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1. Introduction

Crisp values are being introduced in the actual use of multi-criteria decision-making (MCDM) to
broadly depict the information. Due to this, fuzzy sets [14, 20], intuitionistic fuzzy sets [10, 21, 36],
and Pythagorean fuzzy sets [7], among others, were used in the fuzzy-rough set [11], and the interval-
valued Pythagorean fuzzy set [42]. To deal with uncertainty, Zadeh’s fuzzy set theory [44] was widely
applied. Atanassov [1] defined the concept of intuitionistic fuzzy set (IFS), in which the total of the
membership degree (MD) and non-membership degree (NMG) is less than or equal to one. After that,
if the sum of the membership degree and nun-membership degree is greater than one but their sum of
squares is less than or equal to one, there may occasionally be erroneous data. Yager [39] suggested
a Pythagorean fuzzy set (PFS), a more adaptable and versatile ambiguity-expressing alternative to
intuitionistic fuzzy set (IFS). Zhang and Xu [45] created the concept of Pythagorean fuzzy number
(PFN). Additionally, they suggested the Pythagorean fuzzy TOPSIS approach, the PFS detailed
mathematical form, and an order preference strategy that was similar to the ideal result. This strategy
was used within PFNs to address the MCDM problem. A Pythagorean fuzzy maximum and minimum
strategy was created by Peng and Yang [24] to approach the multi-criteria group decision-making
(MCGDM) problem. They also advocated the procedures of PFN addition and subtraction. Reformat
& Yager [30] employed the PFNs to manage the jointly proposed system. The novel generalized
Pythagorean fuzzy aggregation operators (AOs), based on Einstein operation, were proposed by Garg
in [8]. Albu et al. [5] provided a detailed description of artificial neural networks used in medical
applications for control and decision-making.

Yager, [40] developed q-rung orthopair fuzzy sets (q-ROFSs). However, the total of the qth powers
of membership degree (MD) and non-membership degree (NMD), i.e., µq

É
(ŝ)+ νq

É
(ŝ) ≤ 1, which is less

than or equal to 1. As compared to q-ROFS, PyFSs is more IFS-focused. Liu and Wang [17] defined
the q-ROF weighted average and geometric AOs. Wei et al. [34] defined a few q-ROF Heronian mean
(HM) operators. Ali [2] two novel algorithms were presented to deal with q-ROFSs. Yager et al. [41]
explored the notions of probability and certainty as well as plausibility and belief in the q-ROFS data.
Yang and Pang [43] defined partitioned BM operators using q-ROF data. Xu et al. [36] defined a few
q-rung dual hesitant orthopair fuzzy HM operators. Lei and Xu [16] used the q-ROFRH operator and
data with q-rung interval values. Xing et al. [37] presented the concept of point operators for q-ROFSs.
Garg and Chen [9] q-ROFS neutrality AOs have been suggested as a solution to group decision-making
(DM) issues. Due of its obviously wider base than the IFS, the q-ROFS can convey more muddled
information. Qiyas et al. [27] discussed a case study for hospital-based post-acute care cerebrovascular
disease using sine hyperbolic q-rung orthopair fuzzy Dombi aggregation operators. The q-ROFS is
superior to IFS in managing fuzzy and intuitionistic fuzzy information, because it can handle MCDM
problems that intuitionistic fuzzy set cannot, despite the fact that it is evident that IFS is a component
of the q-ROFS.

In 2019, Riaz and Hashmi [31] critically examined the restrictions related to membership and
non-membership functions in structures of FS, IFS, PyFS, and q-ROFS, and these limitations were
pointed out numerically. They introduced the linear Diophantine fuzzy set (LDFS) by adding reference
parameters to the structure of IFS to eliminate these restrictions. They stated that the concept of LDFS
will eradicate the constraints in the existing methodologies of other sets and enable the free selection
of data in practice. The grades of membership, non-membership, and reference parameters in the
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construction of LDFS are real valued. Mohammad et al. [22] defined some linear Diophantine fuzzy
similarity measures and their application in decision-making problem. Qiyas [32] proposed the idea
of similarity measures based on q-rung linear Diophantine fuzzy sets and their application in logistics
and supply chain management. Hanif et al. [13] developed linear Diophantine fuzzy graphs with a new
decision-making approach. Riaz [33] proposed Spherical linear Diophantine fuzzy sets with modeling
uncertainties in MCDM. Hashmi et al. [12] defined a Spherical linear Diophantine fuzzy soft rough
sets with multi-criteria decision making.

