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Abstract

A state estimator is an algorithm that computes the current state of a time-varying system from

on-line measurements. Physical quantities such as measurements and parameters are characterised by

uncertainty. Understanding how uncertainty affects the accuracy of state estimates is therefore a pre-

requisite to the application of such techniques to real systems. In this paper we develop a method of

uncertainty analysis based on linear fractional transformations (LFT) and obtain ellipsoid-of-confidence

bounds by recasting the LFT problem into a semidefinite programming problem (SDP). The ideas are

illustrated by applying them to a simple water distribution network.

1 Introduction

State estimation is defined as the computation of the minimum set of values necessary to completely describe

all other pertinent variables in a given system from some measurement data [19]. When applied to water

or gas distribution networks it can be viewed as an on-line monitoring system capable of tracking the time

varying flows and pressures in real-time. In power systems, voltages and power flows can be estimated.

The state estimator algorithm maps the available new information (from measurements) into a state-

space using an over-determined set of (non-linear) equations. This is typically formulated as a projection

resulting in a minimisation problem, e.g. weighted least squares (WLS). In general, static state-estimation

can be categorised according to the minimisation cost function used; either a quadratic, e.g. weighted least

squares, or a non-quadratic function. A great number of papers on power systems state estimation have

concentrated on variations on the WLS theme by including different methods of bad data detection and

identification. Examples include identification by elimination [22], hypothesis testing identification [15],
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combinatorial optimisation identification [16] and non-quadratic criteria [13]. Irving et al [14] suggested a

method for weighted least absolute values (WLAV) estimation formulated as a linear program that has also

been used for water distribution networks [21]. WLAV is normally considered more robust in the presence of

bad data because it selects the n ‘best’ measurements where n is the number of state variables and ignores

the remaining measurements. However, WLS is considered to be more robust than WLAV where the data

are noisy [20].

Measurement uncertainty is anticipated by the above methods but there has been little work, in this

applied field, on the effects of the combination of measurement and parametric uncertainty. Bargiela and

Hainsworth [2] introduced the idea of incorporating measurement bounds with the aim of increasing the

robustness of state estimation under uncertainty. This idea was developed by Brdys and Chen [4], and

Gabrys and Bargiela [8], as the so-called set-bounded state estimation problem (SBSE). In SBSE, the aim is

to define only the region in which the solution must lie. As a result, one can obtain upper and lower bounds

on all the state variables but not the state estimate itself. The traditional (e.g. WLS) state estimation

methods are referred to as point state estimators (PSE), since they produce a point in state-space.

Optimisation criteria such as regularised least squares, ridge regression and total least squares permit,

in one way or another, the incorporation of a priori information about the unknown parameters in the

problem statement e.g. [12]. In recent years many new algorithms have been proposed to solve the total

least squares (TLS) problem of Ax ≈ b (with uncertainties in A and b). For example, Chandrasekaran et

al [5] formulate a parameter estimation problem in the presence of bounded data uncertainties and solve

the optimisation problem to obtain a solution in terms of the unique positive root of a secular equation.

Alternatively, the structured total least norm (STLN) formulation and algorithm described in [18] preserves

the problem structure for solving problems related to TLS and permits the minimisation of error in different

norms.

Doyle [6] introduced the concept of LFTs in order to examine the robustness of dynamic control systems

under parametric uncertainty. El Ghaoui and Lebret [11] consider robust least squares (RLS), and structured

robust least squares (SRLS) formulations with unknown but bounded data matrices and minimise the worst-

case residual error using (convex) semidefinite programming techniques and interior point methods. They

also use the linear fractional representation introduced by Doyle [6] to pose the problem as a linear fractional

SRLS problem, in which the computation of the worst-case residual is NP-complete.

The LFT approach provides a representation of the matrices containing uncertain data, preserving the

structure of the uncertainties, and allows us to deal with the uncertain part of the system separately from

the nominal system. The solution of the LFT problem is an NP-hard problem. El Ghaoui and Calafiore [10]

have recently shown how the LFT problem can be recast into a robust semidefinite programming problem

(SDP). The upper and lower confidence bounds can then be obtained by solving the SDP.
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The paper is organised as follows. In Section 2 we present state estimation algorithm and discuss the

ill-conditioning of the Jacobian matrix. In Section 3 we obtain the linear fractional transformation of the

linearised system equation. We discuss the method of El Ghaoui and Calafiore [10] in brief in Section 4

and use the LFT/SDP approach to formulate the uncertainty analysis problem for state estimation. The

ideas are illustrated by a simple example of a twelve node water distribution network. Numerical results are

obtained using MATLAB and ellipsoid-of-confidence bounds are reported, along with discussions, in Section

