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Abstract

Systems of nonlinear ordinary differential equations (ODEs) are used to model

an incredible variety of dynamic phenomena in chemical, oil and gas, and pharma-

ceutical industries. In reality, such models are nearly always subject to significant

uncertainties in their initial conditions, parameters, and inputs.

This dissertation provides new theoretical and numerical techniques for rigor-

ously enclosing the set of solutions reachable by a given systems of nonlinear ODEs

subject to uncertain initial conditions, parameters, and time-varying inputs. Such sets

are often referred to as reachable sets, and methods for enclosing them are critical

for designing systems that are passively robust to uncertainty, as well as for optimal

real-time decision-making. Such enclosure methods are used extensively for uncer-

tainty propagation, robust control, system verification, and optimization of dynamic

systems arising in a wide variety of applications.

Unfortunately, existing methods for computing such enclosures often provide

an unworkable compromise between cost and accuracy. For example, interval methods

based on differential inequalities (DI) can produce bounds very efficiently but are

often too conservative to be of any practical use. In contrast, methods based on

more complex sets can achieve sharp bounds, but are far too expensive for real-time

decision-making and scale poorly with problem size.

Recently, it has been shown that bounds computed via differential inequalities
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can often be made much less conservative while maintaining high efficiency by exploit-

ing redundant model equations that are known to hold for all trajectories of interest

(e.g., linear relationships among chemical species in a reaction network that hold due

to the conservation of mass or elements). These linear relationships are implied by

the governing ODEs, and can thus be considered redundant. However, these advances

are only applicable to a limited class of system in which pre-existing linear redundant

model equations are available. Moreover, the theoretical results underlying these al-

gorithms do not apply to redundant equations that depend on time-varying inputs

and rely on assumptions that prove to be very restrictive for nonlinear redundant

equations, etc.

This dissertation continues a line of research that has recently achieved very

promising bounding results using methods based on differential inequalities. In brief,

the major contributions can be divided into three categories: (1) In regard to algo-

rithms, this dissertation significantly improves existing algorithms that exploit linear

redundant model equations to achieve more accurate and efficient enclosures. It also

develops new fast and accurate bounding algorithms that can exploit nonlinear re-

dundant model equations. (2) Considering theoretical contributions, it develops a

novel theoretical framework for the introduction of redundant model equations into

arbitrary dynamic models to effectively reduce conservatism. The newly developed

theories have more generality in terms of application. For example, complex nonlin-

ear constraints that involve states, time derivatives of the system states, and time-

varying inputs are allowed to be exploited. (3) A new differential inequalities method

called Mean Value Differential Inequalities (MVDI) is developed that can automati-

cally introduce redundant model equations for arbitrary dynamic systems and has a

second-order convergence rate reported the first time among DI-based methods.
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Chapter 1

Introduction

A huge variety of dynamic phenomena in chemical, oil and gas, and phar-

maceutical industries can be modeled by systems of nonlinear ordinary differential

equations (ODEs). In applications from the biochemical networks inside a cell to

unit operations in a chemical plant, these mathematical models are nearly always

subject to significant uncertainties in their initial conditions, model parameters, and

inputs.

The ability to quantify the effects of these uncertainties on the model solution is

essential for making optimal real-time decisions in complex, uncertain environments,

as well as for designing systems that are passively robust to uncertainty. Quantifying

uncertainty in terms of rigorous enclosures of the system states achievable under

uncertainty is uniquely useful for safety verification processes, which can guarantee

that a system will always satisfy all constraints (e.g., final product specifications,

overheat protection in a chemical reactor, etc.).

Although it has long been possible to compute such enclosures, existing meth-

ods often provide an unworkable trade-off between computational cost and enclosure

tightness. Interval methods based on differential inequalities can compute enclosures
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very efficiently, with a computational cost comparable to integrating a small num-

ber of single trajectories, but the enclosures are often too conservative to be used in

practice. In contrast, modern bounding methods that use more complex sets such as

zonotopes or ellipsoids can achieve tight bounds even for systems with high nonlin-

earity and large uncertainties, but are too expensive for real-time decision-making for

most practical systems. Therefore, it is critical to develop an alternative approach

that can generate accurate rigorous enclosures that are fast enough for real-time ap-

plications and scalable to large-scale systems.

The general objective of this dissertation is to develop theoretical and numer-

ical methods for uncertainty quantification in dynamic systems. In particular, novel

methods are developed for rapidly computing rigorous and accurate enclosures of

the solutions of nonlinear ordinary differential equations subject to bounded initial

conditions, parameters, and time-varying inputs.

In the remainder of this chapter, reachable set enclosures are discussed and

motivated in more detail, and then the core contributions of this dissertation are

summarized.

1.1 Enclosures of Reachable Sets

Consider a dynamic system described by the following ordinary differential

equations (ODEs):

ẋ(t) = f(t,u(t),x(t)), (1.1a)

x(t0) = x0. (1.1b)

2



Let I = [t0, tf ] ⊂ R be a time horizon of interest, and let X0 and U be sets of

admissible initial conditions and inputs, respectively.

Definition 1 The reachable set of the system (1.1) is defined for every t ∈ I as

Re(t) ≡ {x(t) ∈ Rnx : x is a solution of (1.1) for some (x0,u) ∈ X0 × U}. (1.2)

As the above definition shows, the reachable set is the set of all states reachable

by a given system of nonlinear ordinary differential equations (ODEs) subject to

uncertain initial conditions and model inputs. Computing the exact reachable set is

very difficult for most systems in practice. Instead, a time-varying rigorous enclosure

of Re(t) is often computed.

Reachable set enclosures are useful for quantifying the effects of uncertainty

in dynamic models arising in a variety of applications, including (bio)chemical reac-

tion networks [58, 42], autonomous vehicles [80, 3], and power systems [51, 2]. Such

methods are also widely used for control applications, where the reachable sets of

interest describe the uncertainty in a systems future evolution arising from external

disturbances, imprecisely known model parameters, and measurement errors. With

the ability to capture the behavior of all possible trajectories, enclosing these sets is

the central step in robust (i.e., set-based) state estimation [42, 54], which is in turn

essential for robust model predictive control [32], fault detection [60, 35, 53], and

safety verification [3, 14, 36]. Guaranteed conclusions are necessary in these applica-

tions because it is possible that even a million simulations will still miss some isolated

but critical scenarios. With branch-and-bound approaches, such enclosures can also

be used to compute robust design spaces for pharmaceutical process [29, 20]. Finally,

reachable set enclosures are also useful for dynamic optimization, which has applica-

tions in parameter estimation [73], open-loop optimal control [46], aircraft/spacecraft
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maneuvers [52], and batch chemical processes [75], to name only a few. In this context,

the reachable sets of interest describe the range of solutions that can be achieved by

decision variables lying in a given region of the search space, and enclosures are used

to eliminate regions by proving infeasibility or suboptimality with certainty. When

applied within a branch-and-bound framework, this enables the solution of dynamic

optimization problems to guaranteed global optimality [62, 22, 33, 49].

Note that (1.1) and its reachable set are defined here for illustration and mo-

tivation. Later, each chapter has its own problem statement that is slightly different

from (1.1) for technical reasons.

1.1.1 Existing Enclosing Methods

Although it has long been possible to compute rigorous enclosures, existing

methods often cannot provide enclosures with sufficient speed and accuracy for many

critical applications. For example, in set-based state estimation and robust control,

the desired enclosures depend on process measurements. Thus, these applications

require methods that are both fast enough for real-time implementation and accurate

enough to be useful for decision-making. Similarly, global dynamic optimization

requires accurate enclosures to avoid excessive subdivision of the search space, and

high speed because even accurate methods may still need to consider thousands of

regions [81].

Existing approaches for rigorously enclosing the reachable sets of nonlinear

ODEs can be grouped into four broad approaches: level-set approaches, Taylor series

methods, conservative linearization methods, and differential inequalities.

Level set approaches [41, 30] compute approximations of reachable sets by con-

structing and solving the Hamilton-Jacobi (HJ) partial differential equations (PDEs)
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on grids which represent a discretization of state space. Although such methods

can provide very accurate approximations of the reachable set, solving HJ PDE is

intractable when the number of states exceeds :5.

Taylor series approaches propagate enclosures of the reachable set over discrete

time steps by constructing a Taylor expansion of the state with respect to time and

bounding the coefficients with, e.g., interval arithmetic (IA) [47]. The resulting enclo-

sure is then inflated by a rigorous bound on the truncation error. Classical methods

propagate interval enclosures, which makes them relatively efficient but often very

conservative. In contrast, modern methods have achieved high accuracy in many ap-

plications by replacing interval bounds with Taylor models, which are multivariate

Taylor expansions in the model inputs with rigorous interval remainder bounds [7, 34].

Further improvements have recently been achieved through the use of Taylor models

with remainder bounds described by ellipsoids or more general sets [24, 23]. However,

achieving high accuracy with these methods often requires high-order Taylor models,

which can become intractable because the number of coefficients scales exponentially

in the number of states and model inputs [7].

Conservative linearization approaches propagate enclosures of the reachable

set over discrete time steps by first considering a locally linearized model and subse-

quently adding a rigorous bound on the linearization error [4, 5]. The key advantage

of this approach is that the reachable set of the linearized system can be enclosed very

accurately using efficient set representations such as ellipsoids or zonotopes. Mod-

ern methods of this type have been shown to produce highly accurate enclosures in

many applications [2, 3]. However, like Taylor series approaches, this often requires

very complex set representations and hence high computational cost (see, e.g., the

use of 400th order zonotopes, each described by 2406 real numbers, to enclose a

6-dimensional reachable sets in [64]).
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Finally, approaches based on differential inequalities (DI) operate by construct-

ing an auxiliary system of ODEs, twice the size of the original, that describes com-

ponentwise upper and lower bounds on the reachable set as its solutions. Harrison

[16] originally observed that such a system can be constructed automatically using

simple interval arithmetic. Moreover, this system can be solved with state-of-the-art

numerical integration codes, whereas both Taylor series and conservative linearization

methods require custom integration algorithms with significant step-size restrictions

[34, 5]. Thus, DI methods are capable of producing bounds very rapidly (i.e., at a

small multiple of the cost of integrating a single trajectory [64, 59, 61]), making DI

a potentially powerful tool for real-time control and global dynamic optimization.

However, the resulting enclosures are often extremely conservative unless the ODEs

satisfy restrictive monotonicity conditions [16]. Several methods have been proposed

to address this by enabling the use of more complex reachable set representations in

place of intervals. The work [9] proposes an interesting use of DI to compute Taylor

model enclosures. However, auxiliary ODEs are required for each Taylor coefficient,

which is prohibitive for high-order expansions. The article [77] introduces a general

framework for using DI to compute general convex enclosures. Specific implementa-

tions can be found in [65, 63, 18]. In particular, the article [18] introduces a very

effective method for computing polytopic enclosures using DI. However, this method

creates an auxiliary system of ODEs whose right-hand sides are evaluated by solving

embedded linear programs rather than using simple IA, which leads to significantly

longer computation times.

To overcome these issues, several DI methods with greatly improved accuracy

have also been developed, specifically for systems whose states are known to satisfy a

set of state constraints pointwise in time [74, 58, 64, 17, 19]. Examples of such con-

straints include physically motivated upper and lower bounds, such as nonnegativity
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of certain states [74], or algebraic functions of the states that are known to remain

constant with time due to, e.g., the conservation of mass, energy, or chemical elements

(we call such functions solution invariants) [64]. Constraints of this type are implied

by the dynamics, and are therefore satisfied by all system trajectories. Invariants are

redundant with the ODEs. In contrast, the article [19] considers state constraints

that are externally imposed, such as path constraints in the context of dynamic opti-

mization, where one is only interested in bounding the feasible trajectories. In both

cases, enhanced DI methods have been developed that can exploit these constraints

during the bounding procedure, often resulting in much tighter bounds with only a

moderate increase in computational cost [64, 17, 19]. Many numerical examples have

been shown that existing DI methods using pre-existing linear constraints are far su-

perior to many modern bounding methods in regards to both accuracy and efficiency.

In brief, this is accomplished by applying a suitably defined bound refinement oper-

ator pointwise in time during the forward propagation of the bounds. At each point

in time, this refinement operator attempts to shrink the current bounds by eliminat-

ing enclosed regions that violate the constraints. However, an evident drawback of

these DI methods is that they only apply to systems for which appropriate linear

constraints are known a priori.

1.2 Contributions

In this dissertation, Chapters 2–4 are devoted to novel methods for computing

accurate and efficient enclosures of the reachable sets of ODEs. Inspired by existing

DI methods [64] that use pre-existing linear solution invariants to reduce the conser-

vatism of the computed bounds, Chapter 2 presents a new framework for introducing

‘manufactured invariants’ into arbitrary dynamic systems to effectively reduce con-
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servatism. The new framework deliberately augments general nonlinear systems with

redundant states and differential equations such that the new augmented systems

automatically have redundant model equations that can be exploited in the bounding

procedure. Thus, this new framework has the potential to extend very effective DI

methods for systems with invariants to general dynamic systems. Several guidelines

are provided in Chapter 2 to help derive effective ‘manufactured invariants’ which

require some problem insights. Besides this new framework, Chapter 2 also devel-

ops new strategies for further increasing the efficiency and reducing the conservatism

of the bounding methods. In particular, new preconditioning techniques are devel-

oped to reformulate existing linear invariants so that the preconditioned invariants

are superior to the original ones in terms of bound tightness. A faster algorithm

that exploits linear invariants is also presented to reduce the computational cost of

the refinement procedure. Many numerical examples across different applications

clearly demonstrate that extremely effective manufactured invariants very often ex-

ist and they can be exploited to reduce conservatism, often dramatically, at modest

additional cost.

In Chapter 3, new and significantly more powerful theorems that deal with

nonlinear constraints, and corresponding refinement algorithms are developed. These

are very important because, besides linear invariants, many practical systems actu-

ally have pre-existing nonlinear invariants (e.g., oscillators and Hamiltonian systems

[71]). Moreover, nonlinear path constraints arise in a wide variety of optimal control

problems [13]. In addition, manufactured nonlinear invariants can also be generated

for arbitrary dynamic systems by using the technique introduced in Chapter 2. More-

over, the key DI theorem underlying existing methods does not permit the redundant

invariants and/or constraints to depend on uncertain parameters or time-varying in-

puts in the model. Unfortunately, there are no existing DI theorems and algorithms
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that can deal with these issues. Chapter 3 extends the existing DI methods by:

(i) Addressing problems with nonlinear invariants/constraints that depend on un-

certain time-varying inputs and state derivatives, which requires fundamentally new

supporting theories; (ii) Generalizing the refinement algorithm to treat equality and

inequality nonlinear constraints, rather than just linear constraints. The theoretical

and algorithmic contributions outlined above significantly increase the applicability

of state-of-the-art DI methods for computing sharp bounds on the solutions of uncer-

tain nonlinear systems. Problems that have been investigated in other state-of-the-art

bounding methods [77, 17, 35] are compared, and bounds with similar or even better

accuracy but at a significantly reduced cost are achieved.

Until this point, our conclusion is that DI methods that exploit constraints

can achieve sharp bounds at low cost compared with other modern methods. How-

ever, these achievements are made by using either pre-existing or manually derived

redundant model equations. Although several mechanisms are outlined in Chapter

2 to help create effective ‘manufactured invariants’, some problem-specific insights

are needed. To extend these methods to general nonlinear systems, techniques for

automatically manufacturing effective nonlinear redundant model equations are still

missing. Chapter 4 provides one way to automate the construction of redundant

model equations. In particular, a new differential inequalities method called Mean

Value Differential Inequalities (MVDI) is introduced. MVDI creates approximate al-

gebraic relations between the original states and their parametric sensitivities by a

first-order Taylor expansion. Such algebraic relations can be used in the refinement

procedure introduced in Chapters 2 and 3 to achieve sharp bounds. However, since

these algebraic relations only hold approximately, the methods developed in Chap-

ter 3 cannot be used. This is because MVDI creates approximate rather than exact

algebraic relations between the original states and sensitivities, and exploiting them
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requires fundamentally different theory and algorithms than that just using invariants.

The new theory in Chapter 4 is very useful in algorithms for globally solving opti-

mal control problems. Besides that, a new DI algorithm is presented that combines

refinements based on mean-value enclosures and existing state constraints, and also

includes an improved method for bounding the right-hand sides of the given ODEs.

Moreover, a new theory is developed for analyzing the accuracy of the computed

bounds. Specifically, it proves that the new MVDI method satisfies a second-order

convergence property with respect to the size of the uncertainty set, which has pre-

viously only been achieved for methods that use more complex sets such as Taylor

models.
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Chapter 2

Rapid and Accurate Reachability

Analysis for Nonlinear Dynamic

Systems by Exploiting Model

Redundancy

2.1 Introduction

This chapter presents as future evolution arising from external disturbances,

imprecisely known model parameters, and measuremen errors. Enclosing these sets

is the central step in robust (i.e., set-based) state estimation [42, 54], which is in

turn essential for robust model predictive control [32], guaranteed fault detection

[60, 35, 53], and safety verification [3, 14]. Finally, reachable set enclosures are also

useful for dynamic optimization, which has applications in parameter estimation [73],

open-loop optimal control [46], aircraft/s new technique for rapidly and accurately

computing a rigorous enclosure of the set of solutions reachable by a given system
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of nonlinear ordinary differential equations (ODEs) subject to a given range of in-

puts (i.e., initial conditions and model parameters). Such sets are commonly referred

to as reachable sets, and methods for enclosing them are useful for quantifying the

effects of uncertainty in dynamic models arising in a variety of applications, includ-

ing (bio)chemical reaction networks [58, 42], autonomous vehicles [80, 3], and power

systems [51, 2]. Such methods are also widely used for control applications, where

the reachable sets of interest describe the uncertainty in a systempacecraft maneu-

vers [52], and batch chemical processes [75], to name only a few. In this context,

the reachable sets of interest describe the range of solutions that can be achieved by

decision variables lying in a given region of the search space, and enclosures are used

to eliminate regions by proving infeasibility or suboptimality with certainty. When

applied within a branch-and-bound framework, this enables the solution of dynamic

optimization problems to guaranteed global optimality [62, 22, 33, 49].

Unfortunately, exiting methods often cannot provide enclosures with sufficient

speed and accuracy for many critical applications. Clearly, control applications re-

quire enclosure methods that are simultaneously fast enough to be used in real-time

and accurate enough to be useful for decision-making [3, 55]. Similarly, global dy-

namic optimization codes require highly accurate enclosures to avoid excessive subdi-

vision of the search space, but also require high speed because even the most accurate

methods may still need to consider thousands of regions to solve practical problem

instances [81]. For nonlinear systems of practical complexity, this combination of

speed and accuracy remains a significant challenge.

Existing approaches for rigorously enclosing the reachable sets of nonlinear

ODEs can be grouped into three broad approaches: Taylor series approaches, conser-

vative linearization, and differential inequalities. Taylor series approaches propagate

enclosures of the reachable set over discrete time steps by constructing a Taylor expan-
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sion of the state with respect to time and bounding the coefficients with, e.g., interval

arithmetic (IA) [47]. The resulting enclosure is then inflated by a rigorous bound on

the truncation error. Classical methods propagate interval enclosures, which makes

them relatively efficient but often very conservative. In contrast, modern methods

have achieved high accuracy in many applications by replacing interval bounds with

Taylor models, which are multivariate Taylor expansions in the model inputs with

rigorous interval remainder bounds [7, 34]. Further improvements have recently been

achieved through the use of Taylor models with remainder bounds described by el-

lipsoids or more general sets [24, 23]. However, achieving high accuracy with these

methods often requires high-order Taylor models, which can become intractable be-

cause the number of coefficients scales exponentially in the number of states and

model inputs [7].

Conservative linearization approaches propagate enclosures of the reachable

set over discrete time steps by first considering a locally linearized model and subse-

quently adding a rigorous bound on the linearization error [4, 5]. The key advantage

of this approach is that the reachable set of the linearized system can be enclosed very

accurately using efficient set representations such as ellipsoids or zonotopes. Modern

methods of this type have been shown to produce highly accurate enclosures in many

applications [2, 3]. However, like Taylor series approaches, this often requires very

complex set representations and hence high computational cost (see, e.g., the use of

400th order zonotopes, each described by 2406 real numbers, to enclose 6-dimensional

reachable sets in [64]).

Finally, approaches based on differential inequalities (DI) operate by construct-

ing an auxiliary system of ODEs, twice the size of the original, that describes com-

ponentwise upper and lower bounds on the reachable set as its solutions. Harrison

[16] originally observed that such a system can be constructed automatically using
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simple interval arithmetic. Moreover, this system can be solved with state-of-the-art

numerical integration codes, whereas both Taylor series and conservative linearization

methods require custom integration algorithms with significant step-size restrictions

[34, 5]. Thus, DI methods are capable of producing bounds very rapidly (i.e., at a

small multiple of the cost of integrating a single trajectory [64, 59, 61], making DI

a potentially powerful tool for real-time control and global dynamic optimization.

However, the resulting enclosures are often extremely conservative unless the ODEs

satisfy restrictive monotonicity conditions [16]. Several methods have been proposed

to address this by enabling the use of more complex reachable set representations in

place of intervals. The work [9] proposes an interesting use of DI to compute Taylor

model enclosures. However, auxiliary ODEs are required for each Taylor coefficient,

which is prohibitive for high-order expansions. The article [77] introduces a general

framework for using DI to compute general convex enclosures. Specific implementa-

tions can be found in [65, 63, 18]. In particular, the article [18] introduces a very

effective method for computing polytopic enclosures using DI. However, this method

creates an auxiliary system of ODEs whose right-hand sides are evaluated by solving

embedded linear programs rather than using simple IA, which leads to significantly

longer computation times.

This chapter presents a new strategy for reducing the conservatism of the DI

approach while largely maintaining its efficiency. Rather than using complex non-

interval enclosures, the central idea is to exploit model redundancy. This strategy

is motivated by very effective DI techniques that have recently been developed for

a special class of systems whose solutions are known to satisfy natural bounds (e.g.,

nonnegativity) and linear relationships (e.g., conservation laws) that are implicitly en-

sured by, and hence redundant with, the given ODEs [72, 58, 64]. For such systems,

DI methods have been developed that exploit these redundant relationships to achieve
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much sharper enclosures than standard DI. Moreover, this is accomplished using only

fast interval operations, so that the speed of the standard DI method is retained [64].

Motivated by these observations, we present a new approach for arbitrary nonlinear

systems based on the deliberate introduction of carefully selected redundant equations

that can be exploited within a similar DI bounding procedure. This can be viewed as

a dynamic analogue of methods commonly used to generate redundant constraints in

global optimization and constraint satisfaction algorithms, such as the reformulation

linearization technique (RLT) [70]. Although a fully automated method for select-

ing redundant equations is not yet available, we demonstrate this strategy through

several detailed case studies, which clearly show that redundancy can dramatically

reduce conservatism. The additional cost is modest in most cases, but does become

significant when many redundant equations are used, highlighting the need for fu-

ture work on selection heuristics. The mechanisms by which this approach reduces

conservatism are discussed in detail, and we provide preconditioning heuristics that

significantly improve the efficacy of the added equations. Although we only consider

the DI approach here, our results suggest that the addition of redundant equations

could be used to effectively reduce conservatism in other approaches as well, poten-

tially enabling the use of lower complexity sets. Indeed, it has already been shown in

[76] that pre-existing affine solution invariants can stabilize the enclosures computed

by Taylor series methods.

The remainder of this chapter is organized as follows. The formal problem

statement is given in Section 2.2. Section 2.3 provides related background on interval

analysis and differential inequalities. Section 2.4 presents our new technique. An

algorithm for effectively preconditioning redundant linear equations for use in the

bounding algorithm is presented in Section 2.5.1. Finally, Section 2.6 presents several

case studies.
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2.2 Problem Statement

Let I = [t0, tf ] ⊂ R, let P ⊂ Rnp denote a compact set of time-invariant

uncertain parameters p, let D ⊂ Rnx be open, and let f : I × P × D → Rnx and

x0 : P → D be continuous functions. We consider dynamic processes that can be

modeled by systems of nonlinear ODEs of the form

ẋ(t,p) = f(t,p,x(t,p)), (2.1)

x(t0,p) = x0(p),

where a solution is any continuously differentiable mapping x : I × P → D that

satisfies (4.1a) for all (t,p) ∈ I × P . The following assumption holds throughout.

Assumption 1 For any z ∈ D, there exists η > 0 and α ∈ R such that, for all t ∈ I

and p ∈ P ,

‖f(t,p, z̃)− f(t,p, ẑ)‖∞ ≤ α‖z̃− ẑ‖∞,

for every z̃, ẑ ∈ Bη(z), where Bη(z) denotes an open ball with radius η centered at z.

Assumption 1 guarantees the local existence and uniqueness of a solution of

(4.1a) [10]. In this chapter, it is always assumed that a unique solution of (4.1a)

exists on all of I, for every p ∈ P . We are interested in computing an enclosure of

these solutions in terms of state bounds, as defined below.

Definition 2 Define the reachable set of (4.1a) at t ∈ I as

Re(t) ≡ {x(t,p) : p ∈ P} (2.2)
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Definition 3 Two functions xL,xU : I → Rnx are called state bounds if xL(t) ≤

x(t,p) ≤ xU(t), ∀(t,p) ∈ I × P , or equivalently, Re(t) ⊂ [xL(t),xU(t)], ∀t ∈ I.

The best possible state bounds describe the interval hull of Re(t), while all

others are conservative. Our aim is to develop a method that can exploit model

redundancy to compute state bounds with minimal conservatism while maintaining

the computational efficiency of standard differential inequalities methods.

2.3 Background

2.3.1 Interval Arithmetic

This section briefly reviews some concepts from interval arithmetic (IA), which

is central to the state bounding methods discussed in later sections. Detailed intro-

ductions can be found in [44, 43, 48].

Let the compact n-dimensional interval
{
x ∈ Rn : xL ≤ x ≤ xU

}
denoted by

X = [xL,xU ], and denote the set of all such intervals by IRn. Similarly, for D ⊂ Rn,

let ID denote the set of intervals X such that X ⊂ D. An interval X is called

degenerate if xL = xU . The midpoint and radius of X are xm = 1
2
(xL + xU) and

xr = 1
2
(xU −xL), respectively. Thus, X can be also written as X = {xm+diag(xr)ξ :

ξ ∈ [−1,1]}, where diag forms a diagonal matrix from its vector argument.

A central task in interval arithmetic is to bound the range of a function over

an interval subset of its domain. Theorem 1 below provides a means to accomplish

this using so-called interval extensions.

Definition 4 Let D ⊂ Rn and f : D → Rm. An interval function F : ID → IRm is

an interval extension of f if F ([x,x]) = f(x) for all degenerate intervals [x,x] ∈ ID.
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Definition 5 An interval function F : ID → IRm is inclusion monotonic if, ∀X, Y ∈

ID,

Y ⊂ X =⇒ F (Y ) ⊂ F (X). (2.3)

Theorem 1 If F : ID → IRm is an inclusion monotonic interval extensions of f : D →

Rm, then [44]

f(X) ⊂ F (X), ∀X ∈ ID, (2.4)

where f(X) denotes the exact range {f(x) : x ∈ X}.

Computing the exact range f(X) is generally very difficult. However, by Theo-

rem 1, an interval enclosure of f(X) can be obtained if an inclusion monotonic interval

extension is available. Fortunately, interval arithmetic provides a simple and efficient

means to construct such an extension for so-called factorable functions.

A function is called factorable if it can be formed by finite recursive composi-

tion of basic operations, including the binary operations {+,−,×,÷} and a library

of intrinsic univariate functions such as ex, xn, etc. This includes essentially all func-

tions that can be written explicitly in computer code. For example, the function

f(x) = x(1− ex) is factorable because it can be decomposed into basic operations as
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follows:

v1 = x (2.5)

v2 = ev1

v3 = 1− v2

v4 = v1 × v3

f = v4

Equation (2.5) is called the factorable representation of f .

For any factorable function, a particular interval extension called the natural

interval extension can be constructed by replacing each basic operation in its fac-

torable representation with an interval extension of that operation (these are known

and compiled in [44]). For example, the natural interval extension of f is evaluated

at X by executing the sequence of computations:

V1 = X (2.6)

V2 = eV1 = [ev
L
1 , ev

U
1 ]

V3 = 1− V2 = [1− vU2 , 1− vL2 ]

V4 = V1 × V3

= [minM,maxM ], M = {vL1 vL3 , vU1 vU3 , vL1 vU3 , vU1 vL3 }

F = V4

2.3.2 Origins of conservatism in Interval Arithmetic

Using natural interval extensions, an enclosure of the range of any factorable

function over an interval can be computed automatically and very efficiently. How-
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ever, the resulting enclosure is often conservative for one of two reasons. These are

briefly described here because they motivate the method presented in §2.4 for reducing

the conservatism of state bounding methods.

The dependency problem refers to the fact that the binary interval operations

{+,−,×,÷} always treat their operands as independent. For example, in (2.5), the

variables v1 = x and v3 = 1 − ex are dependent because they are related through x,

but the interval extension of the product v1v3 in (2.6) conservatively assumes that v1

and v3 can vary independently within V1 and V3, respectively. With x ∈ [−1, 1], this

gives [1− e, e− 1], which overestimates the true range [1− e, 0]. Dependency causes

overestimation whenever the same variable appears multiple times in an expression,

and it often cannot be addressed by simple algebraic rearrangements.