Shahzaib et al. [3] first proposed the concept of the Spherical fuzzy set (SPS) to address this issue
that picture fuzzy set (PFS) cannot solve. Then, they found a tonne of spherical fuzzy information-
based aggregating techniques. In contrast to PFSs, where all membership degrees must satisfy the
requirement µ2

É
(ŝ) + ν2

É
(ŝ) + η2

É
(ŝ) ≤ 1, the SFS requires. A more advanced variant of PyFS with a

fuzzy set is called a spherical fuzzy set. Additionally, they looked at how the Spherical fuzzy t-norm
and conorm are shown in [4].

The membership degree (MD), neutral membership degree (NuMD), and non-membership degree
(NMD) are constrained by the PFS and SFS concepts, which have wide applications in a variety of
spheres of daily life. To address these difficulties, we created a brand-new extended concept of a
fractional orthotriple fuzzy set (FOFS). In the FOFS framework that has been proposed, there are three
membership tiers. And for each ŝ ∈ Ś in a finite universe of discourse Ś with µ f

É
(ŝ)+ν f

É
(ŝ)+η f

É
(ŝ) ≤ 1,

f ∈ Q (set of positive rational integers). We discover that as rung f increases, the fractional orthotriple
fuzzy space broadens, enabling observers to express support for membership over a greater range. It
should be mentioned that in order to deal with ambiguity and erroneous information, we were able to
generate a fractional orthotriple fuzzy set that produced more precise and accurate rung fuzzy numbers.
It is evident that PFS and SFS are the generic forms of FOFS, and by setting p = q for PFS and
p = 2ň, q = ň for all ň ∈ N for SFS, respectively, the corresponding set simplifies to PFS and SFS. As
a result of their increased adaptability and improved handling of uncertain information, FOFSs reflect
more comprehensive fuzzy data.

The fractional orthotriple fuzzy set was first introduced by Abosuliman et al. [6], in order to
generalize the idea of the spherical fuzzy set. Similarity matrices for FOFS were developed by Naeem
et al. [23] who also described how they may be applied in emergency situations such as accidents.
Utilizing the cosine and cotangent functions, they achieved this. For processing fractional orthotriple
fuzzy data, Qiyas et al. [25] developed aggregation methods based on Banzhaf choquet copula. Qiyas
et al. [26] created fractional orthotriple fuzzy rough Hamacher AOs and applied them to the wireless
network selection. Qiyas et al. [28] developed a decision support system using complex fractional
orthotriple fuzzy 2-tuple linguistic AOs. Qiyas et al. [29] defined fractional orthotriple fuzzy Choquet-
Frank AOs and their application in the optimal selection for EEG of the depression patients.

According to the study stated above, aggregation operators are crucial in decision-making since
they aggregate information from various sources into a single value. FOLDFNs allow experts more
flexibility in how it might express a judgment in circumstances needing real-world decision-making.
Based on the sine hyperbolic function and FOLDFNs, we developed the concept of sine hyperbolic
fractional orthotriple linear Diophantine fuzzy number (sinh-FOLDFN) in this study to address these
issues. This provides motivation for the ongoing sinh-FOLDF research work. The sine hyperbolic
function is an important function that also benefits from having amplitude and symmetric about the
origin and satisfying standards over multiple time scales. The major objective of the entire paper is
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to establish more sophisticated operational laws for FOLDFNs using algebraic t-norm and t-conorm
operations. Based on the stated operating rules, a list of geometric aggregate and averaging operators
is provided, together with a thorough explanation of the relevant aspects. To address problems with
group decision-making in an emergency, we provide a unique application: alternative selection based
on suggested operators. A lot of research is done on how the parameters affect how the alternatives
rank.

