? D
i
w 0 0 −1

2B
T
wC

T ei

? ? D
i
α 0 0

? ? ? D
i
β −1

2m
T
kB

T
δ C

T ei

? ? ? ? L(xk+1, D
i
x, D

i
α, D

i
β, D

i
w, ei)


� 0

(3.23)



CTDi
xC 0 1

2A
T
δ C

T ei
1
2F

T
k B

T
δ C

T ei −1
2C

TD
i
x(xk + xk) + 1

2A
T
kC

T ei

? Di
w 0 0 1

2B
T
wC

T ei

? ? Di
α 0 0

? ? ? Di
β

1
2m

T
kB

T
δ C

T ei

? ? ? ? L(xk+1, D
i
x, D

i
α, D

i
β, D

i
w,−ei)


� 0

(3.24)
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3.4 RMPC Controller

where L(x̂, D̂x, D̂α, D̂β, D̂w, ei) := eTi (x̂−CBumk) +xTk D̂xxk−αD̂αα−βD̂ββ− vT D̂wv.

ρjkx ≥ 0, ρjkx + CRF
T
k euj ≥ 0,

eTuj(uk −mk)− (xk − xk)Tρ
j
kx − x

T
kCRF

T
k euj ≥ 0, (3.25)

ρj
kx
≥ 0, ρj

kx
− CRF Tk euj ≥ 0,

− eTuj(uk −mk)− (xk − xk)Tρjkx + xTkCRF
T
k euj ≥ 0, (3.26)

∀i ∈ Ny, ∀j ∈ Nu, ∀k ∈ TI ,

µiα ≥ 0 , µiα + xT0 A
T
δ C

T ei ≥ 0,

µiβ ≥ 0 , µiβ + (F0x0 +m0)TBT
δ C

T ei ≥ 0,

µiw ≥ 0 , µiw +BT
wC

T ei ≥ 0,

eTi (x1 − CA0x0 − CBum0)− vT (2µiw +BT
wC

T ei) · · ·

− α(2µiα + xT0 A
T
δ C

T ei)− β(2µiβ + (F0x0 +m0)TBT
δ C

T ei) ≥ 0 (3.27)

µi
α
≥ 0 , µi

α
− xT0 ATδ CT ei ≥ 0,

µi
β
≥ 0 , µi

β
− (F0x0 +m0)TBT

δ C
T ei ≥ 0,

µi
w
≥ 0 , µi

w
−BT

wC
T ei ≥ 0,

− eTi (x1 − CA0x0 − CBum0)− vT (2µi
w
−BT

wC
T ei) · · ·

− α(2µi
α
− xT0 ATδ CT ei)− β(2µi

β
− (F0x0 +m0)TBT

δ C
T ei) ≥ 0 (3.28)

eTuj(F0x0 +m0 − u0) ≤ 0,

eTuj(F0x0 +m0 − u0) ≥ 0, (3.29)

∀j ∈ Nu, ∀i ∈ Ny, k = 0,

where CR := (CCT )−1C, Ak := A+BuFk, A0 := A+BuF0 and where xN = −xN = z .

Proof. The state constraints in (3.21) can be written as:

eTi (Cxk+1 − xk+1) ≤ 0 (3.30)

−eTi (Cxk+1 − xk+1) ≤ 0 (3.31)
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3.4 RMPC Controller

∀k ∈ TI ,∀xk ∈ Xk, ∀wk ∈W, ∀δα ∈ Dα, ∀δβ ∈ Dβ, where:

xk+1 = (A+ δαAδ)xk + (Bu + δβBδ)(Fkxk +mk)+Bwwk︸ ︷︷ ︸
fk(xk,Fk,mk,wk,δα,δβ)

. (3.32)

It can be verified that:

eTi (Cxk+1−xk+1)=−(v −wk)TD
i
w(wk+ v)− (β−δβ)TD

i
β(δβ + β)− (α−δα)TD

i
α(δα+ α)

−(xk−Cxk)TD
i
x(Cxk−xk)− yTk Li(D

i
x, D

i
w, D

i
α, D

i
β, Fk,mk)yk

for all i ∈ Ny, where D
i
x, D

i
w, D

i
α, D

i
β are positive-definite diagonal matrices, vector

yk := [xTk wTk δTα δTβ 1]T and Li(D
i
x, D

i
w, D

i
∆, Fk,mk) is the matrix given in LMI (3.23).

Then, through an application of the S-Procedure (Farkas’ Theorem) [81], it follows that

(3.23) is necessary and sufficient for (3.30), (see also Section 2.3). Analogous to the

above method, it can be verified that LMI (3.24) is a necessary and sufficient condition

for (3.31).

Now for k = 0, with x0 known, the state constraints become:

eTi C[δαAδx0 + δβBδ(F0x0 +m0) +Bww0] ≤ eTi (x1 − CA0x0 − CBum0)

eTi C[δαAδx0 + δβBδ(F0x0 +m0) +Bww0] ≥ eTi (x1 − CA0x0 − CBum0) (3.33)

Using Lemma 2.3 on the first inequality in (3.33) yields:

µiα ≥ 0 , µiα ≥ 0 , µiα = µiα + xT0 A
T
δ C

T ei,

µiβ ≥ 0 , µiβ ≥ 0 , µiβ = µiβ + (F0x0 +m0)TBT
δ C

T ei,

µiw ≥ 0 , µiw ≥ 0 , µiw = µiw +BT
wC

T ei,

eTi (x1 − CA0x0 − CBum0)− vT (µiw + µiw)− α(µiα + µiα)− β(µiβ + µiβ) ≥ 0

Eliminating µiw, µiα and µiβ from the above yields the inequalities (3.27). A similar

treatment on the second inequality in (3.33) yields the conditions in (3.28). Therefore,

inequalities (3.27), (3.28) both become necessary and sufficient for the satisfaction of the

state constraints at k = 0.

Now, for k ∈ TI , the input constraints in (3.22) can be written as:

eTuj(Fkxk +mk) ≤ eTujuk , ∀j ∈ Nu, ∀xk ∈ Xk (3.35)

eTuj(Fkxk +mk) ≥ eTujuk , ∀j ∈ Nu, ∀xk ∈ Xk. (3.36)
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3.4 RMPC Controller

By applying Lemma 2.3, it can be shown that (3.35) is satisfied if and only if there exist

ρjkx, ρ
j
kx ∈ Rny such that

ρjkx ≥ 0, ρjkx ≥ 0, (3.37a)

CTρjkx = CTρjkx + F Tk euj , (3.37b)

eTuj(uk −mk) + xTk ρ
j
kx − x

T
k ρ

j
kx ≥ 0. (3.37c)

Pre-multiplying (3.37b) by CR := (CCT )−1C and subsequently eliminating ρjkx from

(3.37) yields the inequalities (3.25). Analogous to the above procedure, using Lemma 2.3,

it can be shown that (3.36) is satisfied if and only if there exist a solution ρjkx ∈ Rny to

the inequalities (3.26). Finally, for k = 0, with x0 known, it can easily be verified that

inequalities (3.35) and (3.36) reduce to (3.29).

Remark 3.11. It is worth mentioning here that the LMIs in Theorem 3.2 do not in-

troduce any gap (conservatism) in the formulation. Therefore, the state and input con-

straints are incorporated in a non-conservative manner (see also Section 3.5). Further-

more, these LMIs have a low dimension which makes the online optimization tractable.

Remark 3.12. Note that, in Theorem 3.2, both xk+1 and xk+1 appear linearly and thus

can be treated as variables. This suggests another method of tightening the constraints

- in an a-priori manner - to yield a feasible control policy. For example, the LMIs

in Theorem 3.2 can be solved (sequentially) to minimize the objective ‖xk+1 − xk+1‖2,

resulting in an optimal constraint-tightening procedure.

3.4.2 Incorporation of the Cost Function

To compute an upper-bound on cost (3.6), we first derive a sufficient condition for (3.7).

Theorem 3.3. Given the matrix Pk+1 = P Tk+1 � 0 and a (constant) user-specified bound-

ing on mk, call it ε2, there exists a Pk = P Tk � 0 satisfying (3.7) if the LMI:

λ2I 0 Aδ 0 0 0 0 0

0 λ2I BδFk 0 Bδmk 0 0 0

? ? Pk −Q 0 0 F Tk R ATk Pk+1 0

? ? ? γ2I 0 0 BT
wPk+1 0

? ? ? ? ε2 mT
kR mT

kB
T
u Pk+1 0

? ? ? ? ? R 0 0

? ? ? ? ? ? Pk+1 λPk+1

? ? ? ? ? ? ? λI


� 0 (3.38)
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3.4 RMPC Controller

has a feasible solution, where Ak := (A+BuFk), and λ := λ2(α2 + β2).

Furthermore, with Pk obtained as above, the quadratic function J(xk, Fk,mk) := xTk Pkxk

represents an upper bound on the cost-to-go at each prediction step k.

Proof. Recall that the cost function we propose is:

J(x0, F,m,w, δα, δβ) := xTNPNxN +
N−1∑
k=0

g(xk, Fk,mk, wk)

where g(xk, Fk,mk, wk) := xTk (Q + F Tk RFk)xk + mT
kRmk + mT

kRFkxk + xTk F
T
k Rmk −

γ2wTk wk−ε2. Here ε2 > 0 is a designer-specified upper bound on control-perturbation mk.

In particular, mT
kRmk ≤ ε2, so that a non-zero ε2 corresponds to a control-perturbation

component in uk.

Then, by using system dynamics (3.1), inequality (3.7) can be written as:

sTk L̂k(Fk,mk, Pk)sk ≥ 0, ∀wk, ∀δα, ∀δβ

for all k ∈ TN , where sk = [xTk wTk 1]T ∈ Rn+nw+1 and L̂k(Fk,mk, Pk) :=


Pk −Q− F Tk RFk −A

T
k Pk+1Ak −ATk Pk+1Bw L̂1,3

? γ2I −BT
wPk+1Bw −BT

wPk+1Bk

? ? ε2 −BT
k Pk+1Bk −mT

kRmk


where Ak := (Ak + δαAδ + δβBδFk), Bk := (Bu + δβBδ)mk, and L̂1,3 = −ATk Pk+1Bk −
F Tk Rmk.

It follows that a sufficient condition for (3.7) is:

L̂k(Fk,mk, Pk) � 0 (3.39)

Application of the Schur complement on L̂k(Fk,mk, Pk), followed by a pre- and post-

multiplication with the matrix diag(I, I, I, R, Pk+1) and a subsequent rearrangement

shows that (3.39) is equivalent to:

L+ EδV T + V δTET � 0, ∀δ,
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3.4 RMPC Controller

where δ := [δα δβ]T , V := [0 0 0 0 Pk+1]T and

L :=



Pk −Q 0 0 F Tk R ATk Pk+1

? γ2I 0 0 BT
wPk+1

? ? ε2 mT
kR mT

kB
T
u Pk+1

? ? ? R 0

? ? ? ? Pk+1


, E :=



ATδ F Tk B
T
δ

0 0

0 mT
kB

T
δ

0 0

0 0


·

Using the S-procedure [94] on above inequality yields:

L+ EδV T + V δTET =

�0︷ ︸︸ ︷
V (λ2(α2 + β2)− λ2δT δ)V T +pTLk(Fk,mk, Pk, λ)p � 0

where p := [V δT I]T , 0 < λ ∈ R is a variable and:

Lk(Fk,mk, Pk, λ) :=

[
λ2I ET

? L− λ2(α2 + β2)V V T

]
·

It follows that Lk(Fk,mk, Pk, λ) � 0 is sufficient for inequality (3.7). Applying the Schur

complement argument on Lk(Fk,mk, Pk, λ) yields LMI (3.38).

To prove the second part of Theorem 3.3, let gk(xk, Fk,mk, wk) and Jk(xk, Fk,mk)

denote the stage cost and the cost-to-go (respectively) at each prediction step k. Fur-

thermore, let J?k (xk) denote the optimal cost-to-go. Then, for our algorithm, at a given

(absolute) time, initially at prediction step k = N − 1 with PN known, we have the

following:

J?N (xN ) = JN (xN ) = gN (xN ) = xTNPNxN .

Then, iterating backwards, at each k, with Pk+1 known, we have

Jk(xk, Fk,mk) := max
wk, δα, δβ

g(xk, Fk,mk, wk) + J?k+1(fk(xk, Fk,mk, wk, δα, δβ)).

where fk(xk, Fk,mk, wk, δα, δβ) is defined in (3.32).

Finally, using (3.7) - which is ensured by (3.38) - shows that:

Jk(xk, Fk,mk) ≤ xTk Pkxk =: Jk(xk, Fk,mk).

It follows from the proof of Theorem 3.3 that an upper bound on the optimal cost function

51



3.4 RMPC Controller

is given by:

J
?
0(x0) = min

Pk � 0, ∀k
Gk � 0, ∀k

xT0 P0x0 (3.40)

where PN is given and Gk � 0 represents all the (applicable) necessary and sufficient

conditions derived above for the state/input constraints (3.23)-(3.29), as well as inequality

(3.38). Note that optimization problem (3.40) requires the constraint (3.38) to be satisfied

for all k and this renders the problem nonlinear and non-convex due to the (3,7) and (5,7)

entries of (3.38). In order to avoid such non-convexity, we minimize an upper bound on

the cost-to-go Jk(xk, Fk,mk) in a sequential manner, as given in the following theorem.

Theorem 3.4. An upper bound on the optimal cost-to-go J
?
k(xk), call it Ĵ?k , can be

computed, for all k ∈ TI , as follows:

Ĵ?k = min µ0k

subject to:

Pk � 0, Gk � 0, Dk � 0,

Lk(Pk, Dk) :=

[
CTDkC − Pk −1

2C
TDk(xk + xk)

? µ0k + xTkDkxk

]
� 0. (3.41)

Furthermore, for k = 0, J
?
0(x0) can be computed by minimizing xT0 P0x0 subject to the

inequality constraints:

P0 � 0, G0 � 0. (3.42)

Proof. We consider the following min-max problem as the main optimization in the

proposed algorithm, for all k ∈ TI :

J
?
k(xk) ≤ min

Pk � 0

Gk � 0

max

xk ∈ Xk

xTk Pkxk. (3.43)

Using the S-Procedure, it can be verified that:

xTk Pkxk =

≤0︷ ︸︸ ︷
−(xk − Cxk)TDk(Cxk − xk)− cTLk(Pk, Dk)c+ µ0k

for all k ∈ TI , where the diagonal matrix Dk � 0, c := [xTk 1]T and Lk(Pk, Dk) is as
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3.4 RMPC Controller

defined in (3.41). Therefore, we have:

Dk � 0, Lk(Pk, Dk) � 0⇒ xTk Pkxk ≤ µ0k. (3.44)

Using (3.44) in the maximization of (3.43) yields the required minimization problem for

the computation of Ĵ?k (xk). Furthermore, for k = 0, with x0 known, J
?
0(x0) can be

computed by minimizing xT0 P0x0 subject to (3.42).

3.4.3 Overall RMPC Scheme

The optimizations for the computation of the feedback gain matrix F and perturbation

vector m can be summarized as follows:

At each absolute time step, call it t, iterating backwards starting from prediction step

k = N − 1 all the way down to k = 1, for each k, we solve the following problem to

compute Fk, mk and Pk:

Ĵ?k = min{ µ0k : (3.23, 3.24, 3.25, 3.26, 3.38, 3.41) are satisfied for some diagonal

positive definite matrices Dk, D
i
x, D

i
x, D

i
α, D

i
α, D

i
β, D

i
β, D

i
w, D

i
w, and

Pk = P Tk � 0, ρjkx, ρ
j
kx
∈ Rny , i ∈ Ny, j ∈ Nu}. (3.45)

Then, for k = 0, with P1 computed in the previous step, the following problem is solved

to compute F0, m0 and P0:

J
?
0(x0) = min{ xT0 P0x0 : (3.27, 3.28, 3.29, 3.38, 3.42) are satisfied for

some P0 = P T0 � 0, µiw, µ
i
w
∈ Rnw , µiα, µiα, µ

i
β, µ

i
β
∈ R,

i ∈ Ny, j ∈ Nu}. (3.46)

Therefore, the overall RMPC algorithm can be summarized as follows.

Algorithm 3.1. Robust Feedback MPC.

Data: xt.

Algorithm: If xt ∈ Z, set ut = Kxt. Otherwise, compute F and m by solving (3.45) and

(3.46) sequentially and set ut = F0xt +m0.

Remark 3.13. Algorithm 3.1 is based, in part, on the principles of Dynamic Program-

ming [13] since it involves computing Fk, mk by minimizing the worst-case upper bound

on the cost-to-go at each k. Note also that (3.45) and (3.46) are (low-dimensional) LMI

optimization problems and thus the control law can be computed in polynomial time [55].
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3.4.4 Conditions for Stability of the RMPC Scheme

The stability of MPC schemes has been widely investigated over the past few decades

(see e.g. [66] for an excellent survey). In the literature, a number of techniques have

been employed to establish stability. However, the most common one involves the use of

terminal (invariant) sets and a suitable terminal cost. In particular, the conditions for

stability of the RMPC scheme can be summarized as follows [66]:

C1: The stage cost g(x, u, w) ≥ δ(‖x‖2) for all feasible states x, for all w and for some

δ > 0.

C2: The terminal set Z is robust positively invariant for the system under the control

law κz(x), i.e. f(x, κz(x), w) ∈ Z, ∀x ∈ Z, ∀w ∈ W, ∀δα ∈ Dα, ∀δβ ∈ Dβ, where

f(x, κz(x),w):=(A+δαAδ)x+(Bu+δβBδ)κz(x)+Bww

C3: The terminal control law κz(x) is such that κz(x) ∈ Uf ⊂ Uk, ∀k, ∀x ∈ Z. Further-

more Z ⊂ Xk, ∀k, and the sets Uf and Z contain the origin in their interior.

C4: The terminal cost function gN (x) is such that gN (0) = 0, gN (x) ≥ 0 , ∀x ∈ Z and

satisfies:

gN (f(x, κz(x), w))− gN (x) ≤ −g(x, κz(x), w) (3.47)

∀x ∈ Z, ∀δα ∈ Dα, ∀δβ ∈ Dβ , and for all admissible w.

We now present a theorem to ensure conditions C1-C4 for the proposed RMPC scheme.

For simplicity, as well as the fact that above conditions assume state-feedback, we will

consider ε2 (and therefore mk) to be zero.

Theorem 3.5. Assume that all admissible disturbances (i.e. w ∈W) also belong to the

set W where (see Remark 3.14):

W :=
{
w ∈ Rnw : ‖w‖2 ≤ σ2(xTQx+ uTRu)

}
(3.48)

and where σ < 1
γ . Furthermore, suppose the terminal weighting PN = P TN is chosen as

the solution to the LMI:

λ2
αI 0 0 PN −PNBw
? λ2

βI 0 PN −PNBw
? ? L3,3 ATKPN −ATKPNBw
? ? ? PN 0

? ? ? ? γ2I −BT
wPNBw


�0 (3.49)
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3.4 RMPC Controller

where L3,3 := PN −Q−KTRK−β2λ2
βK

TBT
δ BδK−α2λ2

αA
T
δ Aδ, with K as the computed

inner controller (i.e. κz(x) = Kx) and AK := (A+BuK).

Then, the conditions C1-C4 are satisfied.

Proof. Using the definition of set W, the proposed stage-cost can be written as:

g(x, u, w) = xTQx+ uTRu− γ2wTw

≥ (1− γ2σ2)(xTQx+ uTRu)

:= µ(xTQx+ uTRu)

≥ δ(xTQx)

where µ > 0 and δ > 0 if σ < 1
γ . It follows that the assumption w ∈ W is sufficient to

guarantee condition C1.

Now with the inner controller and RCI set already computed (using Theorem 3.1), in-

serting the system dynamics (3.1) into inequality (3.47) yields:

hT L̂s(PN , δα, δβ)h ≥ 0

where h = [xT wT ]T ∈ Rn+nw and

L̂s(PN , δα, δβ) :=

PN −Q−KTRK −ATδKPNAδK −ATδKPNBw

? γ2I −BT
wPNBw



where AδK := (A + BuK) + (δαAδ + δβBδK). Therefore, L̂s(PN , δα, δβ) � 0 ,∀δα, δβ is

sufficient for (3.47). In order to obtain convexity in PN , we will first deal with δβ followed

by δα. An application of the Schur complement argument on L̂s(PN , δα, δβ) � 0 and a

subsequent rearrangement yields the following sufficient condition:

L+ EδβF
T + FδTβE

T � 0, ∀δβ (3.50)

where E := [0 PN −PNBw]T , F := [BδK 0 0]T , and

L :=


PN−Q−KTRK (ATK+δαA

T
δ )PN −(ATK+δαA

T
δ )PNBw

? PN 0

? ? γ2I −BT
wPNBw

 ·
Much the same way as in the proof of Theorem 3.3, applying the S-procedure on inequality
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3.5 Numerical Examples

(3.50), and a subsequent rearrangement yields the following condition:

L+ EδαF
T + FδTαE

T � 0, ∀δα (3.51)

where E := [0 0 PN −PNBw]T , F := [0 Aδ 0 0]T and

L :=


λ2
βI 0 PN −PNBw
? L2,2 ATKPN −ATKPNBw
? ? PN 0

? ? ? γ2I −BT
wPNBw


where L2,2 := PN − Q −KTRK − β2λ2

βK
TBT

δ BδK. Finally, applying the S-procedure

on (3.51) yields (3.49).

Thus, a PN satisfying LMI (3.49) guarantees that the corresponding terminal cost

satisfies C4. Finally, we note that C2 and C3 hold due to the RCI set formulation of

Section 3.3.

It follows from [66] that satisfaction of conditions C1-C4, by the proposed scheme, is

sufficient to ensure the Lyapunov stability of the closed-loop uncertain system.

Remark 3.14. The condition (3.48), though restrictive, has been used in a number

of publications, e.g. in the context of H∞-MPC [66, sec. 4.7]. A similar condition

( ‖wk‖2 ≤ ‖xk‖2) has been used in [55] as well as for the proofs given in [105]. An

alternative, less restrictive, assumption which may instead be used to guarantee condition

C1 is also given in [100, App. A].

Remark 3.15. Recursive feasibility of the proposed scheme is ensured through the incor-

poration of the (constraint admissible) invariant terminal set Z. In particular note that,

under the conditions given in C1-C4, the optimal control sequence computed at time t

can be shifted and subsequently appended with the terminal control law κz(x) to yield the

sequence: {u(t+1|t), · · · , u(t+N |t), κz(x)} which remains feasible at next time step t+1.

See [66] for further details.

3.5 Numerical Examples

In this section, we present three examples to demonstrate the effectiveness of the proposed

algorithm.

56
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Figure 3.1: Simulation results for Example 1 with wt = − cos(t/2).