The wrapping effect refers to the conservatism introduced by using an interval

to enclose (or wrap) a non-interval set. This term is typically used only in the context

of bounding dynamic systems, but it can be understood more simply by considering

the interval extension of a vector function such as f(x) = (f1(x), f2(x)) = (x1, x1+x2).

The range of f with x1, x2 ∈ [0, 1] is a line segment from (0, 0) to (1, 2), while IA gives

[0, 1] × [0, 2]. The problem arises because IA treats the appearance of x1 in f1 as

independent of the appearance of x1 in f2. Thus, in this context, the wrapping affect

can be considered as another form of dependency, although neither f1 or f2 suffer

from dependency themselves.

Two strategies are typically used to mitigate the conservatism caused by de-

pendency and wrapping. The first is to partition X ⊂ Rn into subintervals and bound

f on each one separately. Since the number of subintervals grows exponentially in n,

partitioning alone is often an unsatisfactory solution. The second approach is to use

arithmetics based on more complex, non-interval sets. This can greatly mitigate de-

pendency and wrapping, but often at significant cost [38]. In this chapter, our interest
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is in a third approach, the use of redundancy, which is based on the observation that,

because of dependency, equivalent expressions for a function f(x) can result in distinct

enclosures. For example, let f(x) = x2 − x and g(x) = x(x− 1). With x ∈ [0, 1], IA

gives f(x) ∈ [0, 1]2−[0, 1] = [−1, 1] and g(x) ∈ [0, 1]([0, 1]−1) = [0, 1][−1, 0] = [−1, 0].

Thus, the original definition of f can be augmented with the redundant equation f = g

to deduce the improved bound f(x) ∈ [−1, 1]∩ [−1, 0]. In general, one enclosure need

not be a subset of the other.

Redundancy is extensively used to improve bounding procedures used in con-

straint satisfaction and global optimization codes for non-dynamic problems [40, 27,

11, 79, 70]. Experience in these applications has shown that a small number of care-

fully chosen redundant constraints can dramatically reduce conservatism at minor

additional cost, although identifying these constraints is challenging.

2.3.3 The Standard Differential Inequalities Method

This section presents the standard differential inequalities (DI) method for

computing state bounds for the ODEs (4.1a), which is central to the new methods

developed in §2.4. The DI method is based on Theorem 2 below, which provides

sufficient conditions for two trajectories to be state bounds. See [64] for proof.

Definition 6 For each i ∈ {1, . . . , nx}, define BLi ,BUi : IRnx → IRnx by BLi ([xL,xU ]) =

{z ∈ [xL,xU ] : zi = xLi } and BUi ([xL,xU ]) = {z ∈ [xL,xU ] : zi = xUi } .

Theorem 2 Let xL,xU : I → Rnx be continuous functions, define X(t) ≡ [xL(t),xU(t)],

and assume:

1. For every t ∈ I and every index i,

(a) xL(t) ≤ xU(t),
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(b) BLi (X(t)) ⊂ D, BUi (X(t)) ⊂ D,

2. x0(p) ∈ X(t0),∀p ∈ P .

3. For all t ∈ I and each index i,

(a) ẋLi (t) ≤ fi(t,p, z), ∀(p, z) ∈ P × BLi (X(t)),

(b) ẋUi (t) ≥ fi(t,p, z), ∀(p, z) ∈ P × BUi (X(t)).

Then x(t,p) ∈ X(t), ∀(t,p) ∈ I × P .

Hypotheses 2 and 3 are the key requirements in Theorem 2. Hypothesis 2

requires that xL(t) and xU(t) bound all solutions of (4.1a) at t = t0, while Hypothesis

3 ensures that this property is maintained to the right of t0 by requiring that xL(t)

and xU(t) decrease and increase, respectively, faster than any solution of (4.1a).

The interval functions BL/Ui arise in 3(a) and 3(b) because, theoretically, it is only

necessary for xLi (t) to decrease faster than the ith component of trajectories x(t,p)

that are already incident on the ith lower bound (i.e., xi(t,p) = xLi (t)), and similarly

for xUi (t). Note that both Hypotheses 2 and 3 concern the range of the functions x0,i

and fi over interval subsets of their domains. Assuming that x0,i and fi are factorable,

let X0,i(P ) = [xL0,i(P ), xU0,i(P )] and Fi([t, t], P, Z) = [fLi ([t, t], P, Z), fUi ([t, t], P, Z)]

denote their natural interval extensions. Then, as originally proposed in [16], state

bounds satisfying the conditions of Theorem 2 can be computed as the solutions of

following auxiliary systems of 2nx ODEs:

ẋLi (t) = fLi ([t, t], P,BLi ([xL(t),xU(t)])), (2.7)

ẋUi (t) = fUi ([t, t], P,BUi ([xL(t),xU(t)])),

[xLi (t0), xUi (t0)] = Xi,0(P ),
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for all t ∈ I and i ∈ {1, . . . , nx}. This system can be solved using any state-of-the-art

numerical integrator to produce state bounds very efficiently, making DI a potentially

powerful tool for real-time applications.

2.3.4 Origins of Conservatism in Differential Inequalities

Despite its speed, DI often produces state bounds that are far too conserva-

tive to be useful in applications [16]. This section outlines the main causes of this

conservatism in order to motivate our new approach for mitigating it in §2.4. The

first cause is simply that the required interval extensions of each fi in (2.7) often

suffer from the dependency problem as described in §2.3.2. However, there are more

subtle problems that are not related to the shortcomings of IA, but rather arise from

conservatism in the conditions of Theorem 2 itself. To see this, consider the ODEs

ẋ1(t,p) = −x2(t,p), (2.8)

ẋ2(t,p) = x1(t,p),

with x1(t0,p) = p1 ∈ [0, 1] and x2(t0,p) = p2 ∈ [0, 1]. The right-hand side functions in

(2.8) do not have dependency problems in the sense of §2.3.2 (i.e., multiple instances

of the same variable). It follows that the interval extensions in (2.7) will coincide with

the exact ranges of these functions, and hence Hypotheses 3(a)–(b) of Theorem 2 will

be satisfied with equality. Nevertheless, DI produces very conservative bounds for

this system. A simple explanation is that the reachable set is not an interval for most

t, so the state bounds suffer from the wrapping effect as shown in Figure 2.1. A more

illuminating explanation is that, for any t > t0, the variables x1 and x2 are dependent

(both depend on p). We call this historical dependency. Given this fact, consider

computing a lower bound on one of the right-hand side functions fi in (2.8) over the
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set {z ∈ [xL(t),xU(t)] : zi = xLi (t)}, as required by Hypothesis 3(a) of Theorem 2 (a

similar argument holds for 3(b)). The purpose of this condition is to ensure that ẋLi (t)

is lower than any value of ẋi(t,p) = fi(t,p,x(t,p)) achievable by a real solution of

(2.8) that is already incident on the ith lower bound, if any. In other words, ẋLi (t) must

be lower than fi(t,p, z) for all z in the set {z ∈ Re(t) : zi = xLi (t)}. But historical

dependency implies that this set is overestimated by {z ∈ [xL(t),xU(t)] : zi = xLi (t)}.

Given the discussion of the dependency problem in §2.3.2, it is reasonable to suspect

that this will only be problematic if fi depends on both x1 and x2, since such an fi

would then be an expression containing two (historically) dependent variables that

are required to be treated independently in the bounding procedure. Remarkably,

this is not even necessary for conservatism to arise. For example, the right-hand

side function f1(t, z) = −z2 in (2.8) is required by Theorem 2 to be bounded over

{z ∈ [xL(t),xU(t)] : z1 = xL1 (t)}, which allows z2 to take any value in [xL2 (t), xU2 (t)].

However, Figure 2.1 shows that (e.g., at t = 2) the set {z ∈ Re(t) : z1 = xL1 (t)} is a

singleton if [xL(t),xU(t)] is the interval hull of Re(t), and is empty otherwise.

However it arises for a given system of ODEs, conservatism in DI tends to

grow rapidly because overestimation in [xL(t),xU(t)] at t enlarges the feasible sets

in Hypotheses 3(a)–(b), which in turn affects all [xL(s),xU(s)] with s > t. This

phenomenon is similar to the well-known exponential growth of numerical errors for

unstable systems, and often results exponential divergence of the bounds.

2.3.5 State Bounds using a priori Enclosures

This section briefly describes a very effective strategy for reducing the conser-

vatism of DI for a special class of systems, originally developed in [64], and in earlier

forms in [58, 72]. The new DI methods presented in this chapter rely on the key
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Figure 2.1: Real solutions x(t,p) of (2.8) (circles) and the interval hull of Re(t) (solid
line) at t = 0 (blue), t = 2 (red), and t = 4 (yellow). The solid circle is an a priori
enclosure as discussed in §2.3.5.

insights of this approach.

The method in [64] applies to ODEs that are known a priori to satisfy some

crude enclosure Re(t) ⊂ G, ∀t ∈ I. The set G may represent physical state bounds

such as nonnegativity, or more complex relations such as conservation laws. For

example, it is easy to verify that all solutions of (2.8) satisfy ‖x(t,p)‖2
2 = ‖x(t0,p)‖2

2,

∀(t,p) ∈ I × P . Moreover, it is clear from Figure 2.1 that this constraint might be

useful for bounding since even the interval hull of Re(t) encloses points that violate

it.

The central result of [64] states that an a prior enclosure can be used to

weaken the requirements of Theorem 2 and thereby enable the efficient computation

of much more accurate bounds. The key idea is to enforce the inequality in, e.g.,

Hypothesis 3(a), for only those z ∈ BLi ([xL(t),xU(t)]) ∩ G, rather than for all z ∈

BLi ([xL(t),xU(t)]). This potentially combats the more subtle sources of conservatism

discussed in the previous section. Specifically, if G is not an interval, than it contains
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at least some information about the historical dependency of the states x(t,p) on one

another, and makes this information available when bounding the range of each fi.

Although this modification of Hypothesis 3(a) is not valid exactly as written above,

it holds if G is enforced through an interval refinement procedure IG satisfying the

following requirements.

Assumption 2 Let IG : IRnx → IRnx satisfy

1. IG(Z) ⊂ Z for all Z ∈ IRnx with Z ∩G 6= ∅,

2. ∀Z ∈ IRnx, if z ∈ Z and z /∈ IG(Z), then z /∈ G,

3. ∃LI ∈ R+ such that, ∀Z1, Z2 ∈ IRnx,

dH(IG(Z1), IG(Z2)) ≤ LIdH(Z1, Z2), (2.9)

where dH denotes the Hausdorff metric.

Theorem 3 Let xL,xU : I → Rnx be continuous functions, define X(t) ≡ [xL(t),xU(t)],

and assume:

1. For every t ∈ I and every index i,

(a) xL(t) ≤ xU(t),

(b) IG(BLi (X(t))) ⊂ D, IG(BUi (X(t))) ⊂ D.

2. x0(p) ∈ X(t0),∀p ∈ P .

3. For all t ∈ I and each index i,

(a) ẋLi (t) ≤ fi(t,p, z), ∀(p, z) ∈ P × IG(BLi (X(t))),

(b) ẋUi (t) ≥ fi(t,p, z), ∀(p, z) ∈ P × IG(BUi (X(t))).
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Then x(t,p) ∈ X(t), ∀(t,p) ∈ I × P .

By analogy to (2.7), state bounds satisfying the requirements of Theorem 3 can be

computed as the solutions of

ẋLi (t) = fLi ([t, t], P, IG(BLi ([xL(t),xU(t)]))), (2.10)

ẋUi (t) = fUi ([t, t], P, IG(BUi ([xL(t),xU(t)]))),

[xLi (t0), xUi (t0)] = Xi,0(P ),

for all t ∈ I and each index i. Solving (2.10) often produces much more accurate state

bounds than (2.7), and requires only moderately more effort provided that IG can

be evaluated using fast interval computations. In [64], an efficient IG was defined for

the special case of polyhedral a priori enclosures G = {z ∈ Xnat : Mz ≤ b}, where

M ∈ Rnm×nx , b ∈ Rnm , and Xnat is a possibly unbounded interval of natural bounds

(i.e., nonnegativity). For reference in §2.5.2, this definition is given in Algorithm 1,

modified for consistency with §2.5.2 to apply more specifically to enclosures of the

form G = {z ∈ Xnat : Mz = b}. The idea is to consider, for each mij 6= 0, the

rearrangement of the ith equation for zj,

zj = m−1
ij (bi −

∑
k 6=jmikzk). (2.11)

Given an initial interval bound Z, Zj can potentially be refined by bounding the

right-hand side of (2.11) using IA. IG is defined by applying this refinement to every

possible choice of mij 6= 0. In Algorithm 1, mid(a, b, c) returns the middle value

of a, b, and c, and is used in place of max(zLj , ζ) and min(zUj , γ) in lines 8 and 9,

respectively, to avoid returning an empty interval when [zL, zU ] ∩G = ∅.

Of course, the drawback of computing state bounds via (2.10) is that it only
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Algorithm 1 IG defined in [64]

1: function IG(zL, zU , Xnat,M,b, tol)
2: [zL, zU ]← [zL, zU ] ∩Xnat

3: for j ← 1, nx do
4: for i← 1, nm do
5: if |mij | > tol then
6: ζ ← bi

mij
+
∑

k 6=j min(−mik
mij

zLk ,−
mik
mij

zUk )

7: γ ← bi
mij

+
∑

k 6=j max(−mik
mij

zLk ,−
mik
mij

zUk )

8: zLj ← mid(zLj , z
U
j , ζ)

9: zUj ← mid(zLj , z
U
j , γ)

10: end if
11: end for
12: end for
13: return [zL, zU ]
14: end function

applies to systems where G is readily available, and offers no means to address the

conservatism of DI when this is not the case. Moreover, even when someG is available,

this approach does not provide a means to achieve any further improvements once G

has been exploited through (2.10).

In order to extend this approach in the next section, it is important to note

that valid G sets are implied by, and hence redundant with, the given ODEs. For

example, the set depicted in Figure 2.1 is easy derived from (2.8) by simply verifying

that d
dt
‖x(t,p)‖2

2 = 0. Thus, although it seems like the approach above is introducing

new information into the bounding procedure, it is not. However, information that is

redundant in real arithmetic is not necessarily redundant in interval arithmetic (see

§2.3.2), and this observation extends to DI (see §2.3.4). Thus, the approach above

should be understood more precisely as method for using redundant information to

partially enforce historical dependency in the interval extensions required in (2.10).
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2.4 State Bounds using Manufactured Model Re-

dundancy

In this section, we present a new method for computing accurate state bounds

that extends the method discussed in §2.3.5 to arbitrary nonlinear ODEs of the form

(4.1a). In other words, we do not require any prior knowledge of a set G containting

the reachable set. The key idea is to manufacture such a set by deliberately intro-

ducing new state variables and ODEs that are redundant with the original states by

definition. Specifically, this is done by choosing a continuously differentiable func-

tion g : D → Rny , defining the new state variables y(t,p) ≡ g(x(t,p)), and finally

differentiating this definition to form the augmented system

d

dt

x(t,p)

y(t,p)

 =

 f(t,p,x(t,p))

∂g
∂x

(x(t,p))f(t,p,x(t,p))

 , (2.12)

x(t0,p)

y(t0,p)

 =

 x0(p)

g(x0(p))

 .
Clearly, if (x,y) : I × P → Rnx × Rny is a solution of (2.12), then x is a solution of

(4.1a). Thus, state bounds for (2.12) provide state bounds for (4.1a). Moreover, by

design, (2.12) implies that

y(t0,p)− g(x(t0,p)) = 0 and (2.13)

d

dt
[y(t,p)− g(x(t,p))] = ẏ(t,p)− ∂g

∂x
(x(t,p))ẋ(t,p)

= 0, (2.14)
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which together imply that the solutions of (2.12) satisfy the invariants y(t,p) −

g(x(t,p)) = 0, ∀(t,p) ∈ I × P . Equivalently, we have arranged that

(x(t,p),y(t,p)) ∈ G ≡ {(zx, zy) : zy = g(zx)}, (2.15)

for all (t,p) ∈ I × P . Thus, state bounds for (2.12) can be computed using the

method described in §2.3.5 as follows.

Theorem 4 Choose any differentiable g : D → Rny such that ∂g
∂x

is locally Lipschitz

continuous on D and (2.12) has a unique solution on I for every p ∈ P . Define G

as in (2.15) and let IG satisfy Assumption 2. Moreover, let

h(t,p, z) ≡ ∂g

∂x
(z)f(t,p, z), (2.16)

for all (t,p, z) ∈ I × P ×D, and let Gj and [hLj , h
U
j ] be inclusion monotonic interval

extensions of gj and hj, respectively. Finally, let xL,xU : I → Rnx and yL,yU : I →

Rny be solutions of the ODEs

ẋLi (t) = fLi ([t, t], P, IG(BLi (Z(t)))), (2.17)

ẋUi (t) = fUi ([t, t], P, IG(BUi (Z(t)))),

ẏLj (t) = hLj ([t, t], P, IG(BLnx+j(Z(t)))),

ẏUj (t) = hUj ([t, t], P, IG(BUnx+j(Z(t)))),

[xLi (t0), xUi (t0)] = Xi,0(P ),

[yLj (t0), yUj (t0)] = Gj(X0(P )),

for all i ∈ {1, . . . , nx} and j ∈ {1, . . . , ny}, where Z(t) =
[[

xL(t)

yL(t)

]
,
[
xU (t)

yU (t)

]]
. Then

x(t,p) ∈ [xL(t),xU(t)] and y(t,p) = g(x(t,p)) ∈ [yL(t),yU(t)] for all (t,p) ∈ I × P .
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Proof The assumptions on g ensure that (2.12) satisfies Assumption 1. Given (2.15),

the result is a direct application of Theorem 3. �

�

Theorem 4 shows that valid state bounds for (4.1a) can be computed by

bounding the augmented system (2.12) rather than the original ODEs, and that

the manufactured a prior enclosure (2.15) can be exploited in doing so. However,

Theorem 4 does not ensure that this will result in improved bounds, and provides no

insight into the mechanisms through which improvement is possible. Understanding

these mechanisms is important because they provide useful information about how

to choose effective g functions. The following example shows that there are indeed

choices of g that produce bounds that are significantly sharper than those produced

by applying standard DI to (4.1a). Moreover, it illustrates all of the mechanisms

by which improvement is possible, and demonstrates that these depend not only

on g, but also on the specific way in which the right-hand sides of (2.12) are ex-

pressed. In particular, since expressions that are equivalent in real arithmetic are not

always equivalent in interval arithmetic, algebraic rearrangements of the functions hj

can be advantageous. Moreover, the introduction of the new state variables yj may

also permit the functions fi to be rearranged in a beneficial way, e.g., by writing

fi(t,p,x(t,p)) = f̂i(t,p,x(t,p),y(t,p)) for some f̂i.

Example 1 Consider the ODEs

ẋ1 = −x1x2 + x3, (2.18)

ẋ2 = 2x1x2,

ẋ3 = x1 + x2,
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with x(t0,p) = (p1, p2, p3) ∈ [0, 1] × [0, 1] × [0, 1]. To apply Theorem 4, we define a

single redundant state y = x1 + x2. Bounds can now be produced through any of the

following four methods.

• Method 1: Directly apply standard DI to (2.18).

• Method 2: Form an augmented system by adding to (2.18) the new ODE ẏ =

ẋ1 + ẋ2 = f1 +f2, but do not make any algebraic rearrangements to the resulting

right-hand side function; i.e.,

ẏ = −x1x2 + x3 + 2x1x2. (2.19)

The solution of this system satisfies (2.15) with

G ≡ {(zx, zy) : zy = zx,1 + zx,2}. (2.20)

Using the IG function defined for affine solution invariants of this type in [64],

compute state bounds via Theorem 4.

• Method 3: Simplify the ODE for y as follows and proceed as in Method 2:

ẏ = x1x2 + x3. (2.21)

• Method 4: Simplify the ODE for x3 as follows and proceed as in Method 3:

ẋ3 = y. (2.22)

Figure 2.2 shows the bounds on x3 produced by each of these four methods,

which consistently improve from Method 1 to 4. Each of these improvements results
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Figure 2.2: Solutions (solid) and state bounds for x3 in (2.18) computed using Meth-
ods 1 (dashed), 2 (diamonds), 3 (stars), and 4 (circles).
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from at least one of the following three mechanisms.

New Variable Flattening. To explain the improvement from Method 1 to 2,

first note that the right-hand side for ẋ3 depends on x1 and x2. Thus, if the invariant

y = x1 + x2 can be used to improve the bounds on x1 and x2 at some t ∈ I (i.e., if

IG(BL/U3 (Z(t))) is a strict subset of BL/U3 (Z(t))), then the bounds on x3 will improve

to the right of t. However, for the invariant to be effective in this way at t, at least

one bound of [yL(t), yU(t)] must be tighter than the corresponding bound of [xL1 (t) +

xL2 (t), xU1 (t) + xU2 (t)]. Otherwise, the relation y = x1 + x2 provides no information

at t that is not already available from the bounds on x1 and x2. In this example, it

happens that [yL(t), yU(t)] is a strict subset of [xL1 (t) + xL2 (t), xU1 (t) + xU2 (t)] for all

t > t0, leading to the observed improvement in the bounds for x3.

However, this leaves the question of how [yL(t), yU(t)] came to be sharper than

[xL1 (t)+xL2 (t), xU1 (t)+xU2 (t)] in the first place. By definition, these intervals are equal at

t0. Moreover, because ẏ is specified directly as f1+f2 with no algebraic simplifications,

it is reasonable to suspect that, e.g., ẏL(t) = ẋL1 + ẋL2 for all t > t0, so that these

intervals will remain equal for all t > t0. However, note that in (2.17), f1 and f2 are

bounded over IG(BL1 (Z(t))) and IG(BL2 (Z(t))), respectively, when evaluating ẋL1 (t)

and ẋL2 (t), whereas they are bounded over IG(BL4 (Z(t))) when evaluating ẏL(t). Note

that the set IG(BL4 (Z(t))) is an interval enclosure of

BL4 (Z(t)) ∩G = {(x1, x2, x3, y) ∈ Z(t) : x1 + x2 = y = yL(t)}. (2.23)

This ‘flattening’ of y, and hence of x1 + x2, to its lower bound is a new feature of

Method 2 in the sense that no such set is ever considered in standard DI (i.e., Method

1). For this particular example, it happens that IG(BL4 (Z(t))) is a singleton at t0, as

shown in Figure 2.3, and ‘bounding’ f1 +f2 over this set as required by (2.17) actually
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leads to ẏL(t0) > ẋL1 (t0) + ẋL2 (t0), and hence yL(t) > xL1 (t) +xL2 (t) immediately to the

right of t0. At later times analysis becomes difficult, but numerical results show that

[yL(t), yU(t)] remains sharper than [xL1 (t) + xL2 (t), xU1 (t) + xU2 (t)] for all t ∈ I.

Algebraic simplification of hi. The improvement from Method 2 to 3 results

from the term cancellation carried out in the right-hand side function for ẏ. In Method

2, this right-hand side function suffers from the dependency problem as described in

§2.3.2 because there are multiple appearances of both x1 and x2. In Method 3, the

dependency problem is eliminated. Thus, the interval extensions of this function

in (2.17) will provide a more accurate enclosure of its range than is achieved in

Method 2 (in fact, it is exact in this case). Compared with the affects of new variable

flattening discussed above, this improvement makes [yL(t), yU(t)] even tighter relative

to [xL1 (t) + xL2 (t), xU1 (t) + xU2 (t)]. Thus, the invariant y = x1 + x2 can be used even

more effectively to refine the bounds on x1 and x2 at every t ∈ I, which in turn affects

x3 through better bounding of its right-hand side function.

Substitution of y into the right-hand sides. The improvement from Method 3 to

4 is achieved because the interval [yL(t), yU(t)] is sharper than [xL1 (t) +xL2 (t), xU1 (t) +

xU2 (t)] for all t ∈ I, as discussed above in regards to Methods 2 and 3. Thus, the

bounding system (2.17) specifies upper and lower bounds on x3 that increase and

decrease, respectively, less in Method 4 than in Method 3. This difference can be

eliminated if, in Method 3, the refinement operation IG is modified from the definition

given in [64]. Specifically, the invariant y = x1 + x2 must be used to infer that the

larger interval [xL1 (t) + xL2 (t), xU1 (t) + xU2 (t)] can be replaced by the smaller interval

[yL(t), yU(t)] when bounding the right-hand side for ẋ3. However, the given definition

of IG uses the invariant to improve the bounds on individual states if possible, not

on combinations of them. Specifically, in this case it aims to improve the bounds on
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x1 through the rearrangement

x1(t,p) = y(t,p)− x2(t,p) (2.24)

∈ [yL(t)− xU2 (t), yU(t)− xL2 (t)],

and similarly for x2. Interestingly, it is possible to have [yL(t), yU(t)] ⊂ [xL1 (t) +

xL2 (t), xU1 (t) + xU2 (t)] and still fail to improve the bounds on x1 or x2 through these

rearrangements. More generally, it can happen that the bounds on x1 and x2 are

improved, but they still sum to an interval larger than [yL(t), yU(t)]. Thus, with this

definition of IG, Method 4 is superior to Method 3. Modifying IG so that Methods

3 and 4 are equivalent is straightforward for this example. However, in general there

may be many sub-expressions involving multiple states that would benefit from the

special treatment needed for x1 + x2 here, and addressing them automatically would

greatly complicate IG. �

Developing an automated method for choosing effective g functions is a signifi-

cant undertaking and is left as future research. Rather, in this chapter we demonstrate

the manual construction of g for several case studies of practical interest. In doing

so, we aim to provide insights towards a general method, and to demonstrate that

extremely effective choices very often exist. Nevertheless, the preceding discussion

suggests some broad approaches that are worth mentioning here. The first is simply

to choose each gj in such a way that right-hand side function of the corresponding

yj (i.e., hj ≡ ∂gj
∂x

f) admits nice algebraic simplifications. In particular, it is beneficial

if this function can be written in a way that suffers minimally from the dependency

problem, both in the conventional sense discusses in §2.3.2, and in the historical sense

discussed in §2.3.4. The second strategy is to define gj(x) as a sub-expression appear-

ing in the original ODEs that is either important to bound accurately, or problematic
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Figure 2.3: State bounds for x1 and x2 in Example 1 at t0 (box), along with initial
bounds for y in Method 2. The set IG(BL4 (Z(t0))) is the singleton at the intersection
of the box with the line x1 + x2 = yL.
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in the sense that it causes dependency in some fi. With yj = gj(x) defined, this

sub-expression can be eliminated from fi by substituting yj in its place, leading to

potential benefits of the type illustrated for Method 4 above.

2.4.1 Interpretation as a Non-Interval Enclosure Method

Let X(t) = [xL(t),xU(t)] and Y (t) = [yL(t),yU(t)] be state bounds for (2.12)

computed using DI with manufactured model redundancy as described in Theorem

4. Although this bounding procedure uses only interval computations, it can be

interpreted as propagating non-interval sets in the space of the original state variables.

Namely,

X (t) = {z ∈ X(t) : g(z) ∈ Y (t)}. (2.25)

Clearly, this enclosure need not be an interval and can be made arbitrarily complex

by the choice of g. From this point of view, DI with manufactured redundancy can

be more readily compared with other state-of-the-art bounding approaches that make

use of non-interval enclosures to combat conservatism.

First, we note that the ability to propagate nonconvex enclosures has so far

been unique to Taylor model methods, and is thought to be an important factor in

their ability to combat the wrapping effect for nonlinear systems. However, this re-

quires second or higher order Taylor models, which require considerably more compu-

tational effort than intervals. In this regard, (2.25) provides an interesting alternative

since it clearly provides nonconvex enclosures for appropriate choices of g, and does

so using only fast interval computations, albeit in a higher-dimensional state space.

Moreover, the enclosures provided by Taylor model methods are always ranges of mul-

tivariate polynomials of fixed order, plus a remainder bound. In contrast, since g is
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customizable and can be chosen based on the form of f , (2.25) may also provide more

flexible enclosures. Of course, these advantages are highly dependent on the choice

of g, and we cannot at present provide a general purpose method for this choice.

Second, we note that if we restrict ourselves to linear combinations of the

original states, i.e., g(z) = aTz, then (2.25) is a polytope. In this case, DI with

manufactured redundancy is very closely related to the polytopic DI method proposed

in [17]. In that method, a number of vectors aT
j are chosen and DI is used to compute

time-varying bounds bj(t) such that aT
j x(t,p) ≤ bj(t), ∀(t,p) ∈ I×P . Evidently, this

is very similar to defining yj(t,p) ≡ aT
j x(t,p) and bounding the augmented system

to obtain the inequalities

yLj (t) ≤ aT
j x(t,p) ≤ yUj (t), ∀(t,p) ∈ I × P. (2.26)

However, a significant difference is that the approach proposed here uses only fast

interval computations. In contrast, the method in [17] requires solving an auxiliary

system whose right-hand sides are defined through the solutions of linear programs.

This is likely to be more accurate because the polytopic enclosure available at each

t can be enforced exactly, rather than approximately using an interval refinement

operation IG. On the other hand, the linear programming approach is significantly

more computationally demanding, and is inherently limited to polytopic enclosures.

In contrast, DI with manufactured redundancy directly extends to nonlinear g, and

hence nonconvex enclosures, while retaining high efficiency.

Nevertheless, in the numerical experiments in §2.6, we only consider linear

g functions for all but one example. This is because, although Theorem 4 permits

nonlinear g, it requires a valid definition of IG for such g satisfying Assumption 2.

We propose one such IG for a specific case in §2.6, but we leave the general case for
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future work.

