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H I G H L I G H T S  

• A novel multicriteria (MCDM) framework using AHP and q-ROLPBM operator is presented. 
• We incorporate stakeholders’ degree of pessimistic and optimistic rate for all criteria. 
• Environmental and economic are the most crucial dimensions followed by social and technical ones. 
• e-fuel and e-biofuel are found to be the two top ranked production pathways. 
• Findings are valuable for policy/investment development for sustainable fuel production.  
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A B S T R A C T   

It is widely believed that alternative low carbon fuels (ALCF) can be instrumental in achieving the transportation 
sector’s decarbonization goal. Unlike conventional fossil-based fuels, ALCF can be produced through a combi-
nation of different chemical processes and feedstocks. The inherent complexity of the problem justifies the multi- 
criteria decision-making (MCDM) approach to support decision-making in the presence of multiple criteria and 
data uncertainty. In this paper, we propose a novel stakeholder participation-based MCDM framework inte-
grating experts’ perspectives on ALCF production pathways using the analytics hierarchy process (AHP) and the 
q-rung orthopair linguistic partition Bonferroni mean (q-ROLPBM) operator. The key merit of our approach lies 
in treating criteria of different dimensions as heterogeneous indicators while considering the mutual influence 
between criteria within the same dimension. The proposed framework is applied to evaluate four ALCF pro-
duction pathways against 13 criteria categorised under economic, environmental, technical, and social di-
mensions for the case of the United Kingdom (UK). Our analysis revealed the environmental and the economic 
dimensions to be the most important, followed by the social and technical evaluation dimensions. The e-fuel 
followed by the e-biofuel are found to be the two top-ranked production pathways that utilise the electrochemical 
reduction process and its combination with anaerobic digestion. These findings, along with our recommenda-
tions, provide decision-makers with guidelines on ALCF production pathway selection and formulate effective 
policies for investment.   

1. Introduction 

Global transportation accounts for 57 % of oil demand [1] and is 
responsible for 24 % of the direct carbon dioxide (CO2) emissions from 
fuel combustion [2]. Although the COVID-19 travel restrictions reduced 

the emissions (7.2 Gt CO2) in 2020 compared to (8.5 Gt CO2) 2019, the 
rebound in passenger and cargo transport demand would result in 
emissions growth [3]. Technology lock-in to use fossil oil for various 
transport modes has made it difficult for the sector to decarbonise [4]. In 
response to the global climate change challenge, alternative 
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decarbonization measures include battery power [5], hydrogen fuel cells 
[6,7], and the use of alternative low carbon (bio or synthetic) fuels 
(methanol, ethanol, biogas) [8,9] are gaining importance. Of the three 
options, alternative low carbon fuels (ALCFs) have the largest share [10] 
and play a crucial role in decarbonizing the transportation sector. To be 
more specific, the total biofuel production surged from 142.6 million 
litres to 160.9 million litres in 2019 (78 % bioethanol and 22 % bio-
diesel) [11]. Along with emission savings, the use of renewable fuel 
ensures energy security and rural development and achieves circular 
economy goals [12]. 

The ALCF follows a waste-to-energy approach. The key merit of this 
approach is to produce useful products (methane, methanol) by 
reducing waste material, CO2 emissions to the atmosphere, and con-
sumption of non-renewable resources. Typical feedstocks used in waste- 
to-energy pathways include but are not limited to fats, oil, and grease 
(FOG), sludge, manure, forestry, and agricultural waste. Similarly, 
capturing CO2 to make fuel is an innovative and emerging topic 
attracting worldwide attention [13,14], hence the focus of our current 
research. The resultant products produced following the waste-to- 
energy approach then require further upgrading to generate transport 
fuels (also known as “drop-in” or “synthetic” fuels). 

Despite its potential to enable the transportation sector to achieve 
carbon neutrality, ALCF also faces significant barriers to scale-up 
[15,16]. The foremost of these is the technical challenge of energy ef-
ficiency. For example, Ganesh [17] highlighted the low energy effi-
ciency of production processes as one of the key hurdles to converting 
CO2 into sustainable fuels. This view is reiterated by Montazersadgh 
et al. [18] with research being performed to improve the production 
system efficiency of converting CO2 to produce methanol. For biogas 
production, Mahmudul et al. [19] reviewed several technologies and 
suggested using solar energy to improve production efficiency. Likewise, 
Kargbo et al. [20] pointed out that technical inefficiencies due to a low 
level of technical readiness in drop-in fuel production methods can 
potentially extend into the economic domain, manifesting themselves in 
the form of high cost in comparison to fossil fuels, thus holding back 
ALCF commercialization. Apart from the technical uncertainty of the 
sustainable fuel production pathway, there are complex non-technical 
barriers that need to be resolved, including the social perception of 
ALCFs [21,22], the environmental impact of drop-in fuel production and 
distribution [23], and economic considerations [20,24]. 

1.1. Motivation 

The selection of ALCF production pathways is a multi-faceted tactical 
decision problem amid a high level of uncertainty in the sector. Most 
studies have focused on assessing the attractiveness of ALCF using 
techno-economic analysis (TEA) [25–28]. Despite TEA being instru-
mental in optimising process design and quantifying final product 
selling price [29], the evaluation of ALCF involves a multi-dimensional 
(e.g., economics, environmental, technical, social) and multi- 
hierarchical structure characteristic. Therefore, there is a need to uti-
lise the multi-criteria decision-making (MCDM) framework to effec-
tively aggregate multiple and conflicting criteria, incorporating data 
uncertainty, supporting data in different forms, and reflecting stake-
holders’ perspectives. Our paper aims to fill this gap by proposing a 
stakeholder participatory approach based on the MCDM framework to 
assess ALCF production pathways. 

One strand of studies focused on applying standard MCDM methods 
(e.g., Analytics Hierarchy Process (AHP), Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS)) to evaluate fuel produc-
tion technologies.1 However, this class of techniques unable to fully 
reflect the criteria measurements’ data uncertainty, as most ALCF 

production pathways are in a relatively early stage and are continuously 
evolving. To incorporate the issue of data uncertainty, several authors 
have utilised fuzzy MCDM methods. Ren and Liang [30], for example, 
used the fuzzy TOPSIS-based MCDM method to measure the sustain-
ability of alternative marine fuels. Similarly, Sehatpour and Kazemi [31] 
drew a hybrid framework based on fuzzy multi-objective programming 
and MCDM to determine an optimised sustainable fuel portfolio of six 
different fuels. Lin et al. [32] assessed the sustainability prioritisation of 
hydrogen pathways using a Z-number best worst method to address the 
ambiguity and fuzziness of stakeholders’ opinions. 

Despite fuzzy MCDM methods providing a valuable solution to assess 
uncertain and fuzzy criteria, they can only offer a qualitative grade level. 
One common approach to quantify qualitative information is to use an 
intuitionistic fuzzy set (IFS) to set parameters of membership degree and 
non-membership degree. The main limitation of traditional IFS resides 
in its inability to handle nonbinary limited evaluation information; that 
is, the sum of membership degree and non-membership degree in the 
evaluation value must be less than or equal to 1[33–35]. 2As such, Yager 
[36] proposed the concept of a q-rung orthopair fuzzy set (q-ROFS), 
which can effectively process the complex evaluation information i.e., a 
situation where the sum of the degree of membership and the degree of 
non-membership is greater than 1. Meanwhile, the MCDM method based 
on q-ROFS has been widely used to address practical problems, such as 
the evaluation of government strategies [37], energy and environmental 
assessment [38], and product design optimisation [39]. 

Note that both IFS and q-ROFS can only express the “good” and “bad” 
aspects of a thing, but they cannot give the credibility of the “good and 
“bad”. Therefore, the evaluation information expressed by IFS or q-ROFS 
has high subjectivity and randomness, which can adversely affect the 
robustness of the evaluation results. In practice, decision makers are 
likely to face self-contradiction in assessing the acceptance and disap-
proval rate for certain criterion given the early stage of technologies. 
Under such circumstances, one can utilises Herrera and Herrera-Vied-
ma’s concept of q-rung orthopair linguistic set to capture the contra-
dictory information by evaluators while give the credibility 
measurement level of it to provide a comprehensive decision support 
[40]. 

Several researchers have enriched the q-rung orthopair linguistic set 
theory [41–48]. For example, Akram et al. [46] applied the q-rung 
orthopair linguistic model to address the group decision-making prob-
lems; Liu and Huang [47] investigated the consensus reaching process in 
group decision-making based on the q-rung orthopair linguistic set 
theory. In addition, Akram and Shahzadi [43], Naz et al. [42], and Saha 
et al. [44] used the q-rung orthopair linguistic set to handle MCDM 
problems and developed a series of new decision-making algorithms. 

To describe these contradictions and give the credibility of evalua-
tion information on evaluating ALCF production pathways, it is crucial 
to introduce the q-rung orthopair linguistic set to characterize the 
evaluation information. Furthermore, the criteria system in our study 
has the characteristics of multi-layer structure, existing methods often 
ignore the independence between the criteria from different dimensions 
and interrelatedness among the criteria in the same category 
[33–35,49]. Therefore, we also need to develop an aggregation operator 
and multi-criteria framework based on q-rung orthopair linguistic set. 