3.5.1 Example 1

Firstly, we consider an example taken from [91]:

xk+1 = xk + uk + wk. (3.52)

The disturbance is constrained as: −1 ≤ wk ≤ 1. The state constraints are defined

by xk = 2 and xk = −1.2. No input constraints are imposed. The initial state x0 = x

and the horizon N = 3. For the cost, we have Q = 1, R = 0.1, PN = I, ε2 = 0.5 and

disturbance rejection parameter γ2 = 10. The optimal RCI set and controller, computed

using the algorithm in Section 3.3, are given by Z :=
{
x ∈ R : −1 ≤ x ≤ 1

}
and K = −1,

respectively. Figure 3.1 shows the results using the proposed RMPC scheme as well as

the algorithm from [97]. Note that both algorithms are able to steer the disturbed

system state to the invariant set (shown by black dashed lines). Once in the set, the

computed inner controller keep the system state within Z for all possible disturbances.

Note, however, that the proposed scheme controls the state to the RCI set in one step as

compared to two online iterations required by the algorithm in [97]. This improvement

can be attributed to the introduction of the control-perturbation mk which provides an

extra degree of freedom in the proposed scheme. This results in fewer number of online

iterations and a less conservative algorithm.

As explained in Section 1.2, Example 1 is found to be infeasible with open-loop min-
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Scheme Iterations required for convergence to Z Average computational time per iteration (s)

Open-loop min-max MPC Infeasible -

Min-max feedback MPC [91] 1 0.70

Algorithm from [97] 2 0.36

Proposed Algorithm 1 0.37

Table 3.1: Comparison of various RMPC schemes for Example 1

max MPC scheme due to its conservative nature. The min-max feedback MPC scheme in

[91] does yield feasibility though at the expense of large online computational burden (due

to its combinatorial nature of optimization). Table 3.1 compares the computational load

and RCI set convergence of all the above schemes (running on an Intel R© 2.4GHz PC with

MATLAB R© version 7.12). We can see that the proposed scheme approximately halves

the computational time whilst still providing the fastest possible RCI set convergence,

i.e. in one step.

3.5.2 Example 2

We now consider an uncertain version of the unstable process from [97]. In particular,

we have:

xk+1 = (A+ δαAδ)xk + (Bu + δβBδ)uk +Bwwk

with A =

[
1 0.8

0.5 1

]
, Bu =

[
1

1

]
, Bw

[
1

1

]
.

Furthermore, Aδ = A and Bδ = Bu. For the uncertainty, we have polytopes α =

0.15, β = 0.10 (which corresponds to 15% uncertainty in each entry of A and 10% for

Bu). The constraints on disturbance, input and state are given by: −0.3 ≤ wk ≤
0.3, uk = −uk = 12 ∀k, and xk = −xk = [8 8]T , respectively. We adopt a constraint

tightening approach. Moreover, we set the initial state x0 = xk and the prediction horizon

N = 6. For the cost, we have γ2 = 6, ε2 = 0 and penalties Q = qI, R = rI, with the ratio

q/r = 0.2. Computing the RCI set and the inner controller with the input constraint

uf = −uf = 1.5 and state constraints: z ≤ [1.6 0.9]T , yields the the following Z and K:

Z =

{
x ∈ R2 :

[
−1.596

−0.881

]
≤ x ≤

[
1.596

0.881

]}
, K = −

[
0.499 0.798

]
.

Moreover, computing the stabilizing terminal weight through LMI (3.49) yields:

PN =

[
1.2545 −0.4484

−0.4484 2.0977

]
·
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3.5 Numerical Examples

Figure 3.2: State trajectories for Example 2 with γ2 = 6 (left) and γ2 = 1 respectively

Figure 3.2 shows the state trajectory for γ2 = 6 (left) and γ2 = 1 respectively, both

with worst-case oscillating uncertainties δα = (−1)t+1α, δβ = (−1)t+1β and disturbance

wt = (−1)tv, ∀t. We see that even with initial state on the constraint boundary (black

dotted line) and worst case uncertainty and disturbances, the RMPC controller is able

to steer the system state towards the RCI set (red dashed set) in both cases. However,

as expected with γ2 = 1, the controller offers improved disturbance rejection and steers

the state to RCI set in fewer steps such that x4 ∈ Z. The computed input sequences

for γ2 = 6 and 1 are respectively given in Figure 3.3 (left) with the control constraint

clearly active at t = 0 (this illustrates the non-conservative manner in which constraints

have been incorporated within the formulation, see Remark 3.11). Finally, Figure 3.3

also shows the decreasing cost upper-bound J
?
0(x0) which is approaching zero with each

iteration.

3.5.3 Example 3

We consider the problem of controlling the composition (amount of pulp fibers in aqueous

suspension) and liquid level in a Paper-Making process [107]. Figure 3.4 shows the

schematic of a Paper machine headbox. The process states are xT = [H1 H2 N1 N2],

where H1 and H2 are the liquid levels in feed tank and headbox, respectively, and N1 and

N2 are the compositions in the feed tank and headbox, respectively. The control input

is given by uT = [Gp Gw], where Gp is the flowrate of stock entering the feed tank and

Gw is the recycled white water flow rate. All variables are normalized such that they are
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Figure 3.3: Control input trajectory (left) and cost upper-bound graphs, respectively, at
each iteration for Example 2

zero at nominal steady state.

We consider both model-uncertainty and additive disturbance in the process-dynamics,

due, for example, to the consistency/composition of white water. Moreover, we assume all

states as measured. The control objective is to regulate the liquid levels and compositions

despite the presence of persistent uncertainties/disturbances. The process dynamics, dis-

cretized using a sampling time of 2 minutes [107], are given by (3.1) where:

A =


0.0211 0 0 0

0.1062 0.4266 0 0

0 0 0.2837 0

0.1012 −0.6688 0.2893 0.4266

 , Bu =


0.6462 0.6462

0.2800 0.2800

1.5237 −0.7391

0.9929 0.1507

 , Bw


1

1

1

1

 ,

with Aδ = |A|, Bδ = |Bu| and uncertainty polytopes are given by α = 0.20 and β = 0.10.

The disturbance is represented by the set: −0.1 ≤ wk ≤ 0.1.

There are constraints on liquid levels so that headboxes never run dry or overfill.

These are given by: −3 ≤ H1, H2 ≤ 3 and the compositions are constrained such that:

−5 ≤ N1, N2 ≤ 5. We consider restrictive input constraints given by: −1.5 ≤ u1, u2 ≤ 1.5

and the initial state to be on the constraint boundary i.e. xT0 = [3, 3, 5, 5].

The cost parameters are Q = 0.1I, R = 0.01I, PN = 0.1I, ε2 = 0.5 and the prediction

horizon N = 10. Since we require to regulate the states tightly around zero (despite

uncertainty), we impose the following constraints on the target RCI set: The absolute

liquid levels |H1| , |H2| should be less or equal to 0.6 and the absolute composition levels
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Figure 3.4: Schematic of Paper Machine Headbox Control Problem.

|N1| , |N2| should be less or equal to 0.7. We also impose (inner) controller constraints:

uf = −uf = [0.5, 0.5]T . The resulting RCI set and controller are given by:

Z =

x ∈ R4 :


−0.536

−0.279

−0.70

−0.70

≤ x≤


0.536

0.279

0.70

0.70


 , K = −

[
0.078 −0.335 0.180 0.142

0.160 0.335 −0.180 −0.142

]

The simulation results (including state-trajectory, control input and cost upper-bound)

with persistent (worst-case) uncertainties δα = +α, δβ = +β and disturbance wt = +v

(for γ2 = 10 and 3) are given in Table 3.2. We note that despite persistent uncertainty, the

proposed RMPC controller is able to steer the process-states from the upper constraint

boundary to the invariant set Z. Note that, with γ2 = 3, the state converges to the RCI

set in three iterations as opposed to five iterations required with γ2 = 10. However, as

can be seen from the table, the improved disturbance rejection for γ2 = 3 comes at a

cost of larger control requirement with the input constraint active at t = 0. Table 3.2

also shows the corresponding cost upper-bound reducing at each iteration.
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Time (t)
0 1 2 3 4 5

γ2 = 10
xt


3
3
5
5



−1.344

1.36
−0.104
1.484



−0.016
0.589
0.267
−0.037




0.06
0.382
0.237
−0.149




0.067
0.288
0.198
−0.105




0.062
0.239
0.168
−0.055


ut

[
−1.421
−0.716

] [
0.054
−0.169

] [
0.004
−0.060

] [
−0.006
−0.042

] [
−0.016
−0.040

]
-

J
?
0 11.223 0.973 0.155 0.076 0.044 -

γ2 = 3
xt


3
3
5
5



−1.611
1.244
−0.038
1.348



−0.209
0.415
0.173
−0.212




0.068
0.275
0.216
−0.189

 - -

ut

[
−1.50
−1.013

] [
−0.070
−0.307

] [
0.014
−0.051

]
- - -

J
?
0 21.451 1.275 0.146 - - -

Table 3.2: Simulation results for Example 3, including state-trajectory, control input and
cost upper-bound at each time step

3.6 Summary

In this chapter, we have proposed a new algorithm for the Robust Model Predictive

Control of linear discrete-time systems subject to bounded disturbances, (parametric)

model-uncertainties and hard constraints on the input and state.

The proposed scheme consists of an outer controller, incorporating a state-feedback

structure, which is responsible for steering the system state to a designed invariant set.

Once in the set, the inner controller takes over and maintains the state within the RCI

set despite persistent uncertainties and disturbances.

The novel features of the algorithm can be summarized as follows: 1) The outer con-

troller consists of a state-feedback part (Fk) and a control-perturbation (mk), where both

these components are explicitly considered as decision variables in the online optimiza-

tion. The nonlinearities typically associated with such a feedback parameterization have

been avoided by adopting a sequential approach in the formulation based, in-part, on the

principles of Dynamic Programming; 2) There is no requirement for any initial/offline

computation of a feasible feedback control law; 3) The state/input constraints are incor-

porated within the formulation in a non-conservative manner; 4) The (terminal) RCI set

and corresponding controller are both computed in one step by solving a single LMI prob-

lem; 5) The algorithm consists of a series of low-dimensional LMI optimization problems,

which makes the scheme suitable for online implementation.

As is typical in H∞-MPC, the disturbance is negatively weighted in the proposed cost

function through the incorporation of γ2. This, as has been illustrated through numerical
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examples, improves the robustness against disturbances. Finally, conditions have been

provided under which the RMPC algorithm is recursively feasible and ensures Lyapunov

stability of the closed-loop uncertain system.

In this chapter, a hyper-rectangle RCI set structure has been considered due to

its computational advantages (see Remark 3.3). However, depending on the distur-

bance/uncertainty, this remains a conservative choice. Therefore, in the next chapter,

we investigate the efficient computation of more general polytopic RCI sets, along with

their corresponding control law, for uncertain systems.
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Chapter 4

Low-complexity Invariant Sets for

Uncertain Systems

4.1 Introduction

In this chapter, we propose an algorithm to compute low complexity RCI (LC-RCI) sets,

along with the corresponding state-feedback gain, for linear discrete-time systems subject

to norm-bounded uncertainty, additive disturbances and state/input constraints.

As discussed in Section 1.2, RCI sets form an essential part of most RMPC schemes.

With that in mind, the main motivation of this chapter is to compute, for uncertain

systems, such simple polytopic RCI sets (along with the corresponding feedback gain)

which can readily be incorporated within robust predictive control schemes without sig-

nificantly increasing their online computational complexity. In this regard, LC-RCI sets

hold several (computational) advantages over ellipsoidal and more general polytopic in-

variant sets. As mentioned in [18], use of ellipsoidal target sets for (linear) MPC leads to

an online algorithm based on Semidefinite program (as opposed to traditional Quadratic

Program) which in turn results in a significant increase in the online complexity. As a re-

sult, polytopic invariant target sets are generally preferred. However, general (maximal)

polytopic RCI sets are usually described by a large number of inequalities which again

leads to an increase in the computational complexity of online QP problem for MPC -

particularly for higher order systems. On the other hand, LC-RCI sets are defined by

only 2n inequalities - where n is the order of the system - which makes them particularly

suitable for incorporation within the overall control scheme.

In order to obtain the largest/smallest volume RCI set, an obvious approach is to

consider both the set and control law K as decision variables of optimization (see Sec-
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tion 1.2.3). However, this leads to non-convexity and nonlinearity in the formulation.

Furthermore, many of the existing schemes from the literature cannot directly be applied

to norm-bounded uncertain systems. An exception to this is the algorithm in [98] which

proposes a method to compute hyper-rectangle RCI sets, and K for system (1.10). How-

ever, hyper-rectangle set structure is generally a conservative choice for most systems.

Here, we propose an efficient algorithm based on convex/LMI optimizations, for the

computation of LC-RCI sets and K for systems of the form in (1.10). Using a slack

variable approach [3, 31], we give general results to convexify the original nonlinear and

non-convex problem whilst introducing only minor conservatism within the formulation.

The algorithm can compute approximations to both the maximal as well as minimal

volume polytopic invariant sets. An initial, constraint admissible LC-RCI set and corre-

sponding K are computed through a convex/LMI problem. Then, the volume of this set

is iteratively optimized. Through numerical examples from the literature, we show that

the initial and final maximal RCI sets computed by the proposed algorithm are larger

than those obtained using the scheme in [18]. Furthermore, we show that for the special

case when the RCI set is characterized as a hyper-rectangle, the proposed algorithm can

yield, in one step, invariant sets which are larger/smaller than those computed using the

scheme in [98]. Formulation of this chapter is mostly based on the results given in [101].

To deal with uncertainty in this work, we will use the following lemma [35].

Lemma 4.1. Let R = RT , F, E,H be real matrices of appropriate dimensions and define

∆ := {diag(δ1Iq1 , · · · , δlIql ,∆l+1, · · · ,∆l+r) :

δi ∈ R, |δi| ≤ 1 ,∆i ∈ Rqi×qi , ‖∆‖ ≤ 1} (4.1)

where B∆ represents the unit ball of ∆.

Then, we have the inequality R+ F∆(I −H∆)−1E + ET (I −∆THT )−1∆TF T � 0

and det(I −H∆) 6= 0 for all ∆ ∈ B∆, if there exist (S,G) ∈ Ψ̂ such that R ET + FGT FS

E +GF T S +HGT +GHT HS

SF T SHT S

�0

We also employ the S-procedure [81]. As discussed in Section 2.3.1, this is a family of

procedures used to derive sufficient (occasionally necessary and sufficient) LMI conditions

for the non-negativity or non-positivity of a quadratic function on a set described by

quadratic inequality constraints.
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4.2 LC-RCI Set Problem

In this section, we first give a description of the system and constraints. Subsequently, we

derive the conditions for invariance and highlight the inherent nonlinearities associated

with the problem.

4.2.1 System Description and Constraints

We consider the following linear, discrete-time uncertain system, see e.g. [55]

xk+1 = Axk +Buuk +Bwwk +Bppk, (4.2a)

pk = ∆qk, (4.2b)

qk = Cqxk +Dquuk, (4.2c)

where xk, uk, wk, pk are the state, input, bounded disturbance and uncertainty vectors

(respectively) at step k; A is the system matrix and Bu, Bw and Bp are the input,

disturbance and uncertainty distribution matrices, respectively. We assume that the pair

(A, Bu) is stabilizable and the state xk is measured. The polytopic disturbance is of the

form:

wk ∈W :=
{
w ∈ Rnw : −v ≤ w ≤ v

}
. (4.3)

Furthermore, norm-bounded model uncertainty ∆ ∈ B∆, where ∆ is defined in (4.1).

Remark 4.1. We consider only symmetric disturbances here simply for the sake of clar-

ity of exposition. The formulation below can also easily accommodate non-symmetric

disturbances. Furthermore, note that we allow uncertainty (block diagonal, with repeated

and/or full blocks) in all parts of the system dynamics since (4.2) can be re-written in the

same form as in (1.10). That is: xk+1 = (A+Bp∆Cq)xk + (Bu +Bp∆Dqu)uk +Bwwk.

We consider the polytopic LC-RCI set of the form [18]:

Z :=
{
x ∈ Rn : −d ≤ Cx ≤ d

}
(4.4)

where d ∈ Rn is a vector of ones and C ∈ Rn×n is a square matrix of full rank. The RCI

set (4.4) is required to satisfy the following polyhedral state and input constraints:

x ∈ X :=
{
x ∈ Rn : Tx ≤ x

}
(4.5)

u ∈ U :=
{
u ∈ Rnu : Nu ≤ u

}
(4.6)
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with given matrices T ∈ Rnx×n, N ∈ Rnc×nu and vectors 0 < x ∈ Rnx , 0 < u ∈ Rnc .
An RCI set for system (4.2) can be defined as follows [16]:

Definition 4.1. The set Z ⊂ Rn is an RCI set for system (4.2) if there exists a control

law u = Kx ∈ U such that:

(A+Bp∆Cq)Z⊕ (Bu +Bp∆Dqu)KZ⊕BwW⊆Z. (4.7)

where ⊕ denotes the Minkowski sum.

Remark 4.2. As discussed in [29], a nonlinear control law is generally the least conser-

vative choice for optimizing the size of corresponding RCI sets. However, in addition to

the computational intractabilities associated with formulating the RCI set problem in this

way, such a choice is also likely to add complexity to the associated RMPC scheme. This

is the reason why we focus on invariance under a linear control law, see also [18, 83].

4.2.2 RCI Set Formulation

In this section, we will first derive sufficient conditions for the existence of an admissible

invariant set of the form in (4.4). Subsequently, we analyze these conditions and discuss

the associated nonlinearities.

Theorem 4.1. Let all variables be as defined above. Then, there exists an admis-

sible RCI set Z and controller K, i.e. ones satisfying the constraints (4.5)-(4.7), if

there exist (Si, Gi) ∈ Ψ̂, and diagonal, positive semidefinite matrices Dm, m ∈ Nx :=

{1, · · · , nx}, Dj
u, j ∈ Nu := {1, · · · , nc}, and Di

x, D
i
w, i ∈ Nn := {1, · · · , n} as solutions

to following matrix inequalities, ∀m ∈ Nx, ∀j ∈ Nu, ∀i ∈ Nn:

CTDi
xC ? ? ? ?

0 Di
w ? ? ?

−1
2e
T
i C(A+BuK) −1

2e
T
i CBw eTi d− dTDi

xd− vTDi
wv ? ?

(Cq +DquK) 0 −1
2GiB

T
p C

T ei Si ?

0 0 −1
2SiB

T
p C

T ei 0 Si


� 0 (4.8)

CTDj
uC −1

2K
TNT ej

? eTj u− dTD
j
ud

 � 0 (4.9)
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CTDmC −1
2T

T em

? eTmx− dTDmd

 � 0 (4.10)

Proof. The invariance constraint in (4.7) can simply be written as:

eTi C[(AK +Bp∆CqK)x+Bww] ≤ eTi d, ∀i ∈ Nn :={1,· · ·, n} (4.11)

∀x ∈ Z,∀w ∈ W, ∀∆ ∈ B∆, where AK :=A+BuK, CqK := Cq +DquK. Here note that

(4.11) automatically guarantees the corresponding lower inequality due to the symmetric

nature of the sets Z and W.

It can be verified that, for any Di
x and Di

w:

eTiC[(AK+Bp∆CqK)x+Bww]−eTi d=−(d−Cx)TDi
x(Cx+d)

− (v − w)TDi
w(w + v)− yTLi(C,K,Di

x, D
i
w)y

where yT := [xT wT 1], and

Li(C,K,D
i
x, D

i
w,∆) :=


CTDi

xC 0 −1
2(AK +Bp∆CqK)TCT ei

? Di
w −1

2B
T
wC

T ei

? ? eTi d− dTDi
xd− vTDi

wv

 (4.12)

Using the S-procedure (Farkas’ Theorem) [81], it follows that the existence of diagonal,

positive semidefinite matrices Di
x and Di

w such that Li(C,K,D
i
x, D

i
w,∆) � 0, ∀i ∈Nn,

∀∆∈ B∆, is necessary and sufficient for invariance. It is easy to verify that this condition

can be re-written in the form, ∀i∈Nn:

Ri + Fi∆(I −H∆)−1E + ET (I −∆THT )−1∆TF Ti �0, (4.13)

where

[
Ri Fi

E H

]
:=


CTDi

xC 0 −1
2A

T
KC

T ei 0

0 Di
w −1

2B
T
wC

T ei 0

−1
2e
T
iCAK −1

2e
T
i CBw eTi d− dTDi

xd−vTDi
wv −1

2e
T
iCBp

CqK 0 0 0


Finally, an application of Lemma 4.1 on (4.13) yields the invariance condition in (4.8).
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Now the input constraints in (4.6) are given by:

eTj NKx ≤ eTj u , ∀x ∈ Z, ∀j ∈ Nu

It can be verified that, for any Dj
u, j ∈ Nu

eTj NKx− eTj u =−(d− Cx)TDj
u(Cx+ d)− yTLju(K,C,Dj

u)y

where yT :=[xT 1] and L
j
u(K,C,Dj

u) is the matrix defined in the inequality (4.9). Using

the S-procedure, it follows that the existence of diagonal, positive semidefinite matrices

Dj
u such that Lju(K,C,Dj

u) � 0, ∀j ∈ Nu, is necessary and sufficient for the satisfaction of

input constraints and this is given in (4.9). Analogously, using the S-procedure on (4.5),

it can be verified that the inequality in (4.10) is a necessary and sufficient condition for

state constraints (4.5).

Note that the problem of computing a feasible RCI set and control law is highly

nonlinear in variables C and K - it is in fact not even bilinear. From Theorem 4.1,

we see that the main source of nonlinearity is due to terms of the form CTDiC and

1
2e
T
i CBzX where z stands for p or u and X stands for K, Gi or Si. The problem is further

complicated by the fact that decision variable matrix C is not ‘exposed’ from either side in

the 1
2e
T
i CBzX terms which prevents the use of any congruence transformation techniques

for linearization. We remedy this situation in the next section and propose an algorithm

to compute C and K through a convex/LMI optimization problem.

Remark 4.3. Note that the conditions in Theorem 4.1 become linear when the RCI set

(4.4) is considered to be a hyper-rectangle, i.e. C = Λ := diag(λ1, · · · , λn) � 0. To see

this, apply congruence transformation diag(C−T , I, I, I, I) on (4.8), followed by multi-

plication with λ−1
i . Then, noting that eTi C = λie

T
i , applying the congruence transfor-

mation diag(I, I, I, λiI, λiI) and subsequently introducing the re-definitions K̂ := KC−1,

Di
w := λ−1

i D
i
w, Di

x := λ−1
i D

i
x, Gi := λiGi, and Si := λiSi renders (4.8) linear in variables

K̂ and C−1(= Λ−1). Constraint conditions in (4.9) and (4.10) can similarly be linearized

by respectively applying the congruence diag(C−T , I) and using the above re-definitions.