The remaining sections of the whole study are outlined below: Several key terms relating to
FOLDFSs are briefly explained in Sec. 2 of this document. We define sine hyperbolic FOLFFNs
in Sec. 3 and go over their characteristics. On the basis of algebraic t-norm and t-conorm, we
also deduced sine hyperbolic operational laws for FOFSs. The sine hyperbolic fractional orthotriple
linear Diophantine fuzzy weighted averaging (sinh-FOFWA), sine hyperbolic fractional orthotriple
linear Diophantine fuzzy ordered weighted averaging (sinh-FOLDFOWA), and sine hyperbolic
fractional orthotriple linear Diophantine fuzzy hybrid averaging (sinh-FOLDFHA) were developed in
Sec. 4. The terms sine hyperbolic fractional orthotriple linear Diophantine fuzzy weighted geometric
(sinh-FOLDFWG), sine hyperbolic fractional orthotriple fuzzy ordered weighted geometric (sinh-
FOFOWG), and sine hyperbolic fractional orthotriple linear Diophantine fuzzy hybrid geometric (sinh-
FOLDFHG) operators were defined in Sec. 5. We defined an algorithm in accordance with the provided
operators. Using described operators in Sec. 6, to solve an example of an alternatives selection
problem. To demonstrate the applicability of the suggested methodology, a comparison of numerous
approaches is provided in Sec. 7. In Sec. 8 addressed the article’s conclusion.

2. Preliminaries

Here, we examine a few basic concepts related to our further study.
Definition 2.1. [1] An IFS É on universal set Ś is defined as;

É =
{
⟨µÉ(ŝ), νÉ(ŝ)|ŝ ∈ Ś ⟩

}
, (2.1)

where µÉ, νÉ : Ś → [0, 1] is the MD and NMD of É. And µÉ, νÉ,∀ŝ ∈ Ś , and satisfied the condition,
0 ≤ µÉ + νÉ ≤ 1. Also, πÉ (ŝ) = 1 −

(
µÉ + νÉ

)
is a hesitancy degree of ŝ in É.

Definition 2.2. [39] A q-ROFS É on universal set Ś is defined as;

É =
{
⟨µÉ(ŝ), νÉ(ŝ)|ŝ ∈ Ś ⟩

}
, (2.2)

where µÉ, νÉ : Ś → [0, 1] is the MD and NMD of É. And µÉ, νÉ for all ŝ ∈ Ś and satisfied the

condition; 0 ≤ µq
É
+ ν

q
É
≤ 1. Also, πÉ (ŝ) =

√
1 −

(
µ

q
É
+ ν

q
É

)
is a hesitancy degree of ŝ in É.

Definition 2.3. [31] A LDFS É on universal set Ś is defined as;

É = {(ŝ,
〈
uÉ(ŝ), νÉ(ŝ)

〉
,
〈
αÉ, βÉ

〉
)|ŝ ∈ Ś }, (2.3)

where uÉ, νÉ, αÉ, βÉ ∈ [0, 1] are MG and NMG respectively, and satisfies the condition 0 ≤
(
αÉ

)
uÉ +(

βÉ
)
νÉ ≤ 1,∀ŝ ∈ Ś with 0 ≤ αÉ + βÉ ≤ 1. The degree of hesitancy as, πÉ = 1 −

(
αÉ

)
uÉ −

(
βÉ

)
νÉ.

Definition 2.4. [25] A FOFS É on universal set Ś is defined as;

É =
{
⟨µÉ(ŝ), νÉ(ŝ), ηÉ(ŝ)|ŝ ∈ Ś ⟩

}
, (2.4)
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where µÉ, νÉ, ηÉ : Ś → [0, 1] is the MD, NuMD and NMD of É. And µÉ, νÉ, ηÉ, ∀ŝ ∈ Ś , and satisfied

the condition; 0 ≤ µ f
É
+ ν

f
É
+ η

f
É
≤ 1. Also, πÉ (ŝ) =

√
1 −

(
µ

f
É
+ ν

f
É
+ η

f
É

)
is the hesitant degree of ŝ

in É.
Definition 2.5. A fractional orthotriple linear Diophantine fuzzy set (FOLDFS) on universal set Ś is
defined as;

D = {(ℏ, ⟨µD(ŝ), νD(ŝ), ηD(ŝ)⟩ , ⟨αD, βD, γD⟩)|ŝ ∈ Ś }, (2.5)

where µD, νD, ηD, αD, βD, γD ∈ [0, 1] are MG, NuMG, NMG and reference parameters (RPs)
respectively. These functions fulfill the restriction; 0 ≤ (αD) fµD + (βD) f νD + (γD) fηD ≤ 1,∀ŝ ∈
Ś , f ⩾ 1, with 0 ≤ α f