1.2. Contributions 

Our overarching research question is how to provide a comprehen-
sive decision support for ALCF production pathway selections to accel-
erate transportation sector’s decarbonization goal? The innovative 
methodological contributions of this paper are summarised as follows. 
First, we introduce the q-rung orthopair linguistic set that represents the 

1 For instance, Hansson et al. [94] used AHP to rank order seven marine fuel 
options against 10 evaluation criteria. 

2 Many authors have explored basic property exploration of q-ROFS [90], q- 
ROFS-based aggregation operator [91], and MCDM [38]. 
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complex evaluation information for ALCF. The linguistic term set and q- 
rung orthopair fuzzy set depict the criterion’s rating level and its cred-
ibility/uncertainty, respectively. Second, a new MCDM method based on 
the q-rung orthopair linguistic weighted partition Bonferroni mean 
operator is proposed to aggregate criteria information with a multi-level 
structure for evaluating sustainable fuel production pathways. 
Following the multi-dimensional characteristics of the criterion system, 
we use the attribute segmentation approach to highlight the heteroge-
neity and independence of criteria of different dimensions. To be more 
specific, we avoid linear addition or multiplication in traditional 
weighted average operators that prevent treating criteria of different 
dimensions as homogenous indicators. 

Our practical contributions including the design of a United Kingdom 
(UK) case study to assess competing ALCF technologies using our novel 
framework. Note that one of the main challenges in assessing ALCF 
technologies is to identify and apply criteria that are trustworthy among 
stakeholders. Thus, we developed a thorough criteria system for evalu-
ating ALCF production pathways and validated it through both an in- 
depth literature review and expert consultations. Each pathway is 
assessed against 13 criteria encompassing the economic, environmental, 
technical, and social dimensions. For every criterion, we gather the 
relative importance/weights together with ratings of each production 
pathway via an online expert survey. Finally, by evaluating four 
competing sustainable fuel production pathways based on expert 
opinion and preferences, we address another important research ques-
tion; namely, why certain pathways are doing better in specific aspects 
and globally, respectively? These findings are important in production 
location selection decisions, identifying and developing technology 
clusters, and planning for future energy infrastructure flexibility and 
resilience. The rankings provided could be instrumental in unfolding the 
complexity around the ALCF supply chain and towards defining a long- 
term road map for energy and transport system decarbonization and 

creating local and international collaborations as co-benefits. The pro-
posed approach is a generic framework that could be used for any 
benchmarking activities for businesses, countries, or regions looking for 
developing their alternative fuel productions. 

1.3. Outline 

The rest of this paper is organised as follows. Section 2 describes our 
proposed MCDM framework for ranking alternative low carbon drop-in 
fuel production pathways and data collection. Section 3 introduces the 
q-rung orthopair linguistic partition Bonferroni mean operator. Section 
4 presents and discusses the results in detail, while Section 5 reports the 
sensitivity analysis. Finally, Section 6 concludes and sets the direction 
for future work. 

2. Framework design 

In this study, we propose a novel framework to evaluate the attrac-
tiveness of four competing ALCF production pathways and formulate a 
multi-criterion ranking to assist stakeholders in making informed de-
cisions. Fig. 1 illustrates the key steps to operationalise our proposed 
framework. 

2.1. Choice of alternative and performance criteria 

In terms of the choice of an alternative, we opt to evaluate four 
competing low carbon fuel production pathways that cover a wide 
spectrum of technology readiness levels as follows: e-fuel; solar-fuel; 
biofuel; and e-biofuel – see Fig. 2 and Table 1 for details. More specif-
ically, we include fuel production with captured CO2 from industrial 
processes or from the atmosphere, as in the case of e-fuel, solar-fuel, and 
e-biofuel, or from biological feedstock for e-biofuel and biofuel production 

Fig. 1. Sustainable fuel production pathway assessment framework.  
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pathways. The prefix ‘e’ signifies electricity, for electrochemical CO2 
reduction purposes, from sustainable sources such as wind, solar, or 
nuclear power. Furthermore, the solar-fuel production pathway consid-
ered in this study uses sunlight to activate the photocatalyst for the 
conversion process. On the other hand, the biofuel production pathway 
employs a conventional anaerobic digestion (AD) process, which entails 
a biological breakdown of organic material by bacteria. Finally, the 
novel e-biofuel production pathway integrates the conventional biofuel 
and e-fuel production pathways. For a detailed description of these 
production pathways, the reader is referred to [50,51], and [52]. 

Note that four ALCF production pathways are considered based on 
expert consultation. They agreed that the evaluation should focus on 
innovative and emerging fuel production technologies. Furthermore, the 
limitation was motivated by the simplicity and feasibility of the expert 
preference data elicitation process. For example, say 10 ALCF produc-
tion pathways on the social dimension (e.g., contribution to economy; 
public acceptance; job creation) would require 136 pairwise compari-
sons3 to be performed by each expert. This carries a risk that experts 
might not be able to perform these comparisons in a reliable and 
meaningful way. 

One of the key issues in assessing emerging technologies is to use 
performance criteria and measurements with credibility among different 
stakeholders. Therefore, we conducted an in-depth review of the liter-
ature and initially identified a total of 38 evaluation criteria under the 
technical, economic, environmental, and social dimensions. Next, we 
narrowed the initial set of criteria to 13 by considering data availability 
and relevance to our study. Finally, an expert workshop was organised 

to validate the criteria and their measures. Table 2 reports a detailed 
description and references, whether it is a cost (i.e., to be minimised, the 
smaller the better) or a benefit (i.e., to be maximised, the larger the 
better) criterion. 

2.2. Data and preference gathering 

The first part of this process involves collecting stakeholders’ pref-
erences and weights on all measures of the criteria. The second part 
gathers technology-specific data on the measures of the final set of 
performance criteria. 

2.2.1. Stakeholder preferences and weights 
To extract experts’ preferences on different criteria, we prepared a 

Fig. 2. The usage and chemical process of sustainable fuel production.  

Table 1 
Sustainable fuel production options considered for ranking assessment.  

Production 
pathway 

Feedstock Product Chemical process Reference 

e-fuel CO2 and 
water 

Methanol Electrochemical 
reduction 

[50] 

solar-fuel CO2 and 
water 

Methanol Photo-catalytic 
reduction 

[51,53] 

biofuel Biomass Methane Anaerobic digestion 
(AD) 

[52] 

e-biofuel CO2, water, 
and Biomass 

Methanol AD +
Electrochemical 
reduction 

[18]  

3 [n ⋅ (n − 1)/2] + [n ⋅ m ⋅ (m − 1)/2], n = number of criteria and m is 
number of alternatives. 
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questionnaire and distributed it through the EPSRC Supergen Bioenergy 
Hub4. This approach allowed us to reach a wider range of stakeholders 
(e.g., academia, industry, government, and societal stakeholders) to 
gauge their views and opinions on the relative importance of criteria for 
driving the UK’s development of sustainable low carbon fuel production. 
A total of 22 experts responded to our survey. We then opt for an AHP to 
generate the relative importance of each criterion and sub-criteria. AHP 
was used because it provides comprehensive and logically consistent 
criteria weights for the evaluation framework. 

2.2.2. Choice of a system for rating low carbon fuel production pathways 
We need to establish the evaluation criterion system and collect 

evaluation information. The ratings of the competing sustainable fuel 
production pathways against each criterion were obtained from a 
combination of empirical computations and expert opinions by applying 
a simple rating system. 

Regarding the environmental impact category, the functional unit 
(FU) is 19.9 MJ of fuel produced (corresponding to 1 kg of methanol 
based on the lower heating value) and the life cycle inventories for each 
pathway are derived from the literature [28,66–68]. The processes are 
assumed to be located in the UK, and the main source of biomass is 
assumed to be wood chips. ReCiPe2016 [69] is the impact assessment 
methodology applied in this work, and the comparison is based on three 
midpoint indicators5: global warming potential (kg CO2-eq), water 
consumption (m3water), and land use (m2a). For the multi-product 
processes, system expansion via substitution6 was adopted to solve the 
multifunctionality, as recommended by von der Assen et al. [70] The 
environmental assessment is conducted in Simapro (version 9.1.1.1), 
using ecoinvent 3.6 for the background process inventories. In partic-
ular, the electricity UK grid mix in ecoinvent 3.6 refers to 2016, as re-
ported in the International Energy Agency (IEA) World Energy Balance 
report [71], while wood chip production is representative of the average 
European production, as more regionalised data were not available. 

Note that not all measures can be quantified straightforwardly (e.g., 
technology maturity, public acceptability). Hence, we opt for an in- 
depth interview with five experts in the field to collect data and trans-
form it into discrete measures for all criteria. We use a numeric scale of 1 

Table 2 
A comprehensive multidimensional evaluation criteria framework.  