In the next section, we present a more efficient version of the interval refine-

ment operation IG of Algorithm 1, and develop new preconditioning strategies that

enable this IG to make much more effective use of linear g. Numerical results in §2.6

suggest that these strategies can make IG nearly as effective as the linear program-

ming approach in [17] at significantly lower cost.

2.5 Improved Methods for ODEs with Affine So-

lution Invariants

This sections considers new strategies for further increasing the efficiency and

reducing the conservatism of the bounding system (2.10) applied to ODEs (4.1a)

satisfying

x(t,p) ∈ G ≡ {z : Mz = b}, ∀(t,p) ∈ I × P, (2.27)

for some known M ∈ Rnm×nx and b ∈ Rnm . Of course, in light of §2.4, it is not

necessary to assume that such an enclosure is available for the original ODEs of

interest. In general, any ODEs (4.1a) can be embedded in an augmented system (2.12)

satisfying (2.27) by including the additional states y = Ax and defining M = [−A I]

and b = 0. For simplicity, we denote all state variables by x in this section, regardless

of whether or not they are states of the original system. Given that G satisfying (2.27)

is available, our interest is to determine how to optimally exploit it in a bounding

procedure like (2.10). We provide only a heuristic answer here, but one that results

in marked improvements. In addition to providing improved bounds for fixed G, this

also provides important insights for manufacturing G (via the choice of A above),
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and provides a firm basis for comparing alternative choices.

2.5.1 Preconditioning Heuristics

Consider the interval refinement operation IG defined by Algorithm 1. By

Assumption 2, this operation satisfies

IG(Z) ⊃ {z ∈ Z : Mz = b}, ∀Z ∈ IRnx . (2.28)

The purpose of this subsection is to demonstrate that preconditioning the constraint

system Mz = b can have a profound impact on the accuracy of this enclosure, and

hence on the accuracy of the state bounds computed via (2.10), and to present a

new preconditioning strategy to addresses this issue. The central issue necessitat-

ing preconditioning is illustrated in Example 2, while the affect on state bounds is

demonstrated in Example 3.

Example 2 Consider the following two sets of linear constraints:

[
1 1
1 −1

]︸ ︷︷ ︸
M

[ z1z2 ] = [ 0
0 ]︸︷︷︸
b

[
1 0
0 1

]︸ ︷︷ ︸
F

[ z1z2 ] = [ 0
0 ]︸︷︷︸
d

(2.29)

Clearly, these constraints are equivalent and have the origin as their unique solution.

Now, consider applying IG(Z) to refine the interval Z = [−1, 1] × [−1, 1] as in Al-

gorithm 1. As shown in Figure 2.4, this interval cannot be refined by considering

rearrangements of the constraints Mz = b, as long as the constraints are considered

one at a time, as they are in Algorithm 1. In contrast Algorithm 1 readily refines Z

to the singleton {0} using Fz = d. �
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Figure 2.4: The interval Z in Example 2 (rectangle) with lines corresponding to the
equations Mz = b (left) and Fz = d (right).

Example 3 Consider the enzymatic reaction network described by [64]:

A + F 
 F : A→ F + A′,

A′ + R 
 R : A′ → R + A.

The dynamics can be modeled by the following ODEs:

ẋA = −k1xAxF + k2xF:A + k6xR:A′ (2.30)

ẋF = −k1xAxF + k2xF:A + k3xF:A

ẋF:A = k1xAxF − k2xF:A − k3xF:A

ẋA′ = k3xF:A − k4xA′xR + k5xR:A′

ẋR = −k4xA′xR + k5xR:A′ + k6xR:A′

ẋR:A′ = k4xA′xR − k5xR:A′ − k6xR:A′

Let I = [0, 0.04] (s), x0 = (34, 20, 0, 0, 16, 0) (M), and let the uncertain rate parame-

ters k = (k1, . . . , k6) lie in the set P = [k̂, 10k̂] with k̂ = (0.1, 0.033, 16, 5, 0.5, 0.3).
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Figure 2.5: State bounds for xA′ (left) and xRA′ (right) from Example 3, computed us-
ing standard DI (dashed), and using (2.10) and Algorithm 1 with M (red star) and F
(magenta diamond) in (2.31). Blue circles are obtained using the new preconditioning
method described in §2.5.1. Solid lines are real solutions.

Chemical reaction systems of this type are well-known to satisfy the affine

solution invariants Mx(t,p) = Mx0 for any M whose rows lie in the left null space

of the stoichiometry matrix S [12]. Of course, this choice is not unique. Figure 2.5

shows state bounds for (2.30) computed via (2.10) using IG as in Algorithm 1 with

two different choices of M. The first has rows that form an orthonormal basis for

the left null space of S obtained using the MATLAB subroutine null. The second,

denoted F, is physically motivated by conservation laws:

M =
[ −0.48 −0.14 −0.62 −0.48 0.24 −0.24
−0.31 0.75 0.43 −0.31 0.15 −0.15

0 0 0 0 0.70 0.70

]
(2.31)

F =
[

0 −1 −1 0 0 0
0 0 0 0 −1 −1
1 −1 0 1 −1 0

]

Figure 2.5 clearly demonstrates that this choice has a significant impact on the accu-

racy of the bounds. �

In light of the previous examples, we would like to develop an algorithm for

preconditioning a given set of constraints Mz = b satisfying (2.27), before solving

the bounding system (2.10), to obtain another set Fz = d that enables IG to refine
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intervals Z ∈ Rnx more effectively. To begin, consider using Mz = b to refine a single

element Zj. Since IG considers rearrangements of only one equation at a time, our

basic strategy is to provide IG with one or more equations of the form µTMz = µTb

with µ ∈ Rnm that are specially designed to be effective for refining Zj (each of these

will be a row of Fz = d). Of course, we aim to provide such equations for all choices

of j, which raises an interesting observation: F may have more rows than M. Clearly,

the rows of such an F will be linearly dependent. Thus, this is yet another use of

redundancy to improve the accuracy of interval operations.

Denoting the jth column of M by mj and choosing any µ ∈ Rnm with µTmj 6=

0, rearranging µTMz = µTb gives

zj =
µTb

µTmj

−
∑
k 6=j

µTmk

µTmj

zk. (2.32)

Thus, potentially improved bounds for zj are given by

ẑLj =
µTb

µTmj

−
∑
k 6=j

max

(
µTmk

µTmj

zLk ,
µTmk

µTmj

zUk

)
, (2.33)

ẑUj =
µTb

µTmj

−
∑
k 6=j

min

(
µTmk

µTmj

zLk ,
µTmk

µTmj

zUk

)
. (2.34)

Now consider maximizing and minimizing (2.33) and (2.34), respectively, over the

set {µ : µTmj 6= 0} to obtain the solutions µzLj
and µzUj

. These vectors encode

combinations of the constraints Mz = b that are optimal for improving the jth

lower and upper bounds of the given interval Z via (2.33) and (2.34), respectively.

Unfortunately, these solutions depend on Zk 6=j, which is problematic because IG will

be evaluated with many different interval arguments during the solution of (2.10).

Moreover, these arguments are not known prior to solving (2.10). Thus, in what
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follows, we develop a method for computing choices of µ that are provably optimal

for entire classes of intervals Z. Although there is no guarantee that the arguments

of IG in (2.10) will lie in these classes, we expect that these procedures will produce

more robust choices of µ.

The classes of intervals we consider are defined as follows. These classes are

parameterized by r and contain all intervals with centers in G and radii proportional

to r.

Definition 7 For any M ∈ Rnm×nx, b ∈ Rnm, and r ∈ Rnx, define the following

subset of IRnx, where xm and xr denote the midpoint and radius of X, respectively:

X (M,b, r) ≡

X ∈ IRnx :
Mxm = b,

∃α ∈ R+ : xr = αr

 . (2.35)

The following theorem describes optimal choices of µ for refining the jth com-

ponent of an interval Z ∈ IRnx using IG. First, note that although the specific

arguments of IG in (2.10) cannot be known a priori, there is one distinctive feature of

all such arguments that proves useful - they are all of the form BL/Ui (X), and hence

are degenerate in one dimension. Not surprisingly, the effectiveness of a given µ for

refining the jth component of BLi (X) can depend strongly on i, and can be different

for BUi (X). Thus, it proves useful to design µ’s corresponding to each BL/Ui (X). The

following theorem concerns BLi (X), while Theorem 6 concerns BUi (X).

Theorem 5 Choose any r ∈ Rnx and i, j ∈ {1, . . . , nx}, i 6= j. Assuming that (2.36)
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and (2.37) are bounded, let

µzLj
∈ arg max

µTmj=1

(
µTmiri −

∑
k/∈{j,i}|µTmkrk|

)
, (2.36)

µzUj
∈ arg min

µTmj=1

(
µTmiri +

∑
k/∈{j,i}|µTmkrk|

)
, (2.37)

µzWj
∈ arg min

µTmj=1

(∑
k/∈{j,i}|µTmkrk|

)
. (2.38)

Let U = {µ : µTmj 6= 0}. Then, for any Z ≡ BLi (X) with X ∈ X (M,b, r):

1. µzLj
maximizes the right-hand side of (2.33) on U ,

2. µzUj
minimizes the right-hand side of (2.34) on U , and

3. µzWj
minimizes the width ẑUj − ẑLj in (2.33)–(2.34) on U .

Proof To prove Claim 1, we first show that (2.36) is related to the dual of the

following linear program:

min
z
{zj : Mz = b, zLk ≤ zk ≤ zUk , ∀k 6= j}. (2.39)

Applying LP duality, the dual of (2.39) is:

max
µ,ηk,γk

µTb +
∑
k 6=j

(γkz
L
k − ηkzUk ) (2.40)

s.t. µTmj = 1 (2.41)

µTmk = (ηk − γk), ∀k 6= j (2.42)

γk, ηk ≥ 0, ∀k 6= j (2.43)

For any fixed µ, maximizing the term (γkz
L
k −ηkzUk ) with respect to ηk and γk subject
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to (2.42)–(2.43) gives −max(µTmkz
L
k ,µ

Tmkz
U
k ). Thus, (2.40) is equivalent to

max
µTmj=1

µTb−
∑
k 6=j

max(µTmkz
L
k ,µ

Tmkz
U
k ). (2.44)

Alternatively, using the midpoint and radius of Z to write zLk = zm,k − zr,k and

zUk = zm,k + zr,k gives

max
µTmj=1

µTb−
∑
k 6=j

µTmkzm,k −
∑
k 6=j

|µTmk|zr,k. (2.45)

Adding and subtracting µTmjzm,j gives

max
µTmj=1

µT(b−Mzm) + zm,j −
∑
k 6=j

|µTmk|zr,k. (2.46)

Now, since Z = BLi (X), it can be derived that zm = xm − eixr,i and zr = xr − eixr,i,

where ei is the ith unit vector. Substituting these into (2.46) gives

max
µTmj=1

µT(b−Mxm) + µTmixr,i + xm,j (2.47)

−
∑
k/∈{i,j}

|µTmkxr,k|.

Also, with the assumption X ∈ X (M,b, r), we have b = Mxm and xr = αr, thus

(2.47) becomes

max
µTmj=1

µTmiαri + xm,j − α
∑
k/∈{i,j}

|µTmkrk|. (2.48)

Finally, since xm,j and α > 0 are constants, µzLj
satisfies (2.36) if and only if it is a

solution of (2.48).
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Now, to prove Claim 1, let µzLj
satisfy (2.36) and let Q(µ) denote the right-

hand side of (2.33). Since (2.36) is bounded, (2.48) must also be bounded, and by

duality (2.39) must be feasible. Let z∗ be a solution of (2.39). Next, note that (2.32)

holds for any z with Mz = b and any µ ∈ U , and therefore maxµ∈U Q(µ) ≤ z∗j . But

µT
zLj

mj = 1 implies that µT
zLj
∈ U , and so it suffices to show that z∗j = Q(µT

zLj
). As

noted above, µzLj
must be a maximizer of (2.48), which is equivalent to (2.44) by the

preceding derivations. Thus, by strong duality,

z∗j = µT
zLj

b−
∑
k 6=j

max(µT
zLj

mkz
L
k ,µ

T
zLj

mkz
U
k ) (2.49)

= Q(µzLj
). (2.50)

This establishes Claim 1. The remaining two claims are proven analogously and are

omitted for brevity. �

Theorem 6 Choose any r ∈ Rnx and i, j ∈ {1, . . . , nx}, i 6= j. Assuming that (2.51)

and (2.52) are bounded, let

µzLj
∈ arg max

µTmj=1

(
−µTmiri −

∑
k/∈{j,i}|µTmkrk|

)
, (2.51)

µzUj
∈ arg min

µTmj=1

(
−µTmiri +

∑
k/∈{j,i}|µTmkrk|

)
, (2.52)

µzWj
∈ arg min

µTmj=1

(∑
k/∈{j,i}|µTmkrk|

)
. (2.53)

Let U = {µ : µTmj 6= 0}. Then, for any Z ≡ BUi (X) with X ∈ X (M,b, r):

1. µzLj
maximizes the right-hand side of (2.33) on U ,

2. µzUj
minimizes the right-hand side of (2.34) on U , and

3. µzWj
minimizes the width ẑUj − ẑLj in (2.33)–(2.34) on U .
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Proof The proof is analogous to that of Theorem 5. �

Based on the preceding two theorems, we use the following preconditioning

method. First, we choose r ∈ Rnx , which is a rough estimate of the relative radius

of the intervals X(t) = [xL(t),xU(t)] that will be generated by (2.10). If no physical

information is available to guide this choice, then we specify r = 1. Another option is

to simulate a single trajectory and choose r based on the relative magnitudes of the

states. Note that the choice of r determines the class of intervals for which the µ’s

in Theorems 5–6 are optimal, but any choice will lead to valid state bounds (because

µTMz = µTb is a valid constraint for any µ).

Given r, we generate two preconditioned forms of the constraints Mz = b for

each i ∈ {1, . . . , nx}. The first corresponds to BLi and is denoted FL
i z = dLi . To form

it, we solve the LPs (2.36)–(2.38) for every j 6= i. Then, we set

FL
i =



µT

zL1

µT

zU1

µT

zW1

...
µT

zLnx

µT

zUnx

µT

zWnx


M and dLi =



µT

zL1

µT

zU1

µT

zW1

...
µT

zLnx

µT

zUnx

µT

zWnx


b. (2.54)

The second corresponds to BUi , is denoted FU
i z = dUi , and is formed analogously from

the solutions of LPs (2.51)–(2.53). This process is then repeated for each i. During

the solution of (2.10), whenever IG is evaluated on an interval of the form BLi (X(t)),

the corresponding constraint system FL
i z = dLi is used in place of Mz = b, and

similarly for BUi (X(t)).

Overall, this procedure requires solving 3nx(nx − 1) LPs. However, this is

done only once, prior to the solution of (2.10). In contrast, the method proposed in
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[17] requires solving 4nx LPs at every time step during numerical integration of the

bounding system. Moreover, in the context of B&B global optimization, these LPs

would only need to be solved in the root node, and the solutions could then be used

repeatedly during the solution of (2.10) in every other node of the B&B tree.

Figure 2.5 shows the bounds for Example 3 using the preconditioning strategy

outlined above. Clearly, this procedure leads to improved bounds, particularly when

compared to the original M matrix (recall that F in (2.31) was known from physical

insights and is not available in general).

Note that, if IG(Z) as in Algorithm 1 is applied to the constraints FL
i z = dLi ,

then e.g. the first constraint µT
zLj

Mz = µT
zLj

b will be used to attempt to refine every

Zk that has a nonzero coefficient in the constraint, even though this constraint was

designed only to refine zLj . Thus, it seems that many computations can be avoided

in IG(Z) by only using each constraint for its intended purpose, likely with little

performance degradation. However, as shown in the next section, IG(Z) can be

implemented more efficiently than in Algorithm 1, and in this new implementation

the cost of refining zLj is only marginally smaller than that of refining all possible

bounds using µT
zLj

Mz = µT
zLj

b. At the same time, these additional refinements can

prove beneficial, particularly when the bounding system (2.10) produces intervals

X(t) for which the designed preconditioners are not optimal.

2.5.2 A More Efficient Implementation of IG

In this section, a more efficient version of Algorithm 1 from [64] is developed.

First, note that the complexity of Algorithm 1 is O(nmn
2
x). Here, we reduce this to

O(nmnx) (with a prefactor about 4× as large) by eliminating some repeated com-

putations. Specifically, for a fixed equation mT
i z = bi, Algorithm 1 computes the
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following sums independently for every j:

ζ ← bi
mij

+
nx∑

k=1,k 6=j

min(−mik

mij

zLk ,−
mik

mij

zUk ), (2.55)

γ ← bi
mij

+
nx∑

k=1,k 6=j

max(−mik

mij

zLk ,−
mik

mij

zUk ), (2.56)

Clearly, for any two choices of j, these sums have nx − 2 terms in common (up to a

scalar multiple). These repeated computations can be avoided by instead computing

αL and αU as defined in lines 4–5 of Algorithm 2. The complexity of computing αL

and αU is nearly the same as that of computing (2.55)–(2.56) once. However, once

αL and αU are known, ζ and γ can be computed easily for any j using lines 10–11 in

Algorithm 2. Moreover, after zLj and zUj are updated using ζ and γ, αL and αU can

be easily updated as shown in lines 14–15.

With these changes, the complexity of Algorithm 1 is reduced by a factor of

nx. Moreover, Algorithm 2 would produce exactly the same results as Algorithm 1,

but for one caveat. In order to avoid repeated sums as described above, Algorithm

2 loops through the elements of M one row at a time, rather than one column at a

time as in Algorithm 1. This means that Algorithm 2 will consider rearranging the

constraint in the first row of Mz = b for z1, then z2, and so on until znx , before

moving on to the second row. In contrast, Algorithm 1 considers rearranging all

constraints for z1 before moving on to z2. In general, the results will be different, but

there is no reason to believe that one ordering is better than the other.
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Algorithm 2 A faster version of IG from [64]

1: function FastIG(zL, zU , Xnat,M,b, tol)
2: [zL, zU ]← [zL, zU ] ∩Xnat

3: for i← 1, nm do
4: αL ← bi −

∑nx
k=1 max(mikz

L
k ,mikz

U
k )

5: αU ← bi −
∑nx

k=1 min(mikz
L
k ,mikz

U
k )

6: for j ← 1, nx do
7: if |mij | > tol then
8: αL ← αL + max(mijz

L
j ,mijz

U
j )

9: αU ← αU + min(mijz
L
j ,mijz

U
j )

10: ζ ← min(αL/mij , α
U/mij)

11: γ ← max(αL/mij , α
U/mij)

12: zLj ← mid(zLj , z
U
j , ζ)

13: zUj ← mid(zLj , z
U
j , γ)

14: αL ← αL −max(mijz
L
j ,mijz

U
j )

15: αU ← αU −min(mijz
L
j ,mijz

U
j )

16: end if
17: end for . j ← 1, nx
18: end for . i← 1, nu
19: return [zL, zU ]
20: end function

2.6 Numerical examples

In this section, we present six examples to illustrate the advantages of in-

troducing new redundant state variables as describe in §2.4. In each example, at

least two methods are compared. The first is standard differential inequalities (SDI),

which directly solves the bounding system (2.7), and does not use any solution invari-

ants. If the system naturally obeys some pre-existing solution invariants, then bounds

are also computed using only these invariants by solving (2.10) with IG as defined

in Algorithm 2. Finally, we consider the addition of redundant state variables and

again apply (2.10) with Algorithm 2, using both the natural and manufactured in-

variants. We report wall clock times for all methods as implemented in MATLAB using

the numerical integrator CVODE in the Sundials Toolbox with default settings [21]. All

computations were implemented on a Dell Precision T3610 workstation with an Intel
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Xeon E5-1607 v2 @ 3.00 GHz. For every problem with linear invariants Mz = b,

the preconditioning method described in §2.5.1 was applied using CPLEX vesion 12.3

to solve all LPs. Unless otherwise stated, this preconditioning is done with r = 1.

The wall clock times for preconditioning are not included in the examples below, but

ranged from 0.012 s for Example 8 to 0.45 s for Example 5. We stress that these times

are relatively unimportant in our applications of interest because they are incurred

only once, while the results can be used in repeated bounding computations. For ex-

ample, in branch-and-bound global dynamic optimization, the cost of preconditioning

is potentially shared between many thousands of bounding computations [62].

Example 4 Consider again the reaction network described in Example 3. In [64],

state bounds for this problem have already been significantly improved using the three

pre-existing solution invariants in this system. To make further improvements, one

redundant state variable y = −xA+xF was introduced. From (2.30), it can be seen that

the corresponding ODE enjoys two significant term cancellations, and can be expressed

as ẏ = k3xF:A−k6xR:A′. The addition of y also introduces one more solution invariant.

Thus, with M as defined in (2.31), the augmented system satisfies

[
M 0

−1 1 0 0 0 0 −1

]
[ xy ] =

[
Mx0

0

]
. (2.57)

All state variable are nonnegative and bounded above by x̄ = (34, 20, 20, 34, 16, 16)

[64], and consequently y ∈ [−34, 20]. The relative radius estimate r required for pre-

conditioning was chosen as the radius of these natural bounds, r = (17, 10, 10, 17, 8, 8, 27).

Figure 2.6 shows that the bounds computed using the augmented system are

significantly sharper than those computed using only pre-existing solution invariants.

Thus, the proposed technique is effective even for systems that already benefit from a

significant number of invariants. The cost of a single trajectory was 0.004 s, while
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Figure 2.6: State bounds for xA′ (left) and xRA′ (right) from (2.30) computed using
SDI (dashed), DI with pre-existing invariants (stars), and DI with both pre-existing
and manufactured invariants (circles). Solid lines are real trajectories.

computing bounds required 0.014 s for SDI, 0.055 s for DI with pre-existing model re-

dundancy, and 0.073 s for DI with both existing and manufactured model redundancy.

Example 5 In contrast to Example 4, this example shows the advantages of intro-

ducing model redundancy for a problem with few pre-existing invariants. Consider

the following series reaction in batch reactor:

A→ B→ C→ D→ E→ F→ G→ H→ I→ J.

The corresponding system of ODEs is:

ẋA = −k1xA

ẋB = k1xA − k2xB

ẋC = k2xB − k3xC

ẋD = k3xC − k4xD

ẋE = k4xD − k5xE

ẋF = k5xE − k6xF

ẋG = k6xF − k7xG

ẋH = k7xG − k8xH

ẋI = k8xH − k9xI

ẋJ = k9xI

(2.58)

Let I = [0, 15] s, x0 = (20, 0, 0, . . . , 0) M, and assume that all rate coefficients k =
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(k1, . . . , k9) are only known to within an order of magnitude; i.e., k ∈ [k̂, 10k̂] with

k̂ = (3.6, 2.4, 4.2, 2.4, 3, 3.6, 4.2, 4.8, 3)× 10−2.

Given x0, it is easy to see that all concentrations are bounded within [0, 20] M. More-

over, this system satisfies the single affine invariant 1Tx(t,k) = 1Tx0 stating that the

sum of all concentrations remains constant.

Examining the right-hand sides of (2.58) suggests adding the following eight

redundant states:

y1 = xA + xB (2.59)

y2 = xA + xB + xC

y3 = xA + xB + xC + xD

y4 = xA + xB + xC + xD + xE

y5 = xA + xB + xC + xD + xE + xF

y6 = xA + xB + xC + xD + xE + xF + xG

y7 = xA + xB + xC + xD + xE + xF + xG + xH

y8 = xA + xB + xC + xD + xE + xF + xG + xH + xI

With these definitions, the corresponding ODEs enjoy successive term cancellations,
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ultimately isolating eight of the reaction rate expressions as follows:

ẏ1 = −k2xB

ẏ2 = −k3xC

ẏ3 = −k4xD

ẏ4 = −k5xE

ẏ5 = −k6xF

ẏ6 = −k7xG

ẏ7 = −k8xH

ẏ8 = −k9xI

(2.60)

As discussed in §2.4, conservatism can also be reduced by substituting the new

state variables into the right-hand side functions for either the original or new states.

Thus, we rewrite (2.60) equivalently as follows:

ẏ1 = −k2(y1 − xA)

ẏ2 = −k3(y2 − y1)

ẏ3 = −k4(y3 − y2)

ẏ4 = −k5(y4 − y3)

ẏ5 = −k6(y5 − y4)

ẏ6 = −k7(y6 − y5)

ẏ7 = −k8(y7 − y6)

ẏ8 = −k9(y8 − y7)

(2.61)

Although these equations involve more terms, recall that the interval for yi will be

degenerate in all required interval extensions of ẏi due to the action of BL/Ui in

(2.10). The final augmented system consists of (2.58), (2.61), and the nine invariants

1Tx(t,k) = 1Tx0 and (2.59).

Figure 2.7 shows that the pre-existing invariant in this example does not lead

to significant improvement over SDI. In contrast, the use of manufactured invariants

achieves very significant improvements. The costs were 0.002 s for a single trajec-

tory, 0.013 s for SDI, 0.014 s for DI using the pre-existing invariant, and 0.8 s for

DI using both pre-existing and manufactured invariants. Because 8 new states and

invariants were added, the improved bounds come at significant additional cost in this
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Figure 2.7: State bounds for xE (left) and xJ (right) in (2.58) computed using SDI
(dashed), DI with pre-existing invariants (stars), and DI with both pre-existing and
manufactured invariants (circles). Solid lines are real trajectories.

case. Thus, there is a clear need for heuristics that can identify only the most ef-

fective new variables. However, note that 0.8 s is only enough time to sample 400

trajectories. Considering that this model has 9 parameters with an order of magnitude

uncertainty in each, this time is quite reasonable for achieving sharp bounds. For ex-

ample, considering parameter values on a grid with only 3 points in each dimension

would require 19683 trajectories at a cost of 39.4 s.

Example 6 The following model was introduced in [17] and has no pre-existing in-

variants. It describes a stirred tank reactor with four species:

ẋA = −u3xAxB − k2xAxC + τ−1(u1 − 2xA)

ẋB = −u3xAxB + τ−1(u2 − 2xB)

ẋC = u3xAxB − k2xAxC − 2τ−1xC

ẋD = k2xAxC − 2τ−1xD (2.62)

The time horizon is I = [0, 15] (s), τ = V/vA = 20 (min), k2 = 0.4 (M−1min−1).

There are three uncertain parameters: the inlet concentration of species A, u1 ∈
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[0.9, 1.1] (M), the inlet concentration of species B, u2 ∈ [0.8, 1.0] (M), and first reac-

tion rate constant u3 ∈ [10, 50] (M−1min−1). The initial concentration for all species

is zero.

In §2.4.1, we described the close relationship between the new bounding ap-

proach proposed here and the polyhedral bounding method in [17] when we restrict

ourselves to linear combinations of the original states, i.e., y = g(x) = aTx. Moti-

vated by this connection, we mimic the results in [17] as closely as possible for this

example by defining the following new variables:

y1 = −1

3
xA −

1

3
xB +

1

3
xC

y2 = −1

3
xA −

1

3
xC +

1

3
xD

y3 = −xA + 2xB + xC

y4 = xA − xB + xD

With these definition, the corresponding ODEs are:

ẏ1 = u3xAxB − (1/3)τ−1(u1 + u2)− 2τ−1y1

ẏ2 = k2xAxC − (1/3)τ−1u1 − 2τ−1y2

ẏ3 = τ−1(2(u2 − y3)− u1)

ẏ4 = τ−1(u1 − u2 − 2y4) (2.63)

In this case, both methods describe polyhedral enclosures of the reachable set with the

same facets. The key difference is that the method in [17] propagates this enclosure

forward in time by solving ODEs with linear programs embedded, while the method

proposed here uses only interval computations. This is expected to be more efficient,
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Figure 2.8: State bounds for xA (left) and xC (right) in (2.8) computed using SDI
(dashed) and DI with manufactured invariants (circles). Solid lines are real trajecto-
ries.

but also implies that we make less effective use of the polyhedral enclosure when bound-

ing the range of each fi at each time step. However, the new preconditioning scheme

outlined in §2.5.1 is designed to minimize this disadvantage.

The results are shown in Figure 2.8. Clearly, the use of manufactured invari-

ants results in a very significant improvement over SDI. Moreover, our results are

very close to those obtained in [17] using the LP-based polyhedral bounding method,

demonstrating that the new preconditioning method is effective. The costs were 0.003

s for a single trajectory, 0.013 s for SDI, and 0.10 s using manufactured invariants.

The reported time in [17] is 0.03 s using a processor with very similar performance ac-

cording to the PassMark benchmarks. However, the method in [17] was implemented

in C++. While this makes direct comparison with our MATLAB implementation difficult,

C++ is typically many times faster, implying that our method is competitive at worst,

and may be considerably more efficient.

Example 7 The following model describes a two-phase counter-current multistage
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liquid-liquid extraction system with a single solute [25]:

VLẋn = L(xn−1 − xn)−Qn (2.64)

VGẏn = G(yn+1 − yn) +Qn

Above, n = 1, . . . , 5 is the stage number, xn and yn are the concentrations of solute in

the feed and solvent phases, respectively (kg/m3), VL = 2 and VG = 2 are the phase

volumes (m3), L = 5 and G = 5 are flow rates (m3/h), and Qn is the rate of solute

transfer, expressed as

Qn = KLa(xn − x∗n)V. (2.65)

Above, KLa is the overall mass transfer capacity constant (1/h), V = VL + VG is the

total hold-up volume (m3/h), and x∗n is the solute concentration in equilibrium with yn.