5. Finally, the conclusions are given in Section 6.

2 State Estimation Algorithm

When applied to a water distribution network a state estimator ideally provides the best possible information

about the flows and pressures given all the available data. A water distribution system comprises a network

of interconnected reservoirs, pipes, pumps and valves. The relationship between flow and pressure for each

component is modeled using a non-linear equation of the form:

q = f(∆p1/α) (1)

where q and ∆p refer to flow through and pressure across the element respectively. The function f(·) is

nonlinear, smooth in the case of pipes and static valves but nonlinear and nonsmooth in the case of all other

components. The exponent α is typically in the range 1.0 < α ≤ 2.0. An example of the flow in a pipe from

node i to node j is the Hazen-Williams flow formula:

qij = Ω(hi − hj)|hi − hj |−0.46

Ω = KuCijD
2.63
ij L−0.54ij

(2)

whereKu is a units based constant, Dij is the diameter, Cij is called the Hazen-Williams constant (effectively

a conductance term) and Lij is the length. The pressures are represented as heads (metres of water column)

hi and hj at nodes i and j respectively.

The set of network equations are formulated to guarantee the satisfaction of Kirchoff’s laws and can be

set up as nodal equations e.g. [19] or loop equations as in [1].

A state estimator is based on this mathematical model of the network. Let z̃ ∈ Rm denote the set

of measurements, x̃ ∈ Rn the vector of state variables, g(·) the nonlinear relation between the measured

variables and the state variables, and ε ∈ Rm the measurement error vector. A necessary but not sufficient

condition for state estimation is m > n. Then a state estimator can be mathematically represented as:

z̃ = g(x̃) + ε (3)
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where ε contains the measurement uncertainty and represents the discrepancy between the model and the

real system. Traditionally, the following is believed to hold for ε:

E(ε) = 0 (4)

E(εεT ) = R (5)

where E is the expectation operator, and the measurement error covariance matrix R is such that:

Rij =







σ2i i = j

0 i 6= j.
(6)

The state estimates are said to be unbiassed if and only if (4), (5) and (6) hold true.

The solution to (3) can be found by minimising the WLS cost function:

min
x̃
F (x̃) = (z̃ − g(x̃))TR−1(z̃ − g(x̃)). (7)

We obtain the linearised form of the estimation problem from the first two terms of a Taylor series expansion

of (3) about an iteration point x0:

z = Jx+ ε (8)

where z = z̃−g(x0), i.e the measurement residual vector; x is the vector of incremental changes in the state,

i.e. the difference between the next value of the state estimate and the current iterate, and J ∈ Rm×n,

m > n, is the Jacobian of g(x0). The normal equations method calculates the state vector of incremental

changes by solving the linear system:

[

JTR−1J
]

x =
[

JTR−1
]

z. (9)

Theoretically, a necessary and sufficient condition for the existence of a solution to (9) is that J is of full

rank. However, the conditioning of J is often very poor which, combined with the uncertainties in both the

parameters and measurements and the limited measurement redundancy, can lead to unrealistic results.

3 Uncertainty Modelling for the State Estimation

An uncertain parameter pi in the model can be written as pi = poi +∆pi where p
o
i is the nominal value

of the parameter and ∆pi represents an unknown perturbation of the nominal value. This perturbation

is constrained to an uncertainty set which represents the possible values of the perturbation. It is more

straightforward to let all the different uncertainties belong to the same uncertainty set. This is accomplished

by introducing a scaling factor to each perturbation such that pi = poi + δip̄i. The uncertainty set that

δi belongs to can now be of any magnitude as p̄i scales the uncertainty to the one corresponding to the

perturbed parameter. The most obvious choice of the uncertainty set is when the magnitude is unity, i.e.,

for the real parameters, δi ∈ [−1,+1].
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3.1 Linear Fractional Representation

Taking into consideration the deterministic uncertainty in the network parameters pi appearing in the Ja-

cobian matrix J , the measurement noise corrupted linearised system equation shown in (8), where ε is the

stochastic uncertainty, can be written as:

z = J(p1, p2, . . . , pk)x+ ε (10)

where, pi = poi + δip̄i for i = 1, 2, . . . , k, and − 1 ≤ δi ≤ 1. (11)

Hence ε has now been redefined to represent just the measurement uncertainty (c.f. (8)) and, referring to

(2), the parametric uncertainty (which can be due to any or all of the physical parameters) is contained in

Ω. For generality we let pi denote the uncertain parameters; k being the number of uncertain parameters.