Dimensions Criteria Cost 
vs. 
Benefit 

Description Reference 

Technical Technology 
maturity (C1) 

Benefit This measures the 
technological 
maturity of the 
process pathway 
based upon 
technology 
readiness level 
(TRL 1–9), where 
TRL 9 represents a 
mature technology. 

[54] 

Energetic 
content (C2) 

Benefit This refers to the 
energy intensity 
level of an e-fuel, 
measured by MJ/ 
kg. 

[55,56] 

Process 
efficiency 
(C3) 

Benefit This refers to the 
overall conversion 
efficiency % 
(conversion plus/ 
minus refining), 
the higher level the 
better. 

[57] 

Fuel 
production 
system 
complexity 
(C4) 

Cost This refers to the 
level of fuel 
production system 
complexity, the 
lower level the 
better. 

Expert 
panel,  
[20] 

Economic Operational 
cost (C5) 

Cost This measures the 
cost of fuel 
production and 
plant maintenance 
for a particular 
pathway. 

[56,58] 

Investment 
cost (C6) 

Cost This refers to the 
capital required in 
setting up a 
commercial level 
production facility. 

[24,58] 

Market 
maturity (C7)   

Benefit The market 
availability, 
commercial 
competitiveness 
and compatibility 
with the existent 
economic system 
leading to 
financing 
opportunities. 

Expert 
panel,  
[59] 

Environmental Net water use 
(C8) 

Cost This measures the 
quantity of 
freshwater 
required. 

[60,61] 

Carbon 
footprint (C9) 

Cost This measures the 
life cycle carbon 
emission from a 
sustainable fuel 
production 
pathway option. 

[62] 

Land use 
change (C10) 

Cost This refers to both 
direct and indirect 
land use change 
due to the 
introduction of 
sustainable fuel 
production. 

[8,63] 

Social Contribution 
to economy 
(C11) 

Benefit This refers to the 
wealth creation 
from activities such 
as new enterprise 
establishments, 

[15,62]  

Table 2 (continued ) 

Dimensions Criteria Cost 
vs. 
Benefit 

Description Reference 

industrial districts 
etc. 

Public 
acceptability 
(C12) 

Benefit The publics’ views 
and opinions 
regarding specific 
e-fuel production 
technology. 

[64] 

Job creation 
(C13) 

Benefit This criterion 
measures the 
extent to which 
new jobs can be 
generated by the 
commissioning of 
specific sustainable 
production 
technology. 

[54,65]  

4 https://hwsml.eu.qualtrics.com/jfe/form/SV_7PQKgUWrex7eT0F.  
5 Note that ReCiPe2016 provides midpoint indicators, which quantify the 

effects of resource utilisation and emissions on a specific environmental cate-
gory (e.g., global warming), and endpoint indicators, which represent the three 
areas of protection: human health, ecosystems quality, and resources.  

6 When system expansion via substitution is considered, a process receives 
environmental credits for the by-products that are produced along with the 
main product. 
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to 97 to enable experts to communicate their ratings for each pathway 
and criterion combination. In addition, for each measure, we also obtain 
the level of optimistic support and pessimistic support towards the score 
they have provided. The reader is referred to Appendix A Tables A.2 and 
A.3 for the full dataset. 

3. Methodology 

In this section, we introduce the q-rung orthopair linguistic partition 
Bonferroni mean operator. Note that the q-rung orthopair linguistic set 
handles experts’ rating information and corresponding confidence level. 
The experts’ rating value is represented by the linguistic term, and the 
confidence level is made up of the optimistic support degree and 
pessimistic support degree that experts place on their evaluation, cor-
responding to the membership degree and non-membership degree in q- 
ROFS. We leverage attribute partition theory to process data with 
multiple aspects and the Bonferroni mean operator to examine the 
mutual influence relationship among different impact dimensions to 
rank order alternatives. 

3.1. Preliminaries 

Definition 1. [40]. Let L = {lθ|θ = 0,…,2t}be a linguistic term set with 
odd cardinality, and let t be a positive whole number. sθis a possible value for 
a linguistic variable. The linguistic term is regarded as follows: 

L={s0 = worst, s1 = very bad, s2 = bad, s3 = relatively bad, s4 = not 
bad, s5 = medium, s6 = not good, s7 = relatively good, s8 = good, s9 =

very good, s10 = best}. 
The linguistic term sets have the following properties:  

i. If i ≥ j, then max{li, lj} = li;  
ii. If i ≥ j, then min{li, lj} = lj;  

iii. If i ≥ j, li ≥ lj.  

Definition 2. [36]. Let X be a fixed set; a q-ROFS A on X can be repre-
sented as: 

A = {〈x, μA(x), νA(x), πA(x) 〉|x ∈ X } (1) 

whereμA:X → [0,1] denotes the degree of membership andνA: X → 
[0,1] denotes the degree of nonmembership of element x ∈ X to set A, 
respectively, with the condition that0⩽(μq

A(x) + vq
A(x) )⩽1, (q⩾1). The 

degree of indeterminacy is given asπA(x) = (1 − μq
A(x) − vq

A(x) )
1
q; for 

convenience, we call (μA(x), νA(x) ) a q-rung orthopair fuzzy number (q- 
ROFN) denoted byA = (μA, νA). 

The evaluation information of the sub-criteria in this paper is 
composed of a linguistic term set and its positive support degree and 
negative support degree, and the sum of positive and negative support 
degrees is greater than 1. The traditional intuitionistic fuzzy set has 
difficulty dealing with such complex evaluation information. Therefore, 
the q-ROLS is introduced to characterise the index evaluation informa-
tion in this study. The details are as follows: 

Definition 3. [41]. Let X be a fixed set; a q-ROLS A on X can be repre-
sented as: 

A =
{

x,
〈
lθ(x), (μA(x), νA(x), πA(x) )

〉
|x ∈ X

}
(2) 

where lθ(x) is the linguistic term set,μA:X → [0,1] denotes the support 
degree of membership, and νA X → [0,1] denotes the support degree of 

non-membership of the element x ∈ X to the set A, respectively, with the 
condition that0⩽(μq

A(x) + vq
A(x) )⩽1,(q⩾1). The degree of indeterminacy 

is given asπA(x) = (1 − μq
A(x) − vq

A(x) )
1
q; for convenience, we call 

〈
lθ(x),

(μA(x), νA(x) )
〉

a q-ROLN denoted byA = 〈lθ, (μA, νA) 〉. 

Definition 4. [41]. Let a1 = 〈lθ1, (μ1, ν1) 〉 and a2 = 〈lθ2, (μ2, ν2) 〉 be two 
q-ROLNs, and let λ be a non-negative real number; then:  

i. a1 + a2 =
(

lθ1+θ2,
((

uq
1 + uq

2 − uq
1uq

2
)1

q, v1v2

))

ii. a1 × a2 =
(

lθ1×θ2,
(

u1u2,
(
vq

1 + vq
2 − vq

1vq
2
)1

q
))

iii. λa1 =

(

lλθ1,

((
1 −

(
1 − uq

1
)λ

)1
q
, vλ

1

))

iv. aλ
1 =

(

lθ1λ ,

(

uλ
1,
(

1 −
(
1 − vq

1
)λ

)1
q
))

Definition 5. [41]. Let a = 〈lθ, (ua, va)〉 be a q-ROLN; then, the score 
function of a is defined asS(a) = lθ × (ua − va + 1), and the accuracy 
function of a is defined asH(a) = lθ × (ua + va). For any two q-ROLNs a1 =

〈lθ1, (μ1, ν1) 〉 anda2 = 〈lθ2, (μ2, ν2) 〉, we have the following scenarios:  

1) IfS(a1)〉S(a2), thena1 > a2;  
2) IfS(a1) = S(a2), we compare the H(a1)andH(a2): H(a1)〉H(a2), 

thena1 > a2, while if H(a1) = H(a2), thena1 = a2. 

To investigate the potential interrelation among evaluation in-
dicators, we introduce the Bonferroni mean (BM) operator to capture 
this interaction relationship instead of the traditional weighted average 
operator, which ignores correlations among indicators. 

Definition 6. [72]. Let t ≥ 0, and let ak(k = 1, 2, ...,m) be a collection of 
non-negative real numbers; then, the BM aggregation function is expressed as 
follows: 

BMs,t(a1, a2, ..., am) =

⎛

⎜
⎜
⎜
⎜
⎝

1
m(m − 1)

∑m

i,j=1

i∕=j

as
i a

t
j

⎞

⎟
⎟
⎟
⎟
⎠

1
s+t

(3)  

3.2. The q-rung orthopair linguistic weighted Bonferroni mean operator 

This paper combines the Bonferroni mean operator and q-rung 
orthopair linguistic set to present the q-rung orthopair linguistic 
weighted Bonferroni mean (q-ROLWBM) operator. Thus, criteria under 
a single dimension are aggregated to obtain scores and rankings of 
different dimensions of each scheme. 