We assume that the following polynomial has been fit to experimental equilibrium data:

x∗n = p1y
4
n+p2y

3
n+p3y

2
n+p4yn+p5. Due to measurement error, we further assume that

KLa and all coefficient p1, ..., p5 are uncertain, with KLa ∈ [8, 16], p1 ∈ [1.48, 1.49]×

10−5, p2 ∈ [−1.11,−1.05]×10−3, p3 ∈ [3.28, 3.30]×10−3, p4 ∈ [7.56, 7.58]×10−1, and

p5 ∈ [4.93, 4.95] × 10−2. All initial concentrations are 0 and the inlet flow rates are

x0 = 10 and y0 = 1 (m3/h).

Observing that Qn appears in both ODEs in (2.64), effective redundant state

variables can be created by arranging for the cancellation of this term. Specifically,

we define

Nn = VLxn + VGyn, n = 1, . . . , 5, (2.66)
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Figure 2.9: State bounds for x5 (left) and y5 (right) from (2.64) computed using
SDI (dashed) and DI with manufactured invariants (circles). Solid lines are real
trajectories

which leads to the augmented ODEs

Ṅn = Lxn−1 +Gyn+1 − (Lxn +Gyn), (2.67)

= 5(xn−1 + yn+1)− 5

2
Nn, n = 1, . . . , 5. (2.68)

Figure 2.9 clearly shows that the SDI bounds rapidly explode for this example.

In contrast, the use of manufactured model redundancy provides bounds that are nearly

exact. The costs were 0.04 s for a single trajectory, and 0.7 s for DI using manufac-

tured invariants, while integration of the SDI bounds failed due to rapid divergence

around t = 2.

Example 8 The Van der Pol equations describe an oscillator with applications in

electrical circuits, biological networks, and various other domains. We study these

equations here because oscillatory systems are notoriously difficult to bound. The Van

der Pol equations in two-dimensions are

ẋ1 = x2, ẋ2 = (1− x1
2)x2 − x1. (2.69)
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Figure 2.10: State bounds for x1 (left) and x2 (right) in (2.69) computed using SDI
(dashed), DI with manufactured state variable y1 only (diamond), and DI with both
manufactured state variables y1 and y2 (circle). Solid lines are real trajectories.

The time horizon is I = [0, 10] (s) and the initial conditions are uncertain with

x1(t0) ∈ [1.399, 1.400] and x2(t0) ∈ [2.299, 2.300]. To endow this system with affine

solution invariants, we define the redundant states y1 ≡ x1 − x2 and y2 ≡ x1 + x2,

and, after some algebraic rearrangements, augment (2.69) with the additional ODEs

ẏ1 = x1(x1x2 + 1), ẏ2 = (1− x2
1)x2 − y1. (2.70)

Figure 2.10 compares the results of applying SDI to (2.69) and applying DI with man-

ufactured invariants to (2.69)–(2.70). The figure also shows the result of adding only

a single invariant and the single additional state y1. Again, the simple addition of lin-

ear invariants leads to a dramatic reduction in the conservatism of the DI approach.

Because the Van der Pol system is oscillatory and highly sensitive to the initial con-

ditions, it is expected that the bounds computed by any method will eventually diverge.

However, the use of redundancy here has allowed DI to produce meaningful bounds

over a significantly longer time horizon. The costs were 0.005 for single trajectory,

0.018 s for SDI, 0.05 s using one manufactured invariant, and 0.08 s for using two

manufactured invariants.
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Example 9 The Lotka-Volterra system is widely used for comparing bounding algo-

rithms and has been studied in several previous articles [17, 35]. For comparison, we

use the same data here. The Lotka-Volterra equations are

ẋ1 = u1x1(1− x2), ẋ2 = u2x2(x1 − 1). (2.71)

The time horizon is I = [0, 10] (s) and (u1, u2) is uncertain with u1 ∈ [2.99, 3.01] and

u2 ∈ [0.99, 1.01]. The initial condition is (x1, x2)(t0) = (1.2, 1.1).

We define the following redundant state variables:

y1 =
x1

u1

− x2

u2

(2.72)

y2 = x1x2

y3 =
x1

x2

y4 = sin(π/16)x1 + cos(π/16)x2

y5 = sin(2π/16)x1 + cos(2π/16)x2

y6 = sin(3π/16)x1 + cos(3π/16)x2

y7 = sin(5π/16)x1 + cos(5π/16)x2

y8 = sin(7π/16)x1 + cos(7π/16)x2

As in Example 6, the linear invariants defining y4–y8 are chosen to mimic the poly-

hedral enclosure used in [17], as described in §2.4.1. However, in contrast to our

previous examples, we also consider three nonlinear definitions. Note that these are

permissible in Theorem 4, provided that an appropriate IG satisfying Assumption 2 is

defined. In contrast, the polyhedral bounding method proposed in [17] can only make

use of linear constraints.
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To satisfy Assumption 2, we define a custom interval refinement mapping

called NG as follows. First, given intervals X, Y , and U , the three nonlinear in-

variants in (2.72) are used the refine X and Y by taking interval extensions of rear-

rangements of these equations in the following order:

X1 := X1 ∩ [U1(Y1 +X2/U2)] (2.73)

X1 := X1 ∩ [Y2/X2]

X1 := X1 ∩ [Y3X2]

X2 := X2 ∩ [U2(X1/U1 − Y1)]

X2 := X2 ∩ [Y2/X1]

X2 := X2 ∩ [X1/Y3]

Y1 := Y1 ∩ [X1/U1 −X2/U2]

Y2 := Y2 ∩ [X1X2]

Y3 := Y3 ∩ [X1/X2]

After these refinements, the resulting intervals are passed to IG as defined in Algo-

rithm 2 using the remaining linear invariants defining y4–y8 in (2.72). The overall

operation satisfies Assumption 2 due to the Lipschitz continuity of interval arithmetic,

provided that none of the intersections are empty. To guard against this, we use a

simple Lipschitz extension of the intersection defined and discussed in detail in [61].

The results are shown in Figure 2.11. Again, the addition of manufactured

invariants results in much tighter bounds than SDI. In fact, the resulting bounds are

extremely similar to those obtained using the LP-based polyhedral bounding algorithm

in [17]. The costs were 0.003 s for single trajectory, 0.016 s for SDI, and 0.10 s

for DI using manufactured model redundancy. The time reported in [17] is 0.050 s.
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Figure 2.11: State bounds for x1 (left)and x2 (right) computed from computed using
SDI (dashed), and DI with manufactured affine invariants under mapping NG (circle),
solid line presents the real trajectories.

However, we note again that the implementation in [17] is in C++, which is expected

to be considerably faster than an equivalent implementation in MATLAB. Thus, this

example shows that similar quality bounds can be obtained using only interval methods,

likely with significant gains in efficiency.

2.7 Conclusion

This chapter presented a novel strategy for reducing the conservatism of fast

interval methods for bounding the solutions of nonlinear ODEs through the addition

of redundant state variables and solution invariants. We have outlined several mech-

anisms through which these redundant equations can improve state bounds relative

to standard interval methods, and presented preconditioning heuristics for effectively

using redundant solution invariants in interval refinement algorithms. Our numerical

results clearly illustrate the ability of model redundancy to reduce conservatism, often

dramatically, at modest additional cost. However, several critical issues remain be

addressed, including the automatic generation of effective redundant equations, and

the use of general nonlinear solution invariants.
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Chapter 3

Exploiting Nonlinear Invariants

and Path Constraints to Achieve

Tighter Bounds on the Flows of

Uncertain Nonlinear Systems using

Differential Inequalities

3.1 Introduction

This chapter presents a new method for computing guaranteed bounds on the

solutions of systems of nonlinear ordinary differential equations (ODEs) subject to

uncertain initial conditions, parameters, and time-varying inputs. Such bounds are

widely used in algorithms for robust state estimation [54, 42], set-based fault detec-

tion [60, 53, 35], system verification [3, 8, 28], robust control [78, 32, 15], and solving

open-loop optimal control problems to guaranteed global optimality [62, 22]. Ac-
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cordingly, a wide variety of methods have been proposed for computing such bounds,

including simulation-based methods [26, 37], level-set methods [41, 30], conservative

linearization methods [5], validated integration methods based on interval Taylor se-

ries expansions and Taylor models [47, 39, 34, 24], and methods based on the theory

of differential inequalities [64, 77, 67]. However, for nonlinear systems with large un-

certainties, obtaining guaranteed bounds that are both accurate and computationally

efficient remains a significant challenge.

This chapter continues a line of research that has recently achieved very

promising bounding results using methods based on differential inequalities (DI). DI

methods provide rigorous interval or polyhedral bounds at very low computational

cost relative to alternative approaches [64, 17], making them particularly promis-

ing for online control applications such as state estimation and safety verification

[54, 42, 3, 8], as well as for use in branch-and-bound algorithms for solving optimal

control problems to global optimality [62, 22]. Although the original DI method in

[16] often produces extremely conservative bounds, several DI methods with greatly

improved accuracy have since been developed, specifically for systems whose states

are known to satisfy a set of state constraints pointwise in time [74, 58, 64, 17, 19, 67].

Examples of such constraints include physically motivated upper and lower bounds,

such as nonnegativity of certain states [74], or algebraic functions of the states that

are known to remain constant with time due to, e.g., the conservation of mass, energy,

or chemical elements (we call such functions solution invariants) [64]. Constraints of

this type are implied by the dynamics, and are therefore satisfied by all system tra-

jectories. In contrast, the article [19] considers state constraints that are externally

imposed, such as path constraints in the context of dynamic optimization, where one

is only interested in bounding the feasible trajectories. In both cases, enhanced DI

methods have been developed that can exploit these constraints during the bounding
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procedure, often resulting in much tighter bounds with only a moderate increase in

computational cost [64, 17, 19]. In brief, this is accomplished by applying a suitably

defined bound refinement operator pointwise in time during the forward propagation

of the bounds. At each point in time, this refinement operator attempts to shrink

the current bounds by eliminating enclosed regions that violate the constraints. Until

recently, an evident drawback of these DI methods is that they only apply to systems

for which appropriate constraints are known a priori. However, the article [67] de-

scribes a framework for applying these methods to arbitrary, unconstrained nonlinear

ODEs by introducing redundant state variables and ODEs, which effectively embeds

the ODEs of interest into a higher-dimensional system that obeys a set of solution

invariants by design. Numerous case studies in [67] show that this is very effective,

although it requires significant problem specific insight in most cases.

Despite these recent advances, the DI methods described above suffer from

some significant limitations, which are discussed in turn in the following paragraphs.

In brief, the main contribution of this chapter is to overcome several of these limita-

tions by establishing a new, more general DI theorem, and a new bounding algorithm

based on this theorem. The specific new capabilities that result from these develop-

ments are discussed in detail below.

Nonlinear constraints. With one problem-specific exception in [67], none of the

existing DI algorithms are applicable to problems with nonlinear constraints. This

is a significant limitation because many systems of interest naturally obey nonlinear

solution invariants that could be very helpful for achieving tighter bounds on their

solutions (e.g., oscillators and Hamiltonian systems [71]). Moreover, nonlinear path

constraints arise in a wide variety of optimal control problems [13]. In principle, the

key theorems underlying state-of-the-art DI bounding methods do permit the use of

nonlinear constraints [64, 19]. However, all of these methods are implemented using
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refinement operators that must satisfy certain theoretical conditions that prove to

be very restrictive in the nonlinear case. Specifically, the standard assumption on

the domain of this operator implies that the nonlinear constraint functions must be

well-defined for arbitrary values of their arguments, which is often not the case (this

issue is discussed further in §3.4). Moreover, the refinement operator is required to

be locally Lipschitz continuous, which is not true of most standard algorithms for

refining bounds based on a set of nonlinear constraints [48]. To address the first

limitation, our new DI theorem uses an alternative assumption on the domain of the

refinement operator. We show that this assumption is easily verifiable for a very

general class of nonlinear constraints. In addition, we present a new refinement algo-

rithm for this class of constraints that is guaranteed to satisfy the required Lipschitz

property. Together, these contributions result in an new DI bounding algorithm that

can effectively exploit very general nonlinear constraints in order to achieve tighter

bounds.

Constraints depending on uncertain time-invariant parameters and time-varying

inputs. The key theorems underlying the state-of-the-art DI bounding methods in

[64, 19] only permit the use of constraints that depend exclusively on the system

states. Specifically, these constraints cannot depend on uncertain model parameters

or inputs. In the article [19], it was observed that constraints depending on time-

invariant uncertain parameters are permissible if these parameters are regarded as

additional states with uncertain initial conditions and zero time derivatives. How-

ever, dependence on time-varying inputs was not addressed there. These are signifi-

cant limitations because many systems of practical interest obey solution invariants

that depend on uncertain parameters and inputs. One specific example is the Lotka-

Voterra oscillator, which is discussed further in §3.6. Moreover, joint input-state

constraints are common in many optimal control formulations, including robot mo-
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tion planning and flight path planning problems [31, 13]. To address these limitations,

our new DI theorem permits constraints with arbitrary dependence on both uncertain

time-invariant parameters and uncertain time-varying inputs.

Constraints depending on time derivatives of the states. Existing DI methods

that exploit state constraints cannot be applied to constraints that depend on the

time-derivatives of the state variables. However, such constraints arise naturally in

many applications (e.g., non-holonomic robot dynamics [31]), and solution invariants

for many systems are most easily formulated in terms of state derivatives. To ad-

dress this limitation, both the new DI theorem presented here and its algorithmic

implementation support the use of constraints with arbitrary dependence the time

derivatives of the system states.

In aggregate, the theoretical and algorithmic contributions outlined above

significantly increase the applicability of state-of-the-art DI methods for computing

sharp bounds on the solutions of uncertain nonlinear systems. Specifically, our results

enable such methods to address a wide variety of systems with state constraints that

are nonlinear and potentially dependent on uncertain model parameters, inputs, and

state derivatives.

The new theory and algorithms presented for constrained ODEs in this chap-

ter are similar in many respects to the results for bounding the solutions of semi-

explicit differential-algebraic equations (DAEs) in [59, 61]. However, these problems

are distinct because the ODE systems considered here are uniquely solvable without

constraints. In other words, the constraints are used here only as additional infor-

mation to improve the computed bounds. In contrast, the algebraic equations in the

semi-explicit DAEs in [59, 61] are necessary for specifying locally unique solutions.

Importantly, the DAE bounding theory in [59] and the properties of the refinement

operator developed in [61] both fundamentally rely on uniqueness conditions for the
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algebraic equations that would be unreasonable to assume for the constraints con-

sidered in this chapter. Thus, the key contributions of this chapter are distinct from

those in [59, 61].

3.2 Preliminary Notation and Definitions

Let R̄ = R ∪ {−∞,+∞} denote the extended real line. For any measurable

I ⊂ R, denote the space of Lebesgue integrable functions u : I → R̄ by L1(I). A

vector function u : I → R̄n is Lebesgue integrable if ui ∈ L1(I) for each i = 1, . . . , n,

in which case we write u ∈ (L1(I))n. Furthermore, let AC(I,Rn) denote the space of

absolutely continuous functions from I into Rn.

For v,w ∈ Rn, let [v,w] denote the compact n-dimensional interval {z ∈ Rn :

v ≤ z ≤ w}. The set of all nonempty interval subsets of Rn is denoted by IRn.

Similarly, for D ⊂ Rn, the set of all nonempty interval subsets of D is denoted by

ID. Let D ⊂ Rn and f : D → Rm. A mapping F : D ⊂ ID → IRm is an inclusion

function for f on D if

F (X) ⊃ f(X) ≡ {f(x) : x ∈ X}, ∀X ∈ D. (3.1)

Inclusion functions can be readily derived for a very general class of nonlinear func-

tions called factorable functions. In brief, f is factorable if it can be evaluated by a

finite recursive composition of binary additions, binary multiplications, and standard

univariate functions such as −x, 1
x
, xn, ex, etc. This includes nearly every function

that can be written explicitly in computer code. For any factorable function f , a

specific inclusion function called the natural interval extension can be constructed by

simply replacing each operation in the definition of f with a suitable interval coun-
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terpart [48]. In the following sections, we make use of several properties of natural

interval extensions from [57].

It is well known that the Hausdorff distance dH (induced by ‖ · ‖∞) is a metric

on IRn. Therefore, standard definitions and results concerning sets and functions on

metric spaces are applicable. For example, the open ball of radius η > 0 centered

at X ∈ IRn is defined by Bη(X) ≡ {Z ∈ IRn : dH(X,Z) < η}. Similarly, a set

X ⊂ IRn (i.e., X is a set whose elements are intervals) is called open if for every

X ∈ X , ∃η > 0 such that Bη(X) ⊂ X . Additionally, a mapping F : D ⊂ IRn → IRm

is called locally Lipschitz continuous on D if for every X ∈ D, ∃L, η > 0 such that

dH(F (X̄), F (X̂)) ≤ LdH(X̄, X̂) for every X̄, X̂ ∈ Bη(X) ∩ D. These definitions will

be used in several places in conjunction with the standard facts that the pre-image of

an open set under a continuous function is open, and that the composition of locally

Lipschitz functions is locally Lipschitz, both of which hold in general metric spaces.

For brevity in the remainder of the chapter, we use ‖ · ‖ to denote the infinity norm

‖ · ‖∞.

3.3 Problem Statement

Let f : Df ⊂ R×Rnu×Rnx → Rnx be a vector field, let G ⊂ R×Rnu×Rnx×Rnx

be a constraint set, and consider the constrained dynamic system

ẋ(t) = f(t,u(t),x(t)), (3.2a)

x(t0) = x0, (3.2b)

(t,u(t),x(t), ẋ(t)) ∈ G. (3.2c)
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Let I = [t0, tf ] ⊂ R be a time horizon of interest, let U ∈ IRnu , and define the set of

admissible inputs as

U ≡ {u ∈ (L1(I))nu : u(t) ∈ U for almost every (a.e.) t ∈ I}.

Moreover, let X0 ∈ IRnx be an interval of admissible initial conditions. For any fixed

(x0,u) ∈ X0 × U , we call x ∈ AC(I,Rnx) a solution of (4.1a)–(4.1b) if it satisfies

(4.1a)–(4.1b) for a.e. t ∈ I. Considering the constraint (4.1c) as well, we call the

triple (x0,u,x) ∈ X0 × U ×AC(I,Rnx) a solution of (4.1) if it satisfies (4.1a)–(4.1c)

for a.e. t ∈ I.

We assume throughout that a unique solution of (4.1a)–(4.1b) exists for every

choice of (x0,u) ∈ X0 × U and, when necessary for clarity, we denote this solution

by x(t; x0,u). Existence and uniqueness can be ensured locally under standard as-

sumptions on f . Notably, these include a Lipschitz condition that plays a central role

in the bounding theories in [64, 67, 17, 19]. In contrast, our main result here does

not require any specific assumptions on f other than existence and uniqueness of the

solution of (4.1a)–(4.1b). Likewise, we put no restrictions on the constraint set G.

However, our main result does require the existence of a locally Lipschitz interval

function R satisfying a certain inclusion property with respect to f and G, which is

assumed explicitly in §3.5.

Definition 8 The reachable set of the constrained system (4.1) is defined for every

t ∈ I as

Re(t) ≡ {z ∈ Rnx : ∃(x0,u,x) ∈ X0 × U ×AC(I,Rnx) of (4.1) satisfying x(t) = z}.

(3.3)
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We are interested in computing a tight, time-varying enclosure of the reachable

set of (4.1). In other words, we wish to bound all possible solutions of (4.1a)–(4.1b)

that have uncertain initial conditions and inputs in X0 × U , and that satisfy the

state constraint (4.1c). Depending on the application, the uncertain input u may

represent process disturbances, possible control inputs, unknown model parameters,

unmodeled dynamics, etc. Note that the case where some elements of u are time-

invariant parameters taking values in U is a special case of our general formulation in

the sense that any valid enclosure of the reachable set of (4.1) also necessarily encloses

the smaller set of states that are reachable when some elements of u are required to

be time-invariant.

This chapter specifically considers fast interval methods based on differential

inequalities (DI) [64], which furnish state bounds defined as follows.

Definition 9 Two functions v,w ∈ AC(I,Rnx) are called state bounds for (4.1) if

Re(t) ⊂ [v(t),w(t)], ∀t ∈ I.

3.4 A General State Bounding Theorem for Con-

strained ODEs

This section presents the main theoretical result of this chapter, Theorem 7,

which provides sufficient conditions for a time-varying interval to describe valid state

bounds for the constrained system (4.1). This result relies on an interval-valued

function R that must satisfy several key requirements enumerated in Assumption 3.

In this assumption and elsewhere, p is used to denote an arbitrary vector in U so that

u can consistently denote a function in U . Moreover, P is used to denote an arbitrary

interval subset of Rnu . Similarly, z and σ are used to denote arbitrary vectors in
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Rnx so that x and ẋ can consistently denote a solution of (4.1a)–(4.1c) and its time

derivative, and Z and Σ are used to denote arbitrary interval subsets of Rnx .

To describe the required function R conceptually, consider an interval P × Z

that encloses all (u(t),x(t)) corresponding to solutions of (4.1) at some t ∈ I. As-

sumption 3 below essentially states that an interval function R is available that takes

(t, P, Z) as input and produces an enclosure Σ of all possible values of σ = f(t,p, z)

such that (p, z) ∈ P × Z and (t,p, z,σ) ∈ G. Thus, R is like an inclusion function

for f , but differs in that it is only required to bound f over arguments that satisfy

the constraint set G. Assumption 3 further requires R to satisfy several technical

conditions used in the proof of Theorem 7. A specific algorithm for evaluating R in

a manner that satisfies all of these requirements is developed in §3.5.

Assumption 3 Let R : DR ⊂ R× IRnu × IRnx → IRnx be an interval function with

the following properties:

1. For every (t, P, Z) ∈ DR, the set {t} × P × Z is contained in the domain of f ,

Df , and

R(t, P, Z) ⊃ {σ ∈ Rnx : σ = f(t,p, z), (t,p, z,σ) ∈ G, (p, z) ∈ P × Z} .

(3.4)

2. DR is open with respect to t and Z. Specifically, for every (t̂, P̂ , Ẑ) ∈ DR, there

exists η > 0 such that (t, P̂ , Z) ∈ DR for every t ∈ Bη(t̂) and Z ∈ Bη(Ẑ).

3. R is locally Lipschitz continuous with respect to Z, uniformly with respect to t.

Specifically, for any (t̂, P̂ , Ẑ) ∈ DR, there exists η, L > 0 such that

dH(R(t, P̂ , Z),R(t, P̂ , Z̃)) ≤ LdH(Z, Z̃), (3.5)
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for every t ∈ Bη(t̂) and Z, Z̃ ∈ Bη(Ẑ).

Our main result below uses R to formulate a set of differential inequalities

that ensure that a time-varying interval X(t) = [xL(t),xU(t)] contains the reachable

set of (4.1) pointwise in time. As with previous bounding results of this type, our

result relies on the key idea that, in order for a solution x(t) to leave the bounds

X(t), it must cross the boundary of X(t). More specifically, there must be some

t̂ ∈ I at which either xi(t̂) = xLi (t̂) or xi(t̂) = xUi (t̂) for some i ∈ {1, . . . , nx}. As a

consequence, sufficient conditions for x(t) to remain in X(t) can be formulated only

in terms of the values of the vector field f on the facets of X(t). Definition 15 provides

convenient notation for these facets.

Definition 10 Define BLi ,BUi : IRnx → IRnx for every i ∈ {1, . . . , nx} and every

X = [xL,xU ] ∈ IRnx by BLi (X) = {z ∈ X : zi = xLi } and BUi (X) = {z ∈ X : zi = xUi }.

Now, consider a time-varying interval X(t) = [xL(t),xU(t)] such that X(t0) ⊃

X0. Omitting some technical details, the standard differential inequalities result for

unconstrained systems [16] states that xL and xU are valid state bounds if, for every

i ∈ {1, . . . , nx} and a.e. t ∈ I, they satisfy

ẋLi (t) ≤ fi(t,p, z), ∀(p, z) ∈ U × BLi (X(t)) (3.6)

ẋUi (t) ≥ fi(t,p, z), ∀(p, z) ∈ U × BUi (X(t)). (3.7)

According to the discussion above, the purpose of the first inequality is to ensure that,

if any solution of (4.1) is incident on the ith lower bound at t (i.e., x(t) ∈ BLi (X(t))),

then xLi is decreasing faster than xi at t. Of course, the purpose of the second

inequality is analogous. Our new result weakens these differential inequalities by
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exploiting the state constraint (4.1c) through the operator R. For example, the

differential inequality for xLi is replaced by

ẋLi (t) ≤ σi, ∀σ ∈ R[t, U,BLi (X(t))]. (3.8)

By Condition 1 of Assumption 3, this requires xLi (t) to be less than fi(t,p, z) for all

arguments that satisfy (p, z) ∈ U ×BLi (X(t)) and the constraint (t,p, z,σ) ∈ G with

σ = f(t,p, z). The sufficiency of these modified differential inequalities is established

in Theorem 7 below. In the stated hypotheses, the shorthand BL/Ui indicates that a

hypothesis must hold with both BLi and BUi independently.

Theorem 7 Let xL,xU ∈ AC(I,Rnx) and denote X(t) ≡ [xL(t),xU(t)], ∀t ∈ I.

Assume that X satisfies:

1. [t, U,BL/Ui (X(t))] ∈ DR for all t ∈ I and every i ∈ {1, . . . , nx}.

2. X(t0) ⊃ X0.

3. For a.e. t ∈ I and every i ∈ {1, . . . , nx},

(a) ẋLi (t) ≤ σi for all σ ∈ R[t, U,BLi (X(t))],

(b) ẋUi (t) ≥ σi for all σ ∈ R[t, U,BUi (X(t))].

Then, every solution (x0,u,x) ∈ X0 ×U ×AC(I,Rnx) of (4.1) satisfies x(t) ∈ X(t),

∀t ∈ I.

Proof See Appendix. �

In Theorem 7, Condition 1 simply ensures that R is well-defined for the ar-

guments used in Condition 3. Condition 2 requires that X(t0) bounds all initial
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conditions that are admissible in (4.1). Finally, the differential inequalities in Con-

dition 3 ensure that, if some solution of (4.1) is incident on a facet of X(t), then

the upper (resp. lower) bound in question is increasing (resp. decreasing) at least as

quickly as the corresponding component of the offending solution. Although the pur-

pose of each of these hypotheses is clear, the proof of Theorem 7 is technical and relies

on some cumbersome preliminary results. Thus, the formal argument is presented in

the Appendix A.

Theorem 7 is similar to several previously published results, with the most

closely related being Theorem 2 in [64] (with Definition 3 and Eq. (7)), Theorem 1 in

[17], and Theorem 1 in [19]. However, Theorem 7 here is unique in a few key respects.

First, prior results have not considered systems with constraints that depend on time-

varying uncertain inputs u or state derivatives ẋ, which are permitted in (4.1c) here.

Second, there are technical differences in the assumptions required on the domain of

R here relative to previous results, and these are important for effectively exploiting

nonlinear constraints. Prior uses of interval operators similar to R in differential

inequalities theorems are based on the theory originally developed in [64]. There,

the authors considered state constraints of the form x(t) ∈ G ⊂ Rnx and used an

interval-valued operator of the form IG : DI ⊂ IRnx → IRnx that refines a given

interval Z ∈ IRnx by producing an interval enclosure of Z ∩G. Critically, this theory

requires the strong assumption that every Z ∈ IRnx satisfying Z∩G 6= ∅ is an element

of DI (i.e., IG(Z) must be well-defined for any such interval). The extensions of this

theory in [17] and [19] consider polyhedral rather than interval state bounds, but

impose directly analogous forms of this same assumption. Notably, it follows from

this assumption that DI must contain intervals that are arbitrarily large in width,

provided that they contain G. This assumption is not particularly restrictive when G

is defined by a system of linear constraints, and several suitable refinement operators
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have been proposed for this case [64, 18, 17, 19, 67]. However, we argue in the next

section that this assumption is unreasonable when G is defined more generally by a

set of nonlinear constraints (see Remark 1). In contrast, Theorem 7 here does not

require any assumption of this type on R. To work around the need for such an

assumption, we have instead used the assumption that DR is open with respect to

t and Z. In the following section, we propose an algorithm that satisfies this new

requirement for constraint sets G defined by arbitrary nonlinear factorable functions

under very mild assumptions. Thus, this technical distinction between Theorem 7

here and the prior results in [64, 17, 19] is critical for developing practical numerical

methods for systems with nonlinear constraints, despite the fact that the results in

[64, 17, 19] do not explicitly assume linearity.

In the remainder of this section, we briefly describe how state bounds can be

computed based on Theorem 7 and the following corollary.

Corollary 1 Suppose that xL,xU ∈ AC(I,Rnx) are solutions of the following system

of ODEs with i ∈ {1, . . . , nx} and X(t) ≡ [xL(t),xU(t)]:

ẋLi (t) = min{σi : σ ∈ R[t, U,BLi (X(t))]}, (3.9)

ẋUi (t) = max{σi : σ ∈ R[t, U,BUi (X(t))]}, (3.10)

xLi (t0) = min{x0,i : x0 ∈ X0}, (3.11)

xUi (t0) = max{x0,i : x0 ∈ X0}. (3.12)

Then every solution (x0,u,x) ∈ X0×U ×AC(I,Rnx) of (4.1) satisfies x(t) ∈ X(t) ≡

[xL(t),xU(t)], ∀t ∈ I.