D + β
f
D + γ

f
D ≤ 1, f ≥ 1. The degree of hesitation is defined as, πD =

q
√

1 − ((αD) fµD + (βD) f νD + (γD) fηD).
Definition 2.6. [25] Suppose É1 =

{
⟨ŝ, µÉ1

(ŝ), νÉ1
(ŝ), ηÉ1

(ŝ)|ŝ ∈ ŝ⟩
}

and É2 ={〈
ŝ, µÉ2

(ŝ), νÉ2
(ŝ), ηÉ2

(ŝ)|ŝ ∈ Ś
〉}

are two FOFNs. The fundamental operations are then defined
as follows:

(1) É1 ⊆ É2, if µÉ1
(ŝ) ≤ µÉ2

(ŝ), νÉ1
(ŝ) ≥ νÉ2

(ŝ) and ηÉ1
(ŝ) ≥ ηÉ2

(ŝ),∀ŝ ∈ Ś ;

(2) É1 = É2, if É1 ⊆ É2 and É2 ⊆ É1;

(3) É1 ∪ É2 =
{
⟨ŝ,max

{
µÉ1

(ŝ), µÉ2
(ŝ)

}
,min

{
νÉ1

(ŝ), νÉ2
(ŝ)

}
,min

{
ηÉ1

(ŝ), ηÉ2
(ŝ)

}
⟩|ŝ ∈ Ś

}
;

(4) É1 ∩ É2 =
{
⟨ŝ,min

{
µÉ1

(ŝ), µÉ2
(ŝ)

}
,min

{
νÉ1

(ŝ), νÉ2
(ŝ)

}
,max

{
ηÉ1

(ŝ), ηÉ2
(ŝ)

}
⟩|ŝ ∈ Ś

}
;

(5) Éc
1 =

{〈
ηÉ1

(ŝ), νÉ1
(ŝ), µÉ1

(ŝ)
〉}
.

2.1. Sine hyperbolic operational laws based on FOLDFNs

In this portion, we defined sine hyperbolic fractional orthotriple linear Diophantine fuzzy numbers
(sinh-FOLDFNs) and studied some of its key features. Following these, we developed the operation
laws for sinh-FOLDFNs using algebraic t-norm and t-conorm operation as well as a few key
characteristics.
Definition 2.7. Suppose É =

{(
ŝ,

〈
µÉ(ŝ), νÉ(ŝ), ηÉ(ŝ)

〉
,
〈
αÉ, βÉ, γÉ

〉)
|ŝ ∈ Ś

}
be a FOLDFS. Then,

sinh É =
{(

ŝ,
〈
sinh

(
µÉ

) f , sinh
(
1 − νÉ

) f , sinh
(
1 − ηÉ

) f
〉
,
〈
αÉ, βÉ, γÉ

〉)
|ŝ ∈ Ś

}
, (2.6)

is called sinh-FOLDFS, and the value of sinh É is called sinh-FOLDF number (sinh-FOFN) for each
ŝ ∈ Ś . Moreover, sinh

(
µÉ

) f : Ś → [0, 1] , sinh
(
1 − νÉ

) f : Ś → [0, 1] and sinh
(
1 − ηÉ

) f : Ś →
[0, 1] is called MD, NuMD, NMD and

〈
αÉ, βÉ, γÉ

〉
are the reference parameters, respectively, for each

ŝ ∈ Ś . Also, sinh
(
µÉ

) f , sinh
(
1 − νÉ

) f , sinh
(
1 − ηÉ

) f , αÉ, βÉ, γÉ should be satisfied the following two
conditions;

(1) sinh
(
µÉ

) f , sinh
(
1 − νÉ

) f , sinh
(
1 − ηÉ

) f , αÉ, βÉ, γÉ ∈ [0, 1].

(2) 0 ≤ (α) f sinh
(
µÉ

) f
+ (β) f sinh

(
1 − νÉ

) f
+ (γ) f sinh

(
1 − ηÉ

) f
≤ 1 and 0 ≤ (α) f + (β) f + (γ) f

≤ 1.
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Definition 2.8. Suppose sinh É1 =

{〈
sinh

(
µÉ1

) f
, sinh

(
1 − νÉ1

) f
, sinh

(
1 − ηÉ1

) f
〉
,
〈
αÉ1
, βÉ1
, γÉ1

〉}
and sinh É2 =

{〈
sinh

(
µÉ2

) f
, sinh

(
1 − νÉ2

) f
, sinh

(
1 − ηÉ2

) f
〉
,
〈
αÉ2
, βÉ2
, γÉ2

〉}
are two sine hyperbolic

FOLDFNs and λ > 0. Then,

(1) sinh É1 ⊆ sinh É2, if
sinh

(
µ

f
É1

)
≤ sinh

(
µ

f
É2

)
;

sinh
(
1 − νÉ1

) f
≥ sinh

(
1 − νÉ2

) f
;

sinh
(
1 − ηÉ1

) f
≥ sinh

(
1 − ηÉ2

) f
.