Definition 7. Suppose ak = 〈lθk, (uk, vk)〉(k = 1,2, ...,m) is a collection of 
q-ROLNs, and s, t ≥ 0, q ≥ 1; then, the q-ROLWBM operator can be defined 
as: 

q − ROLWBMs,t(a1, a2, ..., am) =

⎛

⎜
⎜
⎜
⎜
⎝

1
m(m − 1)

∑m

i,j=1

i∕=j

(
ws

i a
s
i

)(
wt

ja
t
j

)

⎞

⎟
⎟
⎟
⎟
⎠

1
s+t

(4)  

Theorem 1. Suppose ak = (uk, vk)(k = 1,2, ...,m) is a collection of q- 
ROLNs, and s, t ≥ 0, q ≥ 1; then, the result aggregated from Definition 5 is 
still a q-ROLN – see Appendix B for its specific form. 

7 We consider 1 as “very bad”; 3 is rated as “being bad”; 5 is “fair”; 7 is 
“good”; and 9 is “excellent”. 
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3.3. The q-rung orthopair linguistic partitioned Bonferroni mean operator 

Considering the multidimensional index system in this paper, which 
is composed of four levels, we introduce attribute segmentation theory 
to construct the partitioned Bonferroni mean operator as follows: 

Definition 8. [73]. For any r, s > 0 with r + s > 0, and T = {a1, a2, ...,

am} withak⩾0(k = 1,2, ...,m), which is partitioned into d distinct sortsP1,P2,

...,Pd, where
⋃d

h=1 Ph = T, the partitioned BM (PBM) aggregation operator of 
dimension m is a mapping PBM: 

PBMs,t(a1, a2, ..., am) =
1
d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎝

1
|Ph|

∑

i∈Ph

as
i

⎛

⎜
⎜
⎜
⎜
⎝

1
|Ph| − 1

∑

j∈Ph

i∕=j

at
j

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

1
s+t
⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5) 

where |Ph| denotes the cardinality of Ph and d is the number of par-
titioned sorts. 

We integrate the partitioned Bonferroni mean operator and the q- 
ROFS to present the q-rung orthopair linguistic partitioned Bonferroni 
mean operator as follows: 

Definition 9. Let T = {a1, a2, ..., am} be a collection of q-ROLNs, which is 
partitioned into d distinct sortsP1, P2, ..., Pd, and

⋃d
h=1 Ph = T. The q- 

ROLPBM operator of dimension m is a mapping q-ROLPBM: 

q − ROLPBMs,t(a1,a2, ...,am)=
1
d

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎝

1
|Ph|

∑

i∈Ph

as
i

⎛

⎜
⎜
⎜
⎜
⎝

1
|Ph| − 1

∑

j∈Ph

i∕=j

at
j

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

1
s+t
⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
1
d
∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎝

1
|Ph|(|Ph| − 1)

∑

i,j∈Ph

i∕=j

as
i a

t
j

⎞

⎟
⎟
⎟
⎟
⎠

1
s+t

(6) 

where |Ph| denotes the cardinality of Ph and d is the number of par-
titioned sorts. 

Theorem 2. Suppose ak = (uk, vk)(k = 1,2, ...,m) is a collection of q- 
ROLNs, and s,t ≥ 0,q ≥ 1; then, the result aggregated from Definition 7 is still 
a q-ROLN. Its specific form and the proof are shown in Appendix B. 

3.4. The q-rung orthopair linguistic weighted partitioned Bonferroni mean 
operator 

To investigate the influence of index weight on information aggre-
gation and ranking results, based on Definition 7, we propose the q-rung 
orthopair linguistic weighted partitioned Bonferroni mean operator as 
follows: 

Definition 10. Let T = {a1, a2, ..., am} be a collection of q-ROLNs, which 
is partitioned into d distinct sortsP1,P2,...,Pd, and let

⋃d
h=1 Ph = T, wi denote 

the weight of each argumentai, satisfying 0⩽wi⩽1 and
∑n

i=1wi = 1. For any 
s, t ≥ 0 and s + t > 0:   

Theorem 3. Suppose ak = (uk, vk)(k = 1,2, ...,m) is a collection of q- 
ROLNs, and s, t ≥ 0, q ≥ 1; then, the result aggregated from Definition 8 is 
still a q-ROLN, and its specific form is shown in Appendix B. 

On further examination, we find that Theorem 3 has the following 
properties: 

1) Idempotency:If ai = (ui, vi)(i = 1, 2, ..., n) is a set of q-ROLNs that 
are the same as a for any i, then. 

q − ROLWPBM(a1, a2,⋯, an) = a (8) 

2) Boundedness: Let ai = (ui, vi)(i = 1,2, ..., n) be a q-ROLN set, 
anda− = min

⩽i⩽n
{ai},a+ = max

⩽i⩽n
{ai}; then, 

a− ⩽q − ROLWPBM(a1, a2,⋯, an)⩽a+ (9) 

3) Monotonicity: Let (a1, a2,⋯, an) and (b1, b2,⋯, bn) be two q- 
ROLN sets,ai = (uai ,vai ), andbi = (ubi ,vbi ). For∀i, ifuai ⩽ubi ,vai ⩾vbi , then. 

q − ROLWPBM(a1, a2,⋯, an)⩽q − ROLWPBM(b1, b2,⋯, bn) (10) 

Hence, the validity of the above three properties indicates that the q- 
ROLWPBM operator proposed in this paper is effective. 

In summary, our approach’s theoretical foundation relating to q- 
ROLWPBM is provided in detail in Section 2.3. The proposed approach 
can be summarised in the following key steps: 

Step 1: Normalise the original criteria as follows [74]: 

aij =

{ 〈
lθij , (uaij , vaij )

〉
, if the criterion aj is benefit type〈

l2t− θij , (vaij , uaij )
〉
, if the criterion aj is cost type (11) 

Step 2: Apply our proposed aggregation method to obtain the 
comprehensive evaluation value: 

1. Use the q-rung orthopair linguistic set to represent the rating 

q − ROLWPBMs.t(a1, a2, ..., am) =
1
d

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|Ph|

∑

i∈Ph

ws
i a

s
i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|Ph − 1|

∑

j∈Ph

i∕=j

wt
ja

t
j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
s+t
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
1
d
∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|Ph|(|Ph| − 1)

∑

i,j∈Ph

i∕=j

(
ws

i a
s
i

)(
wt

ja
t
j

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
s+t

(7)   
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evaluation information and its Optimistic degree and Pessimistic degree by 
an expert for each criterion. 

2. Use the Bonferroni mean operator to investigate the interrela-
tionship among different dimensions (i.e., technical, economic, environ-
mental, and social). 

3. Apply the attribute partition theory to deal with the multi-level 
data structure. 

4. The q-ROLWBM operator in Definition 7 is used to aggregate the 
sub-criteria under a single dimension to obtain scores and rank the 
different dimensions of each scheme. 

5. The q-ROLWPBM operator in Definition 10 is used to aggregate all 
indices. 

Step 3: Compute the scores of each alternative based on the 
comprehensive evaluation value using Definition 5. 

Step 4: Rank the alternative based on the scores. 

4. Empirical results and discussions 

In this section, we first report and examine performance weights 
obtained from the experts followed by a mono-criterion ranking of the 
production pathways. Next, we discuss the dimensional rankings. 
Finally, we present the global rankings of these pathways. 

4.1. Performance criteria weights 

Based on our online survey, we obtain experts’ preferences as 
expressed by the relative importance assigned to each criterion. Table 3 
shows that the environmental and social dimensions are the most 
important, with relative weights of 31 % and 27 %, respectively. With a 
relative weight of 23 %, the economic dimension is ranked third, while 
the technical dimension with a relative weight of 19 % is ranked last. 
Within each impact dimension, local weights define the importance of a 
single criterion. Under the environmental dimension, net water use is 
rated higher (35.8 %) than the land use change (32.7 %) and the carbon 
footprint (31.5 %). Within the social dimension, contribution to economy 
(35.2 %), public acceptability (33 %), and job creation (31.7 %) were all 
considered important. Similarly, investment cost has the highest impor-
tance (40.0 %) over operational costs (33 %) and market maturity (26.9 %) 
within the economic dimension. Finally, process efficiency (34.5 %) is 
desired over technology maturity (26.5 %), while fuel production system 
complexity and energetic content receive the least preference (19.5 % 
each) within the technical dimension. In addition, for each criterion, we 
calculate the global weights using the product of each criterion’s local 
weight and its respective dimension’s relative weight – see Table 3 for 
details. 

The global criteria ranking analysis reveals that net water use has the 
highest importance (11.2 %), followed by land use change (10.2 %) and 
carbon footprint (9.8 %). It is worth noting here that the top three global 
criteria are from the environmental dimension. This importance ranking 
by experts is plausible, as sustainable low carbon fuels are considered an 
environmentally friendly option for the transportation sector. Further-
more, contribution to economy with a global weight of 9.6 % is the most 
important criterion from the social dimension. Likewise, investment cost 
and process efficiency are considered the most important from the 
economic and technical dimensions, with global criterion weights of 9.0 
% and 6.6 %, respectively. 