Proof It suffices to show that xL and xU satisfy the hypotheses of Theorem 7. If

(xL,xU) is a solution of (3.9)–(3.12) on all of I, then X(t) = [xL(t),xU(t)] must
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remain in the domain of the right-hand side functions in (3.9)–(3.10). It follows that

we must have (t, U,BL/Ui (X(t))) ∈ DR, ∀t ∈ I, and hence Condition 1 of Theorem 7

holds. Moreover, Conditions 2 and 3 are directly implied by (3.11)–(3.12) and (3.9)–

(3.10), respectively. �

According to Corollary 11, state bounds can be computed by simply solving

the ODEs (3.9)–(3.12). Since X0 is an interval andR is interval-valued, the min /max

operations in (3.9)–(3.12) can be executed by simply selecting the ith upper or lower

bound of the given interval. Then, (3.9)–(3.12) can be solved efficiently using any

numerical integration algorithm. In fact, Assumption 3 ensures that the right-hand

sides of these ODEs are locally Lipschitz continuous with respect to the states xL

and xU , as required by standard numerical solvers (see Theorem 5.5.12 in [57]).

3.5 An Interval Refinement Operator for Exploit-

ing Nonlinear Constraints

This section presents a new algorithm defining the interval operator R in

Assumption 3 for the case where the set G is defined by a system of nonlinear equality

and inequality constraints. This extends the work in [67, 64, 18, 19], where refinement

algorithms are given for G sets defined in terms of linear constraints.

Assumption 4 Assume that G is defined by

G ≡
{

(t,p, z,σ) ∈ DG : g(t,p, z,σ) ≤ 0, h(t,p, z,σ) = 0

}
, (3.13)

where (g,h) : DG ⊂ R×Rnu×Rnx×Rnx → Rng×Rnh are locally Lipschitz continuous

on DG and continuously differentiable with respect to (p, z,σ) at each point in DG.
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Our algorithm for R requires inclusion functions for the derivatives of g and

h, as well as for the vector field f : Df → Rnx in (4.1a), which we formalize in the

assumptions below. We use the shorthand y = (p, z,σ) with ny = nu + nx + nx in

order to write the Jacobian matrices of g and h with respect to (p, z,σ) concisely

as (∂g
∂y
, ∂h
∂y

) : DG → Rng×ny × Rnh×ny . Additionally, for a set D ⊂ Rnx , we use ID to

denote the set in IRnx containing all interval subsets of D.

Assumption 5 Let D[G] ⊂ IDG and let [∂g
∂y

] : D[G] → IRng×ny and [∂h
∂y

] : D[G] →

IRnh×ny satisfy

1. For every (T, P, Z,Σ) ∈ D[G],

[
∂g

∂y

]
(T, P, Z,Σ) ⊃

{
∂g

∂y
(t,p, z,σ) : (t,p, z,σ) ∈ T × P × Z × Σ

}
, (3.14)[

∂h

∂y

]
(T, P, Z,Σ) ⊃

{
∂h

∂y
(t,p, z,σ) : (t,p, z,σ) ∈ T × P × Z × Σ

}
. (3.15)

2. D[G] is open.

3. [∂g
∂y

] and [∂h
∂y

] are locally Lipschitz continuous.

4. If (T, P, Z,Σ) ∈ D[G], then IT × IP × IZ × IΣ ⊂ D[G].

Assumption 6 Let F : DF ⊂ IDf → IRnx satisfy:

1. For every (T, P, Z) ∈ DF ,

F (T, P, Z) ⊃ {f(t,p, z) : (t,p, z) ∈ I × P × Z}. (3.16)
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2. DF is open.

3. F is locally Lipschitz continuous.

4. If (T, P, Z) ∈ DF , then IT × IP × IZ ⊂ DF .

Assumptions 5-7 are easily satisfied for a very general class of nonlinear func-

tions. In particular, if ∂g
∂y

, ∂h
∂y

, and f are factorable functions (i.e., they can be written

explicitly in computer code using a standard mathematics library), then [∂g
∂y

], [∂h
∂y

],

and F can be chosen as the natural interval extensions of ∂g
∂y

, ∂h
∂y

, and f , respectively

[48]. This satisfies Condition 1 of Assumptions 5-7 by definition. Regarding Condi-

tion 2, note that the natural interval extension of a function, say f : Df → Rnx , is not

necessarily defined for every interval subset of Df because overly conservative interval

bounds on intermediate variables may cause domain violations that do not occur in

real arithmetic (e.g., division by an interval containing zero). However, the maximal

domain of definition DF ⊂ IDf is guaranteed to be open provided that each primitive

univariate function appearing in the definition of f (e.g., −x, ex, xn, sinx, etc.) is

defined on an open domain, is continuous, and has a continuous interval extension

there (see Corollary 2.5.35 and Remark 2.5.36 in [57]). Moreover, if these primitive

univariate functions are locally Lipschitz continuous and have locally Lipschitz inter-

val extensions, then F is locally Lipschitz continuous as well (see Corollary 2.5.31 in

[57]). These properties are verified for a comprehensive library of univariate functions,

along with their standard interval extensions, in §2.8 of [57]. Thus, Conditions 2 and

3 of Assumptions 5-7 hold very generally. Finally, Condition 4 of Assumptions 5-7

follows directly from inclusion monotonicity of interval arithmetic (see Lemma 2.3.12

in [57]).

Recall from Assumption 3 that R must satisfy the following inclusion for every
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(t, P, Z) in its domain:

R(t, P, Z) ⊃ {σ ∈ Rnx : σ = f(t,p, z), (t,p, z,σ) ∈ G, (p, z) ∈ P × Z} , (3.17)

⊃ {σ ∈ Rnx : σ = f(t,p, z), g(t,p, z,σ) ≤ 0, h(t,p, z,σ) = 0, (p, z) ∈ P × Z} .

(3.18)

Our algorithm accomplishes this in three steps. First, the inclusion function

F is used to compute

Σ ≡ F ([t, t], P, Z), (3.19)

⊃ {σ ∈ Rnx : σ = f(t,p, z), (p, z) ∈ P × Z} , (3.20)

where [t, t] denotes the degenerate interval containing only t and the incusion follows

from Condition 1 of Assumption 7. Second, the interval P × Z × Σ is refined based

on the constraint set G to obtain a new interval

P̂ × Ẑ × Σ̂ ⊃ {(p, z,σ) ∈ P × Z × Σ : (t,p, z,σ) ∈ G}. (3.21)

Finally, the refined interval P̂ × Ẑ × Σ̂ is used to obtain the final enclosure of σ (i.e.,

the output of R) via

R(t, P, Z) = Σ̂ ∩ F ([t, t], P̂ , Ẑ). (3.22)

To describe the refinement step concisely, let y = (p, z,σ) and Y = P×Z×Σ.

Then, the aim of the refinement step is to compute an interval enclosure of the set

{y ∈ Y : g(t,y) ≤ 0, h(t,y) = 0} . (3.23)
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This problem has been extensively studied in the literature, e.g., see [48]. However,

a unique requirement of the DI theory here is that R must be locally Lipschitz

continuous. This implies that the refinement mapping P ×Z ×Σ 7→ P̂ × Ẑ × Σ̂ must

be locally Lipschitz continuous, which is not true of most standard approaches. In

this work, we propose a modified form of the interval Krawczyk method [48] that has

the desired Lipschitz property.

To begin, consider the inequality constraint gi(t,y) ≤ 0 with i ∈ {1, . . . , ng},

choose any ỹ ∈ Y , and let y ∈ Y satisfy gi(t,y) ≤ 0. By the Mean Value Theorem,

there must exist ξ ∈ Y satisfying

gi(t,y) = gi(t, ỹ) +
∂gi
∂y

(t, ξ)(y − ỹ) ≤ 0. (3.24)

Thus, there must exist v ∈ V ≡ (−∞, 0] satisfying

gi(t, ỹ) +
∂gi
∂y

(t, ξ)(y − ỹ) + v = 0. (3.25)

In principle, (3.25) can be rearranged to isolate each variable yj, as in

yj = ỹj −
(
∂gi
∂yj

(t, ξ)

)−1
[
gi(t, ỹ) +

∑
k 6=j

∂gi
∂yk

(t, ξ)(yk − ỹk) + v

]
. (3.26)

Then, Yj can potentially be updated by evaluating the right-hand side in interval

arithmetic over (y, ξ, v) ∈ Y × Y × V , as in the interval Hansen-Sengupta method

[48]. However, this often requires division by intervals containing zero, which would

violate the required Lipschitz property. Instead, we consider a more conservative

approach obtained by multiplying (3.25) by an arbitrary scaling constant µ ∈ R and
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then adding yj − ỹj on both sides, which gives

yj − ỹj = µ

[
gi(t, ỹ) +

∂gi
∂y

(t, ξ)(y − ỹ) + v

]
+ yj − ỹj. (3.27)

Collecting yj terms on the right, we obtain

yj = ỹj + µ

[
gi(t, ỹ) +

∑
k 6=j

∂gi
∂yk

(t, ξ)(yk − ỹk) + v

]
+

(
1 + µ

∂gi
∂yj

(t, ξ)

)
(yj − ỹj).

(3.28)

Since ξ ∈ Y , it follows that ∂gi
∂y

(t, ξ) ∈ [∂gi
∂y

](t, Y ). Thus, (3.28) implies that the initial

interval Yj can potentially be refined by the inclusion

yj ∈ỹj + µ

[
gi(t, ỹ) +

∑
k 6=j

[
∂gi
∂yk

]
([t, t], Y )(Yk − ỹk) + V

]
+ (3.29)(

1 + µ

[
∂gi
∂yj

]
([t, t], Y )

)
(Yj − ỹj). (3.30)

Note that, in order for (3.29) to improve the original bound Yj, it is desirable for the

interval (1 + µ[ ∂gi
∂yj

]([t, t], Y )) to be a strict subset of [−1, 1]. In an attempt to achieve

this, we apply (3.29) with two choices of µ, denoted by µ+ and µ− and defined as

follows, where mid(C) denotes the midpoint of an interval C and ε > 0 is a user-

specified tolerance:

µ± = ±1/max

(
ε,

∣∣∣∣mid

([
∂gi
∂yj

]
([t, t], Y )

)∣∣∣∣) . (3.31)

These choices are motivated by the fact that, if [ ∂gi
∂yj

]([t, t], Y ) is a singleton with magni-

tude greater than ε, then either (1+µ−[ ∂gi
∂yj

]([t, t], Y )) = 0 or (1+µ+[ ∂gi
∂yj

]([t, t], Y )) = 0.

The tolerance ε is necessary to avoid division by zero. The complete refinement algo-
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rithm for Y consists of first applying the inclusion (3.29) for each choice of gi and yj,

with both µ+ and µ−. Next, an analogous sequence of refinements is applied using

the equality constraints h(t,y) = 0. For these constraints, we use inclusions that are

identical to (3.29) except that there is no slack variable v (i.e., V = [0, 0]).

Algorithm 3 describes the complete procedure for evaluatingR. In lines 10, 20,

and 25, ∩̄ denotes the extended intersection Y ∩̄Z ≡ [mid(zL, yL, yU),mid(zU , yL, yU)],

where mid(a, b, c) denotes the middle value of a, b, c ∈ R. Note that Y ∩̄Z agrees with

Y ∩Z whenever Y ∩Z is nonempty, and is a singleton contained in Y otherwise. This

operation is used here so that R never returns the empty set.

Theorem 8 Algorithm 3 is well-defined for every input (t, P, Z) in the set

DR ≡ {(t, P, Z) ∈ R× IRnu × IRnx : ([t], P, Z) ∈ DF , ([t], P, Z, F ([t, t], P, Z)) ∈ D[G]},

(3.32)

where [t] denotes the degenerate interval [t, t]. Moreover, if R(t, P, Z) is defined for

every (t, P, Z) ∈ DR by Algorithm 3, with any ε > 0, then Assumption 3 holds.

Proof Algorithm 3 is well-defined for a given (t, P, Z) ∈ R× IRnu × IRnx if and only

if the arguments of the inclusion functions F , [∂g
∂y

], and [∂h
∂y

] in lines 2, 6, 8, 9, 11,

16, 18, 19, 21, and 25, all lie in the appropriate domain DF or D[G]. By definition,

if (t, P, Z) ∈ DR, then (t, P, Z) ∈ DF and (t, Y ) = (t, P, Z,Σ) ∈ D[G] with Σ defined

as in line 2. By lines 10, 20, and 24, it is guaranteed that [∂g
∂y

] and [∂h
∂y

] are only ever

evaluated with arguments of the form ([t, t], Y ′) with Y ′ ⊂ Y , and that F is only

ever evaluated with arguments of the form ([t, t], P ′, Z ′) with P ′ ⊂ P and Z ′ ⊂ Z.

But by Condition 4 of Assumptions 5–7, such arguments always lie in D[G] and DF ,

respectively. Therefore, R is well-defined for all (t, P, Z) ∈ DR.
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Algorithm 3

1: function R(t, P, Z)
2: Σ← F ([t, t], P, Z)
3: Y ← (P,Z,Σ)
4: for i← 1, ng do
5: for j ← 1, ny do
6: µ← µ+ (see Eq. (3.31))
7: ỹ← mid(Y )
8: α← gi(t, ỹ) +

∑
k 6=j[

∂gi
∂yk

]([t, t], Y )(Yk − ỹk) + V

9: Ŷj ← ỹj + µα + (1 + µ[ ∂gi
∂yj

]([t, t], Y ))(Yj − ỹj)
10: Yj ← Yj∩̄Ŷj
11: µ← µ− (see Eq. 3.31), repeat lines 7–10
12: end for
13: end for
14: for q ← 1, nh do
15: for j ← 1, ny do
16: µ← µ+ (see Eq. (3.31))
17: ỹ← mid(Y )
18: α← hq(ỹ) +

∑
k 6=j[

∂hq
∂yk

]([t, t], Y )(Yk − ỹk)
19: Ŷj ← ỹj + µα + (1 + µ[∂hq

∂yj
]([t, t], Y ))(Yj − ỹj)

20: Yj ← Yj∩̄Ŷj
21: µ← µ− (see Eq. (3.31)), repeat lines 17–20
22: end for
23: end for
24: (P̂ , Ẑ, Σ̂)← Y
25: Σ̂← Σ̂∩̄F ([t, t], P̂ , Ẑ)
26: return Σ̂
27: end function
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To verify Condition 1 of Assumption 3, choose any (t, P, Z) ∈ DR. By the

definition of DR, we have ([t, t], P, Z) ∈ DF ⊂ IDf , and hence {t}×P ×Z ⊂ Df . To

verify the desired inclusion, we simply argue that

Y ⊃ {(p, z,σ) ∈ Rnu × Rnx × Rnx : σ = f(t,p, z), (t,p, z,σ) ∈ G, (p, z) ∈ P × Z}

(3.33)

at every stage of the algorithm. By Condition 1 of Assumption 7, this must hold

immediately after line 3. Moreover, on account of (3.29), no point y = (p, z,σ)

satisfying g(t,p, z,σ) ≤ 0 or h(t,p, z,σ) = 0 can be eliminated by the refinements

in lines 8–11 or 18–21. Thus, (3.33) still holds when line 24 is reached. Applying

Condition 1 of Assumption 7 again, the desired inclusion for R follows.

To verify Condition 3 of Assumption 3, choose any (t̂, P̂ , Ẑ) ∈ DR. We must

show that ∃η > 0 such that (t, P̂ , Z) ∈ DR for every t ∈ Bη(t̂) and Z ∈ Bη(Ẑ). Let

Σ̂ = F ([t̂, t̂], P̂ , Ẑ). By the definition of DR,

([t̂, t̂], P̂ , Ẑ) ∈ DF and ([t̂, t̂], P̂ , Ẑ, Σ̂) ∈ D[G]. (3.34)

Since D[G] is open (Condition 2 of Assumption 5), ∃δ > 0 such that

t ∈ Bδ(t̂), Z ∈ Bδ(Ẑ), Σ ∈ Bδ(Σ̂) =⇒ ([t, t], P̂ , Z,Σ) ∈ D[G]. (3.35)

Moreover, since DF is open and F is continuous (Conditions 2 and 3 of Assumption
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7), ∃η ∈ (0, δ] such that

t ∈ Bη(t̂), Z ∈ Bη(Ẑ) =⇒ ([t, t], P̂ , Z) ∈ DF , F ([t, t], P̂ , Z) ∈ Bδ(Σ̂), (3.36)

=⇒ ([t, t], P̂ , Z) ∈ DF , ([t, t], P̂ , Z, F ([t, t], P̂ , Z)) ∈ D[G],

(3.37)

=⇒ (t, P̂ , Z) ∈ DR. (3.38)

Thus, Condition 3 of Assumption 3 holds with this choice of η.

To verify Condition 2 of Assumption 3, we argue that every line of Algorithm

3 defines its output as a locally Lipschitz continuous function of t and the current

value of Y = (P,Z,Σ). Thus, Algorithm 3 defines R as a finite composition of locally

Lipschitz functions, and it follows that R is locally Lipschitz continuous with respect

to the input (t, P, Z). By Condition 3 of Assumption 7, line 2 defines its output Σ

as a locally Lipschitz continuous function of (t, P, Z), and line 3 is trivially Lipschitz

continuous. Moreover, it is straightforward to show that the mapping IR 3 Q 7→

1/max(ε, |mid(Q)|) ∈ R is Lipschitz continuous with constant ε−2. Thus, line 6 and

Eq. (3.31) define µ as a Lipschitz continuous function of [ ∂gi
∂yj

]([t, t], Y ), and hence as

a locally Lipschitz continuous function of t and Y by Condition 3 of Assumption 5.

Line 7 defines ỹ = 1
2
(yL + yU) as Lipschitz continuous function of Y = [yL,yU ] with

constant 1. Moreover, gi is locally Lipschitz continuous with respect to t and ỹ by

Assumption 4. Thus, lines 8 and 9 define α and Ŷj as locally Lipschitz continuous

functions of t and Y by Condition 3 of Assumption 5 and the fact that interval addition

and multiplication are locally Lipschitz continuous [48]. Finally, it is straightforward

to show that the extended intersection ∩̄ in line (10) is a Lipschitz continuous function

of its arguments (see [61]). Applying analogous arguments to line 11, as well as to

the equality-constraint refinements in lines 16–21, it follows that the values (P̂ , Ẑ, Σ̂)
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in line 24 are locally Lipschitz continuous with respect to the input (t, P, Z). Thus,

a final application of Condition 3 of Assumption 7 to line 25 provides the required

Lipschitz property of R. �

Remark 1 A few existing DI bounding theorems exploit state constraints of the form

x(t) ∈ G ⊂ Rnx using a set-valued refinement operator IG : DI ⇒ Rnx satisfying

IG(Z) ⊃ (Z ∩ G) for all Z ∈ IRnx [64, 18, 17, 19]. However, these results require

IG to be well-defined for every Z ∈ IRnx satisfying Z ∩ G 6= ∅, which is prohibitive

for nonlinear constraint sets G = {x : g(x) ≤ 0, h(x) = 0}. Specifically, if IG

is defined using an interval Krawcyzk iteration similar to that used in Algorithm 3,

then this requires ∂g
∂x

and ∂h
∂x

(and hence g and h) to be well-defined on arbitrarily

large intervals Z, which precludes the use of any constraints involving the primitive

operations 1
x
, lnx,

√
x, etc. Moreover, it is difficult to conceive of any alternative to

the Krawcyzk iteration that avoids this issue. Thus, a key feature of Theorem 7 here

is that there is no such assumption on DR. Instead, our proof of Theorem 7 uses the

openness property of DR asserted in Condition 3 of Assumption 3 (existing results do

not assume that DI is open). Theorem 8 above shows that this condition is implied

by openness of D[G] and DF , which follow from easily verifiable conditions for a very

general class of nonlinear constraints, as discussed after Assumptions 5–7.

Remark 2 A more efficient (but more difficult to understand) implementation of

Algorithm 3 can be achieved by eliminating repeated computations that occur when

computing the interval sums defining α in line 8 for every i and j, and again in

line 18 for every q and j. Specifically, the sum computed in line 8 has ny + 1

terms, but ny − 1 of these are common between the sums computed for two suc-

cessive values of j. An alternative approach is to evaluate the complete sum α ←

gi(ỹ) +
∑ny

k=1[ ∂gi
∂yk

]([t, t], Y )(Yk − ỹk) + V once prior to the loop over j. Then, for
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each j, this value can be corrected by simply subtracting the contribution from the

interval [ ∂gi
∂yj

]([t, t], Y )(Yj − ỹj). An analogous modification can be made to line 18.

This variant of Algorithm 3, which we use in all numerical experiments in §3.6, has

a complexity of O((ng + nh)ny), as compared to O((ng + nh)n
2
y) as written.

3.6 Numerical Examples

This section demonstrates the performance of our new bounding method us-

ing two test cases. Specifically, this method consists of solving the bounding ODEs

(3.9)–(3.12) with the R defined as in Algorithm 3 and Remark 2. Natural interval ex-

tensions were used for the inclusion functions F , [∂g
∂y

], and [∂h
∂y

]. Numerical integration

was done using the Sundials solver CVODE [21] with absolute and relative tolerances

both as 10−5. For comparison, we also implemented the standard differential inequal-

ities (SDI) method, which consists of solving (3.9)–(3.12) without considering the

constraint set G, i.e., with R(t, P, Z) = F (t, P, Z). Both methods were implemented

in C++ on a 64-bit Linux virtual machine allocated 4GB RAM and a single core of a

Dell Precision T3610 with an Intel Xeon E5-1607 v2 @ 3.00 GHz. Comparisons with

published results for other state-of-the-art bounding methods are also provided.

3.6.1 Example 1

The two species Lotka-Volterra predator-prey model is widely used to evaluate

reachable set bounding algorithms. For comparison, we use the same data as in

[17, 35]. The ODEs are

ẋ(t) = u1x(t)(1− y(t)), ẏ(t) = u2y(t)(x(t)− 1), (3.39)
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with horizon I = [0, 10] s and initial conditions (x, y)(t0) = (1.2, 1.1). The time-

invariant parameters u1 and u2 are uncertain with u1 ∈ [2.99, 3.01] and u2 ∈ [0.99, 1.01].

The solutions of this system are known to obey one nonlinear solution invariant, re-

gardless of the values of u1 and u2:

u2

[
ln(x(t)/x0)− (x(t)− x0)

]
+ u1

[
ln(y(t)/y0)− (y(t)− y0)

]
= 0. (3.40)

Thus, this equation can be used to define the equality constraint function h, and

hence the set G, as in Assumption 4.

Figure 3.1 shows that exploiting the nonlinear invariant (3.40) using our new

method leads to very sharp bounds on the solutions of (3.39), whereas standard DI

produces bounds that diverge after only a short integration time. Our new method

required 0.024s to compute these bounds, compared to 0.002s for standard DI. By

comparison, the bounds from our new method are also much tighter than those ob-

tained using the linear programming-based polyhedral bounding algorithm in [17],

which required 0.050s, and very similar to the bounds obtained using the Taylor

Model algorithm in [35], which required 0.59s.
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Figure 3.1: State bounds for x and y in (3.39) computed using SDI (dashed black) and
our new method exploiting the nonlinear invariant (3.40) (red circles) with sampled
solutions (gray shaded region).
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3.6.2 Example 2

The following ODEs describe an anaerobic wastewater treatment process with

pH self-regulation and liquid-gas transfer from [6]:

Ẋ1 = (µ1(S1)− αD)X1 (3.41)

Ẋ2 = (µ2(S2)− αD)X2

Ṡ1 = D(Sin1 − S1)− k1µ1(S1)X1

Ṡ2 = D(Sin2 − S2) + k2µ1(S1)X1 − k3µ2(S2)X2

Ż = D(Zin − Z)

Ċ = D(Cin − C)− qCO2 + k4µ1(S1)X1 + k5µ2(S2)X2

where

qCO2 = kLa(C + S2 − Z −KHPCO2) (3.42)

PCO2 =
φCO2 −

√
φ2
CO2
− 4KHPt(C + S2 − Z)

2KH

φCO2 = C + S2 − Z +KHPt +
k6

kLa
µ2(S2)X2

µ1(S1) = µ̄1
S1

S1 +KS1

µ2(S2) = µ̄2
S2

S2 +KS2 + S2
2/KI2

The time horizon is I = [0, 20] days, the uncertainties are the initial conditions

X1(t0) ∈ [0.49, 0.51] g(COD)L−1, X2(t0) ∈ [0.98, 1.02] mmolL−1, C(t0) ∈ [39.2, 40.8]

mmolL−1, and the parameters k1 ∈ [42.14, 42.98] g(COD) g(cell)−1, k2 ∈ [116.5, 118.24]

mmol g(cell)−1. The remaining initial conditions are S1(t0) = 1 mmolL−1, S2(t0) = 5

mmolL−1, and Z(t0) = 50 mmolL−1, and all other parameters are constant at the
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values in [77].

To the best of our knowledge, (4.39) does not obey any existing solution invari-

ants. Thus, we apply the method in [67] to embed the model into a higher-dimensional

‘lifted’ system that satisfies solution invariants by design. Specifically, we define the

redundant state variables

N1 ≡ k1X1 + S1, N2 ≡ −k2X1 + k3X2 + S2, (3.43)

and augment (4.39) with the corresponding ODEs for N1 and N2 derived by differen-

tiating (3.43). After some simplification, these are

Ṅ1 = D(Sin1 + S1(α− 1)− αN1), (3.44)

Ṅ2 = D(Sin2 + S2(α− 1)− αN2).

The variables N1 and N2 are chosen is this way because some highly nonlinear

and uncertain terms cancel when deriving (3.44) from (4.39), which increases the

likelihood that tighter bounds will be achieved (see [67] for a detailed discussion of

this technique). By construction, the solutions of the lifted system consisting of (4.39)

and (3.44) satisfy the nonlinear invariants

0 = −N1 + k1X1 + S1, (3.45)

0 = −N2 − k2X1 + k3X2 + S2.

Thus, these equations can be used to define the equality constraint function h, and

hence the set G, as in Assumption 4.

Figure 3.2 compares the standard DI method applied directly to (4.39) with
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our new method applied to the lifted system consisting of (4.39) and (3.44) with the

nonlinear constraints (3.45). Again, standard DI produces rapidly diverging bounds.

However, the use of the constraints (3.45) results in very sharp bounds over the

entire time horizon, and appears to stabilize the bounds as t→∞. Our new method

required 5.0× 10−2s to produce the bounds shown in Figure 3.2, compared to 7.0×

10−3s for standard DI. For reference, integrating single trajectory of (4.39) required

2.8 × 10−4s on average. This problem was also considered in [77] over the shorter

horizon I = [0, 4] days, and with k1 and k2 fixed rather than uncertain. There, the

fastest method that did not produce divergent bounds used 4th-order Taylor Models

with ellipsoidal remainder bounds and required 0.41s. Thus, the use of nonlinear

solution invariants provides sharp bounds at significantly lower cost in this case.

3.7 Appendix

The proof of Theorem 7 is based on a general result from [57] that provides

sufficient conditions for two functions v,w ∈ AC(I,Rnx) to bound an arbitrary

function φ ∈ AC(I,Rnx) (i.e., φ need not be associated with a system of ODEs).

This result is stated abstractly in terms of interval-valued mappings of the form

ΠL
i ,Π

U
i : DΠ ⊂ I × Rnx × Rnx → IR. Roughly speaking, these functions serve as

generic notation for any operation that takes an interval [v,w] as input, isolates its

ith lower or upper face, and then refines it based on some known constraints. The

specific conditions we will require of these functions are given in Hypothesis 1.

Hypothesis 1 For every i ∈ {1, . . . , nx}, let ΠL
i ,Π

U
i : DΠ ⊂ I × Rnx × Rnx → IR

satisfy the following conditions:

1. If (t,v,w) ∈ DΠ satisfies v ≤ φ(t) ≤ w and φi(t) = vi for some i ∈ {1, . . . , nx},

then φ̇i(t) ∈ ΠL
i (t,v,w).
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Figure 3.2: State bounds for X2 and S2 in (4.39) computed using SDI (dashed black)
and our new method exploiting the nonlinear invariants (3.45) (solid red) with sam-
pled solutions (gray shaded region).

97



2. If (t,v,w) ∈ DΠ satisfies v ≤ φ(t) ≤ w and φi(t) = wi for some i ∈

{1, . . . , nx}, then φ̇i(t) ∈ ΠU
i (t,v,w).

3. DΠ is open with respect to the set A ≡ {(t,v,w) ∈ I × Rnx × Rnx : v ≤

w}. Specifically, for any (t̂, v̂, ŵ) ∈ DΠ ∩ A, there exists η > 0 such that

Bη((t̂, v̂, ŵ)) ∩ A is a subset of DΠ.

4. ΠL
i and ΠU

i are locally Lipschitz continuous with respect to v and w, uniformly

with respect to t. Specifically, for any (t̂, v̂, ŵ) ∈ DΠ, there exists η > 0 and

α ∈ L1(I) such that

dH(ΠL
i (t,v,w),ΠL

i (t, ṽ, w̃)) ≤ α(t) max (‖v − ṽ‖, ‖w − w̃‖) , (3.46)

dH(ΠU
i (t,v,w),ΠU

i (t, ṽ, w̃)) ≤ α(t) max (‖v − ṽ‖, ‖w − w̃‖) , (3.47)

for every (t,v,w), (t, ṽ, w̃) ∈ Bη((t̂, v̂, ŵ)) ∩DΠ.

Theorem 15 is the central result we will use to prove Theorem 7. It is proven

as Theorem 3.5.1 in [57] under slightly different hypotheses, as discussed below.

Theorem 9 Let φ,v,w ∈ AC(I,Rnx) satisfy

1. (t,v(t),w(t)) ∈ DΠ,∀t ∈ I.

2. v(t0) ≤ φ(t0) ≤ w(t0).