Remark 4.4. It is worth mentioning here that the Farkas’ theorem (S-procedure) used

in Theorem 4.1 is lossless. Furthermore, there is no gap in Lemma 4.1 for the case of

unstructured uncertainties [35]. Therefore, conditions (4.8)-(4.10) become both necessary

and sufficient for the existence of (constraint admissible) LC-RCI sets for systems subject
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to additive disturbances and unstructured uncertainties. Note that for such systems,

(4.8)-(4.10) become necessary and sufficient LMI conditions to compute a K that renders

a given set C invariant, which is also a problem treated in literature (see e.g. [49]).

4.3 The Proposed Algorithm

In this section, we first propose general results - based on slack-variables - which allow

us to remove the aforementioned nonlinearities in the RCI set problem. A cost function

is then incorporated in the formulation to optimize the set volume through convex/LMI

problems.

4.3.1 Linearization Procedure for the RCI Set Problem

As part of our main result, we now propose the following two theorems. Theorem 4.2

enables us to ‘expose’ C and separate it from the other variables K, Si and Gi (in the ma-

trix inequalities of Theorem 4.1) without introducing any conservatism/approximations.

Theorem 4.3 uses slack-variables to give necessary and sufficient conditions for separat-

ing bilinear terms of the form XY + Y TXT . These results allow to linearize the RCI set

problem in Theorem 4.4.

Theorem 4.2. Let R=RT , Z = ZT , A and B denote matrix variables of appropriate

dimensions. Then, the following three statements are equivalent:

(i) L :=

[
R AB

? Z

]
� 0.

(ii) Z � 0, L0 := R−ABZ−1BTAT � 0.

(iii) ∃ X = XT such that

L1 :=

[
R A

? X−1

]
� 0, L2 :=

[
X B

? Z

]
� 0.

Proof. Note first that (i)⇔(ii) follows from a Schur complement argument. Therefore,

we now prove (ii)⇔(iii) below.

• (ii)⇒(iii): Suppose (ii) is satisfied. Then, there exist scalars µ> 0 and ε> 0 such

that L0�µI and µI − εAAT �0. Let X=BZ−1BT +εI. Then

X −BZ−1BT = εI � 0 ⇒ L2 � 0.
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Furthermore, for this choice of X, ε and µ, we have

R−AXAT =R−ABZ−1BTAT−AεAT �µI−εAAT �0

and therefore L1�0.

• (iii)⇒(ii): Assume (iii) is satisfied for some X. Then, using Schur complement

argument, we have

R−AXAT � 0, X −BZ−1BT � 0. (4.14)

It follows from (4.14) that

L0 =(R−AXAT )+A(X−BZ−1BT )AT �0

and therefore (ii) is satisfied.

Theorem 4.3. The Bilinear Matrix Inequality (BMI)

L := Z +XY + Y TXT � 0 (4.15)

is satisfied if and only if there exist matrix variables, of appropriate dimensions, Q =

QT � 0, P = P T � 0, G1, G2, F , and H as solutions to the following inequalities:[
P Y

? Q

]
� 0 (4.16)

Z +Q+XPXT F −XG1 H −XG2

? G1 +GT1 − P F T +G2 − Y
? ? HT +H −Q

 � 0 (4.17)

Proof. Denote the matrix in (4.16) by M . Then, a manipulation shows that:

XY + Y TXT = Q+XPXT − V TMV

where V T := [−X I]. Replacing the above expression in (4.15), subsequently taking

a Schur complement and then performing congruence transformation with diag(I,MT
o ),
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where Mo :=

[
G1 G2

F H

]
, yields:

[
Z +Q+XPXT V TMo

? MT
o M

−1Mo

]
� 0 (4.18)

Now, to deal with terms of the form MT
o M

−1Mo, we use the following slack-variable

identity:

MT
o M

−1Mo = Mo +MT
o −M + (Mo −M)TM−1(Mo −M) (4.19)

Replacing, without loss of generality, the (2,2) entry of (4.18) by the first three terms on

the right hand side in (4.19) yields inequality (4.17).

Remark 4.5. Theorem 4.2 allows us to separate the variables A and B, in the (1, 2)

entry, without any approximation. Similarly, Theorem 4.3 provides a result to separate

the variables X and Y in the (1, 1) entry without any conservatism. Note that both

these results are quite general in nature and hence have potential applications in other

important control problems, for instance Lyapunov stability.

Remark 4.6. Results to separate X and Y have also been proposed in [3, 76]. However,

they yield terms of the form TZ, where Z is defined in (4.15) and T is a variable. Such

terms become problematic in the considered RCI set formulation. Therefore, Theorem 4.3

ensures that Z is kept separate in order to obtain linearity.

We now propose a theorem to compute a feasible RCI set Z and K through LMIs.

Theorem 4.4. Let all variables be as above. Then, there exists an initial feasible Z of

the form in (4.4) and K, i.e. satisfying (4.5)-(4.7), if, for a given positive ρ ∈ R, there

exist matrix variables (Si, Gi) ∈ Ψ̂, Xi = XT
i , Pi = P Ti , Λ := diag(λ1, · · · , λn) � 0,

Qi = QTi , Hi, Fi, and Zi of appropriate dimensions and diagonal, positive semidefinite

matrices Dm, m ∈ Nx, Dj
u, j ∈ Nu, and Di

x, D
i
w, i ∈ Nn, as solutions to the following

LMIs, ∀i ∈ Nn: [
Pi Zi

? Qi

]
� 0 (4.20)


Qi −X−1

i Fi − C−1 Hi − C−1 ZTi ei

? 2Λ− Pi Λ + F Ti − Zi 0

? ? HT
i +Hi −Qi 0

? ? ? li

 � 0 (4.21)
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Di
x 0 ρ(AC−1 +BuK̂)T ρ(CqC

−1 +DquK̂)T

? Di
w ρBT

w 0

? ? X−1
i −BpSiBT

p BpG
T
i

? ? ? Si

 � 0, (4.22)

[
Dj
u −1

2K̂
TNT euj

? eTj u− dTD
j
ud

]
� 0 (4.23)

[
Dm −1

2C
−TT T em

? eTmx− dTDmd

]
� 0 (4.24)

where li := 4(ρλie
T
i d− vTDi

wv − dTDi
xd), and K := K̂C.

Proof. By applying a congruence transformation and subsequently taking a Schur com-

plement, the (nonlinear) invariance condition (4.8) can be written as:

Ri −AiCT eir−1
i eTi CA

T
i � 0, ∀i ∈ Nn (4.25)

where ri := 4(eTi d− dTDi
xd− vTDi

wv) and

[
Ri Ai

]
:=


Si 0 Cq +DquK 0 GiB

T
p

0 Si 0 0 SiB
T
p

(Cq +DquK)T 0 CTDi
xC 0 (A+BuK)T

0 0 0 Di
w BT

w


Applying Theorem 4.2 on (4.25) verifies that (4.8) is satisfied if and only if, ∀i ∈ Nn,

there exist Xi = XT
i such that

Si 0 Cq +DquK 0 GiB
T
p

? Si 0 0 SiB
T
p

? ? CTDi
xC 0 (A+BuK)T

? ? ? Di
w BT

w

? ? ? ? X−1
i


� 0,

Xi CT ei

? ri

 � 0 (4.26)

Using Schur complement argument on the first inequality in (4.26), followed by the

congruence transformation diag(I, C−T , I, I) and a subsequent rearrangement yields the

73



4.3 The Proposed Algorithm

LMI (with K̂ := KC−1):

Li1 :=


Di
x 0 C−TAT + K̂TBT

u C−TCTq + K̂TDT
qu

? Di
w BT

w 0

? ? X−1
i −BpSiBT

p BpG
T
i

? ? ? Si

 � 0 (4.27)

Similarly, using the congruence transformation diag(C−T , I) on the second inequality in

(4.26) yields, ∀i ∈ Nn:

Li2 :=

C−TXiC
−1 ei

? 4(eTi d− dTDi
xd− vTDi

wv)

 � 0 (4.28)

It follows that the sufficient conditions (necessary and sufficient in the case of unstruc-

tured uncertainty) for the invariance constraint (4.7) can now be given by:

Li1 � 0 , Li2 � 0 , ∀i ∈ Nn. (4.29)

where Li1, and Li2 are defined above. Note here that (4.29)⇔(4.8).

First we deal with Li2. Multiplying (4.28) by λiρ
−1, for a given ρ (see Section 4.4.1)

and where λi = eTi Λei, followed by a congruence transformation with diag(I, ρI) yieldsλiρ−1C−TXiC
−1 λiei

? 4λiρ(eTi d− dTDi
xd− vTDi

wv)

 � 0 , ∀i ∈ Nn (4.30)

Using the redefinitions X−1
i := ρλ−1

i X−1
i , Di

w := ρλiD
i
w, Di

x := ρλiD
i
x in (4.30), rec-

ognizing that λiei = Λei in the (1,2) entry and subsequently performing a congruence

transformation diag(ZTi Λ−1, I) yieldsZTi Λ−1C−TXiC
−1Λ−1Zi ZTi ei

? 4(ρλie
T
i d− dTDi

xd− vTDi
wv)

 � 0 (4.31)

Now using slack-variable identity (4.19) on the (1,1) entry of (4.31) gives the following

condition, which is equivalent to (4.28):C−1Λ−1Zi + ZTi Λ−1C−T −X−1
i ZTi ei

? 4(ρλie
T
i d− dTDi

xd− vTDi
wv)

 � 0 (4.32)
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Then, applying Theorem 4.3 on (1,1) entry of (4.32) with matrix Mo :=

[
Λ Λ

Fi Hi

]
,

subsequently ignoring the positive term C−1Λ−1PiΛ
−1C−T yields the LMIs in (4.20) and

(4.21).

Now we consider Li1. Multiplying (4.27) by ρλ−1
i , followed by a congruence trans-

formation with diag(λiI, λiI, I, I), ∀i ∈ Nn, and using the redefinitions Si := ρλ−1
i Si,

Gi := ρλ−1
i Gi along with those for Xi, D

i
w and Di

x (above) yields LMI (4.22).

Finally, for the input and state constraints, LMIs (4.23) and (4.24) are obtained by

applying the congruence transformation diag(C−T , I) on (4.9) and (4.10), respectively.

Remark 4.7. Note that the use of Theorem 4.2 on (4.25) has removed most of the

nonlinearites highlighted in the last paragraph of Section 4.2.2. In particular, C has

been ‘exposed’ from one side, and separated from variables K, Si and Gi in (4.29).

Furthermore, no additional conservatism has been introduced in (4.29) in comparison

with (4.8). Finally, note that the nonlinearity in the (1, 1) entry of (4.28) has been

overcome by using Theorem 4.3 and incorporating extra degrees of freedom λi to obtain

an improved initial solution through LMI optimization.

Remark 4.8. The parameter ρ has been introduced in Theorem 4.4 to provide a further

degree of freedom in the algorithm for computing the initial RCI set. Here an obvious

choice could be to simply set ρ = 1. However, as we show in Section 4.4.1, other values

of ρ can result in a significantly improved initial set.

Remark 4.9. It is worth mentioning that the conditions in Theorem 4.1 remain valid

even for non-square C. However, a convex re-reformulation of these conditions for the

general (non-square) case is likely to be considerably different from that presented in

Theorem 4.4, and thus forms part of the future work.

4.3.2 Cost Function Incorporation

We now incorporate a cost function into the proposed algorithm to optimize the set-

volume. The aim is to compute the largest/smallest volume constraint-admissible RCI

set (herein known as maximal/minimal volume RCI set approximations). The volume

of Z in (4.4) is proportional to |det(C−1)| [23]. Therefore, in the theorem below, we

now derive upper/lower bounds on this determinant without making any assumptions

regarding its sign (i.e. positivity or negativity).
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Theorem 4.5. Consider matrix variables W = W T � 0 and W = W
T � 0 such that

(without loss of generality):

W � C−1C−T �W (4.33)

Then, a necessary and sufficient LMI condition for inequality C−1C−T �W is given by:[
W C−1

? I

]
� 0 (4.34)

Furthermore, W � C−1C−T if there exists a λ̂ > 0 such that:λ̂I λ̂I 0

? C−T + C−1 W
1
2

? ? λ̂I

 � 0 (4.35)

Proof. Note first that applying a Schur complement argument on the matrix inequality

W − C−1C−T � 0, yields (4.34).

Let us now consider the other inequality in (4.33), namely:

C−1C−T −W � 0 (4.36)

Pre- and post-multiplying (4.36) by C and CT , respectively, followed by a Schur comple-

ment argument and a subsequent multiplication of the matrix by the scalar λ̂ > 0 yields:[
λ̂I λ̂I

? λ̂C−TW−1C−1

]
� 0 (4.37)

To deal with the nonlinearity in (4.37), we consider the following identity

λ̂C−TW−1C−1 = C−T + C−1 − λ̂−1W + (C−1 − λ̂−1W )T λ̂W−1(C−1 − λ̂−1W ) (4.38)

Replacing the (2,2) entry of (4.37) by the first three terms on the right hand side in (4.38)

followed by a Schur complement yields (4.35) as a sufficient condition for (4.36).

Remark 4.10. Note that unlike the scheme in [18], we do not require det(C−1) to be

positive since (4.33) implies that det(W ) ≤ det(C−1)2 ≤ det(W ).

It follows that the computation of initial (inner) approximation of the maximal volume

RCI set Z and corresponding gain K can now be given by the convex optimization
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problem:

φ = max{ log(det(W
1
2 ) : (4.20− 4.24), (4.35) are satisfied for

all variables defined in Theorems 4.4 and 4.5}. (4.39)

Now for the minimal volume case, note that the function Sm = log(det(W )) is concave.

Therefore, to compute initial (outer) approximation of the minimal volume RCI set and

K, we minimize an upper-bound on Sm by choosing trace(W ) as the cost (arithmetic

mean-geometric mean inequality, see e.g. [39]). The LMI problem then becomes:

φ = min{ trace(W ) : (4.20− 4.24), (4.34) are satisfied for all

variables defined in Theorems 4.4 and 4.5}. (4.40)

We now propose the following theorem to update the (computed) initial solution to the

RCI set as well as controller K.

Theorem 4.6. Let C = Co, W = W o, W = W o and Xi = Xo
i , ∀i, be solutions to

the optimization problem in (4.39) or (4.40). Then, these solutions (along with K) can

be updated iteratively by solving (4.39) or (4.40), with ρ = 1, where (4.20)-(4.21) are

replaced by LMI L11 eiλi

? 4(λie
T
i d−vTDi

wv−dTDi
xd)

�0 (4.41)

with L11 := C−TXo
i C
−1
o +C−To Xo

i C
−1−C−To Xo

iX
−1
i Xo

i C
−1
o . Furthermore, (2,2) and (2,3)

entries of (4.35) are respectively replaced by

C−TW−1
o C−1

o +C−To W−1
o C−1, C−To W−1

o W
1
2 (4.42)

Proof. In the proof of Theorem 4.4, (4.20)-(4.21) are used to ensure (4.28). Once the

initial/previous solutions Co and Xo
i are available, we proceed as follows.

Consider the following identity based on a slack-variable approach (see Remark 4.11):

C−TXiC
−1 =(C−1 − λ−1

i X−1
i Xo

i C
−1
o )TXi(C

−1 − λ−1
i X−1

i Xo
i C
−1
o )

+ λ−1
i C−TXo

i C
−1
o + λ−1

i C−To Xo
i C
−1 − λ−2

i C−To Xo
iX
−1
i Xo

i C
−1
o (4.43)

Replacing the (1,1) entry of Li2 in (4.28) by the last three terms on the right hand

side in (4.43) and subsequently multiplying the resulting matrix by λi, followed by the
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redefinitions X−1
i := λ−1

i X−1
i , Di

w := λiD
i
w, and Di

x := λiD
i
x yields (4.41). Furthermore,

in the proof of Theorem 4.5, using

λ̂C−TW−1C−1 =C−TW−1
o C−1

o + C−To W−1
o C−1 − C−To W−1

o λ̂−1W W−1
o C−1

o

+ (C−1 − λ̂−1W W−1
o C−1

o )T λ̂W−1(C−1 − λ̂−1W W−1
o C−1

o ) (4.44)

in place of (4.38), gives (4.35) with its (2,2) and (2,3) entries respectively replaced by the

terms in (4.42).

The overall algorithm can now be summarized as follows.

Algorithm 4.1: Computation of maximal/minimal volume RCI set approximations

(1) Initial solution: Compute initial approximations C, K, W , W and Xi ∀i, to the

maximal/minimal volume RCI set by solving (4.39) or (4.40).

(2) Update solution: Set Co = C, W o = W , W o = W and Xo
i = Xi, ∀i, and com-

pute C, K, W , W , Xi by solving modified versions of (4.39)/(4.40) as given in

Theorem 4.6.

(3) Iterate: Loop back to step (2) until there is no further improvement in the volume

of the computed RCI set.

Remark 4.11. The identity (4.43) has been designed specifically to ensure recursive

feasibility and iteratively optimize Z since setting Xi and C equal to Xo
i , and Co shows

that the previous iteration solutions are feasible for the next one. Therefore, volume of

RCI set C would be greater or equal (less or equal for the case of minimal RCI set) to

that of previous set Co.

4.3.3 Set Inclusion Conditions

Set inclusion is of fundamental importance in the algorithms for the computation of

invariant sets. Let Zk (defined by Ck) denote the RCI set computed at iteration k. Then,

set inclusion requires that Zk ⊆ Zk+1 for maximal volume RCI sets and Zk+1 ⊆ Zk for

minimal sets. We now derive the conditions for these inclusions in the following theorem.

Theorem 4.7. Let all variables be as defined above. Then, at iteration k + 1, we have

Zk+1 ⊆ Zk if and only if there exist diagonal matrices Di
s � 0, ∀i ∈ Nn, such that[

Di
s −1

2C
−T
k+1C

T
k ei

? eTi d− dTDi
sd

]
� 0 (4.45)
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Furthermore, Zk ⊆ Zk+1 if there exist diagonal matrices D̄i
s � 0, ∀i ∈ Nn, such that

C−Tk+1 + C−1
k+1 C−1

k −1
2ei

? D̄i
s 0

? ? eTi d− dT D̄i
sd

 � 0 (4.46)

Proof. Let us first consider Zk+1 ⊆ Zk. At iteration k+ 1 with Ck known, this inclusion

can be written as:

eTi (Ckx− d) ≤ 0 ∀x s.t. − d ≤ Ck+1x ≤ d (4.47)

Using the S-procedure (Farkas’ Theorem), we have, ∀i ∈ Nn:

eTi (Ckx− d) =−(d−Ck+1x)TDi
s(Ck+1x+d)− yTLi(Ck+1, D

i
s)y

where yT := [xT 1] and

Li(Ck+1, D
i
s) :=

CTk+1D
i
sCk+1 −1

2C
T
k ei

? eTi d− dTDi
sd


It follows that Li(Ck+1, D

i
s) � 0 is a necessary and sufficient condition for (4.47). Finally,

using the congruence transformation diag(C−Tk+1, I) on Li(Ck+1, D
i
s) yields (4.45).

Next we consider the inclusion Zk ⊆ Zk+1 which can be written as:

eTi (Ck+1x− d) ≤ 0 ∀x s.t. − d ≤ Ckx ≤ d (4.48)

Using the S-procedure (Farkas’ Theorem), we have ∀i ∈ Nn:

eTi (Ck+1x− d) =−(d−Ckx)T D̄i
s(Ckx+d)− yT L̄i(Ck+1, D̄

i
s)y

where yT := [xT 1] and

L̄i(Ck+1, D̄
i
s) :=

CTk D̄i
sCk −1

2C
T
k+1ei

? eTi d− dT D̄i
sd


It follows that L̄i(Ck+1, D̄

i
s) � 0 is a necessary and sufficient condition for (4.48).

Since we require C−1
k+1 in Algorithm 4.1, therefore, effecting congruence transformation
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diag(C−1
k+1, I) on the L̄i(Ck+1, D̄

i
s) yields:

L̂i(Ck+1, D̄
i
s) :=

C−Tk+1C
T
k D̄

i
sCkC

−1
k+1 −1

2ei

? eTi d− dT D̄i
sd

 � 0 , ∀i ∈ Nn

Now let us consider the identity:

C−Tk+1C
T
k D̄

i
sCkC

−1
k+1 =(C−1

k+1 − C
−1
k (D̄i

s)
−1C−Tk )TCTk D̄

i
sCk(C

−1
k+1 − C

−1
k (D̄i

s)
−1C−Tk )

+ C−Tk+1 + C−1
k+1 − C

−1
k (D̄i

s)
−1C−Tk

Substituting the last three terms on the right hand side of above identity into the (1, 1)

entry of L̂i(C
−1
k+1, D

i
s) followed by a Schur complement yields LMI (4.46).

4.4 Numerical Examples

We now consider two examples from the literature to highlight the effectiveness of the

algorithm.

4.4.1 Example 1

This example illustrates that the proposed algorithm can result in a larger volume ap-

proximation to the maximal RCI set Z as compared to the algorithm in [18]. We deal

with the constrained, uncertain DC electric motor system (with independent excitation)

considered in [18]. In particular, the continuous-time system is given by:

A =

 −0.07 −0.86(1 + q1)

0.06(1 + q1) −q2

 , B =

1

0

 (4.49)

where the uncertainty in parameters q1 and q2 is given by:

Q = {(q1, q2)| − q̄1 ≤ q1 ≤ q̄1, q2
≤ q2 ≤ q̄2} (4.50)

where q̄1 = 0.2, q
2

= 0.0085 and q̄2 = 0.5. System is discretized by Euler discretization

method using a sampling time of Ts = 0.1s, and then re-cast into the form (4.2) with

A =

[
0.993 −0.086

0.006 1− 0.1q0
2

]
, Bu =

0.1

0

 , Bp =

[
−0.086 0 0

0 0.006 −0.1

]
, Cq =

 0 q̄1

q̄1 0

0 q1
2
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Figure 4.1: Maximal volume RCI set for Example 1

where q0
2 = 0.5(q̄2 + q

2
), q1

2 = 0.5(q̄2 − q2
) and ∆ := {diag(δ1I2, δ2) : δi ∈ R, |δi| ≤ 1}.

Note that Dqu = 0 in this example. The state and input constraints are respectively

given by: [
−10 −10

]T
≤ xk ≤

[
10 10

]T
, −10 ≤ uk ≤ 10 (4.51)

In order to obtain the initial (constraint-admissible) RCI set, we solve problem (4.39).

Figure 4.1 shows the simulation results. The computed initial RCI set (with ρ = 1),

shown in purple, and the corresponding controller are given by:

C =

[
0.9359 −0.0632

0.0013 0.2054

]
, K =

[
−9.3586 0.6315

]
.