4.2. Mono-criterion ranking 

Although our primary goal is to estimate performance against mul-
tiple criteria, it is useful to have a good understanding of whether a 
production pathway performs well on a specific aspect. Table 4 shows 
the unidimensional rankings based on each of the measures, where 
competing production pathways are ranked from the best (1, in bold) to 
the worst. 

In the technical dimension, process efficiency (0.345) is considered 
the most important criterion, and we find biofuel and our proposed e- 
biofuel to be equally ranked the best. This could be due to the similarities 
in the underlying conversion process (anaerobic digestion) for both 
biofuel and e-biofuel production pathways. AD is a mature technology 
optimised over decades of R&D and commercial applications. Likewise, 
e-biofuel is ranked higher than e-fuel and solar-fuel because it couples two 
electrochemical processes together [18], thereby minimising energy loss 
and achieving a higher process efficiency. The solar-fuel production 
pathway is ranked as one of the worst production pathways concerning 
the technical aspect. The main reason for this low ranking is that solar- 
driven CO2 reduction has yet to be optimised both in reactor design 
[51,75] and choice of catalyst [76]. Consequently, this production 
pathway is the least favourable among the experts. 

It is well known that fuel production is a capital-intensive venture, 
while securing finance is one of the major hurdles [59]. Mono-criterion 
analysis suggests that the biofuel production pathway is ranked the best, 
followed by e-biofuel, in terms of requiring investment cost, whereas e-fuel 
and solar-fuel are equally ranked as the least attractive options. It is 
noted that e-fuel and solar-fuel rely on carbon capture and storage and 

Table 3 
Global weights of criteria.  

Dimension Criteria Weights 

Local 
weight 

Global 
weight 

Technology 
(0.19) 

Technology maturity  0.265  0.050 
Energetic content  0.195  0.037 
Process efficiency  0.345  0.066 
Fuel production system 
complexity  

0.195  0.037 

Economic 
(0.226) 

Investment cost  0.400  0.090 
Operational cost  0.331  0.075 
Market maturity  0.269  0.061 

Social 
(0.271) 

Contribution to economy  0.352  0.096 
Public acceptability  0.330  0.090 
Job creation  0.317  0.086 

Environmental 
(0.313) 

Land use change  0.327  0.102 
Net water use  0.358  0.112 
Carbon footprint  0.315  0.098  

Table 4 
Production pathway mono-criterion ranking.  

Dimension/Criteria e- 
fuel 

Solar- 
fuel 

Biofuel e- 
biofuel 

Technical 
Technology maturity 2 3 1 3 
Energetic content 2 2 1 2 
Process efficiency 3 4 1 1 
Fuel production system complexity 2 4 1 2 
Economic 
Operational cost 3 1 1 4 
Investment cost 3 3 1 2 
Market maturity 2 3 1 4 
Environmental 
Net water use 3 2 4 1 
Carbon footprint 3 2 4 1 
Land use change 1 3 4 2 
Social 
Contribution to economy 1 4 2 3 
Public acceptability 1 2 4 3 
Job creation 4 2 1 3 

Notes: 1 is ranked the best, while 4 is ranked the worst. 
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direct air capture of CO2, which at the moment are expensive technol-
ogies [77]. By corollary, the same can also be said for the e-biofuel 
production pathway. 

Moving on to the environmental evaluation dimension, the minimal 
amount of water used can be achieved by e-biofuel, while the biofuel 
production pathway consumed the highest amount of water. Note that 
the lesser water use can be attributed to additional CO2 being used as a 
feedstock and therefore the e-biofuel production pathway obtains a 
higher ranking from the panel of experts. Likewise, the biofuel produc-
tion pathway is also ranked last under the carbon footprint and land use 
criteria. This is not surprising given that biomass cultivation directly 
impacts the conversion of forestland to cropland and indirectly changes 
land use from food to fuel-crop cultivation [63]. Biomass production, 
harvesting, treatment, and transportation are all energy-intensive pro-
cesses resulting in high carbon emissions [20]. 

Finally, in the social dimension, contribution to the economy is 
considered the most important criterion. Our results reveal that e-fuel is 
ranked the best, while solar-fuel is regarded as the worst production 
pathway. For this criterion, we can attribute expert panel propensity to a 
more established chemical process for fuel production compared to the 
novel idea of using a photocatalytic conversion process [78]. 

In summary, based on unidimensional rankings, we find that no 
production pathway consistently outperformed others for all criteria. 
For instance, despite the biofuel production option offering the best 
technical maturity, it also ranked the worst for carbon footprint and public 
acceptability. Furthermore, we also find ties for some criteria given that 

some pathways share parallel technical and investment environments. 
Hence, decision-makers may face a challenge in making an informed 
decision regarding the best production pathway while considering all 
criteria simultaneously. To improve alternative ranking performance, 
we incorporate data uncertainty and consider simultaneous multiple 
criteria evaluations. Note that these rankings do not reflect the potential 
uncertainties within the dataset. 

4.3. Production pathway multi-criteria ranking 

Before we dive into the global multi-criteria ranking, we first analyse 
and discuss each ALCF pathway performance based on the technical, 
economic, social, and environmental impact categories. By applying the 
q-ROLWPBM (Definition 7), we incorporate the performance data/rat-
ing and potential uncertainties within the dataset (i.e., membership and 
non-membership) for each criterion. Fig. 3 summarises the categorical 
rankings after computing dimension-level scores for each production 
pathway alternative. 

The score function of production pathways’ technical dimension is 
presented in the top left panel of Fig. 3. The results reveal that biofuel is 
ranked the best alternative, followed by e-fuel, while e-biofuel and solar- 
fuel are the lowest ranked pathways. The biofuel production pathway is 
based on an anaerobic digestion process, which is a technically mature 
process [79], in comparison to the solar-fuel process, which is still 
developing [80]. 

Recall that an economic evaluation represents the commercial 

Fig. 3. Dimensional evaluation of production pathways.  
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viability and uptake of drop-in fuel produced from the considered 
pathways. We find that biofuel is the most preferred production pathway 
with respect to the economic dimension over the other three options, 
namely, e-biofuel, solar-fuel, and e-fuel. This ranking comes as no sur-
prise, as the market familiarity and availability of commercial-level 
biofuel production facilities play a crucial role in making this pathway 
an economically attractive option. Although the e-biofuel pathway has a 
similar conversion process (electrochemical reduction) as well as 
closeness in the feedstock (CO2 and water), the additional anaerobic 
digestion process and biomass feedstock requirement make e-biofuel a 

less economically attractive option. Furthermore, on the economic 
dimension, our analysis is consistent with the International Renewable 
Energy Agency (IRENA) claim that biobased production pathways are 
less expensive than electricity-dependent pathways, such as e-fuels [81]. 
In particular, the technical complications involving electricity produc-
tion and feedstock (CO2 and water) availability make these pathways a 
more expensive option [58,80]. 

For the environmental dimension, the bottom left figure in Fig. 3 
shows the ranking of four competing production pathways. The e-biofuel 
pathway performs the best, followed by solar-fuel and e-fuel, by utilising 
captured CO2, while biofuel is found to be the worst-performing 
pathway. The inclinations towards the top three production pathways 
can be attributed to low land use change, as they do not require any 
fertile land for feedstock and they also provide a quick carbon recycling 
potential [80]. Likewise, it seems that the expert panel held the biomass- 
based production pathway, biofuel, as more detrimental to the envi-
ronment than others. It has been established that the cultivation, 
transportation, and conversion of biomass to final fuel contribute sub-
stantially to carbon emissions [82], and this is reflected in expert 

Fig. 4. The score distribution of four competing production pathways.  

Table 5 
The global scores of each production pathway.  

Alternatives Optimistic 
(ua)

Pessimistic 
(va)

Linguistic 
Term (lθ)

Final 
Score 

Ranking 

e-fuel  0.9307  0.9536  0.301  0.2944 1 
solar-fuel  0.9133  0.9503  0.258  0.2481 4 
biofuel  0.9192  0.9615  0.260  0.249 3 
e-biofuel  0.9160  0.9616  0.280  0.2671 2 

Notes: The final score for each production pathway is computed by using the 
score function in Definition 5: S(a) = lθ × (ua − va +1).  

Fig. 5. Production pathway global ranking.  

Fig. 6. Production pathway ranking based on sensitivity analysis 1: s = t = 1 & 
varying q. 

Fig. 7. Production pathway ranking based on sensitivity analysis 2: q = 2 & 
varying s & t. 
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evaluations. 
Finally, the social dimension represents the public welfare to be 

attained using different ALCF production pathways. The ranking is 
presented in the bottom right panel of Fig. 3. We find that e-fuel using 
CO2 and water as feedstock dominates other pathways on the social 
dimension. This inclination of expert panels can be attributed to their 
aspirations with this pathway. With advancements in carbon capture 
and direct air capture technologies, they anticipate new ventures being 
developed that can significantly contribute to the economy and create 
new jobs. The biofuel pathway is the second-best ranked production 
pathway. This is understandable as the biomass supply chain and the 
market are well established and accepted by the public [83]. Of 
particular importance is the e-biofuel pathway, which combines both the 
e-fuel and biofuel chemical processes and feedstock but fails to establish 
itself as a preferred ALCF production pathway in the social dimension. 