3. For a.e. t ∈ I and each index i,

(a) v̇i(t) ≤ σi for all σi ∈ ΠL
i (t,v(t),w(t)),

(b) ẇi(t) ≥ σi for all σi ∈ ΠU
i (t,v(t),w(t)).

If Hypothesis 1 holds, then v(t) ≤ φ(t) ≤ w(t),∀t ∈ I.
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In [57], Theorem 15 is proven with a modified version of Hypothesis 1, which

is stated explicitly as Hypothesis 2 below. We prefer Hypothesis 1 here because it is

easier to verify when using Theorem 15 to prove Theorem 7. Moreover, the conditions

of Hypothesis 1 are much easier to understand, whereas Hypothesis 2 is very abstract.

In Lemma 1, we show that Hypothesis 1 implies Hypothesis 2, so that Theorem 15

follows immediately from Theorem 3.5.1 in [57].

Hypothesis 2 For every i ∈ {1, . . . , nx}, let ΠL
i ,Π

U
i : DΠ ⊂ I × Rnx × Rnx ⇒ R

(i.e., ΠL
i (t,v,w) and ΠU

i (t,v,w) are subsets of R, not necessarily intervals). Assume

that, given any (t̂, v̂, ŵ) ∈ DΠ satisfying v̂ ≤ φ(t̂) ≤ ŵ and either φi(t̂) = v̂i or

φi(t̂) = ŵi for at least one i ∈ {1, . . . , nx}, there exists η > 0 and α ∈ L1(I) such that

the following conditions hold for every (t,v,w) ∈ Bη((t̂, v̂, ŵ)) ∩DΠ:

1. If φi(t) < vi, then ∃σi ∈ ΠL
i (t,v,w) such that

|σi − φ̇i(t)| ≤ α(t) max(‖max(v − φ(t),0)‖, ‖max(φ(t)−w,0)‖). (3.48)

2. If φi(t) > wi, then ∃σi ∈ ΠU
i (t,v,w) such that (3.48) holds.

Lemma 1 If ΠL
i and ΠU

i satisfy Hypothesis 1, then they also satisfy Hypothesis 2.

Proof Assume that Hypothesis 1 holds. To verify Hypothesis 2, choose any (t̂, v̂, ŵ) ∈

DΠ such that v̂ ≤ φ(t̂) ≤ ŵ and either φi(t̂) = v̂i or φi(t̂) = ŵi for at least one

i ∈ {1, . . . , nx}. Define

φ(t,v,w) ≡ min(v,φ(t)) and φ(t,v,w) ≡ max(w,φ(t)), ∀(t,v,w) ∈ I × Rnx × Rnx .

(3.49)

Note that (φ(t̂, v̂, ŵ),φ(t̂, v̂, ŵ)) = (v̂, ŵ) and φ(t,v,w) ≤ φ(t) ≤ φ(t,v,w),

∀(t,v,w) ∈ I × Rnx × Rnx .
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With (t̂, v̂, ŵ) as above, let ηC3 > 0 satisfy Condition 3 of Hypothesis 1, and let

ηC4 > 0 and α ∈ L1(I) satisfy Condition 4 of Hypothesis 1. Set ηC = min(ηC3, ηC4).

Since (φ(t̂, v̂, ŵ),φ(t̂, v̂, ŵ)) = (v̂, ŵ) and the functions φ and φ are continuous, we

may choose η ∈ (0, ηC ] such that

(t,v,w) ∈ Bη((t̂, v̂, ŵ)) =⇒ (t,φ(t,v,w),φ(t,v,w)) ∈ BηC ((t̂, v̂, ŵ)). (3.50)

By Condition 3 of Hypothesis 1, it follows that

(t,v,w) ∈ Bη((t̂, v̂, ŵ)) and t ∈ I =⇒ (t,φ(t,v,w),φ(t,v,w)) ∈ DΠ. (3.51)

We now show that Hypothesis 2 holds with this choice of η and α. To verify Condition

1 of Hypothesis 2, choose any (t,v,w) ∈ Bη((t̂, v̂, ŵ)) ∩ DΠ such that φi(t) < vi.

We will apply the Lipschitz condition (3.46) with this choice of v and w and with

ṽ = φ(t,v,w) and w̃ = φ(t,v,w). To see that this condition is applicable, first note

that (t,v,w) ∈ BηC4
((t̂, v̂, ŵ)) because η ≤ ηC4. Moreover, in light of (3.50) and

(3.51), we are guaranteed that (t, ṽ, w̃) ∈ BηC4
((t̂, v̂, ŵ)) ∩DΠ. Thus, (3.46) gives

dH(ΠL
i (t,v,w),ΠL

i (t,φ(t,v,w),φ(t,v,w))) (3.52)

≤ α(t) max
(
‖v − φ(t,v,w)‖, ‖w − φ(t,v,w)‖

)
, (3.53)

= α(t) max(‖max(v − φ(t),0)‖, ‖max(φ(t)−w,0)‖).

Next, we apply Condition 1 of Hypothesis 1 to the point (t,φ(t,v,w),φ(t,v,w)) ∈

DΠ. This is possible because φ(t,v,w) ≤ φ(t) ≤ φ(t,v,w) and φi(t) = min(φi(t), vi) =

φ
i
(t,v,w). Thus, Condition 1 of Hypothesis 1 gives φ̇i(t) ∈ ΠL

i (t,φ(t,v,w),φ(t,v,w)).

Then, by the definition of the Hausdorff metric, (3.52) implies that ∃σi ∈ ΠL
i (t,v,w)
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satisfying (3.48). This proves Condition 1 of Hypothesis 2, and Condition 2 follows

from an analogous argument. �

To prove Theorem 7, we will apply Theorem 15 with the following definitions:

DΠ ≡


t ∈ I

v ∈ Rnx

w ∈ Rnx

:

v ≤ w

(t, U,BL/Ui ([v,w])) ∈ DR

∀i ∈ {1, . . . , nx}

 (3.54)

ΠL
i (t,v,w) ≡ {σi ∈ R : σ ∈ R[t, U,BLi ([v,w])]} (3.55)

ΠU
i (t,v,w) ≡ {σi ∈ R : σ ∈ R[t, U,BUi ([v,w])]} (3.56)

Lemma 2 Let (x0,u,x) ∈ X0 × U × AC(I,Rnx) be any solution of (4.1). Under

Assumption 3, the definitions (3.54)–(3.56) satisfy Hypothesis 1 with φ ≡ x.

Proof To verify Condition 1 of Hypothesis 1, choose any (t,v,w) ∈ DΠ such that

v ≤ φ(t) ≤ w and φi(t) = vi for some i ∈ {1, . . . , nx}. These conditions imply that

x(t) = φ(t) ∈ BLi ([v,w]). Moreover, by the definition of DΠ, (t,v,w) ∈ DΠ implies

that (t, U,BLi ([v,w])) ∈ DR. Since (x0,u,x) is a solution of (4.1), Condition 1 of

Assumption 3 implies that

ẋ(t) ∈ R
[
t, U,BLi ([v,w])

]
. (3.57)

By (3.55), it follows that φ̇i(t) = ẋi(t) ∈ ΠL
i (t,v,w). This proves Condition 1 of

Hypothesis 1, and Condition 2 follows from an analogous argument.

To verify Condition 3 of Hypothesis 1, choose any (t̂, v̂, ŵ) ∈ DΠ∩A. By (3.54),

(t̂, U,BL/Ui ([v̂, ŵ])) ∈ DR for all i ∈ {1, . . . , nx}. By Condition 3 of Assumption 3,
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DR is open with respect to t and Z. Thus, there must exist η > 0 such that

(t, Z) ∈ Bη(t̂)×Bη(BL/Ui ([v̂, ŵ])) =⇒ (t, U, Z) ∈ DR. (3.58)

Moreover, by the definition of BL/Ui , it follows that

(t, Z) ∈ Bη(t̂)×Bη([v̂, ŵ]) =⇒ (t,BL/Ui (Z)) ∈ Bη(t̂)×Bη(BL/Ui ([v̂, ŵ])),

(3.59)

=⇒ (t, U,BL/Ui (Z)) ∈ DR.

We claim that Condition 3 of Hypothesis 1 holds with this η. To see this, choose

any (t,v,w) ∈ Bη((t̂, v̂, ŵ)) ∩ A. It suffices to show that (t,v,w) ∈ DΠ. Since

(t,v,w) ∈ A, we have t ∈ I and v ≤ w. Moreover, since (t,v,w) ∈ Bη((t̂, v̂, ŵ)), it

follows from the definition of dH that dH([v,w], [v̂, ŵ]) ≤ η. Finally, since |t− t̂| ≤ η

as well, (3.59) ensures that (t, U,BL/Ui ([v,w])) ∈ DR. Thus, by (3.54), (t,v,w) ∈ DΠ,

as desired.

To verify Condition 4 of Hypothesis 1, choose any (t̂, v̂, ŵ) ∈ DΠ. By (3.54),

(t̂, U,BL/Ui ([v̂, ŵ])) ∈ DR for all i ∈ {1, . . . , nx}. Thus, by Condition 2 of Assumption

3, there exists η, L > 0 such that

dH(R(t, U, Z),R(t, U, Z̃)) ≤ LdH(Z, Z̃), (3.60)

for every t ∈ Bη(t̂) and Z, Z̃ ∈ Bη(BL/Ui ([v̂, ŵ])). We claim that Condition 4 of

Hypothesis 1 holds with this choice of η and α = L. To see this, choose any
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(t,v,w), (t, ṽ, w̃) ∈ Bη((t̂, v̂, ŵ)) ∩DΠ. It suffices to show that

dH(ΠL
i (t,v,w),ΠL

i (t, ṽ, w̃)) ≤ Lmax (‖v − ṽ‖, ‖w − w̃‖) , (3.61)

dH(ΠU
i (t,v,w),ΠU

i (t, ṽ, w̃)) ≤ Lmax (‖v − ṽ‖, ‖w − w̃‖) . (3.62)

By (3.55) and the definition of the Hausdorff metric dH ,

dH(ΠL
i (t,v,w),ΠL

i (t, ṽ, w̃)) ≤ dH(R(t, U,BLi ([v,w])),R(t, U,BLi ([ṽ, w̃]))). (3.63)

But, as argued above, the fact that (t,v,w) and (t, ṽ, w̃) are elements of Bη((t̂, v̂, ŵ))

implies that BLi ([v,w]) and BLi ([ṽ, w̃]) are elements of Bη(BL/Ui ([v̂, ŵ])). Then, using

(3.60), we have

dH(ΠL
i (t,v,w),ΠL

i (t, ṽ, w̃)) ≤ LdH(BLi ([v,w]),BLi ([ṽ, w̃])), (3.64)

≤ Lmax (‖v − ṽ‖, ‖w − w̃‖) , (3.65)

as desired. The proof of (3.62) is analogous. �

We now prove Theorem 7. Choose any xL,xU ∈ AC(I,Rnx) and suppose that

Conditions 1–3 of Theorem 7 hold. Moreover, let (x0,u,x) ∈ X0 × U × AC(I,Rnx)

be any solution of (4.1). We show that the hypotheses of Theorem 15 are satisfied

with v = xL, w = xU , φ = x, and the definitions (3.54)–(3.56). As a consequence,

x(t) ∈ [xL(t),xU(t)], ∀t ∈ I, as desired.

With the definition of DΠ in (3.54), Condition 1 of Theorem 15 follows directly

from Condition 1 of Theorem 7. Condition 2 of Theorem 15 also follows directly from

Condition 2 of Theorem 7 since φ(t0) = x(t0) = x0 ∈ X0 ⊂ [xL(t0),xU(t0)] =

[v(t0),w(t0)]. Finally, Condition 3 of Theorem 15 follows from Condition 3 of Theo-
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rem 7. To see this, choose any σi ∈ ΠL
i (t,v(t),w(t)) = ΠL

i (t,xL(t),xU(t)). By (3.55),

there must exist σj, ∀j 6= i, such that

σ ∈ R[t, U,BLi ([xL(t),xU(t)])]. (3.66)

Therefore, by Condition 3(a) of Theorem 7, we must have v̇i(t) ≤ σi. This proves

Condition 3(a) of Theorem 15. Condition 3(b) is proven analogously. Since all of the

hypotheses of Theorem 15 are met, we conclude that

x(t) = φ(t) ∈ [v(t),w(t)] = [xL(t),xU(t)], ∀t ∈ I. (3.67)

This completes the proof of Theorem 7.

104



Chapter 4

Tight Reachability Bounds for

Constrained Nonlinear Systems

Using Mean Value Differential

Inequalities

4.1 Introduction

This chapter presents a new method for rigorously bounding the set of tra-

jectories consistent with a given system of nonlinear ordinary differential equations

(ODEs) subject to bounded, time-invariant uncertainties, and consistent with a given

set of constraints in the joint state-and-uncertainty space (the constraints may be triv-

ial, so standard reachability analysis is a special case). Such reachability bounds are

important in algorithms for set-based state estimation [54, 42], fault detection and di-

agnosis [60, 53], robust predictive control [78, 15], and the global solution of open-loop

optimal control problems [62, 22]. Accordingly, a wide variety of bounding methods
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have been developed [41, 64, 67, 4, 34, 24], see [64, 67] for an overview. However,

these methods often provide an unworkable balance between computational cost and

bound accuracy for systems with strong nonlinearities or large uncertainties, which

prevents their use for online computations in many important control applications.

The method presented in this chapter is an extension of existing methods

based on differential inequalities (DI). For a given system of ODEs, the standard

DI method applies simple interval arithmetic to derive an auxiliary system of ODEs

that describes time-varying interval reachability bounds as its solutions. This is very

efficient, but often provides extremely conservative bounds. In recent years, this

drawback of DI has been addressed by two broad strategies. First, the DI approach

has been extended to enable the use of more complex bounding sets, including poly-

topes and Taylor models with interval or ellipsoidal remainder bounds [17, 19, 77].

Such methods can be highly accurate when sufficiently complex sets are used, but

the computational cost is often much higher than the standard interval DI method

[19, 77]. Second, interval-based DI methods have been developed that achieve tighter

bounds by exploiting model redundancy [66, 69, 64, 18, 67]. In the most general ap-

proach [67], new state variables are defined as user-specified functions of the original

states, leading to a higher-dimensional system whose solutions obey a set of redun-

dant algebraic relationships by design. A DI method is then applied to this larger

system wherein the redundant relationships are used to refine the computed bounds

continuously as they are propagated forward in time. Examples in [67] show that this

can produce much tighter bounds than standard DI. Moreover, although the cost is

significantly higher than standard DI, comparisons to date suggest that this approach

can be much more efficient than DI methods based on more complex sets [67, 69].

However, this approach is not automated, and choosing effective new states typically

requires considerable insight.
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In this chapter, we develop a third approach to reduce the conservatism of DI

methods. To motivate this approach, consider the simpler problem of bounding the

range of an algebraic expression f(x) [48]. Here too, interval arithmetic is well-known

to produce conservative bounds. However, tighter bounds can often be achieved by a

variety of advanced methods called centered forms [48]. The simplest of these is the

mean value form, which uses bounds on ∂f
∂x

to obtain a sharper enclosure of f(x) using

the Mean Value Theorem. The objective of this chapter is to extend this method to

dynamic systems by combining it with the DI approach. Specifically, we augment

the ODEs of interest with their forward sensitivity system (w.r.t. uncertain initial

conditions and parameters) and apply a DI method to obtain time-varying bounds on

both the original states and the sensitivities. By bounding the sensitivities, it becomes

possible to refine the computed state bounds at any point in time using a mean value

form enclosure. For this refinement, we apply an algorithm similar to those used to

exploit redundant algebraic relationships in redundancy-based DI methods [69, 66].

In fact, our new mean-value DI method can be viewed as a method for automating the

redundancy-based DI approach, specifically by choosing the new states as the forward

sensitivities and observing that these are (approximately) algebraically related to the

original states by a first-order Taylor expansion. Although this redundant relation is

only approximate, we show that a valid refinement procedure is still possible through

the Mean Value Theorem. Moreover, we show that mean-value DI can be seamlessly

integrated with existing redundancy-based DI methods by developing a refinement

procedure that combines mean value enclosures of the states with other redundant

relationships, e.g., derived manually as in [67].

The results in this chapter are closely related to several other recent develop-

ments. Advanced DI methods based on Taylor models and affine arithmetic [19, 77]

also make use of forward sensitivities for describing the bounding sets. However,
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these methods do not use mean value enclosures specifically. Moreover, with the ex-

ception of [19], these approaches do not use the relationship between the states and

sensitivities at each point in time to provide a continuous bound refinement, as we do

here. The paper [50] provides advanced methods for bounding forward and adjoint

sensitivities, but does not use these bounds to refine the bounds on the states.

The remainder of the chapter is organized as follows. A formal problem state-

ment is given in §4.2. The supporting theory for our new mean-value DI approach is

then presented in §4.3, and implementation is discussed in §4.5. The accuracy of the

computed bounds and the related second-order convergence property is discussed in

§4.6. Finally, case studies are presented in §4.7.

4.1.1 Preliminaries and Notation

For any yL,yU ∈ Rn, let Y = [yL,yU ] denote the compact n-dimensional

interval vector {y ∈ Rn : yL ≤ y ≤ yU}. Moreover, define the midpoint mid(Y ) ≡
1
2
(yL + yU), the width w(Y ) ≡ ‖yU − yL‖∞, and the magnitude vector |Y | ≡

(max(|yL1 |, |yU1 |), · · · ,max(|yLn |, |yUn |)). Let IRn and IRn×m denote the set of all nonempty

n-dimensional interval vectors and n-by-m interval matrices, respectively. Similarly,

for D ⊂ Rn, the set of all nonempty interval subsets of D is denoted by ID. Let

D ⊂ Rn and f : D → Rm. A mapping F : D ⊂ ID → IRm is an inclusion function

for f on D if

F (X) ⊃ f(X) ≡ {f(x) : x ∈ X}, ∀X ∈ D.

Inclusion functions can be readily derived for factorable functions, which are functions

that can be evaluated by a finite recursive composition of binary additions, binary

multiplications, and standard univariate functions such as −x, 1
x
, xn, ex, etc. This
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includes nearly every function that can be written explicitly in computer code. For

any factorable function f , a specific inclusion function called the natural interval

extension can be constructed by simply replacing each operation in the definition of

f with a suitable interval counterpart [48]. In the following sections, we make use of

several properties of natural interval extensions from [57].

The Hausdorff distance dH induced by ‖·‖∞ is a metric on IRn [48]. Therefore,

standard definitions and results concerning sets and functions on metric spaces are

applicable. For example, the open ball of radius η > 0 centered at X ∈ IRn is defined

by Bη(X) ≡ {Z ∈ IRn : dH(X,Z) < η}. Similarly, a set X ⊂ IRn (i.e., X is a set

whose elements are intervals) is called open if for every X ∈ X , ∃η > 0 such that

Bη(X) ⊂ X . Additionally, F : D ⊂ IRn → IRm is called locally Lipschitz continuous

on D if for every X ∈ D, ∃L, η > 0 such that dH(F (X̄), F (X̂)) ≤ LdH(X̄, X̂) for

every X̄, X̂ ∈ Bη(X) ∩ D. These definitions will be used in conjunction with the

standard facts that the pre-image of an open set under a continuous function is open,

and that the composition of locally Lipschitz functions is locally Lipschitz, both of

which hold in general metric spaces.

4.2 Problem Statement

Let I = [t0, tf ] ⊂ R be a time horizon of interest and let P ∈ IRnp be a compact

interval of time-invariant uncertain parameters p. Let f : Df ⊂ R×Rnx×Rnp → Rnx

and x0 : P → Rnx be continuously differentiable functions. Let G ⊂ R × Rnx × Rnp
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be a constraint set, and consider the dynamic system described by

ẋ(t,p) = f(t,x(t,p),p), (4.1a)

x(t0,p) = x0(p), (4.1b)

(t,x(t,p),p) ∈ G. (4.1c)

It is assumed that there is a unique continuously differentiable solution x : I × P →

Rnx satisfying (4.1a)-(4.1b) (but not necessarily (4.1c)) for every (t,p) ∈ I × P .

Definition 11 Define the feasible parameter set P ∗ ≡ {p ∈ P : (t,x(t,p),p) ∈

G, ∀t ∈ I}. The reachable set of the constrained system (4.1) is defined for every

t ∈ I as

Re(t) ≡ {x(t,p) : p ∈ P ∗}. (4.2)

We are interested in computing a tight, time-varying enclosure of Re(t). In other

words, we wish to bound all solutions of (4.1a)–(4.1b) that have p ∈ P and satisfy

(4.1c). Note that we do not use reachability analysis to prove satisfaction of (4.1c), as

in verification problems. Rather, we are interested in bounding only those trajectories

that are feasible in (4.1c). This problem is of interest both when G is a true con-

straint (i.e., it is potentially violated by some trajectories) and when G is redundant

with (4.1a)–(4.1b) (i.e., all solutions of (4.1a)–(4.1b) are known in advance to satisfy

(4.1c)). In the former case, bounding Re(t) is useful in algorithms for solving optimal

control problems with path constraints to guaranteed global optimality [22]. In the

later case, P ∗ = P and Re(t) reduces to the standard reachable set, which is useful

to bound in a variety of applications. Formulating the problem with a constraint set

G is still useful in this case because redundant constraints such as conservation laws
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and other solution invariants can be used to achieve much tighter reachability bounds

than those obtained by considering (4.1a)–(4.1b) alone, specifically using algorithms

based on differential inequalities [72, 58, 64, 66]. In this chapter, we aim to improve

the accuracy of differential inequalities by using mean value enclosures rather than

redundant constraints. However, we consider the constrained reachability problem in

order to demonstrate how our mean value approach can be combined with the use of

constraints whenever they are available.

We assume that the constraint set G can be expressed as

G ≡

(t, z,p) ∈ R1+nx+np :
g(t, z,p) ≤ 0

h(t, z,p) = 0

 , (4.3)

where (g,h) : DG ⊂ R×Rnx×Rnp → Rng×Rnh are locally Lipschitz continuous on DG

and continuously differentiable with respect to (z,p) at each point in DG. Since some

technical details of our new method require redundant and non-redundant constraints

to be treated differently, we further assume that the constraints can be partitioned

into g = (ginv,gcon) and h = (hinv,hcon), where ginv and hinv denote invariants that

are assumed to hold for all solutions; i.e.,

ginv(t,x(t,p),p) ≤ 0

hinv(t,x(t,p),p) = 0

 , ∀(t,p) ∈ I × P, (4.4)

and gcon and hcon denote conventional constraints that require no further assumptions.
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4.3 Mean Value Differential Inequalities for Sys-

tems with Invariants Only

This section presents our first main result, Theorem 11, which provides a

method for computing time-varying interval and mean-value enclosures of the solu-

tions of (4.1). For technical reasons, we only make use of the invariants ginv and hinv

in Theorem 11, and disregard the constraints gcon and hcon. By (4.4), this provides

valid time-varying bounds on x(t,p) for all p ∈ P , rather than just for p ∈ P ∗. The

extension to general constraints is taken up in Section 4.4.

Definition 12 Let s : I × P → Rnx×np denote the first-order parametric sensitivity

matrix for (4.1a), defined by

sij(t,p) ≡ ∂xi
∂pj

(t,p) (4.5)

for all i ∈ {1, . . . , nx} and j ∈ {1, . . . , np}.

We use lower-case bold for the matrix s to avoid conflict with the use of capital letters

for sets. When convenient, we denote [ xs ] as the joint (nx +nxnp)-dimensional vector

of states and sensitivities by identifying s as a nxnp-dimensional vector formed by

stacking its columns.

Definition 13 Define the functions s0 : P → Rnx×np and fs : Dfs ⊂ R × Rnx ×

Rnx×np × Rnp → Rnx×np by

s0(p) ≡ ∂x0

∂p
(p), (4.6)

fs(t,x, s,p) ≡ ∂f

∂x
(t,x,p)s +

∂f

∂p
(t,x,p). (4.7)
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With these definitions, the joint state and sensitivity vector [ xs ] satisfy the following

nx + nxnp ODEs:

d

dt

x(t,p)

s(t,p)

 =

 f(t,x(t,p),p)

fs(t,x(t,p), s(t,p),p)

 , (4.8)

x(t0,p)

s(t0,p)

 =

x0(p)

s0(p)

 .
We assume throughout that (4.8) has a unique solution on all of I for every p ∈ P .

Our new method relies on the relationship between x and s formalized by

the following statements of the Mean Value Theorem (see Theorem 7.3 in [45] and

Theorem 5.1.5 in [48], respectively).

Theorem 10 For any i ∈ {1, . . . , nx}, t ∈ I, and p̂,p ∈ P , ∃ξ ∈ P such that

xi(t,p) = xi(t, p̂) + si(t, ξ)(p− p̂), (4.9)

where si denotes the ith row of s.

Corollary 2 Choose any t ∈ I and let S(t) ∈ IRnx×np satisfy s(t,p) ∈ S(t), ∀p ∈ P .

For any p̂,p ∈ P , ∃s̃ ∈ S(t) such that

x(t,p) = x(t, p̂) + s̃(p− p̂). (4.10)

Furthermore,

x(t,p) ∈ x(t, p̂) + S(t)(p− p̂), ∀p ∈ P. (4.11)
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Note that Theorem 10 and Corollary 2 depend on convexity of P , and Corollary

2 further relies on convexity of S(t) (i.e., s̃ need not lie in the true image set s(t, P )).

Eq. (4.11) is a mean value enclosure of x. By Corollary 2, this enclosure

can be obtained by computing a valid pointwise-in-time interval enclosure of s(t,p).

This can be done by simply applying standard differential inequalities to (4.8), which

would also furnish an interval enclosure X(t) of x(t,p). However, applying standard

differential inequalities to (4.8) requires a method for computing bounds on the ranges

of f and fs over the current bounds X(t) × S(t) × P at each t (more precisely, over

individual faces of this interval [64]). In the proposed approach, this basic scheme

is improved by additionally using the relationship (4.10), along with any available

invariants, to restrict the domains over which f and fs must be bounded, ultimately

leading to tighter bounds X(t) and S(t) and a tighter mean value enclosure (4.11).

Before developing this approach in detail, we first introduce one further con-

straint that can be used to restrict the domains over which f and fs must be bounded.

This constraint results from differentiating the second equation in (4.4) with respect

to p, which implies that

∂hinv

∂x
(t,x(t,p),p)s(t,p) +

∂hinv

∂p
(t,x(t,p),p) = 0 (4.12)

for all (t,p) ∈ I × P . Strictly, (4.4) only implies that (4.12) holds on the interior

int(P ). However, provided that int(P ) 6= ∅, (4.12) can be extended to the closure of

int(P ) because the left-hand side is continuous w.r.t. p, and since P is an interval,

the closure of int(P ) is exactly P . We assume henceforth that int(P ) 6= ∅ without

loss of generality since, if Pj = [pLj , p
U
j ] with pLj = pUj for some j, then (4.1) can simply

be restated with pj as a constant rather than an uncertain parameter.

To state our new bounding result generally, we next define a generic interval
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operator R. Conceptually, R can be thought of as any algorithm that takes intervals

P , X, and S as input (interpreted as bounds on p, x(t,p), and s(t,p) at some fixed

t ∈ I, respectively) and returns bounds on the possible values of the functions f and

fs that are achievable with arguments that are (i) contained in P ×X × S, and (ii)

consistent with the relations (4.10), (4.4), and (4.12). However, this simple conceptual

description omits an important detail. In fact, Rmust take two sensitivity intervals as

input, denoted by S and S̃. The first represents a bound on s(t,p), while the second

represents a bound on the variable s̃ appearing in (4.10). This distinction is necessary

because in general s̃ 6= s(t,p) in Corollary 2, and some details of our main bounding

result rely on arguments about the possible values of s(t,p) in certain situations that

do not apply to s̃ (see further explanation after Theorem 11). In light of this issue,

the properties required of R are stated precisely in the following definition.

Definition 14 Let R : DR ⊂ R × IRnp × IRnx × IRnx×np × IRnx×np → IRnx+nxnp

denote an interval refinement operator satisfying:

1. For any (t, P,X, S, S̃) ∈ DR, R(t, P,X, S, S̃) is an interval containing the set



σx

σs

 :

σx = f(t,x,p)

σs = fs(t,x, s,p)

p ∈ P, x ∈ X, s ∈ S, s̃ ∈ S̃

x = x(t, p̂) + s̃(p− p̂)

ginv(t,x,p) ≤ 0

hinv(t,x,p) = 0

∂hinv

∂x
(t,x,p)s + ∂hinv

∂p
(t,x,p) = 0



,

where p̂ ∈ P is a fixed reference point and is omitted from the argument list of

R for brevity.
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2. R is locally Lipschitz continuous.

3. DR is open.

A specific definition of R satisfying these properties is presented in Section

4.5. The statement of Theorem 11 also requires the following definitions.

Definition 15 For any interval Z = [zL, zU ] ∈ IRn and any i ∈ {1, . . . , n}, define

the interval face selection operators BLi ,BUi : IRn → IRn and the interval bound

selection operators πLi , π
U
i : IRn → R by

BLi (Z) ≡ {z ∈ Z : zi = zLi }, (4.13)

BUi (Z) ≡ {z ∈ Z : zi = zUi }, (4.14)

πLi (Z) ≡ zLi , πUi (Z) ≡ zUi . (4.15)

Definition 15 applies to interval matrices S ∈ IRnx×np by identifying them with nxnp-

dimensional interval vectors. Thus, BL/Unx(j−1)+i(S) denotes the lower/upper face of the

interval vector S corresponding to the (i, j)th element of S. Below, we denote this set

more simply by BL/Uij (S) and interpret it as an interval matrix.