Following the iterative procedure specified in Algorithm 4.1, the final RCI set, shown in

pink, and the computed controller are given by:

C =

[
0.1000 0.0000

0.0032 0.1032

]
, K =

[
−0.9898 −0.0109

]
(4.52)

For comparison, Figure 4.1 also shows the initial RCI set (in black/dark blue) as well as

the final RCI set (in green) computed using the iterative scheme in [18]. Note that our

proposed algorithm is able to yield substantially larger-volumes for both initial as well

as the final (constraint-admissible) RCI sets. The figure also shows the state-trajectory

of the system (black curved line) converging around the origin, despite persistent uncer-
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tainty, through the application of computed control law K.

To highlight the effect of ρ, Figure 4.1 also shows, in yellow, the initial RCI set com-

puted using ρ = 0.08. Note that even with this (different) initial condition, the algorithm

still converges to the same final RCI set above (pink) - though in fewer iterations.

Finally, note that maximal RCI set must be a subset of the hyper-rectangle CS =

diag(0.1, 0.1), defined by the state constraints in (4.51). We would like to mention that

a computation using Theorem 4.1 verifies that the hyper-rectangle CS is in fact not a

feasible set for this example. This therefore shows that the computed final RCI set given

in (4.52) must indeed be very close to the actual maximal LC-RCI set.

4.4.2 Example 2

This example illustrates that the proposed algorithm can compute improved approxi-

mations to both the maximal as well as the minimal hyper-rectangle sets, in one-step,

as compared to the algorithm in [98]. We consider the uncertain version of the double-

integrator system (see e.g. [83]) which is known to naturally have a hyper-rectangle RCI

set structure. In particular the dynamics are as follows [98]:

A =

[
1 1

0 1

]
, Bu =

[
1

1

]
, Bw =

[
1 0

0 1

]
, Bp =

[
0.2 0

0 0.2

]

with Cq = A and Dqu = Bu. The disturbance satisfies:[
−0.5 −0.5

]T
≤ wk ≤

[
0.5 0.5

]T
and model-uncertainty ∆ := {diag(δ1, δ2) : δi ∈ R, |δi| ≤ 1}. Moreover, we consider

input constraints uk ∈ U :=
{
u ∈ R : −3 ≤ u ≤ 3

}
. Using Remark 4.3 and Theorem 4.5,

the minimal volume RCI set approximation and controller are obtained (in one step) as

C−1 = diag(0.5, 1.1), K = [−1 −1]

Similarly the maximal volume RCI set and controller are given by

C−1 = diag(4.32, 1.87), K = [−0.26 − 1]

The minimal and maximal invariant sets computed using the algorithm in [98] are respec-

tively given by C−1 = diag(0.5, 1.3) and C−1 = diag(3.27, 2.03). Hence, the proposed

algorithm yields better volume approximations to minimal/maximal RCI sets.
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4.5 Summary

We have proposed an algorithm - based on convex/LMI optimizations - for the compu-

tation of low-complexity polyhedral RCI sets, along with the corresponding controller,

for linear, discrete-time systems subject to bounded disturbances, norm-bounded model

uncertainties and hard constraints on the input and state.

The main contribution of the chapter is that the proposed formulation removes the

inherent problem-nonlinearities, including BMIs and triple product terms of the form

CTXiC, at the expense of only minor conservatism. To this end, new results have been

proposed in Theorems 4.2 and 4.3 which, being general in nature, also have applications

in other important problem areas [3], e.g. Lyapunov stability of continuous-time systems.

The effectiveness of the scheme has been illustrated by numerical examples which show

that the algorithm yields an initial as well as final approximation to the maximal LC-RCI

set, which improve the results obtained using the scheme in [18]. We have also shown

that the algorithm can compute hyper-rectangle RCI sets along with the corresponding

controller in ‘one-step’. Through a numerical example, it has been demonstrated that

the formulation results in better approximations to the minimal as well as the maximal

hyper-rectangle RCI sets in comparison to the scheme in [98].

The main reason for our study of LC-RCI sets is their particular suitability for incor-

poration within RMPC schemes. In the next chapter, we propose such a state-feedback

RMPC algorithm for the type of norm-bounded uncertain systems considered in this

chapter. While an extension of this scheme to the output-feedback case will be presented

in Chapter 6.
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Chapter 5

State-feedback RMPC for

Norm-bounded Uncertain

Systems

5.1 Introduction

In this chapter, we address the problem of nonlinearity and non-convexity typically as-

sociated with state-feedback parameterizations in the Robust Model Predictive Control

(RMPC) of uncertain systems.

A state-feedback RMPC scheme for linear systems with (scalar) parametric uncer-

tainties was presented in Chapter 3. In that algorithm, an approach based on Dynamic

Programming [13] was adopted to avoid non-convexity in the formulation. In particular,

an upper bound on the cost-to-go at each prediction step was minimized to compute the

corresponding control gains in a sequential manner. We now focus our attention on a

‘stacked’ formulation of RMPC for norm-bounded uncertain systems, where the control

gains throughout the prediction horizon are computed all at once in a non-sequential

manner. As discussed in Section 1.2.1, such parameterizations lead to sequences of pre-

dicted states and inputs which are nonlinear, non-convex functions of the control gains.

Therefore, many schemes in the literature compute the feedback gain offline, see e.g.

[7, 24, 27, 51, 59], which can potentially be conservative.

In this chapter, the aim is to explicitly consider both feedback gain and control

perturbation as decision variables in the online optimization and obtain convexity at the

expense of only minor conservatism within the formulation. Moreover, a general (non-

square matrix) norm-bounded uncertainty structure is considered within the dynamic
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model to capture a large class of uncertain systems. These type of model-uncertainties

may arise, for example, due to imprecise system parameters that lie in a given interval

(such as anywhere within a circle of radius r).

We propose two tractable methods of computing, online, an RMPC controller - that

consists of both a causal, state-feedback gain and a perturbation component - for lin-

ear, discrete-time systems involving bounded disturbances and (norm-bounded) model-

uncertainties along with hard constraints on the input and state. The first approach

consists of re-casting the additive disturbance as an uncertainty, followed by use of the

S-procedure and slack variable identities to obtain convexity. In the second approach

- which can be considered to be a ‘dual’ of the first - we propose to re-parameterize

the model-uncertainty such that it can be treated in a manner similar to the additive

disturbance, which in turn helps to obtain convexity. Both approaches enable the online

computation of optimal state-feedback gain and perturbation sequence through an LMI

optimization problem. The aim of the RMPC controller is to steer the uncertain system

state to an RCI terminal set (which can be designed using, for example, the algorithm

in Chapter 4). The formulation in this chapter is based on the results given in [99].

To handle non-square ∆, we consider a modified version of Lemma 4.1 as follows:

Lemma 5.1. Let ∆ ⊆ Rp×q be a linear subspace and define

Ψ={(S, T,G)∈Rp×p×Rq×q×Rq×p : S=ST �0, T =T T �0,

S∆=∆T,∆G+GT∆T =0, ∀∆∈B∆}

where B∆ represents the unit ball of ∆.

Let R = RT , F, E,H be matrices of appropriate dimensions. Then, det(I −H∆) 6= 0

and the matrix inequality R+ F∆(I −H∆)−1E + ET (I −∆THT )−1∆TF T � 0 for ev-

ery ∆ ∈ B∆ if there exists a triple (S, T,G) ∈ Ψ such thatR ET + FGT FS

? T +HGT +GHT HS

? ? S

 � 0 (5.1)

Remark 5.1. Although our development will be for general norm-bounded structured

sets, an example is

∆ := {diag(δ1Iq1, · · · , δlIql,∆l+1, · · · ,∆l+r) : δi ∈ R, |δi| ≤ 1 ,∆i ∈ Rqi×qi , ‖∆‖ ≤ 1}
(5.2)
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where np = nq =
∑l+r

i=1 qi. This includes both repeated scalar and full diagonal blocks. In

this particular case

Ψ = {(S, T,G) ∈ Rnp×np × Rnp×np × Rnp×np : S = T � 0, S ∈ Σ, G ∈ Γ}

Σ = {diag(S1, · · · , Sl, λ1Iql+1
, · · · , λsIql+f ) : λj ∈ R, Si = STi ∈ Rqi×qi}

Γ = {diag(G1, · · · , Gl, 0ql+1
, · · · , 0ql+f ) : Gi = −GTi ∈ Rqi×qi}

5.2 Robust MPC Problem

In this section, we give a description of the system and constraints followed by the cost

function. We also derive an algebraic formulation of the causal RMPC problem and

discuss the nature of nonlinearities.

5.2.1 System Description

We consider the following linear discrete-time uncertain system [55]:
xk+1

qk

fk

zk

 =

n

nq

nf

nz


n
A

nu
Bu

nw
Bw

np
Bp

Cq Dqu Dqw 0

Cf Dfu Dfw Dfp

Cz Dzu Dzw Dzp



xk

uk

wk

pk

 , pk=∆qk, ∆∈B∆

 qNfN
zN

 =

 Ĉq 0

Ĉf D̂fp

Ĉz D̂zp

[ xN
pN

]
, pN =∆qN

(5.3)

where xk, uk, wk, pk are the state, input, bounded disturbance and uncertainty vectors

(respectively) at prediction step k; A is the state matrix and Bu, Bw and Bp are the

input, disturbance and uncertainty distribution matrices, respectively. We assume that

the pair (A,Bu) is stabilizable. The state xk is assumed measured and prediction step k

belongs to the time set TN = {0, 1, · · · , N − 1}, where N > 0 is the prediction horizon.

The polytopic disturbance is of the form

wk ∈Wk :=
{
w ∈ Rnw : −dk ≤ w ≤ dk

}
. (5.4)

Furthermore, we consider a norm-bounded structured uncertainty ∆ ∈ B∆ where ∆ ⊆
Rnp×nq is a structured subspace. Note that we allow uncertainties in all the problem

data in (5.3).
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It is required to find uk, k ∈ TN , such that the future constrained outputs and terminal

constrained output satisfy fk ≤ f̄k, fN ≤ f̄N , ∀k ∈ TN , and minimize the cost function

given by

J =

N∑
k=0

(zk − zk)T (zk − zk) (5.5)

where zk, which may represent a reference trajectory, is given. Note that fk may be

chosen to represent polytopic constraints on the state, output and input.

5.2.2 Algebraic Formulation

Let ξ stand for f, f , p, q, z or z, and ζ stand for u, w, w or w and define

x=
[
xT1 · · · xTN

]T
∈RNn , ξ=

[
ξT0 · · · ξTN

]T
∈RNξ , ζ=

[
ζT0 · · · ζTN−1

]T
∈RNζ

W={w∈RNw : w≤w≤ w̄}, ∆̂={diag(∆, . . . ,∆) : ∆∈∆}

where Nn = N × n, Nξ = nξ × (N + 1) and Nζ = nζ ×N . Then, by iterating the system

dynamics (5.3), it can be verified that:
x

q

f

z

 =


Ax0 Bw Bp Bu

Cqx0 Dqw Dqp Dqu

Cfx0 Dfw Dfp Dfu

Czx0 Dzw Dzp Dzu




1

w

p

u

 (5.6)

where p = ∆q, with ∆ ∈ B∆̂ and

A=


A
...

AN−1

AN

, Cα=



Cα

CαA
...

CαA
N−1

ĈαA
N


, Bβ=


Bβ 0 · · · 0
...

...
. . .

...

AN−2Bβ AN−3Bβ · · · 0

AN−1Bβ AN−2Bβ · · · Bβ

,

Bp=


Bp 0 · · · 0 0
...

...
. . .

...
...

AN−2Bp AN−3Bp · · · 0 0

AN−1Bp AN−2Bp · · · Bp 0

 , Dαβ=



Dαβ 0 · · · 0

CαBβ Dαβ · · · 0
...

...
. . .

...

CαA
N−2Bβ CαA

N−3Bβ · · · Dαβ

ĈαA
N−1Bβ ĈαA

N−2Bβ · · · ĈαBβ


,
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Dαp=



Dαp 0 · · · 0 0

CαBp Dαp · · · 0 0
...

...
. . .

...
...

CαA
N−2Bp CαA

N−3Bp · · · Dαp 0

ĈαA
N−1Bp ĈαA

N−2Bp · · · ĈαBp D̂αp


where α stands for q, f or z, while β stands for u or w and where Dqp = 0.

As mentioned above, we consider a causal state-feedback structure on the RMPC

controller (that is, input ui depends only on xj , j = 0, . . . , i), see e.g. [92]. Therefore, we

set

u=K0x0+Kx+v (5.7)

where, with Ki,j ∈ Rnu×n, vi ∈ Rnu ∀ i, j,

K0 =



K0,0

K1,0

...

KN−2,0

KN−1,0


, K=



0 0 · · · 0 0

K1,1 0 · · · 0 0
...

...
. . .

...
...

KN−2,1 KN−2,2 · · · 0 0

KN−1,1 KN−1,2 · · · KN−1,N−1 0


, v=



v0

v1

...

vN−2

vN−1


· (5.8)

The causality is captured by the lower block triangular structure of [K0 K] and v

represents the control-perturbation sequence. We denote the structure of K0, K, and v

in (5.8) as K0, K and υ, respectively.

Remark 5.2. The separation of the control law (5.7) into three terms is convenient

since the first term depends on the (known) initial state x0, the third term is free while

the second term depends on the predicted states x, and represents the feedback compo-

nent of the RMPC control law. As we shall see below, it is this term that causes the

nonlinearity and affords potential extra degrees of freedom to satisfy the constraints for

all possible disturbances and uncertainties. The control division in (5.7) also makes the

design problem flexible, in that the designer may choose to use any combination of these

terms. Note that if it is decided to use the open-loop control v, then we can simply absorb

the first term into v, since x0 is known.

Substituting the equation for x in (5.6) into (5.7) yields the following expression for

u, which is affine in (K̂0, K̂, v̂).

u = K̂0x0 +K̂(Bww+Bpp)+ v̂,
[
K̂0 K̂ v̂

]
:= (I−KBu)−1 [K0 K v+KAx0] (5.9)
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Note that there is a one-to-one mapping between K and K̂. Furthermore, the new

variables K̂0, K̂ and v̂ have the same structure as K0, K and v in (5.8), which in turn

can be recovered as[
K0 K v

]
:= (I + K̂Bu)−1

[
K̂0 K̂ v̂−K̂Ax0

]
By using (5.9), eliminating u from (5.6), gives q

f

z − z

 =

Dqw + DquK̂Bw Dqp + DquK̂Bp Dquv̂ + (Cq + DquK̂0)x0

Dfw + DfuK̂Bw Dfp + DfuK̂Bp Dfuv̂ + (Cf + DfuK̂0)x0

Dzw + DzuK̂Bw Dzp + DzuK̂Bp Dzuv̂ + (Cz + DzuK̂0)x0 − z


wp

1



=:


DK̂
qw DK̂

qp D
v̂,K̂0
q0

DK̂
fw DK̂

fp D
v̂,K̂0

f0

DK̂
zw DK̂

zp D
v̂,K̂0
z0


 w

p

1

 (5.10)

Finally, using p = ∆q to eliminate p from (5.10) yields the following constraint and cost

function signals f

z − z

 =

D
K̂
fp∆(I −DK̂

qp∆)−1DK̂
qw+DK̂

fw DK̂
fp∆(I −DK̂

qp∆)−1D
K̂0,v̂
q0 + D

K̂0,v̂
f0

DK̂
zp∆(I −DK̂

qp∆)−1DK̂
qw+DK̂

zw DK̂
zp∆(I −DK̂

qp∆)−1D
K̂0,v̂
q0 +D

K̂0,v̂
z0


w

1



:=

D
K̂,∆
fw D

K̂0,K̂,v̂,∆
f0

D
K̂,∆
zw D

K̂0,K̂,v̂,∆
z0


 w

1

 (5.11)

5.2.3 An Initial RMPC Formulation

In order to formulate the RMPC problem, we use (5.11) to respectively write the con-

straint and cost function as

f(K̂0, K̂, v̂, w,∆) = D
K̂,∆
fw w + D

K̂0,K̂,v̂,∆
f0 (5.12)

f0(K̂0, K̂, v̂, w,∆) =
[
wT 1

] [ (DK̂,∆
zw )T

(DK̂0,K̂,v̂,∆
z0 )T

] [
D
K̂,∆
zw D

K̂0,K̂,v̂,∆
z0

] [w
1

]
(5.13)

It follows from (5.12) that the constraint set can be written as

U = {(K̂0, K̂, v̂) : eTi (DK̂,∆
fw w + D

K̂0,K̂,v̂,∆
f0 )≤eTi f̄ , ∀i∈Nf , ∀w∈W, ∀∆∈B∆̂}. (5.14)
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We now use Lemmas 2.3 and 5.1 to derive sufficient conditions (necessary and sufficient

in some cases, see Remark 5.4) for (K̂0, K̂, v̂)∈U and an upper bound f0 on cost (5.13).

Theorem 5.1. Let Dm denote the set of all real m × m diagonal matrices and let

Dm+ := {D ∈ Dm : D � 0}. Furthermore, define

Ψ̂ = {(S, T,G) ∈ RNp×Np × RNq×Nq × RNq×Np : S = ST � 0, T = T T � 0,

S∆ = ∆T,∆G+GT∆T = 0, ∀∆ ∈ B∆̂}

Then, (K̂0, K̂, v̂) ∈ U and f0(K̂0, K̂, v̂, w,∆) ≤ f0, for all ∆ ∈ B∆̂, if there exist

solutions (S, T,G) ∈ Ψ̂, (Sij , Tij , Gij) ∈ Ψ̂, (Si, Ti, Gi) ∈ Ψ̂, µiw ∈ RNw , and Dw ∈ DNw+ ,

∀j ∈ Nw := {1, · · · , Nw}, ∀i ∈ Nf , to the following matrix inequalities:

I DK̂
zw D

K̂0,v̂
z0 DK̂

zpG
T DK̂

zpS

? Dw −1
2Dw(w + w) (DK̂

qw)T 0

? ? f0 + wTDww (DK̂0,v̂
q0 )T 0

? ? ? T + DK̂
qpG

T +G(DK̂
qp)

T DK̂
qpS

? ? ? ? S


� 0 (5.15)

µiw ≥ 0,


eTj µ

i
w + eTj (DK̂

fw)T ei eTj (DK̂
qw)T + 1

2e
T
i D

K̂
fpG

T
ij

1
2e
T
i D

K̂
fpSij

? Tij + DK̂
qpG

T
ij +Gij(D

K̂
qp)

T DK̂
qpSij

? ? Sij

 � 0

(5.16)


eTi (f−DK̂0,v̂

f0 −D
K̂
fww)+(w−w)Tµiw −(DK̂0,v̂

q0 +DK̂
qww)T + 1

2e
T
i D

K̂
fpG

T
i

1
2e
T
i D

K̂
fpSi

? Ti+DK̂
qpG

T
i +Gi(D

K̂
qp)

T DK̂
qpSi

? ? Si

�0

(5.17)

where ej (ei) denotes the jth (ith) column of the Nw ×Nw (Nf ×Nf ) identity matrix.

Proof. First, we consider the constraints. By applying Lemma 2.3, it can be shown that,

for a given ∆, the constraint in (5.14) is satisfied if and only if there exist µ̂iw, µ
i
w ∈ RNw

such that, ∀i ∈ Nf ,

µ̂iw ≥ 0, µiw ≥ 0, µ̂iw = µiw + (DK̂,∆
fw )T ei, wT µ̂iw − wTµiw − eTi (f −D

K̂0,K̂,v̂,∆
f0 ) ≤ 0.
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By eliminating µ̂iw from above, we obtain the following equivalent conditions:

µiw≥0, µiw+(DK̂,∆
fw )T ei≥0, wT (DK̂,∆

fw )T ei+(w−w)Tµiw−eTi (f−DK̂0,K̂,v̂,∆
f0 )≤0 (5.18)

Now the second inequality in (5.18) can be rearranged into the form:

Rij + Fi∆(I −H∆)−1Ej + ETj (I −∆THT )−1∆TF Ti � 0 , ∀j ∈ Nw, ∀i ∈ Nf , (5.19)

with [
Rij Fi

Ej H

]
:=

[
eTj µ

i
w + eTj (DK̂

fw)T ei
1
2e
T
i D

K̂
fp

DK̂
qwej DK̂

qp

]
·

Finally, applying Lemma 5.1 on (5.19) yields the inequalities in (5.16). Analogously, it

is easy to verify that the third inequality in (5.18) can be re-arranged into the form:

Ri + Fi∆(I −H∆)−1E + ET (I −∆THT )−1∆TF Ti � 0 , ∀i ∈ Nf , (5.20)

with Fi and H are defined below (5.19) and[
Ri

E

]
:=

[
eTi (f −D

K̂0,v̂
f0 −DK̂

fww) + (w − w)Tµiw

−(DK̂0,v̂
q0 + DK̂

qww)

]

Using Lemma 5.1 on (5.20) yields (5.17).

Next, we consider the cost function. Using the S-procedure, it can be shown that

f0(K̂0, K̂, v̂, w,∆)−f0 =−(w−w)TDw(w−w)−
[
wT 1

]
L0(Dw, f0, K̂0, K̂, v̂,∆)

[
w

1

]
(5.21)

where Dw ∈ DNw+ and

L0(Dw, f0, K̂0, K̂, v̂,∆) =

[
Dw −1

2Dw(w + w)

? f0 + wTDww

]
−

[
?

?

] [
D
K̂,∆
zw D

K̂0,K̂,v̂,∆
z0

]
Therefore, we have

Dw � 0, L0(Dw, f0, K̂0, K̂, v̂,∆) � 0⇒ f0(K̂0, K̂, v̂, w,∆) ≤ f0 , ∀w ∈W. (5.22)
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By effecting a Schur complement, L0(Dw, f0, K̂0, K̂, v̂,∆) � 0 if and only if

L̂0(Dw, f0, K̂0, K̂, v̂,∆) :=

I D
K̂,∆
zw D

K̂0,K̂,v̂,∆
z0

? Dw −1
2Dw(w + w)

? ? f0 + wTDww

 � 0.

The matrix inequality L̂0(Dw, f0, K̂0, K̂, v̂,∆) � 0 can be re-arranged in the form

R0 + F0∆(I −H∆)−1E0 + ET0 (I −∆THT )−1∆TF T0 � 0, (5.23)

[
R0 F0

E0 H

]
:=


I DK̂

zw D
K̂0,v̂
z0 DK̂

zp

(DK̂
zw)T Dw −1

2Dw(w + w) 0

D
K̂0,v̂
z0 −1

2(w + w)TDw f0 + wTDww 0

0 DK̂
qw D

K̂0,v̂
q0 DK̂

qp

·

An application of Lemma 5.1 on inequality (5.23) yields (5.15).