Further analysis reveals that there are significant differences and 
conflicts in the scores for different ALCF production pathways when 
weighed individually against each evaluation dimension. This investi-
gation is shown in Fig. 4, where the boxplots exhibit each ALCF pro-
duction pathway score distribution. 

The e-fuel scores for the evaluation dimensions are very scattered, 
with the highest score for the social dimension and the lowest score for 
the economic dimension. It can be inferred that e-fuel has a great social 
influence but is the least preferred due to its high economic cost. The 
degree of score dispersion of biofuel is comparable to that of e-fuel. Here, 
as before, the social dimension supersedes other environmental 

concerns at the lowest. This shows that biofuel has a high social repu-
tation, but its environmental implications are not fully comprehended. 
This will make it difficult for biofuel to become a popular solution in the 
market when countries are trying to achieve carbon neutrality. By 
comparison, the scores of the four dimensions of solar fuel and e-biofuel 
are relatively concentrated, but their scores are all at a low level. 

This analysis further highlights the decision-makers’ choice dilemma 
in identifying the best (or rank order) ACLF production pathway inte-
grating all criteria. Therefore, it is necessary to further synthesize the 
scores of each criterion dimension to obtain a comprehensive decision 
result. 

4.4. Production pathway global ranking 

To overcome the decision-maker choice dilemma identified in the 
previous section, for each alternative, we apply our proposed q- 
ROLWPBM operator in Definition 10 to aggregate all evaluation infor-
mation. To incorporate the sum of optimistic membership degree (ua)

and pessimistic (va) non-membership degree less than 1 and to comply 
with the operation rules, as stipulated in Definition 4, we set the 
parameter q = 3. Meanwhile, for definiteness and without loss of gen-
erality [84], we set the criteria correlation parameters s = t = 1 to as-
sume the relationship intensity of the criteria is equal. As such, the 
degree of pessimism corresponds to the membership degree in q-ROFS, 
the degree of optimism corresponds to the nonmembership degree, and 
the linguistic term value is the parameter lθ in Definition 3. Finally, 
according to the score function in Definition 5, we obtain the final score 
of each candidate scheme, as shown in Table 5 and Fig. 5. 

The final scores suggest e-fuel to be the best alternative, followed by 
e-biofuel, with scores of 0.2944 and 0.2671, respectively. According to 
our proposed MCDM method, the two least attractive options of sus-
tainable fuel production are biofuel with a score of 0.2490 and solar fuel 
with a score of 0.2481. 

The top two ALCF production pathways show that there is agreement 
among the experts regarding sustainable fuel production technology. 
The e-fuel and e-biofuel pathways both use electrochemical reduction. 
This finding contradicts the literature, which places the electrochemical 
process in development and thus underperforms [50]. It was expected 
that the second-best production pathway, e-biofuel, would be higher in 
ranking due to its underlying process of combining AD and electro-
chemical reduction; however, this is found not to be the case. One 
possible explanation could be the uncertainty in the possibility of inte-
gration of technologies, while another could be a lack of industrial-level 

Table 6 
The influence of criterion weight on ranking results.  

Weight vector Score Ranking 

w=(0.7,0.1,0.1,0.1) S(e-fuel) = 0.255, S(solar-fuel) = 0.166, S(biofuel) = 0.29, S(e-biofuel) = 0.221 biofuel > e-fuel > e-biofuel > solar-fuel 
w=(0.1,0.7,0.1,0.1) S(e-fuel) = 0.215, S(solar-fuel) = 0.213, S(biofuel) = 0.342,S(e-biofuel) = 0.192 biofuel > e-fuel > solar-fuel > e-biofuel 
w=(0.1,0.1,0.7,0.1) S(e-fuel) = 0.323, S(solar-fuel) = 0.305, S(biofuel) = 0.149,S(e-biofuel) = 0.365 e-biofuel > e-fuel > solar-fuel > biofuel 
w=(0.1,0.1,0.1,0.7) S(e-fuel) = 0.321, S(solar-fuel) = 0.232, S(biofuel) = 0.27,S(e-biofuel) = 0.205 e-fuel > biofuel > solar-fuel > e-biofuel  

Fig. 8. Information representation space of the IFS and q-ROFS.  

Table 7 
Proposed q-ROLWPBM approach comparison with other methods.  

Method Whether complex decision 
information can be represented 

Whether the relationship 
between indicators is examined 

Whether it reflects the independence of 
indicators in different dimensions 

Ranking 

The MCDM method based on the 
IFS [88] 

No No No / 

The MCDM method based on the 
complex IFS [89] 

No yes No / 

The MCDM method based on the 
q-ROLWA operator [90] 

Yes No No Biofuels > e-fuel > Solar 
fuels > e-bio-fuels 

The MCDM method based on the 
q-ROLWG operator [90] 

Yes No No Biofuels > e-fuel > Solar 
fuels > e-bio-fuels 

The proposed method- q- 
ROLWPBM 

Yes Yes Yes Biofuels > e-fuel > Solar 
fuels > e-bio-fuels  
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implementation [18]. The third ranked biofuel production pathway 
suggests that AD can be a viable conversion process either as the main 
conversion process (this pathway) or in combination (e-biofuel). Finally, 
the solar-fuel pathway is the least preferred pathway, indicating the 
shortcomings of the photocatalysis process. One possible reason for this 
lack of interest by experts could be the intermittence in solar energy, 
therefore making solar-fuel as a less feasible production pathway, as also 
pointed out by Falter et al. [58]. Overall, the production pathway un-
derlying technology suggests that experts prefer novel technologies 
(electrochemical reduction) but with caution (photocatalytic reduction) 
and prefer to divert from conventional processes (AD). Thus, our find-
ings provide different perspectives compared to the general literature, 

which suggests that novel technology is an impediment to upscaling 
sustainable fuel production (see Neuling and Kaltschmitt [85]). 

Regarding feedstock, our analysis reveals that direct conversion of 
CO2 to sustainable drop-in fuel (using the e-fuel pathway) is deemed the 
best option. This preference indicates that experts perceive capturing 
CO2 to be more beneficial than using biomass (biofuel and/or e-biofuel). 
The availability of CO2 from the electricity, cement, chemical, and steel 
industries can be ensured [86]. CO2 is a harmful by-product from these 
industries that needs to be handled amicably. Biomass, on the other 
hand, comes in many types and forms (manure, biosolids, agricultural or 
forestry waste). Each type of biomass requires its own handling re-
quirements before the conversion process [8,87]. Furthermore, biomass 
requires extensive establishment of supply chains [81] as opposed to 
tapping the CO2 on site for the e-fuel, solar-fuel, and e-biofuel production 
pathways. This simplifies the operations and improves the production 
economics. 

5. Sensitivity analysis 

In this section, we carry out a battery of sensitivity analyses to 
ascertain the robustness of our findings on ALCF production pathway 
ranking. To be more specific, we executed three main approaches: 1) 
vary our models’ initial parameters; 2) change the criteria weights; and 
3) use four alternative MCDM methods. 

5.1. Initial parameter experiments 

To check the reliability of our empirical results, we perform several 
robustness analyses by varying our three key initial parameters in our 
proposed method: q (information parameter), s, and t (criteria correla-
tion parameters). 

First, the sensitivity analysis is performed by altering q by replacing 
q = 2 with 3, 5, 10 & 15 and validating the final rankings.8 Recall that 
the parameter q represents the complexity of the information environ-
ment such that the larger q is, the more complex the information envi-

ronment is. Fig. 6 reports the production pathway rankings by varying q. 
We find that the rankings of all four production pathways did not change 
by altering the complexity level. Therefore, our findings are robust and 
tolerate any complexity of the information environment variations. 

Next, we change the values of s and t to test the impact of the degree 
of mutual influence among evaluation criteria on the ranking of 
competing production pathways. Fig. 7 reports the results of the sensi-
tivity analysis by increasing the level of correlations. 

When s = t = 2, the ranking order is e-fuel > e-biofuel > solar-fuel >

Table A1 
Initial List of Criteria.  

Technical Economic Environmental Social 

Technology 
maturity 

Capital cost/ 
investment cost 

CO2 emission Contribution to 
economy 

Energetic content Feedstock 
transportation and 
storage cost 

Exhaust emission Public 
acceptability 

Process efficiency Cost parity Land use change 
impact 

Cost of e-fuel 
compatible 
vehicle 

Process Scalability Minimum selling 
price 

Consumptive 
Water use/net 
water use 

Job creation 

Feedstock 
availability 

Feedstock cost Soil and water 
pollution 

Availability of e- 
fuel compatible 
vehicles 

Process yield Availability of 
production 
incentives 

Energy use  

Fuel 
transportation & 
storage 

Infrastructure 
development 
Subsidies 

Traceability  

Combustion 
Efficiency 

Market maturity Carbon footprint  

Freezing 
temperature    

Flash temperature    
Density    
Viscosity    
Feedstock quality    
Fuel production 

system 
complexity    

Compatibility 
with current fuel 
refineries    

Technology 
maturity    

Energetic content    
Process efficiency     

Table A2 
Initial information matrix.   

