37 research outputs found

    Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making

    Get PDF
    Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth power of the membership degree and qth power of the non-membership degree is less than or equal to one. This characteristic makes q-ROFS more powerful and useful than intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS). The aim of this paper is to develop some aggregation operators for fusing q-rung orthopair fuzzy information. As the Muirhead mean (MM) is considered as a useful aggregation technology which can capture interrelationships among all aggregated arguments, we extend the MM to q-rung orthopair fuzzy environment and propose a family of q-rung orthopair fuzzy Muirhead mean operators. Moreover, we investigate some desirable properties and special cases of the proposed operators. Further, we apply the proposed operators to solve multi-attribute group decision making (MAGDM) problems. Finally, a numerical instance as well as some comparative analysis are provided to demonstrate the validity and superiorities of the proposed method

    Q-rung orthopair normal fuzzy aggregation operators and their application in multi-attribute decision-making

    Get PDF
    © 2019 by the authors. Q-rung orthopair fuzzy set (q-ROFS) is a powerful tool to describe uncertain information in the process of subjective decision-making, but not express vast objective phenomenons that obey normal distribution. For this situation, by combining the q-ROFS with the normal fuzzy number, we proposed a new concept of q-rung orthopair normal fuzzy (q-RONF) set. Firstly, we defined the conception, the operational laws, score function, and accuracy function of q-RONF set. Secondly, we presented some new aggregation operators to aggregate the q-RONF information, including the q-RONF weighted operators, the q-RONF ordered weighted operators, the q-RONF hybrid operator, and the generalized form of these operators. Furthermore, we discussed some desirable properties of the above operators, such as monotonicity, commutativity, and idempotency. Meanwhile, we applied the proposed operators to the multi-attribute decision-making (MADM) problem and established a novel MADM method. Finally, the proposed MADM method was applied in a numerical example on enterprise partner selection, the numerical result showed the proposed method can effectively handle the objective phenomena with obeying normal distribution and complicated fuzzy information, and has high practicality. The results of comparative and sensitive analysis indicated that our proposed method based on q-RONF aggregation operators over existing methods have stronger information aggregation ability, and are more suitable and flexible for MADM problems

    EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment

    Get PDF
    Extended q-rung orthopair fuzzy sets (q-ROFSs) is an excellent tool to depict the qualitative assessing information in multiple attribute group decision making (MAGDM) environments. The EDAS method is very effective especially when the conflicting attributes exist in the MAGDM issues in which the optimal alternative should have the biggest value of PDAS and the smallest value of NDAS. In this paper, we put forward the EDAS method for MAGDM issues under q-ROFSs, which makes use of average solution (AS) for assessing the chosen alternatives. The positive distance from AS (PDAS) and negative distance from AS (NDAS) is derived through the score of q-ROFSs. Then, the sorting order or the optimal alternative can be acquired by computing integrative appraisal score. Finally, a numerical example for buying a refrigerator is given to testify our developed EDAS method and some comparative analysis are also raised to further show the precious merits of this method. First published online 27 November 201

    A novel approach to multi-attribute group decision-making based on interval-valued intuitionistic fuzzy power Muirhead mean

    Get PDF
    This paper focuses on multi-attribute group decision-making (MAGDM) course in which attributes are evaluated in terms of interval-valued intuitionistic fuzzy (IVIF) information. More explicitly, this paper introduces new aggregation operators for IVIF information and further proposes a new IVIF MAGDM method. The power average (PA) operator and the Muirhead mean (MM) are two powerful and effective information aggregation technologies. The most attractive advantage of the PA operator is its power to combat the adverse effects of ultra-evaluation values on the information aggregation results. The prominent characteristic of the MM operator is that it is flexible to capture the interrelationship among any numbers of arguments, making it more powerful than Bonferroni mean (BM), Heronian mean (HM), and Maclaurin symmetric mean (MSM). To absorb the virtues of both PA and MM, it is necessary to combine them to aggregate IVIF information and propose IVIF power Muirhead mean (IVIFPMM) operator and the IVIF weighted power Muirhead mean (IVIFWPMM) operator. We investigate their properties to show the strongness and flexibility. Furthermore, a novel approach to MAGDM problems with IVIF decision-making information is introduced. Finally, a numerical example is provided to show the performance of the proposed method

    Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set

    Get PDF
    With the fast growth of the economy and rapid urbanization, the waste produced by the urban population also rises as the population increases. Due to communal, ecological, and financial constrictions, indicating a landfill site has become perplexing. Also, the choice of the landfill site is oppressed with vagueness and complexity due to the deficiency of information from experts and the existence of indeterminate data in the decision-making (DM) process. The neutrosophic hypersoft set (NHSS) is the most generalized form of the neutrosophic soft set, which deals with the multi-sub-attributes of the alternatives. The NHSS accurately judges the insufficiencies, concerns, and hesitation in the DM process compared to IFHSS and PFHSS, considering the truthiness, falsity, and indeterminacy of each sub-attribute of given parameters. This research extant the operational laws for neutrosophic hypersoft numbers (NHSNs). Furthermore, we introduce the aggregation operators (AOs) for NHSS, such as neutrosophic hypersoft weighted average (NHSWA) and neutrosophic hypersoft weighted geometric (NHSWG) operators, with their necessary properties. Also, a novel multi-criteria decision-making (MCDM) approach has been developed for site selection of solid waste management (SWM). Moreover, a numerical description is presented to confirm the reliability and usability of the proposed technique. The output of the advocated algorithm is compared with the related models already established to regulate the favorable features of the planned study

    Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation

    Get PDF
    The financial risk evaluation is critically vital for enterprises to identify the potential financial risks, provide decision basis for financial risk management, and prevent and reduce risk losses. In the case of considering financial risk assessment, the basic problems that arise are related to strong fuzziness, ambiguity and inaccuracy. q-rung orthopair fuzzy set (q-ROFS), portrayed by the degrees of membership and non-membership, is a more resultful tool to seize fuzziness. In this article, the novel q-rung orthopair fuzzy score function is given for dealing the comparison problem. Later, the and operations are explored and their interesting properties are discussed. Then, the objective weights are calculated by CRITIC (Criteria Importance Through Inter-criteria Correlation). Moreover, we present combined weights that reflects both subjective preference and objective preference. In addition, the q-rung orthopair fuzzy MCDM (multi-criteria decision making) algorithm based on CoCoSo (Combined Compromise Solution) is presented. Finally, the feasibility of algorithm is stated by a financial risk evaluation example with corresponding sensitivity analysis. The salient features of the proposed algorithm are that they have no counter-intuitive case and have a stronger capacity in differentiating the best alternative. First published online 03 March 202

    Improved Knowledge Measures for q-Rung Orthopair Fuzzy Sets

    Get PDF
    The q-rung orthopair fuzzy set (qROFS) defined by Yager is a generalization of Atanassov intuitionistic fuzzy set (IFS) and Pythagorean fuzzy sets (PyFSs). In this paper, we define the knowledge measure for qROFS by using the cosine inverse function. The information precision and information content are two facets of knowledge measure. Both facets of knowledge measure are considered. The properties of knowledge measure and their graphical explanations are discussed. An application of the knowledge measure in multi-attribute group decision-making (MAGDM) problem under the confidence level approach is given. A numerical example of the selection of renewable energy sources is discussed

    Sine hyperbolic fractional orthotriple linear Diophantine fuzzy aggregation operator and its application in decision making

    Get PDF
    The idea of sine hyperbolic fractional orthotriple linear Diophantine fuzzy sets (sinh-FOLDFSs), which allows more uncertainty than fractional orthotriple fuzzy sets (FOFSs) is noteworthy. The regularity and symmetry of the origin are maintained by the widely recognized sine hyperbolic function, which satisfies the experts' expectations for the properties of the multi-time process. Compared to fractional orthotriple linear Diophantine fuzzy sets, sine hyperbolic fractional orthotriple linear Diophantine fuzzy sets (sinh-FOLDFSs) provide a significant idea for enabling more uncertainty. The objective of this research is to provide some reliable sine hyperbolic operational laws for FOLDFSs in order to sustain these properties and the significance of sinh-FOLDFSs. Both the accuracy and score functions for the sinh-FOLDFSs are defined. We define a group of averaging and geometric aggregation operators on the basis of algebraic t-norm and t-conorm operations. The basic characteristics of the defined operators are studied. Using the specified aggregation operators, a group decision-making method for solving real-life decision-making problem is proposed. To verify the validity of the proposed method, we compare our method with other existing methods
    corecore