Remark 5.3. The linear subspace ∆̂ can be defined in terms of ∆ as

Ψ̂ = {(S, T,G) ∈ RNp×Np × RNp×Np × RNp×Np : S=ST �0, T =T T �0,

S={Sij}N+1
i,j=1 : Sij∈Rnp×np , T ={Tij}N+1

i,j=1 : Tij∈Rnq×nq , Sij∆=∆Tij , S
T
ij∆=∆T Tij ,

G={Gij}N+1
i,j=1 : Gij∈Rnq×np ,∆Gij+GTji∆T =0, ∀∆∈B∆}

It follows from Theorem 5.1 that the RMPC problem can now be given by:

φ = min{f0 : (5.15− 5.17) are satisfied for all variables defined in Theorem 5.1} (5.24)

Note that the RMPC problem (5.24) is nonlinear and non-convex. In particular, con-

ditions (5.15)-(5.17) are nonlinear in K̂ while being linear in K̂0 and v̂. Furthermore,

the terms involving K̂ are diffused throughout these matrix inequalities. This, therefore,

make the RMPC problem intractable, unless K̂ is fixed/computed offline. We now pro-

pose the first of our two approaches to remedy this non-convexity and hence transform

the causal RMPC problem into an LMI optimization.

Remark 5.4. Note that Lemma 5.1 introduces no gap in the case of unstructured ∆.

Moreover, the two statements in Lemma 2.3 are equivalent. Therefore, the conditions

in (5.16)-(5.17) become both necessary and sufficient for systems (5.3) with unstructured

uncertainties.
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Remark 5.5. It is worth mentioning that problem (5.24) becomes convex when the system

is subject only to disturbances (but no uncertainties). In this case, Rij < 0 in (5.19) and

Ri < 0 in (5.20), ∀i, j, become necessary and sufficient linear conditions for constraint

(5.14). Similarly R0 � 0 in (5.23) gives an upper-bound on the cost. Hence, for such

systems, the RMPC control law can be computed through LMI optimizations.

5.3 A Convexification Procedure for the RMPC Problem

- Approach 1

The terms that include K̂ in optimization (5.24) have the form K̂Bw and K̂BpX where

X stands for Sij , Si, Gij , Gi, i ∈ Nf , j ∈ Nw. Thus any linearization procedure must

deal with the following issues:

1. As mentioned above, the fact that K̂ occurs in the two forms K̂Bw and K̂BpX is a

complication. In order to deal with such nonlinearity as well as to concentrate the

terms involving K̂ in one place, we first re-cast the disturbance as an uncertainty

in Section 5.3.1. This enables us to handle all the disturbances/uncertainties in a

unified framework.

2. The resulting problem will still have terms of the form K̂BpX. One way of dealing

with this is to set X = Sij = Si = S and 0 = Gij = Gi = G, i ∈ Nf , j ∈ Nw.

While this has the merit of simplicity, it may be prohibitively conservative since

we forego many degrees of freedom. This issue is dealt with in Section 5.3.2 where

we generalize Lemma 5.1 by introducing slack variables that will allow us to keep

only one term in the form K̂BpS0, for a free S0 and for all the matrix inequalities,

without excessive loss of the degrees of freedom.

3. Even with one nonlinearity in the form K̂BpS0, we have a double complication in

that K̂ has a lower block-triangular structure and Bp “separates” K̂ and S0. These

issues will be dealt with in Section 5.3.3 where, at the expense of introducing minor

conservatism, we propose general restrictions on the structure of S0 that will allow

us to treat K̄(:= K̂BpS0) as a decision variable of optimization, thus linearizing

the problem, and at the same time allowing us to extract the desired variable K̂

from K̄.
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5.3.1 Combining the Disturbance and Uncertainty Models

In this section, we embed the disturbance and uncertainty into a unified framework by re-

parameterizing the disturbance set W. Thus far, we have kept the the disturbances and

model-uncertainties separate in order to emphasize the linearity of the RMPC problem

(5.24) for systems with only (additive) disturbances and to exploit the tight necessary

and sufficient conditions afforded by Farkas’ lemma (Remark 5.5).

Note that the disturbance set in (5.4) can be written as:

wk ∈Wk :=
{
w = ∆wdk : ∆w ∈∆w ⊆ Rnw×n̂w

}
(5.25)

where ∆w is a structured set with ‖∆w‖ ≤ 1, ∀∆w ∈∆w.

Remark 5.6. It is worth mentioning that the disturbance structure in (5.25) can handle

norm-bounded disturbances as well (by choosing ∆w to be non-square). The structure

can also readily handle non-symmetric disturbances through the introduction of an offset

term, although for simplicity this is not carried out here.

The state dynamics can now be written as:

xk+1 = Axk +Buuk + [Bp Bw]︸ ︷︷ ︸
Bp

pk︷ ︸︸ ︷[
∆ 0

0 ∆w

]
︸ ︷︷ ︸

∆

[
qk

dk

]
︸ ︷︷ ︸
qk

(5.26)

Using the re-definitions for Bp, qk, ∆ and pk, we can re-write the stacked system dynamics

as 
x

q

f

z

=


Ax0 Bp Bu

Cqx0+d Dqp Dqu

Cfx0 Dfp Dfu

Czx0 Dzp Dzu


 1

p

u

 , d=



[
0

d0

]
...[
0

dN−1

]


(5.27)

with all other matrices appropriately re-defined. Eliminating u and p as before gives the

constraint and cost signals[
f

z − z

]
=

[
DK̂
fp∆(I −DK̂

qp∆)−1D̂
K̂0,v̂
q0 + D̂

K̂0,v̂
f0

DK̂
zp∆(I −DK̂

qp∆)−1D̂
K̂0,v̂
q0 +D̂

K̂0,v̂
z0

]
=:

[
D̂
K̂0,K̂,v̂,∆
f0

D̂
K̂0,K̂,v̂,∆
z0

]
(5.28)
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where 
D̂
K̂0,v̂
q0

D̂
K̂0,v̂
f0

D̂
K̂0,v̂
z0

 =

 Cqx0 + d+ Dqu(v̂ + K̂0x0)

Cfx0 + Dfu(v̂ + K̂0x0)

Czx0 − z + Dzu(v̂ + K̂0x0)

 (5.29)

For this unified case, the conditions in (5.15)-(5.17) can now be given as follows.

Theorem 5.2. With everything as defined above, (K̂0, K̂, v̂) ∈ U and f0(K̂0, K̂, v̂,∆) ≤
f0, for all ∆ ∈ B∆̂, if there exist solutions (S, T,G), (Si, Ti, Gi) ∈ Ψ̂ for all i ∈ Nf to

the following matrix inequalities
eTi (f − D̂

K̂0,v̂
f0 ) −(D̂K̂0,v̂

q0 )T + 1
2e
T
i D

K̂
fpG

T
i

1
2e
T
i D

K̂
fpSi

? Ti + DK̂
qpG

T
i +Gi(D

K̂
qp)

T DK̂
qpSi

? ? Si

 � 0 (5.30)


I D̂

K̂0,v̂
z0 DK̂

zpG
T DK̂

zpS

? f0 (D̂K̂0,v̂
q0 )T 0

? ? T + DK̂
qpG

T +G(DK̂
qp)

T DK̂
qpS

? ? ? S

 � 0 (5.31)

Proof. The proof is similar to the one for Theorem 5.1 with the modified system and

re-definitions above.

Remark 5.7. A simple procedure for linearizing the inequalities (5.30),(5.31) is to set

S = Si = λINp, T = Ti = λINq and G = Gi = 0, ∀i, for a variable λ > 0, since

(λINp , λINq , 0) ∈ Ψ̂ for all types of uncertainty, and subsequently take λK̂ as the variable.

Though this may be attractive from a computational point of view, however, the main issue

is the excessive conservatism associated with such a solution which, in turn, is likely to

render the problem infeasible (See also Section 5.5.1).

5.3.2 An Extended S-procedure

In this section, we propose an extended version of Lemma 5.1 using an approach similar

to that used in e.g. [31]. This will enable us to give equivalent necessary and sufficient

conditions for (5.1) in a form that allows us to separate the terms multiplying K̂ (thereby

obtaining linearity with the introduction of only minor conservatism).
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Theorem 5.3. Let R = RT , F, E,H be matrices of appropriate dimensions and let Ψ ⊆
Rp×p×Rq×q×Rq×p be a linear subspace. The following two statements are equivalent:

(i) There exist (S, T,G) ∈ Ψ such that (5.1) is satisfied.

(ii) There exist (S, T,G) ∈ Ψ, Y = Y T ∈ Rq×q, S0 ∈ Rp×p, G0 ∈ Rq×p such that

(S0, T,G0) ∈ Ψ0 ⊇ Ψ and

P :=

[
S −GT

−G Y

]
�0,


R ET FS0 −FGT0
? T+Y HS0−R0 −HGT0 +Y0

? ? S0+ST0 −S −GT0 −RT0 +GT

? ? ? Y0+Y T
0 −Y

�0 (5.32)

Furthermore, if S0, G0, R0 or Y0 are constrained then (ii)→ (i).

Proof. Note first that, for any Y = Y T ∈ Rq×q, we have:

(5.1)⇔

[
R ET

E T + Y

]
−

[
F 0

H I

][
S −GT

−G Y

][
F T HT

0 I

]
� 0. (5.33)

• (ii)→ (i): Taking a Schur complement on (5.33) implies that

(5.1)⇔ L1(S, T,G, Y ) :=


[
R ET

? T + Y

] [
F 0

H I

]
? P−1

 � 0. (5.34)

Denote the second matrix in (5.32) by L2(S, T,G, Y, S0, G0, R0, Y0) and let

P0 =

[
S0 −GT0
−R0 Y0

]
∈ R2m×2m

Now the following identity can be verified:

P T0 P
−1P0 = P T0 + P0 − P + (P T0 − P )P−1(P0 − P ) (5.35)

Effecting the congruence transformation QTL1(S, T,G, Y )Q with Q = diag(I, P0),

followed by the use of identity (5.35) shows that

L2(S, T,G, Y, S0, G0, R0, Y0) +

[
0

I

]
(P T0 − P )P−1(P0 − P )

[
0 I

]
� 0⇒ (5.1)

(5.36)
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since the last term in (5.35) is nonnegative. This implies statement (i) from (5.32).

• (i)→ (ii): Since S � 0, there exists Y such that P � 0, e.g. we can take any Y �
GS−1GT . Therefore, (5.34) is satisfied. Now let P0 = P so that (S0, T,G0) ∈ Ψ0.

Then, (5.32) is satisfied from (5.34).

Remark 5.8. In a manner similar to identity (4.19), Theorem 5.3 introduces slack

variables which provide extra degrees of freedom. As we show below, this will allow for

a less conservative change of variables to overcome nonlinearity/non-convexity in the

proposed Causal RMPC scheme. Moreover, since Theorem 5.3 is also general in nature, it

has potential applications in other problem areas which use Lemma 5.1 (see e.g. [35, 94]).

5.3.3 Extraction of K̂ and Final Linearized RMPC Problem

Following the application of Theorem 5.3 on the inequalities in Theorem 5.2, there would

still remain nonlinear terms of the form K̂BpS0 and K̂BpG
T
0 . Therefore, the question

is how to restrict S0 and G0 so that the resulting inequalities are linear and we can

extract K̂ (since it is structured) without introducing excessive conservatism. While the

best choice will depend on the detailed structure and properties of Bp, in this section we

propose a general procedure.

Recall from the proof of Theorem 5.3 that necessity (i→ ii) requires setting S0 = S

and G0 = G. This suggests keeping the structures of S0 and G0 as close as possible to

those of S and G, respectively.

Using the fine structure of Bp and K̂ in (5.6) and (5.8), respectively, we can write

K̂Bp=

[
0nu×(N−1)np 0nu×2np

K̂2A(IN−1⊗Bp) 0(N−1)nu×(N−1)np

]

where ⊗ denotes the Kronecker product and

K̂2 =


K̂1,1 0 · · · 0

K̂2,1 K̂2,2 · · · 0
...

...
. . .

...

K̂N−1,1 K̂N−1,2 · · · K̂N−1,N−1

, A=


In 0 · · · 0

A In · · · 0
...

...
. . .

...

AN−2 AN−1 · · · In
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This suggests the following structures for S0 and G0 respectively:

S0(Λ) :=

[
Λ⊗Inp 0(N−1)np×2np

R2np×(N−1)np R2np×2np

]
, (5.37)

G0 :=

[
0(N−1)np×(N−1)np R(N−1)np×2np

02np×(N−1)np R2np×2np

]
· (5.38)

where Λ ∈ R(N−1)×(N−1) is lower triangular. Note that

K̂2A(IN−1 ⊗Bp)(Λ⊗Inp) =

K̃2︷ ︸︸ ︷
K̂2A(Λ⊗In)(IN−1 ⊗Bp). (5.39)

The other blocks in S0 (i.e. S0
21 and S0

22) and G0 (i.e. G0
12 and G0

22) are free. With

this choice, it can be verified that

K̂BpS0 = K̃(IN⊗Bp), K̂BpG
T
0 = 0, K̃ =

[
0nu×(N−1)n 0nu×n

K̃2 0(N−1)nu×n

]
(5.40)

where K̃ has exactly the same structure as K̂ since A and Λ are lower block triangular.

Furthermore, K̂ can be recovered from K̃ and Λ using (5.39) and (5.40).

Theorem 5.4. Let everything be as defined above. Then, f0(K̂0, K̂, v̂,∆) ≤ f0 and

(K̂0, K̂, v̂) ∈ U, for all ∆ ∈ B∆̂, if there exists a lower triangular Λ0 ∈ R(N−1)×(N−1) and

solutions (S, T,G), (Si, Ti, Gi) ∈ Ψ̂, Y = Y T , Yi = Y T
i , Y0 ∈ RNq×Nq , S0 ∈ S0(Λ0),

G0 ∈ G0, R0 ∈ RNq×Np, ∀i ∈ Nf , to the following LMIs:[
S −GT

? Y

]
� 0,

[
Si −GTi
? Yi

]
� 0 (5.41)



I D̂
K̂0,v̂
z0 0 DzpS0 + DzuK̃Bp −DzpG

T
0

? f0 (D̂K̂0,v̂
q0 )T 0 0

? ? T + Y DqpS0 + DquK̃Bp −R0 −DqpG
T
0 + Y0

? ? ? ST0 + S0 − S −GT0 −RT0 +GT

? ? ? ? Y0 + Y T
0 − Y


� 0 (5.42)
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eTi (f − D̂

K̂0,v̂
f0 ) −(D̂K̂0,v̂

q0 )T 1
2e
T
i (DfpS0 + DfuK̃Bp) −1

2e
T
i DfpG

T
0,i

? Ti + Yi DqpS0 + DquK̃Bp −R0 −DqpG
T
0 + Y0

? ? ST0 + S0 − Si −GT0 −RT0 +GTi
? ? ? Y0 + Y T

0 − Yi

�0 (5.43)

where D̂
K̂0,v̂
q0 , D̂

K̂0,v̂
f0 and D̂

K̂0,v̂
z0 are defined in (5.29), Bp := (IN⊗Bp), and where K̂ can

be recovered from K̃ and Λ using (5.39) and (5.40).

Proof. The LMIs (5.43) and (5.42) along with (5.41) result from the application of

Theorem 5.3 on inequalities (5.30) and (5.31), respectively, and the use of the definitions

given above.

It follows that the optimal RMPC control law (K̂0, K̂, v̂) can now be computed by

solving the (convex) problem of minimizing f0 subject to the LMI constraints of The-

orem 5.4. Note that the conservatism introduced due to the use of S0, G0, R0 and Y0

for all the matrix inequalities is potentially much less than that introduced for the case

when the same set of variables is used for all i ∈ Nf , i.e. (Si, Ti, Gi) = (λINp , λINq , 0)

(see Remark 5.7). This is also illustrated through a numerical example (Section 5.5).

5.3.4 Minimally Violating the Constraints When No Feasible Solution

Exists

Suppose that no feasible solution (K̂0, K̂, v̂) ∈ U exists. Then, as an alternative to not

supplying a control signal, we propose a simple procedure for minimally relaxing the

constraints to obtain feasibility. Let ¯̄f denote upper bounds on the constraints for which

no control is preferable to their breach. Denote the LMI (5.43) by L(f̄) and let

Û={(K̂0, K̂, v̂)∈K0×K×υ : eTi f(K̂0, K̂, v̂, w,∆)≤eTi f̂ ,∀i∈Nf ,∀w∈W,∀∆∈B∆̂}
(5.44)

Then a possible alternative is given by the following result.

Theorem 5.5. With everything as defined above, (K̂0, K̂, v̂) ∈ Û for all ∆ ∈ B∆̂ if

there exists a lower triangular Λ0 ∈ R(N−1)×(N−1) and solutions (Si, Ti, Gi) ∈ Ψ̂, Yi =

Y T
i , Y0 ∈ RNq×Nq , S0 ∈ S0(Λ0), G0,∈ G0, R0 ∈ RNq×Np, ∀i ∈ Nf to the following

matrix inequalities: [
Si −GTi
? Yi

]
� 0, L(f̂) � 0 (5.45)
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It follows that to minimize the constraint relaxation while obtaining feasibility, we can

solve the following LMI optimization problem

min
f̂ ≤ ¯̄f

(5.45) are satisfied

‖f̂ − f̄‖2

5.4 Causal RMPC - Approach 2

In this section, we formulate our second, computationally less demanding, solution to

overcome the non-convexity in the Causal RMPC problem. This scheme can be consid-

ered as a ‘dual’ of Approach 1 (Section 5.3) in that it involves the re-parameterization

of the uncertainty set as a polytopic set similar to the (additive) disturbance. It is moti-

vated by the fact that, as discussed in Remark 5.5, the RMPC problem becomes linear

and convex when the system is subject only to polytopic disturbances. It is also inspired

from some of the Stochastic MPC schemes which, in the interest of tractability, compute

bounds on stochastic disturbances and therefore approximate chance constraints with

hard constraints (see e.g. [75] and the references therein). In particular, we propose to

compute hard bounds on uncertainty which helps to convexify the RMPC problem and

enables the computation of optimal K̂0, K̂ and v̂ through an LMI optimization.

Throughout this section, in the interest of clarity of exposition, we will make the

following notational simplifications. Instead of f , we will consider the constraints on

state and the input separately. Moreover, a conventional combination of state/input

penalty will be considered in the cost function and, without loss of generality, only the

regulation problem will be formulated [55]. Finally, we will consider the disturbance

model to be uncertainty-free, i.e. Dqw = 0 (see Remark 5.10).

In order to ensure stability and recursive feasibility of the RMPC algorithm, we

consider terminal state constraint xN ∈ Z, where Z is an RCI set, together with other

hard constraints on the input and state. All these are summarized below.

xk ∈ Xk :=
{
x ∈ Rn : xk ≤ Cx ≤ xk

}
, ∀k ∈ TI := {1, 2, · · · , N − 1} (5.46)

xN ∈ Z :=
{
x ∈ Rn : xN ≤ CNx ≤ xN

}
(5.47)

uk ∈ Uk :=
{
u ∈ Rnu : uk ≤ u ≤ uk

}
, ∀k ∈ TN . (5.48)

Remark 5.9. The algorithm proposed in Chapter 4 can be used to compute a low com-
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plexity RCI set for system (5.3).

5.4.1 Uncertainty Re-parameterization

We first propose to re-parameterize the norm-bounded uncertainty in the form of a poly-

topic set (theorem below). Subsequently, in Section 5.4.2, the re-parameterized uncer-

tainty is combined with the disturbance and the RMPC scheme is formulated.

Theorem 5.6. Let everything be as defined above and consider uncertainty ∆ ∈ B∆

where ∆ := {diag(δ1, · · · , δn) :δi ∈ R, |δi| ≤ 1}. Then, the uncertainty vector pk - in (5.3)

- is such that eTi pk ≤ eTi pk for all i ∈ Np := {1, · · · , np} and k ∈ TN if and only if there

exist D
i
xk ∈ Dm+ , D

i
uk ∈ Dnu+ and D

i
∆k ∈ D+ such that, ∀i∈Np

Lik(D
i
xk, D

i
uk, D

i
∆k, pk, ei) :=

CTD
i
xkC 0 −1

2C
T
q ei −1

2C
TD

i
xk(xk + xk)

? D
i
uk −1

2D
T
quei −1

2D
i
uk(uk + uk)

? ? D
i
∆k 0

? ? ? eTi pk + xTkD
i
xkxk + uTkD

i
ukuk −D

i
∆k


� 0 , ∀k∈TI

(5.49)

LiN (D
i
xk, D

i
∆k, pk, ei) :=

CTND
i
xkCN −1

2 Ĉ
T
q ei −1

2C
TD

i
xk(xk + xk)

? D
i
∆k 0

? ? eTi pk + xTkD
i
xkxk −D

i
∆k

 � 0, k = N

(5.50)

Li0(D
i
uk, D

i
∆k, pk, ei) :=

D
i
uk −1

2D
T
quei −1

2D
i
uk(uk + uk)

? D
i
∆k −1

2e
T
i Cqx0

? ? eTi pk + uTkD
i
ukuk −D

i
∆k

 � 0, k = 0

(5.51)

where ei denotes the ith column of the np × np identity matrix.
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Similarly, eTi pk ≥ eTi pk, ∀i ∈ Np and k ∈ TN if and only if there exist Di
xk ∈ Dm+ ,

Di
uk ∈ Dnu+ , Di

∆k ∈ D+ such that

Lik(D
i
xk, D

i
uk, D

i
∆k, pk,−ei) � 0, ∀k ∈ TI (5.52)

LiN (Di
xk, D

i
∆k, pk,−ei) � 0, k = N (5.53)

Li0(Di
uk, D

i
∆k, pk,−ei) � 0, k = 0 (5.54)

Proof. Using the definition of pk in (5.3) (with Dqw = 0) and the S-procedure, it can

be shown that for all k ∈ TI

eTi pk = eTi pk − (xk − Cxk)TD
i
xk(Cxk − xk)− (uk − uk)TD

i
uk(uk − uk)

− (1− δi)TD
i
∆k(δi + 1)− yTk Lik(D

i
xk, D

i
uk, D

i
∆k, p

i
k)yk

where yTk := [ xTk uTk δTi 1 ], D
i
xk ∈ Dn+, D

i
uk ∈ Dnu+ , D

i
∆k ∈ D+ and the matrix

Lik(D
i
xk, D

i
uk, D

i
∆k, p

i
k, ei) is given in (5.49). Thus, we have ∀i ∈ Np, ∀k ∈ TI

D
i
xk � 0, D

i
uk � 0, D

i
∆k � 0, Lik(D

i
xk, D

i
uk, D

i
∆k, p

i
k) � 0⇔ eTi pk ≤ eTi pk

The LMIs (5.50) and (5.51) can analogously be derived for k = N and k = 0 (respec-

tively). Finally, to compute the lower bounds on uncertainty (i.e. −eTi pk ≤ −eTi pk),
we repeat the above procedure with ei replaced by −ei which yields the LMIs (5.52)-

(5.54).