Theorem 11 Let R satisfy Definition 14 with some reference point p̂ ∈ P and let

X0(P ) ∈ IRnx and S0(P ) ∈ IRnx×np satisfy x0(p) ∈ X0(P ) and s0(p) ∈ S0(P ),

∀p ∈ P . Let X(t) ≡ [xL(t),xU(t)] ∈ IRnx and S(t) ≡ [sL(t), sU(t)] ∈ IRnx×np be
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solutions of the ODEs:

ẋLi (t) = πLi ◦ R(t, P,BLi (X(t)), S(t), S(t)), (4.16)

ẋUi (t) = πUi ◦ R(t, P,BUi (X(t)), S(t), S(t)),

ṡLij(t) = πLnx+nx(j−1)+i ◦ R(t, P,X(t),BLij(S(t)), S(t)),

ṡUij(t) = πUnx+nx(j−1)+i ◦ R(t, P,X(t),BUij(S(t)), S(t)),

X(t0) = X0(P ), S(t0) = S0(P ).

Then x(t,p) ∈ X(t) and s(t,p) ∈ S(t), ∀(t,p) ∈ I×P . Moreover, x(t,p) ∈ x(t, p̂)+

S(t)(p− p̂), ∀(t,p) ∈ I × P .

The proof of Theorem 11 involves several intermediate steps and is taken up in the

Appendix. Regarding (4.16), note that the subscript nx + nx(j − 1) + i indexes the

location of sij in the vector [ xs ] when s is vectorized by stacking its columns. Also

note that R is always evaluated on individual faces of X(t)×S(t) in (4.16) due to the

use of the face selection operators. The use of face selection operators is central to all

bounding methods based on differential inequalities and arises from the observation

that any trajectory (x(t,p), s(t,p)) that leaves the interval X(t)×S(t) must lie on its

boundary at some point in time. Thus, to describe valid bounds, it is only necessary

to consider the possible values that f and fs can take on the faces of X(t) × S(t).

However, the same argument can not be made for the value s̃ in (4.10) since s̃ need

not equal s(t,p). This is the reason for defining R with an independent argument for

a bound on s̃, which is always the full interval S(t) in (4.16). Once an algorithm for

R is defined, the ODEs (4.16) can be solved numerically to yield valid bounds X(t)

and S(t), along with a valid mean value enclosure of the form (4.11).
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4.4 Mean Value Differential Inequalities for Sys-

tem with Invariants and Constraints

This section presents our second main result, Theorem 12, which extends The-

orem 11 to make use of the constraints gcon and hcon in addition to the invariants

ginv and hinv. As a result, Theorem 12 provides time-varying bounds on x(t,p) for

all p ∈ P ∗, but not necessarily for all p ∈ P . At first glance, it may seem that this

can be achieved by simply modifying Definition 14 so that the set that must be en-

closed by R(t, P,X, S, S̃) in Condition 1 includes the additional constraints gcon and

hcon. However, this proves to be invalid on account of a technical conflict between

the constraints gcon and hcon and the mean value relation (4.10), which is also used

in Condition 1. Specifically, since the bounding ODEs for X(t) and S(t) are coupled,

any method that produces bounds X(t) that only enclose x(t,p) for p ∈ P ∗ will also

produce bounds S(t) that only enclose s(t,p) for p ∈ P ∗. However, by Corollary 2,

the interval S(t) must enclose s(t,p) for all p ∈ P , not just p ∈ P ∗, in order to be

used to bound the variable s̃ in the constraint x = x(t, p̂)+ s̃(p− p̂) in Condition 1 of

Definition 14, as well as to be used in the final mean value inclusion (4.11). Moreover,

Corollary 2 cannot be restated with P ∗ in place of P because P ∗ may not be convex.

To avoid this conflict, we propose a two step procedure wherein Theorem

11 is first applied to obtain bounds X(t) and S(t) that are valid for all p ∈ P .

Next, a second bounding computation is done to compute refined bounds X∗(t) that

are valid only for p ∈ P ∗. This second step makes use of S(t) to avoid the issue

outlined above, while X(t) is a byproduct that is simply discarded. Although this

two step procedure is clearly less efficient than a single bounding computation, the

second step does not require new bounds to be computed for s(t,p), so the system

of bounding ODEs is significantly smaller. To state the second step in detail, the
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following modified refinement operator is required. Recall that h and g denote the

full constraint vectors g = (ginv,gcon) and h = (hinv,hcon).

Definition 16 Let R∗ : DR∗ ⊂ R×IRnp×IRnx×IRnx×np → IRnx denote an interval

refinement operator satisfying:

1. For any (t, P,X, S) ∈ DR∗, R∗(t, P,X, S) contains the set


σx :

σx = f(t,x,p)

p ∈ P, x ∈ X, s̃ ∈ S

x = x(t, p̂) + s̃(p− p̂)

g(t,x,p) ≤ 0, h(t,x,p) = 0


,

where p̂ ∈ P is a fixed reference point and is omitted from the argument list of

R∗ for brevity.

2. R∗ is locally Lipschitz continuous.

3. DR∗ is open.

Theorem 12 Let S : I → IRnx×np be a locally Lipschitz continuous function sat-

isfying s(t,p) ∈ S(t), ∀(t,p) ∈ I × P . Let R∗ satisfy Definition 16 with some

reference point p̂ ∈ P and let X0(P ) ∈ IRnx satisfy x0(p) ∈ X0(P ), ∀p ∈ P . Let

X∗(t) ≡ [x∗,L(t),x∗,U(t)] ∈ IRnx be a solution of the ODEs:

ẋ∗,Li (t) = πLi ◦ R∗(t, P,BLi (X∗(t)), S(t)), (4.17)

ẋ∗,Ui (t) = πUi ◦ R∗(t, P,BUi (X∗(t)), S(t)),

X∗(t0) = X0(P ).

Then x(t,p) ∈ X∗(t) for all (t,p) ∈ I × P ∗.
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The proof of Theorem 12 is taken up after the proof of Theorem 11 in the

Appendix. Given appropriate algorithms for R and R∗, Theorem 12 is implemented

by numerically solving the ODEs (4.16) to obtain S(t), and then solving (4.17) for

X∗(t). In practice, (4.16) and (4.17) can be solved simultaneously to avoid storing

S(t). Note that continuity of the interval function R implies that the right-hand sides

of the ODEs in (4.16) are continuous, and it follows that the solutions s
L/U
ij (t) are

locally Lipschitz continuous functions of t. Thus, the solution of (4.16) satisfies the

hypotheses on S(t) required by Theorem 12.

4.5 An Algorithm for the Refinement Operator R

This section provides an algorithm for the refinement operator R satisfying

Definition 14. An algorithm for R∗ can be developed analogously and is omitted for

brevity. The following assumption can be satisfied using natural interval extensions

as discussed in detail in §5 in [66].

Assumption 7 Locally Lipschitz continuous inclusion functions are available for f ,

∂f
∂x

, ∂f
∂p

, g, ∂g
∂x

, ∂g
∂p

, h, ∂h
∂x

, and ∂h
∂p

on an open set D2 ⊂ IDf ∩ IDG. These are denoted

by square brackets; e.g., [f ] : D2 → IRnx,
[
∂f
∂x

]
: D2 → IRnx×nx, etc. Furthermore,

D2 has the property that if (T,X, P ) ∈ D2 then IT × IX × IP ⊂ D2.

As per Definition 14, R has two key functions. First, given (t, P,X, S, S̃) ∈

DR, R refines the intervals (P,X, S, S̃) by eliminating regions where the mean value

relation (4.10) or the invariants (4.4) and (4.12) are violated. Second, R bounds the

ranges of f and fs over the refined domain. To describe the refinement step, choose

any (t, P,X, S, S̃) ∈ DR, let p̂ ∈ P be the reference point used in Definition 14, and

define the shorthand x̂ = x(t, p̂). We first consider the mean value relation, which is
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given componentwise by

xi = x̂i + s̃i(p− p̂), (4.18)

where s̃i denotes the ith row of s̃. An updated interval bound Xi can be obtained

by evaluating the right-hand side (r.h.s.) of (4.18) in interval arithmetic over P × S̃.

A similar update for each Pj and S̃ij can be achieved by considering rearrangements

of (4.18) that isolate each of these variables. However, this may involve division

by intervals containing zero, and common methods for dealing with this such as

extended interval arithmetic would cause R to violate the Lipschitz property required

by Definition 14. Instead, we multiply (4.18) by a constant µ and add s̃ij on both

sides to obtain

s̃ij = µ(x̂i − xi + s̃i(p− p̂)) + s̃ij. (4.19)

Collecting the s̃ij terms on the right gives,

s̃ij =µ
(
x̂i − xi +

∑
k 6=j

s̃ik(pk − p̂k)
)
+ (4.20)

(1 + µ(pj − p̂j))s̃ij,

which can be used to update S̃ij by evaluating the r.h.s. in interval arithmetic. We

apply this refinement for every S̃ij, and an analogous refinement for every Pj. The

choice of µ should minimize the conservatism introduced by the term (1+µ(pj−p̂j))s̃ij.

We use two different values of µ, µ± = ±max(ε, |Pj−p̂j|), where ε > 0 is a user-defined

tolerance.

To refine (P,X, S) further based on (4.4) and (4.12), Algorithm 1 in [66]
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can be used with Z = (X,S) (more specifically, only lines 3-24 should be used).

For linear constraints, Algorithm 1 in [67] can be used instead and may give better

results. We omit the details here for brevity and denote this refinement simply by

(P,X, S) ← IG(t, P,X, S). Under Assumption 7, Theorem 2 in [66] ensures that IG

is defined and locally Lipschitz continuous on the set of inputs (t, P,X, S) such that

([t, t], X, P ) ∈ D2.

Let (X†, P †, S†, S̃†) denote intervals resulting from the refinements above.

Next, we discuss bounding the ranges of f and fs over this refined domain. The

range of fs(t, ·, ·, ·) is bounded over X† × S† × P † using the inclusion function

[fs](t,X
†, S†, P †) ≡

[
∂f

∂x

]
(t,X†, P †)S† (4.21)

+

[
∂f

∂p

]
(t,X†, P †).

The range of f(t, ·, ·) can similarly be bounded over X†×P † by [f ](t,X†, P †). However,

Condition 1 of Definition 14 permits f(t, ·, ·) to be bounded over the subset

{(x,p) ∈ X† × P † : x = x̂ + s̃(p− p̂), s̃ ∈ S̃†}, (4.22)

which makes use of the mean value enclosure of x. To do so, choose any i ∈ {1, . . . , nx}

and any (x,p) in (4.22). Applying the Mean Value Theorem to fi(t,x,p) w.r.t. p

ensures that ∃ζ lying between p and p̂ such that

fi(t,x,p) = fi(t,x, p̂) +
∂fi
∂p

(t,x, ζ)(p− p̂). (4.23)

Next, we apply the Mean Value Theorem to the term fi(t,x, p̂) w.r.t. xj, ∀j 6= i.

Although fi(t,x, p̂) could be expanded with respect to all xj, the idea here is to
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exploit the fact that, in the bounding ODEs (4.16), whenever the output of R is used

to bound fi specifically, the X-argument to R has zero width in the ith dimension.

It follows that X† will also have w(X†i ) = 0. Thus, while it is necessary to develop

an algorithm for R that is well-defined for all inputs (t, P,X, S, S̃) ∈ DR, we are at

liberty to bound each fi in a way that will be particularly effective when w(X†i ) = 0.

For any γ ∈ Rnx , let γ/i ≡ (γ1, · · · , γi−1, γi+1, · · · , γnx). With a slight abuse

of notation, denote fi(t,γ/i , γi,p) = fi(t,γ,p). With the reference state x̂ defined

above, the Mean Value Theorem ensures that there exists γ/i lying between x/i and

x̂/i such that

fi(t,x,p) = fi(t, x̂/i , xi, p̂) +
∂fi
∂p

(t,x, ζ)(p− p̂)

+
∑
k 6=i

∂fi
∂xk

(t,γ/i , xi, p̂)(xk − x̂k). (4.24)

But since (x,p) is in (4.22), ∃s̃ ∈ S̃† such that

fi(t,x,p) = fi(t, x̂/i , xi, p̂) + (4.25)

np∑
j=1

( nx∑
k 6=i

∂fi
∂xk

(t,γ/i , xi, p̂)s̃kj +
∂fi
∂pj

(t,x, ζ)
)
(pj − p̂j).

Since we are defining R for an arbitrary argument (t, P,X, S, S̃) ∈ DR, there is no

guarantee that x̂ ∈ X. It is therefore possible that, after refinement, (x̂, p̂) /∈ X†×P †.

Thus, we cannot conclude that ζ ∈ P † and γ/i ∈ X†/i , despite convexity of P † and

X†/i . However, letting 2(A) denote the interval hull of a set A and defining P̄ † ≡

2(P † ∪ {p̂}) and X̄† ≡ 2(X† ∪ {x̂}), it follows that ζ ∈ P̄ † and γ/i ∈ X̄
†
/i
. Therefore,

123



by Assumption 7,

fi(t,x,p) ∈ [fi](t, x̂/i , X
†
i , p̂) + (4.26)

np∑
j=1

(
nx∑
k 6=i

[
∂fi
∂xk

]
(t, X̄†/i , X

†
i , p̂)S̃†kj

+

[
∂fi
∂pj

]
(t,X†, P̄ †)

)
(P †j − p̂j).

We use the shorthand FMV (t, P †, X†, S̃†) to denote the interval vector whose ith el-

ement is the r.h.s. of (4.26). Since (x,p) was chosen arbitrarily from the set (4.22),

we have shown that f(t,x,p) ∈ FMV (t, P †, X†, S̃†) for all (x,p) in (4.22), as desired.

In Algorithm 4 below, we bound f on (4.22) using both FMV (t, P †, X†, S̃†) and the

inclusion function [f ](t,X†, P †).

The complete algorithm for R is given in Algorithm 4. Throughout the algo-

rithm, primed variables are used to temporarily store updated bounds. The notation

∩̄ denotes the extended intersection Y ∩̄Z ≡ [mid(zL, yL, yU),mid(zU , yL, yU)], where

mid(a, b, c) denotes the middle value of a, b, c ∈ R. Note that Y ∩̄Z agrees with Y ∩Z

whenever Y ∩ Z is nonempty, and is a nonempty subinterval of Y otherwise.

Theorem 13 Let DR be the set of all (t, P,X, S, S̃) in R× IRnp × IRnx × IRnx×np ×

IRnx×np such that ([t, t],2(X ∪ x(t, p̂)),2(P ∪ p̂)) ∈ D2. The operator R defined by

Algorithm 4 is well-defined for every (t, P,X, S, S̃) ∈ DR and satisfies Definition 14.

Proof 1 Choose any (t, P,X, S, S̃) ∈ DR and define P̄ ≡ 2(P ∪ p̂) and X̄ = 2(X ∪

x(t, p̂)). By the definition of DR, we have

([t, t], X̄, P̄ ) ∈ D2 and ([t, t], X, P ) ∈ D2, (4.27)

where the second inclusion follows from Assumption 7 and the fact that X ⊂ X̄ and
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Algorithm 4 An implementation of R
1: function R(t, P,X, S, S̃)
2: for i← 1 to nx do
3: X ′i ← x̂i +

∑np

k=1 S̃ik(Pk − p̂k)
4: Xi ← Xi∩̄X ′i
5: for j ← 1 to np do
6: µ← 1/max(ε, |S̃ij |)
7: α← x̂i −Xi +

∑
k 6=j S̃ik(Pk − p̂k)

8: P ′j ← µα+ (1 + µS̃ij)(Pj − p̂j) + p̂j
9: Pj ← Pj∩̄P ′j

10: µ← −µ and repeat lines 8-9
11: µ← 1/max(ε, |Pj − p̂j |)
12: S̃′ij ← µα+ (1 + µ(Pj − p̂j))S̃ij
13: S̃ij ← S̃ij∩̄S̃′ij
14: µ← −µ and repeat lines 12-13
15: end for . j ← 1 to np
16: end for . i← 1 to nx
17: (P,X, S)← IG(t, P,X, S)
18: Σs ← [fs](t,X, S, P )
19: Σx ← [f ](t,X, P )∩FMV (t, P,X, S̃)
20: return (Σx,Σs)
21: end function
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P ⊂ P̄ . Assumption 7 further implies that any subintervals P ′ ⊂ P and X ′ ⊂ X

also satisfy ([t, t], X ′, P ′) ∈ D2 and ([t, t], X̄ ′, P̄ ′) ∈ D2, where X̄ ′ = 2(X ′ ∪ x(t, p̂))

and P̄ ′ ≡ 2(P ′ ∪ p̂). Since Algorithm 4 only ever overwrites X and P with smaller

refined intervals, this implies that (4.27) holds with the values currently stored in X

and P at any point in the algorithm.

All of the interval operations in Algorithm 4 prior to line 17 are well defined for

any arguments. As discussed above, (4.27) implies that the refinement IG(t, P,X, S)

in line 17 is well-defined. Equation (4.27) further ensures that [fs](t,X, S, P ) and

[f ](t,X, P ) on lines 18–19 are well-defined. The inclusion functions for f and its

partial derivatives used to evaluate FMV (t, P,X, S̃) in (4.26) are also well-defined,

which follows from (4.27) and Assumption 7 because the X and P arguments to all

of these functions are subsets of X̄ and P̄ . Therefore, R is well defined on DR.

Condition 1 of Definition 14 follows directly from (4.20), (4.26), and the in-

clusion properties of [f ], [fs], and IG.

To verify Condition 2 of Definition 14, we argue that every line of Algorithm

4 defines its output as a locally Lipschitz continuous function of t and the current

value of (P,X, S, S̃). Thus, Algorithm 4 defines R as a finite composition of locally

Lipschitz functions, and it follows that R is locally Lipschitz continuous with respect

to the input (t, P,X, S, S̃) ∈ DR. Interval addition and multiplication are locally

Lipschitz continuous functions [48], as is the extended intersection ∩̄ [61]. Moreover,

it is straightforward to show that the mapping IR 3 Q 7→ 1/max(ε, |Q|) ∈ R is

Lipschitz continuous with constant ε2. Thus, all of the operations in lines 2–16 are

locally Lipschitz continuous. By Theorem 2 in [66], the same is true of the function IG

in line 17. Assumption 7 and the local Lipschitz continuity of interval multiplication

imply that [fs] in line 18 is locally Lipschitz. The same is true of [f ] in line 19. Thus,

it only remains to show that FMV is locally Lipschitz w.r.t. (t, P,X, S̃), which follows
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from (4.26) given that the mapping P 7→ 2(P, p̂) is Lipschitz w.r.t. P , (t,X) 7→

2(X,x(t, p̂)) is locally Lipschitz w.r.t. (t,X), the functions [fi],
[
∂fi
∂xk

]
and

[
∂fi
∂pj

]
are

all locally Lipschitz by Assumption 7, and the interval additions and multiplications

in (4.26) are locally Lipschitz as per [48].

Finally, Condition 3 of Definition 14 holds because D2 is open by Assump-

tion 7 and DR is defined as the inverse image of D2 under the continuous mapping

(t, P,X, S, S̃) 7→ ([t, t],2(X ∪ x(t, p̂)),2(P ∪ p̂)). �

Remark 3 Algorithm 4 is the most straightforward implementation of the methods

developed in this section. Several important modifications that significantly reduce the

computational complexity and may result in tighter bounds are discussed in Appendix

4.8.1. These modifications are used in all numerical experiments in §4.7.

4.6 Second Order Convergence Rate of MVDI

In this section, we prove that the enclosures provided by MVDI converge to

the true reachable set at a quadratic rate as the width of P tends towards zero. In

contrast, standard differential inequalities (DI) has only first-order convergence [56].

Second-order convergence is highly desirable in algorithms that rely on partitioning

P to obtain tighter enclosures, as is common in bounded error estimation, global

optimization, and constraint satisfaction problems [54, 22]. To begin, the following

lemma extends the first-order convergence property of standard DI to the interval

bounds obtained via Theorem 11.

Lemma 3 Let P̄ ∈ IRnp and let X0 : IP̄ → IRnx and S0 : IP̄ → IRnx×np be inclusion
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functions for x0 and s0,respectively. Assume ∃λ0 ≥ 0 such that

w
([

X0(P )
S0(P )

])
≤ λ0w(P ), ∀P ∈ IP̄ . (4.28)

Let R satisfy Definition 14 and assume that (4.16) has solutions XP (t) and SP (t) for

every P ∈ IP̄ . Assume that, given any compact K ⊂ DR, ∃λR ≥ 0 such that

w(R(t, P,X, S, S̃)) ≤ λRw

([
P
X
S
S̃

])
(4.29)

for all (t, P,X, S, S̃) ∈ K. Then, for every t ∈ I, ∃λ ≥ 0 such that

w
([

XP (t)
SP (t)

])
≤ λw(P ), ∀P ∈ IP̄ . (4.30)

Proof 2 For all (i, j) ∈ {1, . . . , nx} × {1, . . . , np}, let

KL
i ≡ {(t, P,BLi (XP (t)), SP (t), SP (t)) : t ∈ I, P ∈ IP̄}

KL
ij ≡ {(t, P,XP (t),BLij(SP (t)), SP (t)) : t ∈ I, P ∈ IP̄}

and define KU
i and KU

ij analogously. Since XP (t) and SP (t) are solutions of (4.16),

these sets must lie in DR for all (i, j). Moreover, these sets are compact in the metric

space I × IRnp × IRnx × IRnx×np × IRnx×np. Let K ≡ ∪i,j(KL
i ∪KU

i ∪KL
ij ∪KU

ij ), and

let λR satisfy (4.29). Moreover, let L ≥ 0 be a Lipschitz constant for R on K, which

exists by local Lipschitz continuity of R.
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For every τ ∈ I, introduce the shorthand

RL
i (τ) = πLi ◦ R(τ, P,BLi (XP (τ)), SP (τ), SP (τ)),

RU
i (τ) = πUi ◦ R(τ, P,BUi (XP (τ)), SP (τ), SP (τ)),

RUL
i (τ) = πUi ◦ R(τ, P,BLi (XP (τ)), SP (τ), SP (τ)).

For any i, the integral form of the ODEs (4.16) implies

w(XP,i(t)) = w(XP,i(t0)) +

∫ t

t0

RU
i (τ)−RL

i (τ)dτ. (4.31)

Using the (4.29) and the Lipschitz condition on R, the integrand can be bounded

pointwise:

RU
i (τ)−RL

i (τ) (4.32)

=
(
RU
i (τ)−RUL

i (τ)
)

+
(
RUL
i (τ)−RL

i (τ)
)
,

≤ LdH(BUi (XP (τ)),BLi (XP (τ)))+

w(R(τ, P,BLi (XP (τ)), SP (τ), SP (τ))),

≤ Lw(XP,i(τ)) + λRw

([
P

BLi (XP (τ))

SP (τ)

])
,

≤ λRw(P ) + (L+ λR)w
([

XP (τ)
SP (τ)

])
.

Combining (4.31), (4.32), and (4.28),

w(XP,i(t)) ≤ λ0w(P ) + λR(tf − t0)w(P ) (4.33)

+

∫ t

t0

(L+ λR)w
([

XP (τ)
SP (τ)

])
dτ.

An analogous argument shows that the right-hand side of (4.33) is also an upper
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bound on w(SP,ij(t)) for all (i, j), and hence on w
([

XP (t)
SP (t)

])
. Then, by Gronwall’s

inequality (Lemma 2.1 in [56]),

w
([

XP (t)
SP (t)

])
≤ (λ0 + λR(tf − t0))w(P )e(L+λR)(t−t0), (4.34)

which is the desired result. �

Remark 4 The assumed first order convergence properties of X0, S0, and R in (4.28)

and (4.29) are not restrictive. They are satisfied, e.g., if X0, S0, [f ], and [fs] are

natural interval extensions, even if R omits all refinement steps and simply returns

Σx = [f ](t,X, P ) and Σs = [fs](t,X, S, P ) [48].

Next, we show that the mean-value enclosure provided by Theorem 11 has

second-order pointwise convergence. This property has been proven previously for DI

methods based on more complex sets in [77] and demonstrated empirically but not

proven for the DI-based affine bounding method in [19].

Theorem 14 Let P̄ ∈ IRnp and let X0, S0, R, and SP (t) be as in Lemma 3. For

every P ∈ IP̄ , define the parametric mean-value bounds xMV
P ,xMV

P : I × P → Rnx by

xMV
P (t,p) ≡ max

s̃∈SP (t)
(x(t, p̂) + s̃(p− p̂)),

xMV
P (t,p) ≡ min

s̃∈SP (t)
(x(t, p̂) + s̃(p− p̂)). (4.35)

Then, for every t ∈ I, ∃λ ≥ 0 such that

max
p∈P

∥∥xMV
P (t,p)− xMV

P (t,p)
∥∥ ≤ λw(P )2, (4.36)

for all P ∈ IP̄ .

130



Proof 3 Choose any P ∈ IP̄ . For any i ∈ {1, . . . , nx} and any (t,p) ∈ I × P ,

xMV
P,i (t,p)− xMV

P,i (t,p) (4.37)

= max
s̃∈SP (t)

∑
j

s̃ij(pj − p̂j)− min
s̃∈SP (t)

∑
j

s̃ij(pj − p̂j),

=
∑
j

[
max

s̃∈SP (t)
s̃ij(pj − p̂j)− min

s̃∈SP (t)
s̃ij(pj − p̂j)

]
,

≤ npw(SP (t))w(P ).

Choosing any λ satisfying Lemma 3, this implies

max
p∈P

∥∥xMV
P (t,p)− xMV

P (t,p)
∥∥ ≤ npλw(P )2, (4.38)

as desired. �

4.7 Numerical Examples

In this section, we compare our new Mean Value Differential Inequalities

method (MVDI) to the standard interval-based differential inequalities method (SDI)

[64] and other state-of-the-art methods from the literature. MVDI consists of solving

the bounding ODEs (4.16) with R defined by Algorithm 4 with the reference point

p̂ = mid(P ). The reference trajectory x(t, p̂) was obtained by solving (4.1a) with

p = p̂ simultaneously with (4.16). All ODEs were solved using CVODE [21] with abso-

lute and relative tolerances of 10−6 unless explicitly stated otherwise. We report wall

clock times for C++ code running on a laptop with a 2.9 GHz Intel Core i7.
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4.7.1 Continuous Stirred-Tank Reactor

The first example describes the chemical reactions A+B → C and A+C → D

in a stirred-tank reactor [19]:

Ȧ = −p3AB − k2AC + (p1vA − A(νA + νB))/V (4.39)

Ḃ = −p3AB + (p2νB −B(νA + νB))/V

Ċ = p3AB − k2AC − C(νA + νB)/V

Ḋ = k2AC −D(νA + νB)/V

The time horizon is I = [0, 100] min and the uncertainties are the inlet concentration

of species A, p1 ∈ [0.9, 0.902] M, the inlet concentration of species B, p2 ∈ [0.8.802]

M, and the rate constant of the first reaction, p3 ∈ [10, 10.4] M−1min−1. All other

parameters are constant: V = 20 L, k2 = 0.4 M−1min−1, and νA = νB = 1 L(min)−1.

All concentrations are initially zero.

Figure 4.1 shows the upper and lower bounds on C obtained by MVDI and

SDI without considering any invariants or constraints. The figure clearly shows that

the use of a mean value enclosure results in bounds that are very accurate and much

tighter than SDI. The wall clock time was 0.0013 s for SDI and 0.0350 s for MVDI.

In [19], this example was used to compare a number of alternative bounding

methods. There, several methods made use of two invariants that are known to be

satisfied by all solutions of (4.39):

−A+ 2B + C = γ(t)(−p1νA + 2p2νB), (4.40)

A−B +D = γ(t)(p1νA − p2νB),
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Figure 4.1: Bounds on C in (4.39) computed by standard DI (dashed black) and
Mean Value DI without invariants (solid red). Sampled solutions are shaded gray.

where γ(t) = (− 1
νA+νB

)(exp(−νA+νB
V

t)− 1). To compare, we also implemented MVDI

using these two invariants as hinv. The most effective methods reported in [19]

were the ‘Simultaneous Affine/Interval’ method, which had a final bound width of

w(X(tf )) = 0.0131 and required 0.0296 s, and the ‘Simultaneous Affine/Interval

(TM)’ method, which had w(X(tf )) = 0.0120 and required 0.347 s. In comparison,

MVDI achieves the tightest bounds with w(X(tf )) = 0.0112, while also requiring only

0.0257 s.

Figure 4.2 compares the convergence rates of MVDI and SDI by plotting the

bounding error versus w(P ) on log-log axes. The bound width w(X(t)) has first-order

convergence (slope 1) for both SDI and MVDI. However, the maximum pointwise error

of the mean value enclosure furnished by MVDI, defined as the l.h.s. of (4.36), has

second order convergence (slope 2), consistent with Theorem 14.
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Figure 4.2: Empirical convergence rates for SDI and MVDI (with invariants) applied
to (4.39). Black and blue circles show bound width w(X(t)) at t = 100 min for SDI
and MVDI, resp. Blue stars show the maximum pointwise error (l.h.s. of (4.36)) for
MVDI.
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4.7.2 Fixed Wing Unmanned Aerial Vehicle (UAV)

Consider the 7-state fixed-wing UAV model from [1]:

ẋ = vxy cos(ψ), ẏ = vxy sin(ψ), ż = vz, (4.41)

ψ̇ =
g

vxy
tan(θ), v̇xy = axy, v̇z = az, θ̇ = ω.