Rewriting (11) in terms of the nominal and the perturbed parameters we obtain:

z = Jo(p
o
1, p

o
2, . . . , p

o
k)x+

k
∑

i=1

δiJi(p̄i)x+ ε (12)

where Jo represents the nominal system. We can separate out the perturbations affecting Jo and then collect

them in a diagonal matrix ∆ with the perturbations along its diagonal, as shown below.

Defining the following variables, of appropriate dimensions,

ξo = βωo = ε ωo = δoξo such that β = 1/δo

ξi = Ji(p̄i)x ωi = δiξi for i = 1, 2, . . . , k
(13)

where

δo, δi ∈ [−1,+1] (14)

equation (12) becomes:

z = Jo(p
o
1, p

o
2, . . . , p

o
k)x+

k
∑

i=1

ωi + βωo, (15)

and collecting equations (13) and (15) in a matrix form we have:

[

ξ

z

]

= M

[

ω

x

]

=

[

M11 M12

M21 M22

][

ω

x

]

(16)

and

ω = ∆ξ for some ∆ ∈∆, where ∆ = {∆ | ‖∆‖∞ ≤ 1}, (17)

together with,

ξ =
[

ξTo ξT1 ξT2 . . . ξTk
]T

and

ω =
[

ωTo ωT1 ωT2 . . . ωTk
]T
,

(18)
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and the block diagonal matrix ∆ given by:

∆ = diag(δoIm, δ1Im, δ2Im, . . . , δkIm) (19)

where Im denotes an identity matrix of dimension m×m.

From (16) and (17) we obtain the following equation:

z = Fu(M,∆)x, ∀ ∆ ∈∆ = {∆ | ‖∆‖∞ ≤ 1} (20)

where the interconnection matrix Fu(M,∆) is given by:

Fu(M,∆) =M22 +M21∆(I −M11∆)−1M12. (21)

The matrix in (21) is known as the upper linear fractional transformation (LFT) of the uncertain system

represented by equations (16) and (17). The physical meaning of the LFT shown in Figure 1, and defined

by (21), is that it represents the closed-loop transfer matrix from x to z where M is the plant matrix. The

LFT Fu(M,∆) has a nominal mapping M22 and is perturbed by ∆; the mappings M11 , M12 , and M21

reflect a priori knowledge as to how the perturbation affects the nominal map M22 [23]. In a similar fashion

a lower LFT can be defined. More on LFTs and their interesting properties can be found in [7, 23].

- -
-

�
∆

M

ω

x

ξ

z

Figure 1: LFT representation of the uncertain system given by equations (16) & (17).

The main advantage of an LFT representation is that it separates the uncertainties from the nominal

system. In robust control engineering terminology this principle is said to “pull out the uncertainties” [23].

The LFT introduced above is said to be well-posed if the determinant det(I −M11∆) 6= 0. But it may

not necessarily be well-posed over ∆, and it might happen that det(I − M11∆) = 0 for some ∆ ∈ ∆.

Checking well-posedness is the equivalent of solving (20), which is an NP-hard problem, known in robust

control theory as the µ or structured singular value (SSV) analysis problem, addressed in [7].

4 Uncertainty Analysis using SDP Approach

We now follow the ‘robust semidefinite programming’ (SDP) approach of El Ghaoui and Calafiore [10]

to solve (20).
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Under the assumption that the LFT is well-posed, we can approximate the uncertain input-output relation

by a set of quadratic constraints. In conjunction with the S-procedure for linear matrix inequalities (LMI)

we obtain the ellipsoids of confidence, of minimal size in a certain geometrical sense, by recursively solving

a semidefinite programming problem.

The basic problem at hand is to compute an ellipsoid of confidence for the state estimates x, where:

X = {x | z = Fu(M,∆)x for some ∆ ∈∆}. (22)

Let us model an ellipsoid that we seek as a confidence region for the state estimates as:

E = {x | P � (x− x̂)(x− x̂)T } (23)

where x̂ denotes the centre of the ellipsoid and P = PT � 0 is a symmetric positive-definite matrix that

determines the shape of the ellipsoid. The size of the ellipsoid is measured by the sum of the squares of the

semi-axis length of the ellipsoid i.e. the Trace of P , denoted by TrP .