Now let us define the vectors

p :=


p?0
p?1
...

p?N

 , p :=


p?

0

p?
1
...

p?
N

 (5.55)

Then, it follows from Theorem 5.6 that the model uncertainty can be re-parameterized

as:

p ∈ P :=
{
p ∈ RNp : p ≤ p ≤ p

}
(5.56)

where, for each k ∈ TN , we can compute the bounds through the following optimizations:

eTi p
?
k := min{ eTi pk : (5.49)/(5.50)/(5.51), is satisfied for corresponding k,

for a D
i
xk ∈ Dm+ , D

i
uk ∈ Dnu+ , D

i
∆k ∈ D+, i ∈ Np} (5.57)
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−eTi p?k := min{ − eTi pk : (5.52)/(5.53)/(5.54), is satisfied for corresponding k,

for a Di
xk ∈ Dm+ , Di

uk ∈ Dnu+ , Di
∆k ∈ D+, i ∈ Np} (5.58)

Remark 5.10. The above formulation can be modified to cater to the case of Dqw 6= 0 by

relaxing over wk (along with the relaxations for xk and uk in Theorem 5.6). Furthermore,

a diagonal structure on ∆ has been assumed only for the sake of clarity of exposition.

The re-parameterization can also be achieved for the case of general uncertainty given in

(5.2). In particular, for full block elements, we have: piTk p
i
k ≤ qiTk q

i
k where (.)i denotes

the ith element of the vector. Hence, the polytopic bounds can be computed, in a manner

similar to Theorem 5.6, by relaxing the following optimization problems:

pi
k
≤ min

xk∈Xk, uk∈Uk
qiTk q

i
k ≤ max

xk∈Xk, uk∈Uk
qiTk q

i
k ≤ pik , ∀i ∈ Np , ∀k ∈ {0, 1, · · · , N}

5.4.2 Control Law Computation

In this subsection, we first combine the re-parameterized uncertainty with the distur-

bance and then derive conditions (on K̂0, K̂, v̂) for the satisfaction of constraints and

minimization of the cost function.

Using (5.56), let us introduce the re-definitions:

Bw := [Bw Bp],

wTk︷ ︸︸ ︷
[−dTk pT

k
] ≤

wTk︷ ︸︸ ︷
[wTk pTk ] ≤

wTk︷ ︸︸ ︷
[dTk pTk ] .

Therefore, it can be verified that the stacked state-dynamics in (5.27) can now be written

as:

x = Ax0 + Buu+ Bww (5.59)

where w ∈ W := {w ∈ RNw : w ≤ w ≤ w} and all matrices/vectors are appropriately

re-defined.

Theorem 5.7. Define the cost function

J(x0, u, w) :=xTNPNxN +
N−1∑
k=0

xTkQxk + uTkRuk (5.60)

and let AK̂0 := A+BuK̂0, w := 1
2(w+w), C̃ := diag(IN−1 ⊗ C,CN ), R̃ := IN ⊗ R, K̂B :=

(I +BuK̂), Q̃ := diag(IN−1 ⊗ Q,PN ), x = [xT1 · · · xTN ]T , u = [uT0 · · · uTN−1]T (and

analogously for x, u). Then, there exist feasible K̂0, K̂ and v̂ satisfying constraints
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(5.46)-(5.48) and such that J(x0, u, w)≤f c, for all w∈W, if there exist diagonal matrices

Dw, D
i
wx, D

i
wx, i ∈Nx := {1, · · · ,mN}, Dj

wu, D
j
wu, j∈Nu :={1, · · · , Nu} as solutions to

the following LMIs
Dw ? ? ?

−wTDw f c+w
TDww−xT0 Qx0 ? ?

K̂BBw Buv̂+AK̂0x0 Q̃−1 ?

K̂Bw K̂0x0+v̂ 0 R̃−1

�0 (5.61)

Lix(D
i
wx, K̂, K̂0,v̂, x, ei) :=Di

wx −Di
wxw− 1

2B
T
wK̂

T
B C̃

T ei

? eTi (x−C̃AK̂0x0−C̃Buv̂)+wTD
i
wxw

�0 (5.62)

Lju(D
j
wu, K̂, K̂0,v̂, u, ej) :=Dj

wu −Dj
wuw− 1

2B
T
wK̂

T ej

? eTj (u−K̂0x0−v̂)+wTD
j
wuw

�0, (5.63)

Lix(Di
wx, K̂, K̂0, v̂, x,−ei)�0, (5.64)

Lju(Dj
wu, K̂, K̂0, v̂, u,−ej)�0. (5.65)

Proof. Using (5.59) and (5.9), the upper state constraints (5.46)-(5.47) can be written

as, ∀w ∈W:

eTi C̃K̂BBww ≤ eTi (x− C̃(A + BuK̂0)x0− C̃Buv̂).

Using the S-procedure, it can be shown that

eTi C̃K̂BBww − eTi (x− C̃(A + BuK̂0)x0− C̃Buv̂) =

−(w − w)TD
i
wx(w − w)− yTLix(D

i
wx, K̂, K̂0, v̂, x, ei)y

where yT := [ wT 1 ], D
i
wx, Di

wx, D
j
wu, Dj

wu are diagonal, positive semidefinite matrices

and the matrix Lix(D
i
wx, K̂, K̂0, v̂, x, ei) is defined in (5.62). It follows that (5.62) is a

necessary and sufficient condition for upper state constraints.
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Similarly, through application of the S-procedure, it can be shown that (5.64), (5.63)

and (5.65) are necessary and sufficient for lower state and upper/lower input constraints,

respectively. Now, the cost function (5.60) can be written as:

J(x0, u, w) = yTXT
c Q̃Xcy + yTUTc R̃Ucy + xT0 Qx0 (5.66)

where matrix Xc := [ K̂BBw (Buv̂+(A + BuK̂0)x0) ], Uc := [K̂Bw K̂0x0+v̂ ] and

yT := [wT 1 ]. In a manner similar to above, using the S-procedure on (5.66) followed

by a Schur complement argument yields LMI (5.61).

It follows from Theorem 5.7 that the problem for computing an RMPC controller (i.e.

K̂0, K̂, v̂) which satisfies state and input constraints and minimizes the cost function can

be summarized as follows

φ=min{ f c : (5.61)− (5.65) are satisfied for diagonal

Dw, D
i
wx, D

i
wx, D

j
wu, D

j
wu, j∈Nu, i∈Nx}. (5.67)

Note that problem (5.67) is linear in the variables (K̂0, K̂, v̂) due to the uncertainty

re-parameterization of Section 5.4.1. We can now summarize the Approach 2 RMPC

algorithm as follows:

Algorithm 5.1: Causal RMPC controller - Approach 2

(1) Read the current state xt.

(2) Compute polytopic bounds on the uncertainty through LMI problems (5.57) and

(5.58).

(3) Compute K0, K, v by solving the LMI problem (5.67).

(4) Apply the first control.

(5) If the new state xt+1 ∈ Z, apply the terminal control law κZ(x) for all time, else

loop back to (1).

Remark 5.11. The incorporation of an RCI terminal set helps ensure recursive feasibility

of the above RMPC algorithms under certain conditions (see Remark 3.15). Stability

of the proposed schemes can also be guaranteed in the same way as in Chapter 3. In

particular, using the S-procedure, conditions on matrix PN can readily be derived to ensure

that the terminal cost xTNPNxN is a Lyapunov function over the invariant set Z. The

formulation is very similar to that in Section 3.4.4, and is therefore not included here.

105



5.5 Numerical Examples

Figure 5.1: Results for Approach 1 (left) and Approach 2 with wt = wcos(t) and ∆ =
diag(1, 1), ∀t

5.5 Numerical Examples

We now give two examples from the literature to illustrate the effectiveness of the pro-

posed algorithms.

5.5.1 Example 1

We consider an uncertain version of the unstable process from [97, 100]. In particular,

we have the system in (5.3) with:

A =

[
1 0.8

0.5 1

]
, Bu =

[
1

1

]
, Bw =

[
0.1

0.1

]
, Bp =

[
0.1 0

0 0.1

]
,

Dqu = Bu, Cq = Ĉq = A

Furthermore, system has uncertainty of the form: ∆ :={diag(δ1, δ2) : δi∈R, |δi|≤1}, and

the disturbance set is taken to be W :={w∈Rnw : −1≤w≤1}. The prediction horizon

N =4 and the parameters in the cost function (5.60) are Q= I, R= I, and PN =I. The

constraints on the input and state are given by: uk=−uk=3.8 ∀k, and x=−x=[3 3]T ,

respectively. Moreover, we set the initial state x0 =x. Computing a hyper-rectangle RCI

set and the corresponding controller with input constraints −0.95≤uk≤0.95 and state

constraints |xN | ≤ [1.6 1]T , yields (5.47) with xN =−xN =[1.55 0.89]T , CN = I along

with the terminal control law κZ(x)=−[0.34 0.46]x.

First of all, applying the proposed algorithm in the open-loop mode (by setting the
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feedback gain K to zero in (5.7)) results in problem infeasibility. Moreover, the feedback

RMPC problem given by Theorem 5.2, with convexity obtained using the procedure in

Remark 5.7, on the above example also gives infeasibility due to the conservative nature

of linearization. Now applying the two proposed schemes - as given by Theorem 5.4 and

problem (5.67), respectively - give the simulation results shown in Figure 5.1. We note

that even with the initial state on the constraint boundary and persistent worst-case

uncertainty and disturbances, both the algorithms are able to steer the system state to

RCI set (shown by red rectangle).

5.5.2 Example 2

We consider the coupled spring-mass system example from [55]. The mechanical system,

shown in Figure 5.2, is unstable and has uncertainty in the spring constant value k such

that kmin ≤ k ≤ kmax. The system has four states: x1 and x2 are the positions of mass

1 and 2 respectively, and x3 and x4 are their respective velocities. The discrete-time

dynamics, sampled at 0.1s, are [55]:

A=


1 0 0.1 0

0 1 0 0.1

−0.1kn 0.1kn 1 0

0.1kn −0.1kn 0 1

 , Bu=


0

0

0.1

0

 , Bp=


0

0

−0.1

0.1


Cq =

[
kdev −kdev 0 0

]
, Dqu = 0

where δ = k−kn
kdev

, kn = 1
2(kmax + kmin), and kdev = 1

2(kmax − kmin). The spring constant

is known to vary anywhere between kmin = 0.5 and kmax = 10. For the cost, we have

Q = 5, R = 1 and prediction horizon N = 6.

The control objective is to make the output (state x2) track a unit step whilst provid-

ing robustness against persistent variation in spring constant k and respecting the input

constraint: −1 ≤ uk ≤ 1. Figure 5.3 shows the simulation results when the system is

Figure 5.2: Coupled spring-mass system
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Figure 5.3: Output step-tracking results for Example 2

subjected to a sinusoidal uncertainty in the spring constant. We see that the proposed

RMPC controller is able to first steer, and then maintain the system-output at the de-

sired set-point despite the presence of a persistent uncertainty. The 5% settling time for

the output, with the proposed algorithm, is approximately 6.3 sec. For comparison, Fig-

ure 5.3 also shows the response of the infinite horizon RMPC controller, proposed in [55],

for the same example (red line). Although this algorithm also yields output tracking,

however, the response is considerably slower with a 5% settling time of approximately

16.1 sec. Figure 5.4 also shows a comparitively faster response in control input for the

proposed algorithm.

Figure 5.4: Control input for Example 2
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5.6 Summary

In this chapter, we have presented two algorithms for the feedback Robust Model Pre-

dictive Control of linear, discrete-time systems subject to bounded disturbances, norm-

bounded model-uncertainties and hard constraints on the input and state. The proposed

schemes design a predictive control law - consisting of a (causal) state-feedback gain as

well as a control perturbation - which is responsible for steering the uncertain system

state to a terminal invariant set.

As shown in Section 5.2, despite the use of Q-parameterization-like methods, the

RMPC problem remains nonlinear and non-convex in feedback gain K due to the presence

of model-uncertainty. To obtain tractability, we have proposed two methods. In the first

method, the disturbance is re-cast as an uncertainty and a slack variable approach is

employed which helps to remove the nonlinearity through a ‘less-conservative’ change of

variables. In this regard, a new result to separate matrix variables F and H from S and

G in inequality (5.1) has been presented (Theorem 5.3). Being general in nature, this

results also has potential applications in other problem areas (see e.g. [35, 94]).

The second method involves the online re-parameterization of the uncertainty (in a

manner reminiscent of a few stochastic MPC schemes) as an additive (polytopic) distur-

bance which subsequently leads to convexity. Both schemes allow for the online com-

putation - through LMI problems - of an optimal control law (K0,K,v) which satisfies

constraints and minimizes a cost function. Moreover, the presented algorithms do not

require any offline computation or initial estimates of the feedback gain K. Finally, the

effectiveness of the proposed schemes, including the reduced conservatism of the final al-

gorithm (Theorem 5.4) in comparison with the approach given in Remark 5.7, has been

demonstrated through numerical examples from the literature.

So far we have considered control design under full-state availability. In many pro-

cesses, however, only a noisy output measurement is available. Therefore, in the next

chapter, we consider the output-feedback RMPC control of norm-bounded uncertain

systems. In particular, we extend the results of this chapter as well as Chapter 4, to

formulate a robust predictive control algorithm based only on the input/output data

measurements.
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Chapter 6

Output-feedback RMPC for

Norm-bounded Uncertain

Systems

6.1 Introduction

In this chapter, we consider the output-feedback RMPC control of constrained, linear

discrete-time systems subject to norm-bounded model uncertainties, additive distur-

bances and measurement noise.

In the literature, most output-feedback MPC algorithms for linear systems - with ad-

ditive disturbances - employ a fixed stable linear observer, such as Luenberger observer, to

compute an estimate of the state which is subsequently used within the control scheme

(see e.g. [87], [25], [60] [68], [44]). The (state) estimation error is generally bounded

by an invariant set and is considered as an additional source of disturbance within the

system. One of the major advantages of schemes such as [68] and [44] is that their on-

line computational complexity is similar to that of (full-state) nominal MPC schemes.

Output-feedback algorithms which employ observers, and are based on LMI/BMI opti-

mization, have been proposed for systems that are subject to norm-bounded/polytopic

uncertainty (see e.g. [105], [36]).

As discussed in Section 1.2.2, the choice of observer gain has a clear impact on the

estimation error bounds and, therefore, on the overall control algorithm. However, in

most of the aforementioned schemes, the observer is simply designed offline (to ensure

stability). Moreover, the control feedback gain K is also fixed. Both of these factors can

potentially add to the conservatism of the corresponding predictive control algorithm.
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An alternative approach to the use of observers is known as Moving Horizon Esti-

mation (MHE) [72]. MHE techniques consider a moving - but fixed size - input/output

data window, and compute state-estimates by solving an optimization problem that min-

imizes the difference between actual measurements and predicted outputs [86]. The fact

that the estimation problem uses recent input/output data makes MHE schemes suitable

for uncertain systems [1]. MHE has also recently been used in the context of output-

feedback RMPC. For example, in [93], a MHE approach is combined with a tube-based

RMPC scheme for system with disturbances and measurement noise. However, no such

algorithms for the case of norm-bounded uncertain systems are given in the literature.

In this work, we extend the results of Chapter 5 by designing an output-feedback

RMPC scheme for systems with both state/output disturbance as well as norm-bounded

uncertainty. Instead of employing an observer with a fixed gain, we use the past in-

put/output data window, in a manner similar to MHE, to compute (tight) bounds on

the current state which are then used within the output-feedback control algorithm. Fur-

thermore, to reduce conservatism, the feedback gain (K) and control perturbation (v)

are both explicitly considered as decision variables in the online optimization. The asso-

ciated nonlinearity is removed by using Theorem 5.3 to yield an algorithm based on LMI

optimizations.

A novel feature of this algorithm is that we also extend the results of Chapter 4 to

the output-feedback case. In particular, a convex problem is derived for the computation

of an output-feedback RCI set, along with the corresponding control law, for norm-

bounded uncertain systems. This set serves as the terminal constraint set and, under

certain conditions, helps to ensure the recursive feasibility and stability of the overall

control scheme.

The results in this chapter are based on the algorithm in [96].

6.2 Output-feedback RMPC Problem

In this section, we first provide a system description including control dynamics, con-

straints and cost function. Then, we derive the output-feedback RMPC problem. Note

that the formulation in this section mirrors that for the state-feedback case in Sections 5.2

and 5.3.
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6.2.1 System Description

We consider the same system as in (5.3), with the addition of an output signal yk. In

particular, we have
xk+1

qk

yk

fk

zk

 =


A Bu Bw Bp

Cq Dqu 0 0

Cy 0 Dyw 0

Cf Dfu Dfw Dfp

Cz Dzu Dzw Dzp




xk

uk

wk

pk

, pk=∆qk,

 qNfN
zN

 =

 Ĉq 0

Ĉf D̂fp

Ĉz D̂zp

[ xN
pN

]
, pN = ∆qN

(6.1)

with ∆ ∈ B∆ and k ∈ N := {0, 1, · · · , N − 1}, where N denotes the control horizon.

Furthermore, xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny , wk ∈ Rnw , fk ∈ Rnf , zk ∈ Rnz are the

state, input, output, disturbance, constrained signal, and cost signal, respectively, at

prediction step k. Here pk ∈ Rnp and qk ∈ Rnq represent the uncertainty vectors and all

other symbols denote the appropriate distribution matrices. Only the noisy output yk

is measured and we assume that the pair (A, Cy) is detectable and (A, Bu) stabilizable.

Furthermore, bounds on the initial state are given a-priori such that (see also Section 6.3):

x0 ∈ X0 :=
{
x ∈ Rn : x0 ≤ x ≤ x0

}
(6.2)

Finally, the (unmeasured) additive disturbances belong to the set:

wk ∈W :=
{
w ∈ Rnw : −r ≤ w ≤ r

}
(6.3)

It is required to find uk, for all k ∈ N, such that the future constrained outputs satisfy

fk ≤ f̄k, fN ≤ f̄N for all wk ∈W and ∆ ∈ B∆ , and the cost function

J = max
wk∈Wk, ∆∈B∆

N∑
k=0

(zk − zk)TQk(zk − zk) (6.4)

is minimized, where zk represents a given reference trajectory.

Remark 6.1. As in Chapter 5, the terminal constraint fN ≤ f̄N will involve an invariant

set to help ensure the recursive feasibility and stability of the control scheme, under certain

conditions. However, in this chapter, the set will be invariant under an output-feedback
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control law (see Section 6.4).

Remark 6.2. For the sake of clarity of exposition, we have combined both the state-

disturbance (ηk) and measurement noise (νk) into a single vector in (6.1), namely wk :=

[ηTk νTk ]T .

6.2.2 Algebraic Formulation

Iterating the system dynamics in (6.1), we obtain
q

y

f

z

 =


C̄q D̄qw D̄qp D̄qu

C̄y D̄yw D̄yp D̄yu

C̄f D̄fw D̄fp D̄fu

C̄z D̄zw D̄zp D̄zu



x0

w

p

u

, (6.5)

where u = [uT0 · · ·uTN−1]T , w = [wT0 · · ·wTN−1]T , y = [yT0 · · · yTN−1]T , f = [fT0 · · · fTN ]T ,

q = [qT0 · · · qTN ]T , p = [pT0 · · · pTN ]T with p = ∆q, z = [zT0 · · · zTN ]T and all matrices in (6.5)

can easily be derived through iteration.

By defining a vector d = [xT0 wT ]T such that[
x0

−re

]
=: d ≤ d ≤ d :=

[
x0

re

]
, (6.6)

where e is a vector of ones, equation (6.5) can be written as:
q

y

f

z

 =


Dqd D̄qp D̄qu

Dyd D̄yp D̄yu

Dfd D̄fp D̄fu

Dzd D̄zp D̄zu


 dp
u

 (6.7)

with Dgd := [C̄g D̄gw], where g stands for q, y, f and z above.

A manipulation shows that d can be re-written as:

d = ∆dd̂+ do (6.8)

where ∆d := diag(∆x,∆w) with ||∆d|| ≤ 1, and

d̂ :=

[
1
2(x0 − x0)

re

]
, do :=

[
1
2(x0 + x0)

0

]
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6.2.3 Output-feedback RMPC

We consider an output-feedback RMPC control law of the form:

u = Ky + v (6.9)

where, to ensure causality (i.e. ui depends only on yj , j = 0, . . . , i), we impose thatK ∈ K

where K is the set of real lower block triangular matrices of appropriate dimensions.