Sub-Criteria Cost/Benefit e-fuel-CO2 Solarfuels-CO2 Biofuels-Biomass ebiofuels-CO2-Biomass 

Technical Technology maturity (C1) Benefit TRL 4 TRL 2 TRL 7 TRL 2 
Energetic content (C2) Benefit 15.9 MJ/kg 15.9 MJ/kg 0.038 MJ/L 15.9 MJ/kg 
Process efficiency (C3) Benefit c.a. 50 % less than5 % c.a. 60 % c.a. 60 % 
Fuel production system complexity (C4) Cost 5 (Fair) 7 (Bad) 3 (Good) 5 (Fair) 

Economic Operational cost 
(C5) 

Cost 7 (Bad) 3 (Good) 3 (Good) 8 (Very Bad) 

Investment cost (C6) Cost 8 (Very Bad) 8 (Very Bad) 3 (Good) 5 (Fair) 
Market maturity (C7) Benefit 5 (Fair) 3 (Bad) 8 (Very Good) 2 (Very Bad) 

Environmental Net water use (C8) Cost 0.0121 − 0.0018 0.0140 0.0126 
Carbon footprint (C9) Cost − 0.6494 − 0.9808 0.1788 − 1.0311 
Land use change (C10) Cost − 0.1779 − 0.0646 − 0.0022 0.0088 

Social Contribution to economy (C11) Benefit 9 (Very good) 2 (Very Bad) 5 (Fair) 3 (Bad) 
Public acceptability (C12) Benefit 8 (Very Good) 5 (Fair) 2 (Very Bad) 3 (Bad) 
Job creation (C13) Benefit 2 (Very Bad) 5 (Fair) 9 (Very good) 5 (Fair)  

8 Note that here we fixed s=t =1 and only change the value of q. 
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biofuel, while with s = t = 5, the ranking order is e-fuel > biofuel > e- 
biofuel > solar-fuel, and when s = 8, t = 3, the sequencing results also 
have corresponding changes as biofuel > e-fuel > solar-fuel > e-biofuel. 
Therefore, we can infer that the changes in parameters s and t can 
significantly affect the ranking results of the four production pathways. 
Our results show that the greater the mutual influence between criteria 
is, the more significant the change in the sorting results of the four 
production pathways. Although the idea of attribute segmentation is 
used to maximise the mutual independence of criteria in different di-
mensions, the mutual relations between criteria in the same dimension 
will still affect the ranking results. 

5.2. Stakeholder preference scenarios 

Each stakeholder involved in the ALCF sector has personalised 
preference characteristics for different ALCF production pathways. The 
weights represent the decision-maker’s preferences for each evaluation 
dimension when selecting ALCF production pathways. Therefore, we set 
different weight vectors to incorporate different types of stakeholder 
preferences. Table 6 summarises the multi-criteria rankings with 
different weighting schema. 

First, we analyse our findings from technology-inclined decision- 
makers with a weighting scheme of w = (0.7,0.1,0.1,0.1) corresponding 
to the technical, economic, social, and environmental dimensions. The 
first row of Table 6 provides the ranking with this weight vector. We find 
that biofuel is seen to be the optimal choice, while solar-fuel is the least 
preferred choice, with decision-makers preferring technology maturity 
and production efficiency significantly over economic, social, and 
environmental impacts. Second, we consider another scenario for 
commercially motivated stakeholders (e.g., businesses) that emphasise 
economic factors over the remaining aspects aiming to select the most 
economically viable pathway. Using a weight vector w=

(0.1,0.7,0.1,0.1), we find that biofuel is the most preferred, while e-bio-
fuel is the least desirable option. Similarly, for a socially motivated 
decision-maker, we assume a weight vector of w = (0.1,0.1,0.7,0.1), in 
which social factors become the principal decision variables. Under this 
preference, the optimal production pathway was determined to be e- 
biofuel. Finally, when the preference is highlighted for environmentally 
motivated factors with a weight vector of w = (0.1,0.1,0.7,0.1), the e- 
fuel becomes the optimal selection, while e-biofuel is ranked the lowest. 

Our findings are useful in providing guidance for a tailored selection 
of ALCF production pathway selection as well as communication for any 

further development of policy and/or regulations in promoting ALCF 
uptake. 

5.3. Comparative analysis 

Next, we compare our proposed method with four classical MCDM 
methods based on intuitionistic fuzzy sets (IFS) [88,89] and q-ROFS 
[90]. Note that the IFS-based MCDM method can only depict the eval-
uation information with the sum of membership degree (MD) and non- 
membership degree (NMD) less than or equal to 1 [91], as shown in 
Fig. 8. Therefore, this class of methods cannot conduct the decision 
problems under the complex decision information with the sum of MD 
and NMD being greater than 1. In contrast, the q-ROFS proposed by [36] 
can handle more complex decision information than IFS, as it has a 
wider representation space for evaluation information; that is, the q- 
ROFS can address the complex evaluation information with the sum of 
MD and NMD or their squares being greater than 1, as shown in Fig. 8. 
Another key merit of q-ROFS-based MCDM methods lies in their flexi-
bility and ability to adapt to decisions under any information environ-
ment by changing parameter q [92,93]. For example, when q = 1, the q- 
ROFS is reduced to the IFS, q = 2, and the q-ROFS can be converted to 
the Pythagorean fuzzy set. 

Since the basic theory of the MCDM method based on the q-ROLWA 
operator, the q-ROLWG operator [90], and the proposed method is q- 
ROFS, these three methods all deal with complex decision information. 
As shown in Table 7, the ranking results based on the q-ROLWA and q- 
ROLWG operators are biofuels > e-fuel > solar-fuels > e-biofuel, which 
are consistent with the results by our method, but there are significant 
differences between the proposed method and the methods based on the 
q-ROLWA and q-ROLWG operators. The methods based on the q- 
ROLWA and q-ROLWG operators [90] do not examine the correlation 
between criteria. The correlation between criteria will have a significant 
impact on the evaluation results. In this paper, the BM operator is 
introduced to analyse the relationship between indicators, making the 
evaluation results more consistent with the objective situation. 
Furthermore, the findings show that when the q-ROLWA and q-ROLWG 
operators deal with the evaluation problem with a multi-hierarchy 
structure criterion system, they do not regard criteria of different di-
mensions as independent of each other, which also affects the unreli-
ability of the results. In contrast, this study introduced the attribute 
segmentation theory to examine the independent characteristics of 
different dimensional criteria. Overall, the proposed method takes the 

Table A3 
Assessment information matrix.   

Sub-Criteria Cost/ 
Benefit 

e-fuel-CO2 Solarfuels-CO2 Biofuels-Biomass ebiofuels-CO2-Biomass 

Technical 
(0.19)  

Technology maturity (0.050) Benefit 5 {0.8, 0.3} 1 {0.7,0.3} 7 {0.9,0.2} 1 {0.7,0.4} 
Energetic content (0.037) Benefit 8 {0.9,0.2} 8 {0.7,0.1} 8 {0.9,0.1} 8 {0.7,0.4} 
Process efficiency (0.066) Benefit 5 {0.8,0.2} 2 {0.7,0.2} 7 {0.8,0.3} 7 {0.6,0.4} 
Fuel production system complexity 
(0.037) 

Cost 5 {0.7,0.2} 7 {0.8,0.2} 3 {0.8,0.2} 5 {0.7,0.3} 

Economics 
(0.226)  

Capital cost/ investment cost (0.090) Cost 7 {0.7,0.3} 3 {0.7,0.2} 3 {0.8,0.2} 8 {0.7,0.4} 
Production cost/operational cost 
(0.075) 

Cost 8 {0.9,0.2} 8 {0.7,0.2} 3 {0.8,0.3} 5 {0.7,0.4} 

Market maturity (0.061) Benefit 5 {0.8,0.2} 3 {0.7,0.2} 8 {0.8,0.3} 2 {0.7,0.2} 
Environmental (0.313)  Net water use (0.112) Cost 4 {0.8,0.3} 2 {0.75,0.2} 7{0.95,0.05} 4{0.85,0.1} 

Carbon footprint (0.099) Cost 5 {0.8,0.2} 3 {0.8,0.3} 9{0.9,0.1} 1{0.8,0.3} 
Land use change (0.102) Cost 1 {0.8,0.2} 5 {0.7,0.3} 7{0.95,0.05} 3 {0.7,0.3} 

Social 
(0.271)  

Contribution to economy (0.096) Benefit 8 {0.8,0.2} 2 {0.7,0.3} 5{0.8,0.2} 3{0.7,0.3} 
Public acceptability (0.090) Benefit 8 {0.9,0.1} 5{0.8,0.05} 2{0.8,0.3} 3 {0.8,0.3} 
Job Creation 
(0.086) 

Benefit 2 {0.8,0.2} 5 {0.8,0.2} 8 {0.8,0.2} 3 {0.7,0.2}  
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multi-layer structure characteristics of the evaluation index system and 
the mutual influence relationship among the indicators into account. 
The evaluation process based on our method is more in line with reality, 
and the corresponding evaluation results are more objective and 
reasonable. 