The state of the system is x = (x, y, z, ψ, vxy, vz, θ), where (x, y, z) is the UAV position,

vxy and vz are the velocity in the xy−plane and z−plane, respectively, ψ is the heading

angle, and θ is the roll angle. The accelerations axy and az and the roll angle rate ω are

control inputs used to track a desired trajectory described by (xd, yd, zd, vxy,d, vz,d, ψd),

which are all functions of time. The controller equations are

axy = k5εx + k6(vxy,d − vxy), (4.42)

az = k7εz + k8(vz,d − vz),

ω = k4(k1εy + k2(ψd − ψ) + k3(ψ̇d − ψ̇)− θ),

εx = cos(ψd)(xd − x) + sin(ψd)(yd − y),

εy = − sin(ψd)(xd − x) + cos(ψd)(yd − y),

εz = zd − z.

We consider the closed-loop system with time horizon I = [0, 10] s and uncertain

initial positions X0 = [−1, 1] m, Y0 = [−1, 1] m, and Z0 = [−1, 1] m. All other initial

conditions are assumed fixed at ψ = 0 rad, vxy = 10 m/s, vz = 1 m/s, and θ = 0.3

rad. Other parameters are chosen as in [1]: k1 = 0.05, k2 = 5.0, k3 = 5.0, k4 = 1.0,

k5 = 0.1, k6 = 1.0, k7 = 0.13, and k8 = 1.0. The desired trajectory is obtained

by solving (4.41) with initial conditions xd = 0 m, yd = 0 m, zd = 0 m, ψd = 0
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rad, vxy,d = 10 m/s, and vz,d = 1 m/s, and with the open-loop inputs θd = 0.3 rad,

axy,d = 1 m/s, and az,d = 0.1 m/s. This system has no known invariants and we do

not impose any constraints.

Figure 4.3 shows that SDI produces rapidly diverging bounds, while MVDI

produces very sharp bounds. The time required for integrating a single trajectory

of (4.41) is 1.4 × 10−4s on average, while SDI takes 5.8 × 10−3s and MVDI takes

1.6×10−2s. Thus, MVDI produces accurate bounds over 10s of flight time more than

three orders of magnitude faster than real-time. Moreover, computing a rigorous

enclosure by MVDI is less costly than simulating trajectories on a 4× 4× 4 grid over

the uncertain initial condition space (64 trajectories at a total cost of 9.0 × 10−3s),

which is unlikely to provide an reliable approximation of the full reachable set.

4.8 Appendix

Theorem 11 and 12 are proven here as special cases of a more general bounding

theorem that is not in principle related to sensitivities and the mean value theorem.

It is convenient to state this result with notation that is distinct from that in §4.2.

Therefore, let I = [t0, tf ], let Q ⊂ Rnq be a compact set of time-invariant parameters

q, let d : Dd ⊂ R×Rny×Rnq → Rny and y0 : Q→ Rny be locally Lipschitz continuous

functions, and consider the system

ẏ(t,q) = d(t,y(t,q),q), y(t0,q) = y0(q). (4.43)

We assume that (4.43) admits a unique continuous solution y : I × Q → Rny such

that y(·,q) is absolutely continuous on I for every q ∈ Q.

Our general bounding result is stated in terms of interval operators ΠL
i ,Π

U
i :
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Figure 4.3: (Top) Bounds on x, y, and z in (4.41) computed by SDI (gray boxes)
and MVDI (red boxes) with sampled solutions (green). (Bottom) Close-up of bounds
computed by MVDI, sampled solutions, and the desired trajectory (blue).
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EΠ ⊂ I × IRny × IRny → IR. These functions are generic notation for any operations

that take intervals Y and Ỹ as input, isolate the ith lower or upper face of Y , and

then eliminate regions of this face that violate some known constraints satisfied by

the solutions of (4.43). Eventually, these will be used to represent the refinement

operations used in Theorems 11 and 12. The arguments Y and Ỹ are related to the

discussion surrounding S and S̃ in §4.3. Specifically, these are necessary to allow Π
L/U
i

to make refinements that are only valid under the assumption Y contains y(t,q) for

some specific q ∈ Q, while Ỹ contains y(t,q) for all q ∈ Q. The general requirements

for Π
L/U
i are given in the following assumption.

Assumption 8 For every i ∈ {1, · · · , ny}, assume that

1. If (t, Y, Ỹ ) ∈ EΠ and q̄ ∈ Q satisfy y(t, q̄) ∈ BLi (Y ) and y(t,q) ∈ Ỹ , ∀q ∈ Q,

then ẏi(t, q̄) ∈ ΠL
i (t, Y, Ỹ ).

2. If (t, Y, Ỹ ) ∈ EΠ and q̄ ∈ Q satisfy y(t, q̄) ∈ BUi (Y ) and y(t,q) ∈ Ỹ , ∀q ∈ Q,

then ẏi(t, q̄) ∈ ΠU
i (t, Y, Ỹ ).

3. EΠ is an open with respect to I × IRny × IRny . That is, for any (t, Y, Ỹ ) ∈ EΠ,

∃η > 0 such that Bη((t, Y, Ỹ )) ∩ (I × IRny × IRny) is a subset of EΠ.

4. ΠL
i and ΠU

i are locally Lipschitz continuous.

Theorem 15 and Corollary 3 below are proven under Assumption 8 in [68].

Theorem 15 Let yL,yU : I → Rny be absolutely continuous and denote Y (t) ≡

[yL(t),yU(t)]. Assume that:

1. (t, Y (t), Y (t)) ∈ EΠ, ∀t ∈ I.

2. y0(q) ∈ Y (t0), ∀q ∈ Q.
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3. For almost every t ∈ I and each index i,

(a) ẏLi ≤ σ, ∀σ ∈ ΠL
i (t, Y (t), Y (t)),

(b) ẏUi ≥ σ, ∀σ ∈ ΠU
i (t, Y (t), Y (t)).

Then y(t,q) ∈ Y (t), ∀(t,q) ∈ I ×Q.

Remark 5 Note that Assumption 8 treats the second and third arguments of Π
L/U
i

differently, while Theorem 15 supplies Y (t) in both positions. This is intentional and

is necessitated by technical details of the proof in [68]. Suffice it to say here that Π
L/U
i

is evaluated with several other arguments in the course of the proof.

Corollary 3 Let Y0 : Q→ IRny be an inclusion function for y0 and let yL,yU : I →

Rny satisfy the following system of ODEs with Y (t) ≡ [yL(t),yU(t)]:

ẏLi (t) = min{σi : σi ∈ ΠL
i (t, Y (t), Y (t))}, (4.44)

ẏUi (t) = max{σi : σi ∈ ΠU
i (t, Y (t), Y (t))},

Y (t0) = Y0(Q).

Then y(t,q) ∈ Y (t), ∀(t,q) ∈ I ×Q.

We now prove Theorem 11 as a direct application of Corollary 3 to the system (4.8)

with Q = P , q = p, y(t,q) =
[
x(t,p)
s(t,p)

]
, and d(t,y,q) =

[
f(t,x,p)

fs(t,x,s,p)

]
. Let R satisfy

Definition 14, let X(t) and S(t) satisfy the hypotheses of Theorem 11, and define

Y (t) ≡
[
X(t)
S(t)

]
. Similarly, define Y0 ≡

[
X0
S0

]
and, for arbitrary (X̃, S̃) ∈ IRnx×IRnx×np ,

define Ỹ ≡
[
X̃
S̃

]
. For any Z ∈ IRn, define the coordinate projection πi(Z) ≡ Zi.

Define Π
L/U
i as follows, where i ∈ {1, . . . , nx}, j ∈ {1, . . . , np}, and k = nx + nx(j −
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1) + i:

EΠ ≡

(t, Y, Ỹ ) :

t ∈ I

(t, P,BL/Ui (X), S, S̃) ∈ DR, ∀i

(t, P,X,BL/Uij (S), S̃) ∈ DR, ∀i, j

 ,

ΠL
i (t, Y, Ỹ ) ≡ πi ◦ R(t, P,BLi (X), S, S̃),

ΠU
i (t, Y, Ỹ ) ≡ πi ◦ R(t, P,BUi (X), S, S̃),

ΠL
k (t, Y, Ỹ ) ≡ πk ◦ R(t, P,X,BLij(S), S̃),

ΠU
k (t, Y, Ỹ ) ≡ πk ◦ R(t, P,X,BUij(S), S̃). (4.45)

With these definitions, the bounding ODEs in Corollary 3 are equivalent to those in

Theorem 11. Thus, it only remains to show that (4.45) satisfies Assumption 8.

Lemma 4 If R satisfies Definition 14, then the definitions (4.45) satisfy Assumption

8.

Proof 4 To verify Condition 1 of Assumption 8, choose any i ∈ {1, . . . , ny}, any

(t, Y, Ỹ ) ∈ EΠ, and any q̄ ∈ Q satisfying y(t, q̄) ∈ BLi (Y ) and y(t,q) ∈ Ỹ , ∀q ∈ Q.

Assume first that i ≤ nx. In this case, ẏi(t, q̄) = ẋi(t, p̄) = fi(t,x(t, p̄), p̄) and

ΠL
i (t, Y, Ỹ ) ≡ πi◦R(t, P,BLi (X), S, S̃). Thus, we must prove that fi(t,x(t, p̄), p̄) ∈ πi◦

R(t, P,BLi (X), S, S̃). It suffices to prove that (f(t,x(t, p̄), p̄), fs(t,x(t, p̄), s(t, p̄), p̄)) is

an element of R(t, P,BLi (X), S, S̃) by the definition of πi. This follows from Condition

1 of Definition 14. Specifically, the hypothesis y(t, q̄) ∈ BLi (Y ) implies that x(t, p̄) ∈

BLi (X) and s(t, p̄) ∈ S. Moreover, the hypothesis y(t,q) ∈ Ỹ , ∀q ∈ Q, implies that

s(t,p) ∈ S̃, ∀p ∈ P . By Corollary 2, it follows that ∃s̃ ∈ S̃ satisfying x(t, p̄) =

x(t, p̂) + s̃(p̄ − p̂). Moreover, (4.4) and (4.12) imply that ginv(t,x(t, p̄), p̄) ≤ 0,
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hinv(t,x(t, p̄), p̄) = 0, and

∂hinv

∂x
(t,x(t, p̄), p̄)s(t, p̄) +

∂hinv

∂p
(t,x(t, p̄), p̄) = 0.

Therefore, the point (p̄,x(t, p̄), s(t, p̄), s̃) satisfies all of the constraints in Condition

1 of Definition 14, and hence (f(t,x(t, p̄), p̄), fs(t,x(t, p̄), s(t, p̄), p̄)) is an element of

R(t, P,BLi (X), S, S̃). This verifies Condition 1 of Assumption 8 for i ≤ nx. The proof

for i > nx, as well as the proof of Condition 2 of Assumption 8, both follow from very

similar arguments and are omitted for brevity.

To verify Condition 3 of Assumption 8, note that the mappings (t, Y, Ỹ ) 7→

(t, P,BL/Ui (X), S, S̃) and (t, Y, Ỹ ) 7→ (t, P,X,BL/Uij (S), S̃) are continuous on the met-

ric space I × IRny × IRny (see §4.1.1). Moreover, DR is open by Condition 3 of

Definition 14. Thus, the preimage of DR under each of these mappings is open with

respect to I × IRny × IRny . Since EΠ is simply the intersection of these preimages, it

is also open with respect to I × IRny × IRny .

To verify Condition 4 of Assumption 8, note that the interval functions BL/Ui

and πi are Lipschitz continuous on IRn (see §4.1.1). Moreover, R is locally Lipschitz

continuous by Condition 2 of Definition 14. Thus, each Π
L/U
i is a composition of

locally Lipschitz continuous functions, and is therefore locally Lipschitz continuous.

�

In light of Lemma 4, applying Corollary 3 with the definitions above ensures

that x(t,p) ∈ X(t) and s(t,p) ∈ S(t), ∀(t,p) ∈ I×P . It then follows from Corollary

2 that x(t,p) ∈ x(t, p̂) + S(t)(p − p̂), ∀(t,p) ∈ I × P . This completes the proof of

Theorem 11.

Next, Theorem 12 is proven by applying Corollary 3 to (4.1a)–(4.1b) with

Q = P ∗, q = p, y(t,q) = x(t,p), and d(t,y,q) = f(t,x,p). Let R∗ satisfy Definition
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16 and let S(t) and X∗(t) satisfy the hypotheses of Theorem 12. Define Y (t) ≡ X∗(t),

Y0 ≡ X0, and for arbitrary X ∈ IRnx , Y ≡ X. Define Π
L/U
i as follows, where

i ∈ {1, . . . , nx}:

EΠ ≡

(t, Y, Ỹ ) :
t ∈ I

(t, P,BL/Ui (X), S(t)) ∈ DR, ∀i

 ,

ΠL
i (t, Y, Ỹ ) ≡ πi ◦ R∗(t, P,BLi (X), S(t)),

ΠU
i (t, Y, Ỹ ) ≡ πi ◦ R∗(t, P,BUi (X), S(t)). (4.46)

With these definitions, the bounding ODEs in Corollary 3 are equivalent to those in

Theorem 12. Thus, it only remains to show that (4.46) satisfies Assumption 8.

Lemma 5 If R∗ satisfies Definition 16, then the definitions (4.46) satisfy Assump-

tion 8.

Proof 5 To verify Condition 1 of Assumption 8, choose any i ∈ {1, . . . , ny}, any

(t, Y, Ỹ ) ∈ EΠ, and any q̄ ∈ Q satisfying y(t, q̄) ∈ BLi (Y ) and y(t,q) ∈ Ỹ , ∀q ∈

Q. These conditions imply that p̄ ∈ P ∗ and x(t, p̄) ∈ BLi (X). Since ẏi(t, q̄) =

ẋi(t, p̄) = fi(t,x(t, p̄), p̄) and ΠL
i (t, Y, Ỹ ) ≡ πi ◦R∗(t, P,BLi (X), S(t)), we must prove

that fi(t,x(t, p̄), p̄) ∈ πi ◦ R∗(t, P,BLi (X), S(t)). By the definition of πi, it suffices to

prove that f(t,x(t, p̄), p̄) is an element of R∗(t, P,BLi (X), S(t)). Since s(t,p) ∈ S(t),

∀p ∈ P , Corollary 2 ensures that ∃s̃ ∈ S(t) satisfying x(t, p̄) = x(t, p̂) + s̃(p̄ −

p̂). Moreover, since p̄ ∈ P ∗, we have g(t,x(t, p̄), p̄) ≤ 0 and h(t,x(t, p̄), p̄) = 0.

Therefore, the point (p̄,x(t, p̄), s̃) satisfies all of the constraints in Condition 1 of

Definition 16, and hence f(t,x(t, p̄), p̄) is an element of R∗(t, P,BLi (X), S(t)). This

verifies Condition 1 of Assumption 8, and Condition 2 follows analogously.

To verify Condition 3 of Assumption 8, note that the mappings (t, Y, Ỹ ) 7→
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(t, P,BL/Ui (X), S(t)) are continuous on the metric space I× IRny × IRny (see §4.1.1).

Moreover, DR∗ is open by Condition 3 of Definition 14. Thus, the preimage of DR∗

under each of these mappings is open with respect to I × IRny × IRny . Since EΠ is

simply the intersection of these preimages, it is also open with respect to I × IRny ×

IRny .

To verify Condition 4 of Assumption 8, note that the functions BL/Ui , πi, and

S are locally Lipschitz continuous. Moreover, R∗ is locally Lipschitz continuous by

Condition 2 of Definition 16. Thus, each Π
L/U
i is a composition of locally Lipschitz

continuous functions, and is therefore locally Lipschitz continuous. �

In light of Lemma 5, applying Corollary 3 with the definitions above ensures

that x(t,p) ∈ X∗(t), ∀(t,p) ∈ I × P ∗. This completes the proof of Theorem 12.

4.8.1 Modifications to Algorithm 4

Algorithm 4 provides a general way to refine an interval X ×P ×S× S̃ based

on mean value relations and pre-existing invariants. However, considering Algorithm

4, it can be identified that all major refinement computation is done inside the inner

loop, i.e., lines 5–15. For large systems, the refinement can be expensive. In this

section, a simplified algorithm with computational analysis is provided. Throughout

this section, we assume that no constraints and invariants exist, which is more gen-

eral although the resulting simplified algorithm is still valid in case of other existing

constraints/invariants. We first provide a new simplified Algorithm 5, which we use

in all numerical experiments, then a computational analysis follows.

As it shows, the major difference between Algorithm 4 and 5 is that Algorithm

5 first figures out which right-hand-side of the ODEs is currently being integrated by

checking its index variable, namely, the argument i of the refinement operator R
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Algorithm 5 A Simplified implementation of R
1: function R(t, P,X, S, S̃, i)
2: if i ≤ nx then
3: for j ← 1 to np do
4: α← x̂i −Xi +

∑
k 6=j S̃ik(Pk − p̂k)

5: µ← 1/max(ε, |S̃ij |)
6: P ′j ← µα+ (1 + µS̃ij)(Pj − p̂j) + p̂j
7: Pj ← Pj∩̄P ′j
8: µ← −µ and repeat lines 6-7
9: µ← 1/max(ε, |Pj − p̂j |)

10: S̃′ij ← µα+ (1 + µ(Pj − p̂j))S̃ij
11: S̃ij ← S̃ij∩̄S̃′ij
12: µ← −µ and repeat lines 10-11
13: end for . j ← 1 to np
14: for j ← 1 to i− 1, i+ 1 to nx do
15: X ′j ← x̂j +

∑np

k=1 S̃jk(Pk − p̂k)
16: Xj ← Xj∩̄X ′j
17: for k ← 1, np do
18: repeat lines 9–12
19: end for . k ← 1 to np
20: end for . j ← 1 to i− 1, i+ 1 to nx
21: P † ← P,X† ← X, S̃† ← S̃
22: Σx ← [f ](t,X†, P †)∩FMV (t, P †, X†, S̃†)
23: else
24: for j ← 1 to nx do
25: X ′j ← x̂j +

∑np

k=1 S̃jk(Pk − p̂k)
26: Xj ← Xj∩̄X ′j
27: end for . i← 1 to nx
28: P † ← P,X† ← X,S† ← S
29: Σ← [fs](t,X

†, S†, P †)
30: end if
31: return Σ
32: end function
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defined in Algorithm 5. Remember that an essential feature of using (4.10) is that

it enables to refine P . Furthermore, the capability of refining P by (4.10) is only

possible when Xi is flattened. Therefore, it’s more effective to refine P and Si first

as lines 3–13. Next, for non flattened intervals Xj 6=i, it just needs to refine Xj 6=i and

S̃j as lines 14–20. Furthermore, for the r.h.s. of fs, since all interval variables are just

state bounds, P cannot be refined. In addition, there is also no need to refine S̃ since

they are not used in [fs].

Remark 6 Algorithm 5 along above tricks explained are what actually used in all

numerical experiments. Besides that, it is worth to mention that there are several

tricks which are not implemented in Algorithm 5 (and numerical experiments) but

could be combined with Algorithm 5 to reduce the computational cost.

First, for each r.h.s. of sik, since all intervals of the r.h.s. in line 25 are

actually state bounds (no flatten), rather than computing lines 24–27 nxnp times for

each sik with i ∈ {1, · · · , nx} and k ∈ {1, · · · , np}, they could be computed just once

and used by all sij.

Second, considering line 6, it can be easily verified that if 0 < [Pj − p̂j]L and

0 ∈ α, we have P ′j ⊃ Pj, therefore lines 6–7 can be skipped without doing redundant

computation. Anagolusly, simplification can be made for the case of µ = −µ and the

refinement of S̃ij.

Third, for dynamic systems, since the refinement operator is implemented for

every t ∈ I, a variable occurrence matrix can be provided such that only those interval

variables appearing on the corresponding r.h.s. will be refined. This is especially useful

when evaluating lines 14–20.

Finally, inspired by the variable occurrence, as we show in (4.25), by expanding

p first, we have p̂ as the argument of ∂fi
∂xk

(t,γ/i , xi, p̂) which would be ∂fi
∂xk

(t,γ/i , γi, ζ)
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if we expand both p and x simultaneously. This partially expanding has obvious ad-

vantage when evaluating the natural interval extension of (4.25). That is, instead

of only using interval as the argument, partially replacing interval with correspond-

ing reference number (which can be considered as interval whose lower and upper

bound is same) could provide much tighter enclosures, based on the so-called ‘in-

clusion property’ in [48]. Following this strategy, one could expand fi with respect

to the variable/parameter first which has most occurrence, then gradually to the vari-

able/parameters which has the least occurrence. This will enable to use more reference

points in place of unknown components in ζ and γ, which we could call it as fully

component-wise FMV .
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation considers the problem of computing rigorous, fast, and ac-

curate enclosures of the solutions of nonlinear ordinary differential equations subject

to bounded initial conditions, parameters and time-varying inputs. Our aim is to

produce such enclosures at the cost of a few single simulation, and with much higher

accuracy than existing methods of similar complexity. In particular, this dissertation

continues the development of differential inequalities methods [64] that exploit redun-

dant model equations to reduce bounding conservatism. Our aim is achieved from

two directions. First, a new framework is developed for introducing redundant model

equations, called ‘manufactured invariants’, for general nonlinear systems. Intro-

ducing such manufactured invariants lifts the original governing ODEs into a higher-

dimensional state-space, often resulting in significantly improved enclosures. Problem

specific user insights are needed in order to manually identify effective manufactured

invariants. To address this, a new approach that can automate the construction of

manufactured invariants based on the forward sensitivity system for the given ODEs
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is developed. This new approach is very competitive and extends effective DI meth-

ods base on invariants to many dynamic systems where pre-existing redundant model

equations are not available and manually derived manufactured invariants are not

easy to create. This solves the ‘how to create redundant model equations’ problem.

Second, fast and accurate new bounding algorithms and their underlying theories that

exploit linear and nonlinear redundant model equations to significantly reduce con-

servatism are developed. This solves the ‘how to optimally exploit redundant model

equations’ problem.

Combining contributions from these two directions, many numerical examples

demonstrate that these new developed differential inequalities-based methods can

dramatically reduce conservatism while maintaining high efficiency much better than

many other existing methods. As a result, the newly proposed methods can poten-

tially be used as a potential tool for many on-line applications that require both fast

and accurate enclosures of the system states.

5.2 Future work

Our key insight is that the conservatism of fast interval methods can be dra-

matically reduced through the use of redundant model equations. As a result, there

are a few areas that may deserve future research efforts.

First, efficient algorithms have been developed in Chapters 2, 3, and 4 for

exploiting linear and nonlinear redundant model equations. However, improvements

could be made in many aspects. Algorithms that can exploit the most effective

redundant model equations first rather than using all of them in a fixed sequence

should be focused. This is necessary because large system may involve hundreds of

redundant model equations or constraints, and having a smart selective algorithm
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can save significant computational resources. For large system with dense linear

redundant model equations, more effective algorithms should be developed.

Second, the ability to refine enclosures continuously on the right-hand-sides

of the ODEs make the new methods in this dissertation very effective. Actually

continuous refinement is expensive. It is what makes the bounds tight, but not what

makes them efficient. However, the Lipschitz continuity requirement for the right-

hand-sides of the ODEs also brings some limitations. At least for current algorithms

that exploit nonlinear redundant model equations, conservatism is actually introduced

in order to satisfy the Lipschitz continuity requirement. More efficient and effective

refinement algorithms for exploiting nonlinear redundant model equations should be

made in the future.

Chapter 4 introduces one way to automate the introduction of redundant

model equations by augmenting the original system with its forward sensitivity equa-

tions. In fact, this is also one way to mitigate the dependency problem between states

and parameters. However, what should be noticed is that, for some systems, the en-

closures of the forward sensitivities often diverge earlier and more quickly than the

original states due to the dependency problem. In these cases, the refinement based

on the mean value relations that is introduced in Chapter 4 may not be as effective

as it is in other cases. Therefore, a direction for future research is establishing other

automated ways to manufacture redundant model equations.

Interval-based differential inequalities methods have a significant efficiency ad-

vantage over many other existing methods that use more complex sets. However,

considering the stability of bounds, interval-based DI methods still need to be im-

proved. More research that tries to combine interval-based DI methods with other

modern bounding methods should be made. However, hard work needs to be done

to find the balance point such that these ‘hybrid’ methods can still provide fast and
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accurate bounds for real-time applications.

Finally, the proposed methods have been shown to be promising for providing

fast and accurate bounds over a single range of uncertain parameters, which is often

called parent node. For global optimization problems of dynamic system, the parent

node may be partitioned to thousands of child nodes. In principle, the proposed

new methods are much more efficient than the old bounding methods. However, in

the context of global optimization, since relaxation methods are often used, interplay

with relaxations and the proposed methods should be made such that they can benefit

from each other. For systems with constraints, advanced methods that can exploit

constraints and the mean value enclosures in Chapter 4 to conduct domain reduction

are also should be focused.

150



Bibliography

[1] D. Althoff, M. Althoff, and S. Scherer. Online safety verification of trajectories
for unmanned flight with offline computed robust invariant sets. In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015.

[2] M. Althoff, M. Cvetkovic, and M. Ilic. Transient stability analysis by reachable
set computation. In 2012 3rd IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), pages 1–8, 2012.

[3] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using
reachability analysis. IEEE Transactions on Robotics, 30(4):903–918, Aug 2014.

[4] M. Althoff and B.H. Krogh. Reachability analysis of nonlinear differential-
algebraic systems. IEEE T. Automat. Contr., 59(2):371–383, 2014.

[5] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In 47th IEEE Decis.
Contr. P., pages 4042–4048, 2008.

[6] Olivier Bernard, Zakaria Hadj-Sadok, Denis Dochain, Antoine Genovesi, and
Jean-Philippe Steyer. Dynamical model development and parameter identi-
fication for an anaerobic wastewater treatment process. Biotechnol. Bioeng.,
75(4):424–438, 2001.

[7] Martin Berz and Kyoko Makino. Performance of Taylor model methods for
validated integration of ODEs. In Proceedings of the 7th International Conference
on Applied Parallel Computing: State of the Art in Scientific Computing, pages
65–73. Springer-Verlag, 2006.

[8] Davide Bresolin, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano
Villa. Formal verification of robotic surgery tasks by reachability analysis. Mi-
croprocessors and Microsystems, 39(8):836–842, 2015.

[9] Benoit Chachuat and Mario Villanueva. Bounding the solutions of parametric
ODEs: When Taylor models meet differential inequalities. In I. D. L. Bogle and
M. Fairweather, editors, 22 European Symposium on Computer Aided Process

151



Engineering, volume 30 of Comput. Aided Chem. Eng., pages 1307–1311. Elsevier
Science BV, 2012.

[10] Earl A. Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1955.

[11] Evrim Dalkiran and Hanif D. Sherali. Theoretical filtering of RLT bound-factor
constraints for solving polynomial programming problems to global optimality.
J. Global Optim., 57(4):1147–1172, 2013.

[12] Iman Famili and Bernhard O. Palsson. The convex basis of the left null space
of the stoichiometric matrix leads to the definition of metabolically meaningful
pools. Biophys. J., 85:16–26, 2003.

[13] H.P. Geering. Optimal Control with Engineering Applications. Springer Berlin
Heidelberg, 2007.

[14] H. Gueguen, M. A. Lefebvre, J. Zaytoon, and O. Nasri. Safety verification and
reachability analysis for hybrid systems. Annual Reviews in Control, 33(1):25–36,
2009.

[15] K. Hariprasad and S. Bhartiya. Adaptive robust model predictive control of
nonlinear systems using tubes based on interval inclusions. In 53rd IEEE Decis.
Contr. P., pages 2032–2037, 2014.

[16] G. W. Harrison. Dynamic models with uncertain parameters. In X.J.R. Avula,
editor, Proc. of the First International Conference on Mathematical Modeling,
volume 1, pages 295–304, 1977.

[17] S. M. Harwood and P. I. Barton. Efficient polyhedral enclosures for the reachable
set of nonlinear control systems. Math. Control. Signal., 28(1):8, 2016.

[18] S. M. Harwood, J. K. Scott, and P. I. Barton. Bounds on reachable sets using
ordinary differential equations with linear programs embedded. IMA J. Math.
Control I., 33(2):519–541, 2016.

[19] Stuart M. Harwood and Paul I. Barton. Affine relaxations for the solutions
of constrained parametric ordinary differential equations. Optim. Contr. Appl.
Met., pages 1–22, 2017.

[20] Stuart M. Harwood and Paul I. Barton. How to solve a design centering problem.
Math. Meth. of OR, 86:215–254, 2017.

[21] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS, suite of nonlinear and differ-
ential/algebraic equation solvers. ACM T. Math. Software, 31:363–396, 2005.

152



[22] B. Houska and B. Chachuat. Branch-and-Lift algorithm for deterministic global
optimization in nonlinear optimal control. J. Optim. Theor. Appl., 162(1):208–
248, 2014.

[23] B. Houska, M. E. Villanueva, and B. Chachuat. Stable set-valued integration of
nonlinear dynamic systems using affine set-parameterizations. SIAM J. Numer.
Anal., 53(5):2307–2328, 2015.

[24] B. Houska, M.E. Villanueva, and B. Chachuat. A validated integration algorithm
for nonlinear ODEs using Taylor models and ellipsoidal calculus. In 52nd IEEE
Decis. Contr. P., pages 484–489, 2013.

[25] John Ingham, Irving J Dunn, Elmar Heinzle, Jiŕı E Prenosil, and Jonathan B
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