We seek to minimise the size of the ellipsoid E subject to (22) for every ∆ ∈∆. Our problem, therefore,

reduces to the following robust semidefinite program:

min

x,P

TrP (24)

such that P � 0, and
[

P x̂−Fu(M,∆)†z

(x̂−Fu(M,∆)†z)T I

]

� 0

for every ∆ ∈∆ = {∆ | ‖∆‖∞ ≤ 1}

(25)

where † denotes the Moore-Penrose pseudo-inverse of the over-determined rectangular matrix Fu(M,∆).

Intervals of confidence for x (complementary bounds for the point state estimate) can be obtained by

projecting the ellipsoid of confidence on the coordinate axes:

xlj = x̂j −
√

Pjj and xuj = x̂j +
√

Pjj (26)

where j represents the jth coordinate axes or the jth component of the state vector x, and xuj and xlj denote

the upper and lower ellipsoid-of-confidence bounds on the state estimates, respectively, such that:

xlj ≤ xj ≤ xuj . (27)

To obtain the ellipsoid-of-confidence bounds we solve the semidefinite programming problem (24) subject

to (25). The linear matrix inequality (25) is represented using MATLAB and the semidefinite program is

solved using the LMI control toolbox available with the MATLAB package. The optimisation function

for solving the SDP in MATLAB uses the interior point algorithm for SDP developed by Nesterov and

Nemirovski [17, 9].
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5 Illustration by an Example

The ideas discussed in this paper are applied to a small water distribution network to illustrate the concept.

For the network shown in Figure 2 the network topology and parameter values are given in Table 1. In this

test network there are two fixed head nodes, 13 and 14, which represent the reservoirs. The water network is

simulated using the mathematical package MATLAB, which solves an exact set of nonlinear flow and mass

balance equations and thus provides a steady state flow model.

Any choice of meter coverage is arbitrary. In the example, a uniform coverage has been chosen in that

each node has exactly one pressure transducer. In addition, each node has a demand, di, representing the

supply to consumers. Thus m = 24 and n = 12. In strategic water supply networks metering redundancy

levels are approaching this richness. Furthermore, power systems often have redundancy levels m/n ≥ 2. In

water distribution networks, however, the redundancy level could be much lower.

To simulate real measurements we perturb the simulated heads and nodal demands by choosing from a

Gaussian distribution of random values where ±3σ ≡ ±25%. Furthermore, the parametric uncertainties are

represented as a flat distribution of C values bounded by ±10% of the nominal value. Example values are

shown in Table 1 together with the remaining network parameters.

In order to compare the results with previous methods, a conventional WLS state estimation problem

(which can only deal with measurement uncertainty) is run on the data. Alongside this we present the

results from the LFT/SDP approach with uncertainty in both the measurements and the parameters. The

confidence bounds are calculated using equations in (26) and are presented, together with the WLS state

estimates, in Table 2.

Figure 2: Example water network: 12 nodes.
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Table 1: Example water network: data.

Network parameters Measurements

Link FromTo Length Diameter C Ω Nodes Demand Fixed

(m) (mm) values (c.f. (2)) (l/s) heads (m)

1 1 13 460 250 90 23.7793 1 5

2 2 1 400 250 90 25.6434 2 5

3 9 2 320 250 100 32.1414 3 5

4 3 13 140 250 85 42.6928 4 5

5 4 3 200 250 110 45.5703 5 10

6 5 4 300 250 90 29.9531 6 5

7 6 13 500 250 100 25.2581 7 5

8 9 6 620 250 90 20.2393 8 5

9 8 9 285 250 120 41.0592 9 10

10 14 3 460 250 120 31.7057 10 5

11 14 10 160 250 130 60.7524 11 5

12 10 11 170 250 75 33.9206 12 5

13 11 12 145 250 80 39.4272 13 100

14 12 8 340 250 75 23.3296 14 120

15 12 7 320 250 60 19.2848

16 7 5 130 250 90 47.0499

5.1 Discussions

In reality, water, power and gas distribution networks are of a much higher dimension, e.g. 500 to 1000 times

larger than the simple example shown here. Nevertheless, some interesting observations can be made.

Within the LFT/SDP algorithm uncertainty values in ∆ (measurement and parameter) are computed in

the range [−1, 1] and the input measurement data is also corrupted by noise (as it is in the WLS estimator),

on the other hand the WLS parameter values are considered exact. Therefore, the LFT/SDP approach

highlights the likely effect of parametric and measurement uncertainty on flow and pressure calculations,

which is an important adjunct to the estimates themselves.