6. Conclusion 

It has been scientifically established that on the path to limit the rise 
in global temperature by curbing GHG emissions, particularly in the 
transport sector, alternating low carbon fuels, such as methanol, can 
play a central role. However, numerous ways to produce low carbon fuel 
have presented a significant challenge in selecting a particular produc-
tion pathway to focus upon. Most studies rely on TEA or LCA or standard 
MCDM models to assess the relative performances of competing pro-
duction pathways. There is a lack of multi-criteria decision-making 
frameworks to evaluate ALCF production pathways that reflect data 
uncertainty due to the early stage of technological readiness, in-
terrelationships among criteria, and stakeholders’ perspectives. 

6.1. Theoretical contributions 

Our study contributes to this line of research by leveraging experts’ 
participatory approach in developing a holistic evaluation framework 
based on technical, economic, environmental, and social dimensions. A 
hybrid AHP and q-ROLWPBM approach is presented for evaluating four 
low-carbon drop-in fuel production pathways. The AHP is employed to 
rate the selected evaluation criteria, while the q-ROLWPBM set handles 
experts’ rating information and corresponding confidence level. This 
arrangement approached the imprecision and uncertainty in experts’ 
evaluation and examined the mutual influence among different impact 
dimensions to rank order the competing alternatives more accurately. 
Furthermore, we performed sensitivity analysis to emphasise the 
robustness of our approach’s generated rankings. Likewise, we 
compared our approach with similar methods and obtain a ranking 
similar to that of our approach. However, we argue that the proposed 
approach is superior to other methods, as it can represent complex in-
formation, efficiently examine the relationship between indicators, and 
reflect the independence of indicators in different dimensions (see 
Table 7). 

6.2. Practical contributions 

The empirical results show that stakeholders perceive environmental 
and economic issues to be more important than social and technical 
issues. The emphasis on these two categories is credible, as drop-in fuels 
are seen as environmentally friendly rather than conventional fossil- 
derived fuels but are also relatively expensive to produce. Although 
the least emphasis is given to the technical dimension, it shows confi-
dence in the scientific community to invent and enhance novel pro-
duction pathways. Furthermore, net water use, land use change, carbon 
footprint, contribution to economy, investment cost, and public acceptability 
are considered to be the most important factors when assessing drop-in 
sustainable fuel production pathways. We also find that no one pro-
duction pathway dominates all 13 evaluation criteria based on the 
mono-criterion rankings. However, by considering each impact category 
alone in the mono-criterion ranking, we see a mix of results except for 
biofuel. Unlike other pathways, biofuel consistently outranks other pro-
duction pathways against technical and economic dimensions. 

However, we advise caution on this finding, as biofuel seems not to be 
the best option for the environmental and social impact categories. The 
global ranking reveals that electrochemical reduction used in e-fuel and 
e-biofuel pathways is the best conversion process, followed by AD and 
the photocatalysis process used in biofuel and solar-fuel production 
pathways, respectively. One of the main takeaways from this result is 
that there should be a set of strong policies to increase renewable 
electricity generation capacity to maximise ALCF production and its 
overall benefits. 

With regard to feedstock, the results reveal that captured CO2 and 
water are a better option than biomass alone or in combination with CO2 
and water. Therefore, to accelerate the development and deployment of 
low carbon fuels, we urge that both technical and regulatory efforts be 
made to develop and integrate the CO2 supply chain. By co-locating 
sustainable fuel production plants, a steady stream of CO2 can be 
ensured by capturing it from the exhaust gases of fuel or biomass plants 
[50]. 

The proposed framework for evaluating and ranking ALCF produc-
tion pathways can be leveraged for national or regional policy devel-
opment. The choice of sustainable drop-in fuel production should focus 
on a country’s local technical competence, feedstock availability, and 
market conditions. For example, focusing on solar-fuel production in 
countries with comparatively high solar irradiation or on e-fuel in re-
gions with significant wind power density would result in better overall 
returns than other production pathways. Our framework is useful in 
exploring the future challenges facing maximising energy (electricity 
and fuel) and transportation infrastructure. Primarily, stakeholders 
should consider the role of existing or planned infrastructure and ad-
aptations may need to take. As highlighted in our study, investment cost 
has come up as a crucial criterion for evaluation. In this regard, we 
propose that schemes should be introduced that ease access to financing 
with insurance from national governments. We envision that this 
proposition will lead to increased investor confidence for not only 
establishing new production facilities but also equally scaling up and 
modernising existing ones for a higher environmental and financial 
return. 

To conclude, our findings provide useful insights for decision-makers 
when making investment and/or policy decisions regarding sustainable 
drop-in fuel production pathways. In the former case, decision-makers 
can use the global ranking to decide upon which ALCF production 
pathway to invest in, while in the latter case, policies or strategies can be 
developed for the cross-border trade, fuel subsidization, and long-term 
plan to phase out fossil oil from the transportation supply chain. 
Furthermore, we intend to extend our current work by including other 
production pathways in evaluation, such as solar thermochemical and 
expanding feedstock base, particularly municipal solid waste. The 
benefit of this approach will be in reducing pressure on landfill sites and 
creating value from waste material. Thus, society is driven towards 
circular economy development. In addition, the proposed approach can 
be applied in other decision domains, such as industrial production site 
selection, partner selection in supply chains, and/or product purchasing. 
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The specific form of Theorem 2 

q − ROLPBMs,t(a1, a2, ..., am) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

l

1
d

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑d

h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|Ph |

∑
i∈Ph

lsθi

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|Ph |− 1

∑

j ∈ Ph

i ∕= j

ltθj

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
s+t
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −
∏d

h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −
∏

i,j∈Ph

i∕=j

(
1 − uqs

i uqt
j
) 1
|Ph |(|Ph |− 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
s+t
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
d
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
q

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∏d

h=1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −
∏

i,j∈Ph

i∕=j

(
1 − (1 − vq

i )
s( 1 − vq

j
)t
) 1
|Ph |(|Ph |− 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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⎟
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⎟
⎟
⎠
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⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Proof of Theorem 2 

Based on the algorithm in definition 2, we can get: 

as
i =

(
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(
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i ,
(
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(
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i

)s )1
q
))
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j =

(
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(
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(
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(
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j
)t
)1

q
))

According to the number multiplication and product algorithms, we can get: 
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⎠
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⎠
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⎜
⎜
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j ⋅(θj)t ],

((
1 − (1 − uqs

i )
ws

i )(1 −
(
1 − uqt

j
)wt

j )
)1

q

((

1 − (1 − (1 − (1 − vq
i )

s
)

ws
i )(1 −
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⎟
⎟
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⎟
⎟
⎠

According to mathematical induction, we can get: 
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s
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
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⎜
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⎜
⎜
⎜
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j ⋅(θj)t ],

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
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∏
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(
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
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(
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⎞
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⎟
⎟
⎟
⎟
⎠
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

then, 

Z. Yang et al.                                                                                                                                                                                                                                    



Applied Energy 332 (2023) 120492

17

1
|Ph|(|Ph| − 1)

∑

i,j∈Ph

i∕=j

(
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s
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t
j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l 1
|Ph |(|Ph |− 1)
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⎜
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⎜
⎝
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∏
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(
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⎟
⎟
⎟
⎟
⎟
⎟
⎠
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⎛
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⎜
⎜
⎜
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⎜
⎝
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(
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j
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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q

1
|Ph |(|Ph |− 1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

then, 

⎛
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⎜
⎝
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)

⎞
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⎠
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎝
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −
∏
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i∕=j

(
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(
1 − (1 − uqs

i )
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i

)(
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(
1 − uqt

j
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j
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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q
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⎛
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⎜
⎜
⎝
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⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −
∏
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i∕=j

(

1 −

(

1 − (1 − (1 − vq
i )
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(

1 −
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⎞

⎟
⎟
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⎟
⎟
⎟
⎟
⎠
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
q

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

According to mathematical induction, we can get (see Tables A1-A3): 
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⎜
⎜
⎜
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⎟
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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⎜
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⎠
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⎜
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⎜
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⎜
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∏
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⎟
⎟
⎟
⎟
⎟
⎠
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⎠
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⎟
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⎠
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⎜
⎜
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⎜
⎜
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⎜
⎜
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⎜
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⎜
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⎜
⎜
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⎞
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⎟
⎟
⎟
⎟
⎠
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⎞

⎟
⎟
⎟
⎟
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⎟
⎠
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⎟
⎟
⎟
⎟
⎟
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⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

According to the number multiplication algorithm, we can get: 
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⎜
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⎟
⎟
⎟
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⎜
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⎜
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⎜
⎜
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⎜
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⎜
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The specific form of Theorem 3 
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