Substituting the equation for y in (6.7) into (6.9) yields the following expression for u

u = K̂Dydd+ K̂D̄ypp+ v̄ (6.10)

where K̂ := K(I − D̄yuK)−1 ∈ K and v̄ := (I −KD̄yu)−1v. Note that u is affine in the

new variables (K̂, v̄) and K̂ ∈ K since K ∈ K. As in Section 5.2.2, the original control

variables (K, v) can easily be recovered from the new variables as follows:

[K v ] := (I + K̂D̄yu)−1[K̂ v̄ ]

The aim of the rest of this section is to obtain a representation of vectors y, f and z in

terms of the (new) decision variables K̂ and v̄. To this end, by using the control structure

in (6.10), we can eliminate u from (6.7) to yield
y

q

f

z − z̄

=


(I+D̄yuK̂)D̄yp (I+D̄yuK̂)Dyd D̄yuv̄

D̄qp+D̄quK̂D̄yp Dqd+D̄quK̂Dyd D̄quv̄

D̄fp+D̄fuK̂D̄yp Dfd+D̄fuK̂Dyd D̄fuv̄

D̄zp+D̄zuK̂D̄yp Dzd+D̄zuK̂Dyd D̄zuv̄− z̄


 pd

1

:=

DK̂
yp DK̂

yd Dv̄
y

DK̂
qp DK̂

qd Dv̄
q

DK̂
fp DK̂

fd Dv̄
f

DK̂
zp DK̂

zd Dv̄
z


 pd

1



:=


DK̂
yp̂ Dv̄

y

DK̂
qp̂ Dv̄

q

DK̂
fp̂ Dv̄

f

DK̂
zp̂ Dv̄

z


[
p̂

1

]
(6.11)

with p̂ := [pT , dT ]T such that

p̂ = ∆̂q̂ + qo (6.12)

where, using (6.8), ∆̂ := diag(∆,∆d) ∈ B∆̂, qo := [0, dTo ]T and

q̂ :=

[
q

d̂

]
=

[
DK̂
qp DK̂

qd

0 0

]
︸ ︷︷ ︸

DK̂q̂p̂

p̂+

[
Dv̄
q

d̂

]
︸ ︷︷ ︸
Dv̄q̂

(6.13)
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For convenience, we also define

DK̂
q̂p̂ = D̂q + D̄q̂uK̂Ĉy (6.14)

DK̂
fp̂ = D̂f + D̄fuK̂Ĉy (6.15)

DK̂
zp̂ = D̂z + D̄zuK̂Ĉy (6.16)

where D̂f := [D̄fp Dfd], Ĉy := [D̄yp Dyd], D̂z := [D̄zp Dzd] and

D̂q :=

[
D̄qp Dqd

0 0

]
, D̄q̂u :=

[
D̄qu

0

]
(6.17)

Inserting q̂ from (6.13) into (6.12) and simplifying yields:

p̂ = (I − ∆̂DK̂
q̂p̂)
−1∆̂(Dv̄

q̂ +DK̂
q̂p̂qo) + qo (6.18)

Then, using (6.18) to eliminate p̂ from (6.11) gives y

f

z − z̄

 =

D
K̂
yp̂∆̂(I −DK̂

q̂p̂∆̂)−1(Dv̄
q̂ +DK̂

q̂p̂qo) +DK̂
yp̂qo +Dv̄

y

DK̂
fp̂∆̂(I −DK̂

q̂p̂∆̂)−1(Dv̄
q̂ +DK̂

q̂p̂qo) +DK̂
fp̂qo +Dv̄

f

DK̂
zp̂∆̂(I −DK̂

q̂p̂∆̂)−1(Dv̄
q̂ +DK̂

q̂p̂qo) +DK̂
zp̂qo +Dv̄

z

 (6.19)

Now define v̂ := v̄ + K̂Dyddo and let α denote y, f , z. Then, it can be verified that

DK̂
αp̂qo +Dv̄

α = Dαddo + D̄αuv̂ − ᾱ := Dv̂
α (6.20)

where the ᾱ term in (6.20) is only included in the definition for α = z, i.e. Dv̂
z , and this

reference trajectory z̄ := [z̄T0 , · · · , z̄TN ]T is given. Furthermore, we define

Dv̄
q̂ +DK̂

q̂p̂qo =

[
Dqddo + D̄quv̂

d̂

]
:= Dv̂

q̂ (6.21)

Finally, using the redefinitions in (6.20) and (6.21), we can re-write (6.19) as

 y

f

z − z̄

 =

D
K̂
yp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

y

DK̂
fp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

f

DK̂
zp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

z

 :=


DK̂,v̂,∆̂
y

DK̂,v̂,∆̂
f

DK̂,v̂,∆̂
z

 (6.22)
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6.2 Output-feedback RMPC Problem

6.2.4 Sufficient Conditions for the Constraints and Cost

In this section, we derive sufficient conditions for the satisfaction of the constraints as

well as an upper bound on the cost function. Note that using (6.22), the cost function

in (6.4) can be written as

J(K̂, v̂, ∆̂) = (DK̂
zp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

z)TQ(DK̂
zp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

z) (6.23)

where Q := diag(Q0, . . . , QN ). Similarly, the constraint set can be written as:

U={(K̂, v̂) : eTi (DK̂
fp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ +Dv̂

f ) ≤ eTi f̄ ,∀i ∈ Nf , ∀∆̂}. (6.24)

with Nf ={1, . . . , (N + 1)nf}.
The following theorem uses Lemma 4.1 to derive sufficient conditions for (K̂, v̂)∈U

(necessary and sufficient in the case of unstructured uncertainties) and an upper bound,

call it γ2, on the cost function in (6.23).

Theorem 6.1. Let all variables be as defined above. Then, J(K̂, v̂, ∆̂) ≤ γ2 and (K̂, v̂) ∈
U for all ∆̂∈B∆̂, if there exist solutions (S,G), (Si, Gi) ∈ Ψ̂, ∀i ∈ Nf , to the following

matrix inequalities
γ2 (Dv̂

z)T (Dv̂
q̂ )T 0

? Q−1 DK̂
zp̂G

T DK̂
zp̂S

? ? S+DK̂
q̂p̂G

T +G(DK̂
q̂p̂)

T DK̂
q̂p̂S

? ? ? S

�0 (6.25)


eTi (f−Dv̂

f ) (Dv̂
q̂ )T− 1

2e
T
i D

K̂
fp̂G

T
i −1

2e
T
i D

K̂
fp̂Si

? Si+D
K̂
q̂p̂G

T
i +Gi(D

K̂
q̂p̂)

T DK̂
q̂p̂Si

? ? Si

�0 (6.26)

Proof. The constraints in (6.24) can be written as, ∀i ∈ Nf ,

eTi f̄ − eTi f = eTi f̄ − eTi DK̂
fp̂∆̂(I −DK̂

q̂p̂∆̂)−1Dv̂
q̂ − eTi Dv̂

f ≥ 0 (6.27)

Through re-arrangement, (6.27) can be written in the form:

Ri+Fi∆(I−H∆)−1E+ET (I−∆THT )−1∆TF Ti �0, ∀i ∈ Nf (6.28)
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6.2 Output-feedback RMPC Problem

[
Ri Fi

E H

]
:=

[
eTi (f̄ −Dv̂

f ) −1
2e
T
i D

K̂
fp̂

Dv̂
q̂ DK̂

q̂p̂

]
·

Using Lemma 4.1 on (6.28) yields the matrix inequality (6.26).

Next, we consider the cost function. Let γ2 be an upper bound on the cost such that

J(K̂, v̂, ∆̂) = (z − z̄)TQ(z − z̄) ≤ γ2. (6.29)

Taking the Schur complement in inequality (6.29) yields[
γ2 (z − z̄)T

? Q−1

]
� 0 (6.30)

Using the definitions in (6.22), it is easy to verify that (6.30) can be re-arranged into the

form

R0+F0∆(I−H∆)−1E0+ET0 (I−∆THT )−1∆TF T0 �0, (6.31)

[
R0 F0

E0 H

]
:=

 γ2 (Dv̂
z)T 0

Dv̂
z Q−1 DK̂

zp̂

Dv̂
q̂ 0 DK̂

q̂p̂

·
Finally, an application of Lemma 4.1 on (6.31) yields (6.25).

It follows from Theorem 6.1 that the output-feedback RMPC problem can be given by:

φ̄=min{γ2 : (K̂, v̂)∈(K, υ), (S,G), (Si, Gi) ∈Ψ̂,

i∈Nf s.t. (6.25), (6.26) are satisfied}. (6.32)

By considering the definitions (6.14)-(6.16), it can be verified that problem (6.32) is

highly nonlinear and non-convex in K̂ due to terms of the form D̄ζuK̂ĈyX where ζ

stands for f , q̂ and z and X stands for S, Si, G, Gi, i ∈ Nf . Here, note that optimization

(6.32) becomes convex for a fixed K. However, as discussed already, this introduces a

degree of conservatism depending on the offline choice of K. To remedy this, we now

use Theorem 5.3 to convexify problem (6.32) at the expense of only minor conservatism

within the formulation.

Remark 6.3. When the system is subject only to additive disturbance (and no model-

uncertainty), the matrix inequalities (6.25), (6.26) become linear. To see this, note that

in such a case, Cq, Dqu become zero and therefore, DK̂
q̂p̂ and Dv̂

q̂ no longer remain func-

117



6.2 Output-feedback RMPC Problem

tions of variables (K̂, v̂). In addition, the variables G, Gi become zero since ∆ is now

purely diagonal. Then, effecting the congruence transformation diag(I, I, S−1, S−1) on

(6.25), and considering S−1 as a variable, renders (6.25) linear in (K̂, v̂). A similar

procedure can be adopted to linearize (6.26). Therefore, the output-feedback RMPC prob-

lem for systems with additive disturbances becomes convex. Furthermore, the formulation

incorporates the constraints in a non-conservative manner.

Theorem 6.2. Let everything be as defined above. Then, J(K̂, v̂, ∆̂) ≤ γ2 and (K̂, v̂) ∈ U

for all ∆̂∈B∆̂ if there exist solutions (S,G), (Si, Gi) ∈ Ψ̂, M = MT , Mi = MT
i , M0,

S0 ∈ S0, R0, ∀i ∈ Nf to following LMIs:[
S ?

−G M

]
� 0,

[
Si ?

−Gi Mi

]
� 0 (6.33)


γ2 (Dv̂

z)T (Dv̂
q̂ )T 0 0

? Q−1 0 D̂zS0 + D̄zuK̄ 0

? ? S +M D̂qS0 + D̂quK̄ −R0 M0

? ? ? S0 + ST0 − S GT −RT0
? ? ? ? M0 +MT

0 −M

�0 (6.34)


eTi (f−Dv̂

f ) (Dv̂
q̂ )T −1

2e
T
i (D̂fS0 + D̄fuK̄) 0

? Si +Mi D̂qS0 + D̂quK̄ −R0 M0

? ? S0 + ST0 − Si GTi −RT0
? ? ? M0 +MT

0 −Mi

�0 (6.35)

where K̄ := K̂ĈyS0.

Proof. The LMIs (6.33)-(6.35) follow from the application of Theorem 5.3 on (6.25) and

(6.26), respectively, with G0 = 0

It follows that the output-feedback RMPC problem can now be given by the following

LMI optimization:

φ=min{ γ2 : (6.33)− (6.35) are satisfied for (K̂, v̂)∈(K, υ),

(S0, G0) ∈ Ψ̂0, (S,G), (Si, Gi)∈Ψ̂, i∈Nf}. (6.36)

Remark 6.4. In Theorem 6.2, we have chosen G0 = 0 purely for the sake of clarity of

exposition. By studying the finer structure of K̂ and Ĉy, extra degrees of freedom can be
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6.3 Updation of the State Bounds

incorporated within the structure of matrix G0 such that K̂ĈyG0 = 0 with G0 6= 0. The

analysis is similar to that in the state-feedback case (Section 5.3.3) and therefore we do

not go into the details here.

6.3 Updation of the State Bounds

The basic idea in the proposed output-feedback RMPC algorithm is to apply the first

control in the sequence computed through LMI problem (6.36) and then, at the next

step, obtain bounds on the current state (by considering the past input/output data in a

moving window framework) before solving (6.36) again. The control scheme thus requires

lower and upper bounds on the current state at time k, namely xk and xk. Therefore,

in this section, we formulate an optimization problem which uses the past Ñ inputs and

outputs (as well as the current output yk) to compute xk and xk, where Ñ > 0 denotes

a given estimation horizon.

We start by iterating the process dynamics in (6.1) to obtain:

 xkq̃
ỹ

 =

 Ã B̃u B̃w B̃p

C̃q D̃qu D̃qw D̃qp

C̃y D̃yu D̃yw D̃yp



xk−Ñ
ũ

w̃

p̃

, (6.37)

where the input/output data vectors ũ = [uT
k−Ñ · · · u

T
k−1]T and ỹ = [yT

k−Ñ · · · y
T
k ]T are

known, and w̃ = [wT
k−Ñ · · · w

T
k ]T , q̃ = [qT

k−Ñ · · · q
T
k−1]T , p̃ = [pT

k−Ñ · · · p
T
k−1]T with

p̃ = ∆̃q̃. All the matrices in (6.37) can also easily be computed through iteration.

Using the definition of q̃ in (6.37), the vector p̃ (:= ∆̃q̃) can be re-arranged as:

p̃ = ∆̃(I − D̃qp∆̃)−1(C̃qxk−Ñ + D̃quũ+ D̃qww̃) (6.38)

Then, using (6.38) to eliminate p̃ from (6.37) gives:[
xk

ỹ

]
=

[
Ad + B̃p∆C̃d B̃u + B̃p∆D̃qu

C̃yd + D̃yp∆C̃d D̃yu + D̃yp∆D̃qu

][
d

ũ

]
(6.39)

where ∆ := ∆̃(I − D̃qp∆̃)−1, Ad := [Ã B̃w], C̃yd := [C̃y D̃yw], C̃d := [C̃q D̃qw] and

d := [xT
k−Ñ w̃T ]T such that

[
xk−Ñ
−r̃e

]
=: d ≤ d ≤ d :=

[
xk−Ñ
r̃e

]
, (6.40)
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6.3 Updation of the State Bounds

By using (6.39) and (6.40), we now derive (tight) upper- and lower-bounds on xk in the

following theorem (see also Remark 6.5).

Theorem 6.3. Let all variables be as defined above. Then, an upper-bound on the ith

element of xk, i.e. eTi xk, ∀i ∈ Nn := {1, · · · , n}, can be computed by minimizing eTi xk

subject to the LMI:

D
i
x −1

2D
i
x(d+ d)− 1

2A
T
d ei C̃Tyd C̃Td 0

? eTi xk + d
T
D
i
xd− eTi B̃uũ ũT D̃T

yu − ỹT ũT D̃T
qu − 1

2e
T
i B̃pG

T
i −1

2e
T
i B̃pSi

? ? Y
−1
i D̃ypG

T
i D̃ypSi

? ? ? Si + D̃qpG
T
i +GiD̃

T
qp D̃qpSi

? ? ? ? Si


�0

(6.41)

Similarly, a lower-bound on eTi xk, ∀i ∈ Nn, can be obtained by maximizing eTi xk subject

to the LMI:

Di
x −1

2D
i
x(d+ d) + 1

2A
T
d ei C̃Tyd C̃Td 0

? −eTi xk + d
T
Di
xd+ eTi B̃uũ ũT D̃T

yu − ỹT ũT D̃T
qu + 1

2e
T
i B̃pG

T
i

1
2e
T
i B̃pSi

? ? Y −1
i D̃ypG

T
i D̃ypSi

? ? ? Si + D̃qpG
T
i +GiD̃

T
qp D̃qpSi

? ? ? ? Si


�0

(6.42)

Proof. In order to take account of the available past input/output data (ũ, ỹ) in our

formulation, we consider the following equality constraint, based on the expression for ỹ

in (6.39):

y∆̃ − C∆̃
d d = 0 (6.43)

where y∆̃ := ỹ − (D̃yu + D̃yp∆D̃qu)ũ and C∆̃
d := (C̃yd + D̃yp∆C̃d).

Now considering xk as an upper-bound on xk in (6.39), with (6.43) incorporated, we

require, ∀i ∈ Nn,

eTi xk − eTi xk = eTi (A∆̃
d d+B∆̃

ũ ũ)− eTi xk + (y∆̃ − C∆̃
d d)TY i(y

∆̃ − C∆̃
d d) ≤ 0 (6.44)

where A∆̃
d := Ad + B̃p∆C̃d, B

∆̃
ũ = B̃u + B̃p∆D̃qu, and Y i = Y

T
i � 0, ∀i.
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6.4 Output-feedback RCI Set

It can then be verified that

eTi xk − eTi xk = −(d− d)TD
i
x(d− d)−mTLi(Y i, D

i
x, ∆̃)m ≤ 0, ∀i ∈ Nn (6.45)

where m := [dT 1]T and

Li(Y i, D
i
x, ∆̃) :=

Di
x −1

2D
i
x(d+ d)− 1

2(A∆̃
d )T ei

? eTi xk − eTi B∆̃
ũ ũ+ d

T
D
i
xd

−
 (C∆̃

d )T

−(y∆̃)T

Y i

[
C∆̃
d −y∆̃

]
(6.46)

By using the S-procedure (Farkas’ Theorem) [81], it follows that Li(Y i, D
i
x, ∆̃) � 0,

∀i ∈ Nn, is a necessary and sufficient condition for (6.44). Applying a Schur complement

argument followed by a re-arrangement shows that this condition can be written as:

Ri+Fi∆(I−H∆)−1E+ET (I−∆THT )−1∆TF Ti �0, ∀i ∈ Nn (6.47)

[
Ri Fi

E H

]
:=


D
i
x −1

2D
i
x(d+ d)− 1

2A
T
d ei C̃Tyd 0

? eTi xk + d
T
D
i
xd− eTi B̃uũ ũT D̃T

yu − ỹT −1
2e
T
i B̃p

? ? Y
−1
i D̃yp

C̃d D̃quũ 0 D̃qp

·

Using Lemma 4.1 on (6.47) yields the LMI (6.41). A similar procedure can be used to

derive LMI (6.42) for the lower-bound i.e. −eTi xk ≤ −eTi xk,∀i ∈ Nn.

Remark 6.5. Note that the S-procedure (Farkas’ Theorem) used in Theorem 6.3 does

not introduce any gap (conservatism) [81]. Therefore, the LMIs in (6.41) and (6.42)

have no conservatism for systems with unstructured (norm-bounded) uncertainties and

thus the computed state-bounds are tight.

Remark 6.6. For systems with only disturbances (i.e. no uncertainty), tight lower/upper

bounds on xk can easily be computed through a simple Linear Program (LP) given by mini-

mizing/maximizing eTi (Add + B̃uũ) subject to the constraints d ≤ d ≤ d and

C̃ydd = ỹ − D̃yuũ (see also Section 6.6.1).

6.4 Output-feedback RCI Set

The significance of RCI terminal sets, particularly in the context of RMPC, has already

been discussed in the previous chapters. There exists a vast amount of literature for the
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6.4 Output-feedback RCI Set

computation of such sets in the case when all states are measured (see e.g. [18], [98]

and the references therein). However, relatively few contributions have been made for

the case when only noisy output measurements are available (see e.g. [33], [4], [48]). To

the best of our knowledge, there are no algorithms in the literature for the computation

of these so called output-feedback RCI sets for systems subject to both norm-bounded

uncertainty and disturbances. Therefore, in this section, we extend the (state-feedback

based) results of Chapter 4 to derive an algorithm for computation of low-complexity

output-feedback RCI (OF-RCI) sets, along with the feedback gain F , for system (6.1).

We focus on low-complexity invariant sets since, as highlighted in [18], they hold sig-

nificant advantages over ellipsoidal and more general polytopic sets with regards to the

computational complexity of the overall predictive control scheme. These sets are given

by:

Z :=
{
x ∈ Rn : −d ≤ Cx ≤ d

}
(6.48)

where C ∈ Rn×n is a square matrix such that det(C) 6= 0. The RCI set (6.48) is required

to satisfy polyhedral state and input constraints of the form:

x ∈ X :=
{
x ∈ Rn : Tx ≤ x

}
(6.49)

u ∈ U :=
{
u ∈ Rnu : Gu ≤ u

}
(6.50)

with given matrices T ∈ Rnx×n, G ∈ Rnc×nu and vectors 0 < x ∈ Rnx , 0 < u ∈ Rnc .
An OF-RCI set can be defined as follows [33]:

Definition 6.1. The set Z ∈ X is an OF-RCI set for system (6.1) if there exists a control

law u = Fy ∈ U such that:

(A+Bp∆Cq)Z⊕ (Bu +Bp∆Dqu)FCyZ⊕ (Bu +Bp∆Dqu)FDywW⊕BwW⊆Z. (6.51)

where output y = Cyx+Dyww and ⊕ denotes the Minkowski sum.

We now propose the following theorem to compute the OF-RCI set Z and controller

F using convex optimizations.

Theorem 6.4. Let us define variables λ ∈ R, (Si, Gi) ∈ Ψ̂, Ĉ := λC, F̂ := λF ,

Xi = XT
i � 0, Mu = MT

u � 0, Nn :={1,· · ·, n}, Nnc :={1,· · ·, nc}, Nnx :={1,· · ·, nx},
and diagonal, positive definite matrices Dm, Dj

u, Dj
w, Di

x, Di
w. Then, given initial con-

ditions λo, Ĉo, Xoi, Muo, D
m
o , Dj

uo, D
j
wo, Di

xo and Di
wo (see Remark 6.8), a maximal-

volume constraint admissible OF-RCI set approximation can be computed by maximizing
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log(det(M−1
u )) subject to the LMIs[

λMuoλo + λoMuoλ− λoMuoM
−1
u Muoλo ĈT

? I

]
� 0, (6.52)


Si 0 λCq +DquF̂Cy DquF̂Dyw GiB

T
p

? Si 0 0 SiB
T
p

? ? Li(3, 3) 0 λAT + CTy F̂B
T
u

? ? ? Li(4, 4) λBT
w +DT

ywF̂B
T
u

? ? ? ? X−1
i

 � 0, ∀i ∈ Nn, (6.53)


λXoiλo + λoXoiλ− λoXoiX

−1
i Xoiλo ĈT ei 0 0

? 4eTi d 2dT 2rT

? ? (Di
x)−1 0

? ? ? (Di
w)−1

 � 0, ∀i ∈ Nn,

(6.54)


Lj(1, 1) 0 −1

2C
T
y F̂

TGT euj 0 0

? Lj(2, 2) −1
2D

T
ywF̂

TGT euj 0 0

? ? eTuju dT rT

? ? ? (Dj
u)−1 0

? ? ? ? (Dj
w)−1

 � 0, ∀j ∈ Nnc (6.55)

[
ĈTDm

o Ĉo + ĈTo D
m
o Ĉ − ĈTo Dm

o (Dm)−1Dm
o Ĉo −1

2λT
T em

? eTmx

]
� 0, ∀m ∈ Nnx (6.56)

where

Li(3, 3) := ĈTDi
xoĈo + ĈTo D

i
xoĈ − ĈTo Di

xo(D
i
x)−1Di

xoĈo

Li(4, 4) := λDi
woλo + λoD

i
woλ− λoDi

wo(D
i
w)−1Di

woλo

Lj(1, 1) := ĈTDj
uoĈo + ĈTo D

j
uoĈ − ĈTo Dj

uo(D
j
u)−1Dj

uoĈo

Lj(2, 2) := λDj
woλo + λoD

j
woλ− λoDj

wo(D
j
w)−1Dj

woλo.

Proof. Since Z and W are both symmetric, therefore the invariance constraint (6.51)
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6.4 Output-feedback RCI Set

can simply be written as:

eTi C[(A∆ +B∆FCy)x+ (B∆FDyw +Bw)w] ≤ eTi d, ∀i ∈ Nn, ∀x ∈ Z (6.57)

where A∆ := A+Bp∆Cq and B∆ := Bu +Bp∆Dqu.