When equations (4) – (6) are satisfied (which also implies that there is no bad data), a weighted least

squares state estimator is termed ‘BLUE’ (best linear unbiassed estimator). However, due to the large amount
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of measurement noise present (e.g. 25%), we see fairly large discrepancies between the simulated values and

the WLS estimates. Interestingly, the values of the centre of the ellipsoid are closer to the simulated values

in every instance except those for the nodes directly connected to the reservoirs. Studies into this result

for larger, more realistic networks, are on-going and will be the subject of a subsequent publication. The

LFT/SDP algorithm was developed to compute the confidence bounds on the state estimates and whilst the

centre of the ellipsoid could be interpreted as an estimate, it is not guaranteed optimal. According to [18],

the TLS method is sensitive to small perturbations and the method used, which is based on singular value

decomposition (SVD), does not preserve the structure. Furthermore, it yields only approximate solutions. To

resolve this, various regularisation methods have been developed to improve the conditioning of the matrices

but in so doing they introduce a small amount of bias to the problem. Also the choice of the regularisation

parameter is very much problem dependent. This point also applies to the σi values in WLS estimation,

which are required a priori but which are rarely known exactly. In comparison, the LFT uses a more or less

arbitrary range of values to define the original confidence in the parameters and measurements.

The set-membership method can be used to deal with Ax ≈ b problems with A, b uncertain but SBSE is

restricted to additive uncertainty whereas the LFT approach could be extended to deal with multiplicative

uncertainty. Furthermore, SBSE leads to a non-convex programming problem [4] and therefore a brute force

method has to be used to transform the non-convex program into (say) an LP. However, the LFT approach

leads directly to a convex optimisation problem.

The provision of bounds as in SBSE methods, which define a region in state-space, is less helpful than

the computation of an ellipsoid of confidence, the principal axes of which could be successively reduced to

produce an optimal point or at worst a line in the degenerate case. However, as we can see above, using the

centre directly may well be sufficient.

6 Conclusions

For the state estimation to produce accurate results it is important to know the reliability of the measure-

ments which are contaminated by noise and the uncertain parameters appearing in the system equations.

In this paper we have shown how the LFT/SDP based formulation can be used to obtain the confidence

bounds on the state estimates in the context of a water distribution network. The following conclusions can

be drawn:

• Whereas the WLS methods produce point state estimates in the presence of only measurement noise,

the proposed LFT/SDP approach produces confidence-of-ellipsoid bounds in the presence of measure-

ment noise as well as parametric uncertainty. The centre of the ellipsoid is a robust estimate and could

be interpreted as a best point estimate.
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Table 2: Comparison of simulated states, estimated states, and ellipsoid-of-confidence bounds for the state

estimates.

Nodes State variables (m) Confidence limit on state estimates (m)

Simulated Estimated Lower bound Centre of ellipsoid Upper bound

(WLS) (using LFT/SDP approach)

1 100.3078 100.2392 100.0794 100.7263 101.3733

2 100.8050 100.6799 100.1575 100.8228 101.4880

3 106.9645 106.7936 106.7568 107.4071 108.0574

4 106.9644 106.7903 106.3251 106.9758 107.6265

5 106.9996 106.8080 106.3600 107.0211 107.6821

6 100.3694 100.3039 100.1437 100.7923 101.4408

7 107.1186 106.9194 106.4617 107.1302 107.7988

8 102.8926 102.7086 102.1859 102.9145 103.6431

9 101.3252 101.1742 100.6577 101.3393 102.0208

10 117.8329 117.7726 117.6141 118.2563 118.8986

11 112.0816 111.9137 111.4346 112.0978 112.7610

12 108.1793 107.9782 107.5360 108.2098 108.8837

• An LFT formulation provides a unified approach to model measurement noise (Gaussian) as well

as parametric uncertainty (deterministic) in the same framework, and reduces to a SDP (a convex

optimisation problem). This is an advantage of the proposed method over the SBSE approach which

models the measurement noise (as well as uncertainty) as a flat distribution.

• We have shown that the LFT/SDP approach is an effective method for solving the problem of uncer-

tainties on both sides of Ax ≈ b.

• By providing bounds on the estimates one can infer the quality of the metering configuration and

determine whether the installation of new meters would be desirable.

• Although couched in the context of water networks, the approach could be used for a wide range of

systems having models of a similar type.
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