Now it can be verified that

eTi C[(A∆ +B∆FCy)x+ (B∆FDyw +Bw)w]− eTi d = −(d−Cx)TDi
x(Cx+d)

− (r − w)TDi
w(w + r)− yTLi(C,F,Di

x, D
i
w,∆)y

where yT := [xT wT 1], and Li(C,F,D
i
x, D

i
w,∆) :=

CTDi
xC 0 −1

2(A+Bp∆Cq +BuFCy +Bp∆DquFCy)
TCT ei

? Di
w −1

2(BuFDyw +Bp∆DquFDyw +Bw)TCT ei

? ? eTi d− dTDi
xd− rTDi

wr

 (6.58)

Using the S-procedure (Farkas’ Theorem), it follows that Li(C,F,D
i
x, D

i
w,∆) � 0, ∀i ∈

Nn, is a necessary and sufficient condition for invariance (6.51). This condition can be

re-arranged into the form:

Ri+Fi∆(I−H∆)−1E+ET (I−∆THT )−1∆TF Ti �0, ∀i ∈ Nn (6.59)

[
Ri Fi

E H

]
:=


CTDi

xC 0 −1
2(A+BuFCy)

TCT ei 0

? Di
w −1

2(BuFDyw +Bw)TCT ei 0

? ? eTi d− dTDi
xd− rTDi

wr −1
2e
T
i CBp

Cq +DquFCy DquFDyw 0 0



Using Lemma 4.1 on (6.59) followed by the congruence transformation

[
0 I

I 0

]
yields the

following invariance condition:
Si 0 Cq +DquFCy DquFDyw −1

2GiB
T
p C

T ei

? Si 0 0 −1
2SiB

T
p C

T ei

? ? CTDi
xC 0 −1

2(A+BuFCy)
TCT ei

? ? ? Di
w −1

2(Bw +BuFDyw)TCT ei

? ? ? ? eTi d− dTDi
xd− rTDi

wr

 � 0, ∀i ∈ Nn (6.60)

Inequality (6.60) is highly nonlinear and non-convex due to terms of the form CTDiC
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6.4 Output-feedback RCI Set

and 1
2e
T
i CBzX where z stands for p or u and X stands for F , Gi or Si. To separate C

from F , Si and Gi, we first re-write (6.60) in the form:

Ri −AiCT eir−1
i eTi CA

T
i � 0, ∀i ∈ Nn (6.61)

where ri :=4(eTi d− dTDi
xd−rTDi

wr) and
[
Ri Ai

]
:=


Si 0 Cq +DquFCy DquFDyw GiB

T
p

0 Si 0 0 SiB
T
p

CTq + CTy F
TDT

qu 0 CTDi
xC 0 (A+BuFCy)

T

DT
ywF

TDT
qu 0 0 Di

w (Bw +BuFDyw)T


Then, by using Theorem 4.2 on (6.61), it can be verified that (6.60) is satisfied if and

only if 

Si ? ? ? ?

0 Si ? ? ?

CTq +CTy F
TDT

qu 0 CTDi
xC ? ?

DT
ywF

TDT
qu 0 0 Di

w ?

BpG
T
i BpSi A+BuFCy Bw+BuFDyw X−1

i


� 0 (6.62a)

 Xi ?

eTiC 4(eTi d− dTDi
xd−rTDi

wr)

� 0 (6.62b)

Now to deal with triple product terms of the form CTDiC, we propose the following

identity based on slack-variables:

V TMV = V TMoVo+V T
o MoV −V T

o MoM
−1MoVo+(V −M−1MoVo)

TM(V −M−1MoVo)

(6.63)

where M = MT � 0 and matrices Mo and Vo are known. It follows that V TMV � 0

can be replaced by the first three terms on the right hand side in (6.63) without loss of

generality (since the last positive term simply becomes zero by setting V = M−1MoVo).

Then, applying congruence transformation diag(I, I, λI, λI, I) on (6.62a), using the re-

definitions Ĉ := λC, F̂ := λF , and subsequently using identity (6.63) in the (3, 3) and

(4, 4) entries of the resulting matrix, respectively, yields LMI (6.53). Similarly, congruence

transformation diag(λI, I) on the inequality in (6.62b), followed by the use of identity

(6.63) on the (1, 1) entry and a Schur complement argument gives LMI (6.54).
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6.4 Output-feedback RCI Set

We now consider input constraint (6.50) which can be written in the form:

eTujGF (Cyx+Dyww) ≤ eTuju , ∀x ∈ Z, ∀w ∈W, ∀j ∈ Nnc

It can be verified that, ∀j ∈ Nnc ,

eTujGF (Cyx+Dyww)− eTuju =− (d− Cx)TDj
u(Cx+ d)− (r − w)TDi

w(w + r)

+ yTLju(F,C,Dj
u, D

j
w)y

where yT :=[xT wT 1] and L
j
u(F,C,Dj

u) :=C
TDj

uC 0 −1
2C

T
y F

TGT euj

? Dj
w −1

2D
T
ywF

TGT euj

? ? eTuju− dTD
j
ud− rTDj

wr

 (6.64)

It follows from Farkas’ Theorem that L
j
u(F,C,Dj

u) � 0, ∀j ∈ Nnc , is a necessary and

sufficient condition for the input constraint (6.50). Applying congruence transformation

diag(λI, λI, I) on the above condition, followed by the respective use of identity (6.63)

on the (1, 1) and (2, 2) entries of the resulting matrix and a Schur complement argument

yields LMI (6.55). Following a similar procedure to above, we can obtain LMI (6.56) for

the state constraints in (6.49).

Having derived the conditions for invariance and state/input constraints, we now

incorporate a cost function in the formulation. As discussed in Section 4.3.2, the volume

of Z is inversely proportional to | det(C)|. Therefore, in order to maximize the OF-RCI

set volume, we need to minimize | det(C)| which is a non-convex problem. To remedy

this, we consider a matrix variable Mu = MT
u � 0 such that det(C)2 ≤ det(Mu). In

particular,

Mu − CTC � 0 (6.65)

Then, using a Schur complement argument on (6.65), followed by the congruence trans-

formation diag(λI, I) and a subsequent use of identity (6.63) on the (1, 1) entry of

the resulting matrix yields the LMI (6.52). Hence, maximizing the (convex) objective

log(det(M−1
u )) optimizes the set-volume.

The algorithm to compute OF-RCI set and corresponding controller F can now be

summarized as follows.

126



6.5 Overall Output-feedback RMPC Algorithm

Algorithm 6.1: Maximal volume OF-RCI set computation

(1) Set the initial conditions λo, Ĉo, Xoi, Muo, D
m
o , Dj

uo, D
j
wo, Di

xo and Di
wo equal to

identity in Theorem 6.4 and compute an initial OF-RCI set (C, d) and controller

F (see Remark 6.8).

(2) Update all the initial conditions with the optimization problem solutions obtained

from the previous step.

(3) Solve the convex optimization problem in Theorem 6.4 to compute OF-RCI set

(C, d) and controller F as well as all the other matrix variables.

(4) Loop back to step (2) until there is no further improvement in the volume of Z

Remark 6.7. Similar to the formulation in Section 4.3, the identity (6.63) ensures

recursive feasibility of the iterative Algorithm 6.1. In particular, by setting V = Vo and

M = Mo in (6.63), it can be verified that previous solution of Theorem 6.4 remains

feasible at the next iteration. Therefore, volume of the new invariant set Z is greater

than or equal to that of the set from previous iteration.

Remark 6.8. The fact that C, d and F are all simultaneously considered as decision

variables as well as the introduction of λ in Theorem 6.4 helps to minimize the conser-

vatism in Algorithm 6.1 (the formulation in Chapter 4 considers vector d to be fixed). It

is also worth mentioning here that instead of setting all initial conditions to identity at

the beginning, a more elaborate formulation to compute the initial RCI set can be readily

derived (as was the case in Chapter 4). However, for the sake of brevity, we do not

include it here.

6.5 Overall Output-feedback RMPC Algorithm

In this section, we describe the implementation of the algorithm and give a summary of

the overall output-feedback RMPC scheme.

The proposed scheme relies on the availability of the past input/output data, at

current time step t, to compute bounds on the state xt, which are then used in output-

feedback RMPC problem (6.36). However, no past data is available at the beginning (i.e.

t = 0). In this case, we proceed as follows. We use the a-priori bounds on x0 at t = 0

to compute u0. Then, as more data comes in, estimation horizon Ñ is incremented until

it reaches the designer prescribed value (call it Ñ0) - during this period all (available)
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6.6 Numerical Examples

past input/output data is used to compute the current state bounds. Once the desired

amount of past data (corresponding to Ñ0) has been gathered, Ñ is fixed at Ñ0 and a

moving window framework is used as discussed in Section 6.3. The overall scheme can

therefore be summarized as follows.

Algorithm 6.2: Output-feedback RMPC scheme

(1) Initially at t = 0, given y0 and a-priori bounds on x0, solve (6.36) to compute ut.

(2) Update the vectors ũ, ỹ with the newly available input/output data from the pre-

vious step.

(3) If Ñ < Ñ0, increment Ñ , else fix Ñ = Ñ0. Then, using vectors ũ and ỹ solve the

LMI/LP problem in Theorem 6.3 to compute bounds on the current state xt.

(4) Using the state bounds from step (3), check if the state is inside the OF-RCI set Z.

If so, apply terminal (invariant set) control law F forever. Otherwise, solve (6.36)

to compute ut and loop back to step (2).

Remark 6.9. Note that whilst a large value of Ñ0 means a more accurate computation

of the state-bounds (due to greater amount of data being considered in the fixed-size

moving window), it can be computationally expensive (particularly in the presence of

model-uncertainty which leads to an LMI problem instead of an LP) since the estimation

problem is solved online at every time step. Hence, the choice of Ñ0 is problem-dependent

and should be made in a way so as to find a balance between the conflicting requirements

of computational complexity versus state-bound accuracy.

Remark 6.10. By imposing that the terminal control law is constraint admissible, re-

cursive feasibility of the overall output-feedback RMPC algorithm can be ensured in the

usual way. In this case, it can be shown that the control sequence computed at time

t can be shifted and appended with the terminal control law F to yield the sequence

{u(t+ 1|t), · · · , u(t+N − 1|t), F} which remains feasible at the next time step t + 1.

Moreover, under certain conditions, it should be possible to establish stability of the pro-

posed scheme in a manner similar to the state-feedback case (Section 3.4.4). Though this

requires careful further consideration.

6.6 Numerical Examples

We now apply the proposed algorithm to two examples from the literature in order to

illustrate its effectiveness.
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6.6.1 Example 1

We first consider the double integrator example from [68]. In particular, we have

xk+1 =

[
1 1

0 1

]
xk +

[
1

1

]
uk +

[
1 0

0 1

]
ηk, yk =

[
1 1

]
xk + νk

The state-disturbance and measurement noise respectively belong to the sets:

ηk ∈ E :=
{
η ∈ R2 : −0.1 ≤ η ≤ 0.1

}
, νk ∈ V :=

{
ν ∈ R : −0.05 ≤ ν ≤ 0.05

}
The input constraints are given by: −3 ≤ uk ≤ 3, and we consider (tightened) state

constraints given by [−12 − 12]T ≤ x ≤ [3 3]T . We have the cost signal zk := [xk uk]
T

and cost weighting Qk = diag(0.3, 0.3, 0.01), ∀k. The OF-RCI set and the corresponding

controller, computed through a single iteration of Algorithm 6.1, are given by:

Z :=

{
x ∈ Rn :

[
−0.3802

−0.4177

]
≤

[
0.4269 0.0198

−0.0368 0.2954

]
x ≤

[
0.3802

0.4177

]}
, F = −0.7209 ,

(6.66)

and this Z is used as the terminal constraint set. We consider the control and estimation

horizons to be N = 10 and Ñ0 = 3. Finally, to remain consistent with [68] which considers

x0 = [−3;−8], we set initial state bounds as: [−3.02;−8.02] ≤ x0 ≤ [−2.98;−7.98].

Figure 6.1: State bounds trajectory for Example 1, with ηt and νt uniformly distributed
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Figure 6.2: Control input for Example 1, with ηt and νt uniformly distributed

Since the system is subject to disturbances only, we use the LMI conditions given in

Remark 6.3. Figure 6.1 shows the simulation results with random process disturbance

ηt as well as measurement noise νt (both uniformly distributed). The red rectangles

represent the state-bounds which, for this uncertainty-free system, are computed through

the Linear Program given in Remark 6.6. Furthermore, the yellow polytope represents

OF-RCI set in (6.66). The state, which of course is unavailable in the algorithm, is

shown in Figure 6.1 (blue line) simply for reference purposes. We see that, despite

the action of persistent disturbance and noise, the proposed output-feedback RMPC

algorithm yields convergence to the RCI set - at which point the terminal control law

F takes over. The figure also shows that the state estimation bounds, computed using

the results in Section 6.3, are accurate (they are in fact tight in this case) and produce

good regulation performance. The computed control input, shown in Figure 6.2 is also

constraint admissible. Note here that the control input is in fact on the constraint

boundary at t = 1, which verifies that constraints have indeed been incorporated in the

formulation in a non-conservative manner.

6.6.2 Example 2

We re-consider the control of a paper-making process from Chapter 3 [107]. The system,

shown in Figure 6.3, consists of process states x = [H1 H2 N1 N2]T , where H1 and N1

denote liquid level and composition of the feed tank, respectively, and H2 and N2 denote

liquid level and composition of the headbox, respectively. The control input vector is
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Figure 6.3: Schematic of Paper Machine Headbox

given by u = [Gp Gw]T , where Gp is the flow rate of stock entering the feed tank and Gw

is the recycled white water flow rate. All variables are normalized (i.e. they are zero in

steady state) and only noisy measurements of H2 and N2 are available.

The consistency and composition of white water is a source of uncertainty within the

dynamics, particularly in the state N1 and input Gw. Moreover, disturbance ηt affects all

four states and νt denotes the output measurement noise. The discrete-time dynamics,

sampled at 2 minutes [107], are given by (6.1) with:

A=


0.0211 0 0 0

0.1062 0.4266 0 0

0 0 0.2837 0

0.1012 −0.6688 0.2893 0.4266

, Bu=


0.6462 0.6462

0.2800 0.2800

1.5237 −0.7391

0.9929 0.1507

, Bw=


1 0

1 0

1 0

1 0

, Bp=


0

0

1

0


Cq =

[
0 0 0.2 0

]
, Dqu =

[
0 0.2

]
, Cy =

[
0 1 0 0

0 0 0 1

]
, Dyw =

[
0 1

0 1

]

Figure 6.4: Output-regulation results for Example 2 with ηt and νt uniformly distributed
and worst-case uncertainty
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Figure 6.5: States x1 and x3, with the computed upper- and lower-bounds

The process disturbance and output measurement noise are respectively characterized by

the sets:

ηk ∈ E :=
{
η ∈ R : −0.1 ≤ η ≤ 0.1

}
, νk ∈ V :=

{
ν ∈ R : −0.05 ≤ ν ≤ 0.05

}
The control objective is to regulate both outputs subject to physical system constraints:

−3 ≤ H1, H2 ≤ 3, −5 ≤ N1, N2 ≤ 5, and −1.5 ≤ u1, u2 ≤ 1.5. For the cost, we consider

the parameters: N = 3, Ñ0 = 4, and Q = 2I.

Figures 6.4, 6.5 and 6.6 show the simulation results. From Figure 6.4, we see that the

proposed algorithm is able to produce good output-regulation in both y1 and y2 despite

persist worst-case uncertainty and randomly distributed disturbances.

Figure 6.5 shows the upper- and lower-bounds for the unmeasured states x1 and x3.

For comparison, the actual states are also included in these figures (solid blue lines). We

note that the computed bounds in fact touch the state x1 at some places which verifies

Figure 6.6: Computed control input for Example 2
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their accuracy. The control inputs, shown in Figure 6.6, also satisfy the constraints and

oscillate around the origin due to persistent random disturbances and uncertainty.

6.7 Summary

In this chapter, we have extended the results of Chapters 4 and 5 to the output-feedback

case. In particular, an algorithm for the output-feedback RMPC Control of constrained,

linear discrete-time systems subject to norm-bounded model-uncertainties, disturbances

and measurement noise has been proposed.

The novelty lies in the fact that the algorithm computes, online, both the output-

feedback gain and a control perturbation through an LMI optimization. Moreover, unlike

most output-feedback MPC schemes from the literature which use a fixed (linear) state

observer, the proposed algorithm uses a past input/output data window - in a manner

similar to Moving Horizon Estimation - to compute (tight) bounds on the current state.

These bounds are then used within the output-feedback control scheme in place of the

actual (unmeasured) state.

A new algorithm to simultaneously compute, offline, an output-feedback RCI set and

terminal control law has also been presented. The volume of the RCI set is enlarged

iteratively through convex optimizations. Incorporation of such an RCI set as a target

set helps to ensure recursive feasibility of the RMPC algorithm. Finally, the effectiveness

of the proposed scheme has been demonstrated through numerical examples taken from

the literature.
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Chapter 7

Conclusions

In this chapter, we summarize the main contributions of the thesis and also suggest some

future research directions.

7.1 Main Contributions

The focus of this research has been on the development of efficient algorithms - based on

convex/LMI optimizations - for robust control of constrained, norm-bounded uncertain

systems (6.1). In this regard, the main contributions of the thesis are summarized below:

Robust Control Invariant Sets

• An algorithm for the computation of (hyper-rectangle) RCI sets, and the corre-

sponding control law, for linear systems subject to parametric uncertainties and

disturbances has been presented in Chapter 3. The algorithm computes both the

RCI set and controller K in one step through LMI optimizations. Furthermore, for

a given K, the invariant set can be computed through a simple linear program. It is

also shown that for systems with only disturbances, the conditions in Theorem 3.1

are necessary and sufficient and hence, in this case, the optimal invariant set and

K can be computed exactly.

• Computation of low complexity RCI (LC-RCI) sets, which - as target sets - hold

significant advantages for the associated RMPC schemes, has been investigated in

Chapter 4. Due to the presence of (norm-bounded) model uncertainty as well as the

fact that both the invariant set and K are being considered as decision variables, the

problem becomes non-convex with nonlinear terms of the form CTXC and XAY

134



7.1 Main Contributions

(where X, Y and C are variables). To deal with this, we have proposed new results

in Theorems 4.2 and 4.3 which separate bilinear terms in the diagonal/non-diagonal

matrix entries without introducing any conservatism. Furthermore, these results

being general in nature have potential applications in other problem areas such

as Lyapunov stability. Application of these theorems yields an algorithm based

of convex/LMI optimizations. To deal with triple product terms, identity (4.43) is

proposed which also ensures set-volume optimization and recursive feasibility of the

iterative algorithm. It is also shown that for uncertain systems, maximal/minimal

volume hyper-rectangle RCI sets can be computed in one-step.

• A relatively new area of set-invariance under output-feedback has been studied

in Chapter 6. In particular, results from Chapter 4 have been extended for the

simultaneous computation of an output-feedback LC-RCI set and the corresponding

control law for uncertain systems using convex optimization. To incorporate extra

degrees of freedom, the algorithm in Theorem 6.4 also considers vector d (in (6.48))

as a variable, whilst still retaining key algorithm properties from Chapter 4, such

as recursive feasibility and volume enlargement.

State-feedback RMPC

• A feedback RMPC algorithm for constrained systems with parametric uncertainty

and disturbances has been proposed in Chapter 3. The scheme considers both the

state-feedback gain and control perturbation as decision variables in the online op-

timization. The non-convexity associated with such a parameterization is avoided

by adopting a sequential approach based on Dynamic Programming. The RMPC

controller minimizes an upper-bound on the cost-to-go at each prediction step and

incorporates state/input constraints in a non-conservative manner. The proposed

cost function includes a negatively weighted disturbance term which helps to im-

proves robustness (as in H∞ control). Furthermore, conditions for the Lyapunov

stability of the closed-loop uncertain system have also been derived.

• Two novel methods to obtain convexity in the state-feedback RMPC problem for

norm-bounded uncertain systems (5.3) have been proposed in Chapter 5. Unlike the

sequential approach of Chapter 3, here the state-feedback gain matrix - which has

a lower block triangular structure for causality - and control perturbation sequence
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are computed simultaneously in one-step. It is shown through initial formulation

that the problem is convex for disturbed systems but becomes nonlinear and non-

convex (in K) in the presence of model-uncertainty. Then, in the first approach,

a new result that uses slack-variables to extend Lemma 5.1 is proposed in Theo-

rem 5.3. This result is quite general in nature and enables the RMPC control law

to be computed through LMI optimizations.

• The second RMPC approach in Chapter 5 re-parameterizes, online, the norm-

bounded uncertainty as a polytopic disturbance without introducing extra conser-

vatism. This again results in a tractable RMPC scheme based on LMI optimiza-

tions. An RCI set - which can be designed using the results from Chapter 4 - is

considered as a target set with the corresponding terminal control law. This helps

to ensure recursive feasibility and stability of both the algorithms in the standard

way.

Output-feedback RMPC

• An output-feedback RMPC scheme has been formulated in Chapter 6 for norm-

bounded uncertain systems (6.1) for which only noisy output measurements are

available. The formulation consists of first computing the current state bounds and

then using this information to generate an output-feedback predictive control law.

The novelty lies in the fact that unlike most schemes in the literature which employ

a fixed linear observer, we use a moving window of the past input/output data, in

a manner reminiscent of moving horizon estimation. Upper and lower-bounds on

the current state are computed online through LMI optimizations, with the bounds

being tight in the case of unstructured uncertainties. Moreover, it is also shown

that for systems with only disturbances, tight bounds on the current state can be

computed using simple linear programs.

• The current-state bounds are subsequently used to compute an output-feedback

RMPC control law for system (6.1). The control formulation - which is originally

nonlinear and non-convex in output-feedback gain K - is rendered convex through

the use of Theorem 5.3. The RMPC control law minimizes a cost function and is

responsible for driving the (unmeasured) state to a designed output-feedback LC-

RCI set. Finally, in the case that the current-state bounds belong to this invariant

set, then the (corresponding) terminal control law is applied for all times.
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7.2 Future Research Directions

We now outline a few potential future research directions.

• The focus of this research has been on the computation of LC-RCI sets since

they hold computational advantages - as terminal sets - for the associated RMPC

schemes. However, it would be useful to extend the results of Chapter 4 to more

general RCI sets (i.e. considering a non-square C in (4.4)). In this regard, note

that conditions (4.8)-(4.10) also hold for a non-square C. However, the challenge

is to convexify these conditions in a minimally conservative manner.

• Throughout this thesis, we have considered ∆ as a norm-bounded model-uncertainty.

In theory, it should be possible to extend the results to formulate fault-tolerant

RMPC schemes. In that case ∆ can be considered as a binary variable. So ∆ = 0

could correspond to system faults such as an actuator failure or loss of signals.

Research in this direction could yield some interesting results.

• The estimation procedure in Section 6.3 computes bounds (on the current state xk)

which are of the form:

xk ≤ xk ≤ xk

However, improved results can potentially be obtained if we parameterize the

bounds in the form:

−d ≤ Ckxk ≤ d

where d is a vector of ones and matrix variable Ck ∈ Rn×n is of full rank. In

principle, the formulation should follow the same path as in Chapter 4 for LC-RCI

sets. However, the computational complexity of the estimation problem will require

careful consideration since the bounds need to be computed online at each time step

for output-feedback RMPC (Chapter 6).
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[33] CET Dórea. Output-feedback controlled-invariant polyhedra for constrained linear

systems. In Proceedings of the 48th IEEE Conference on Decision and Control held

jointly with the 28th Chinese Control Conference, 2009. 122
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