And
αÉ1
≥ αÉ2

; βÉ1
≤ βÉ2

; γÉ1
≤ γÉ2

for all ŝ ∈ Ś .

(2) sinh É1 = sinh É2, if sinh É1 ⊆ sinh É2 and sinh É2 ⊆ sinh É1.

(3) sinh É1 ∪ sinh É2 =



〈 max
(
sinh

(
µÉ1

) f
, sinh

(
µÉ2

) f
)
,

min
(
sinh

(
1 − νÉ1

) f
, sinh

(
1 − νÉ2

) f
)
,

min
(
sinh

(
1 − ηÉ1

) f
, sinh

(
1 − ηÉ2

) f
)

〉
,

〈
max

(
αÉ1
, αÉ2

)
,min

(
βÉ1
, βÉ2

)
,min

(
γÉ1
, γÉ2

)〉


.

(4) sinh É1 ∩ sinh É2 =



〈 min
(
sinh

(
µÉ1

) f
, sinh

(
µÉ2

) f
)
,

max
(
sinh

(
1 − νÉ1

) f
, sinh

(
1 − νÉ1

) f
)

max
(
sinh

(
1 − ηÉ1

) f
, sinh

(
1 − ηÉ1

) f
)

〉
,

〈
min

(
αÉ1
, αÉ2

)
,max

(
βÉ1
, βÉ2

)
,max

(
γÉ1
, γÉ2

)〉


.

(5) sinh Éc
1 =

{〈
sinh

(
1 − ηÉ1

) f
, sinh

(
1 − νÉ1

) f
, sinh

(
µÉ1

) f
〉
,
〈
γÉ1
, βÉ1
, αÉ1

〉}
.

Definition 2.9. Suppose sinh É1 =

{〈
sinh

(
µÉ1

) f
, sinh

(
1 − νÉ1

) f
, sinh

(
1 − ηÉ1

) f
〉
,
〈
αÉ1
, βÉ1
, γÉ1

〉}
and sinh É2 =

{〈
sinh

(
µÉ2

) f
, sinh

(
1 − νÉ2

) f
, sinh

(
1 − ηÉ2

) f
〉
,
〈
αÉ2
, βÉ2
, γÉ2

〉}
are two sine hyperbolic

FOLDFNs and λ, λ1, λ2 > 0. Then,

(1) sinh É1 ⊕ sinh É2 = sinh É2 ⊕ sin É1,

(2) sinh É1 ⊗ sinh É2 = sinh É2 ⊗ sinh É1,

(3) λ(sinh É1 ⊕ sinh É2) = λ sinh É1 ⊕ λ sinh É2,

(4) (sinh É1 ⊗ sinh É2)λ = sinh Éλ1 ⊗ sinh Éλ2 ,

(5) λ1 sinh É1 ⊕ λ2 sinh É1 = (λ1 + λ2) sinh É1,
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(6) sinh Éλ1
1 ⊗ sin Éλ2 = sinh É(λ1+λ2)

1 ,

(7)
(
sinh Éλ1

1

)λ2
= sinh É

λ1λ2

1 .

Definition 2.10. Suppose sinh É1 =

{〈
sinh

(
µÉ1

) f
, sinh

(
1 − νÉ1

) f
, sinh

(
1 − ηÉ1

) f
〉
,
〈
αÉ1
, βÉ1
, γÉ1

〉}
be

a sine hyperbolic FOLDFN. Then, the score function Λ and accuracy function Γ is defined as follows;

Λ
(
sinh É1

)
=

(
µ

f
É1
− ν

f
É1
− η

f
É1

)
+

(
αÉ1
− βÉ1

− γÉ1

)
2

, (2.7)

Γ
(
sinh É1

)
=

(
µ

f
É1
+ ν

f
É1
+ η

f
É1

)
+

(
αÉ1
+ βÉ1

+ γÉ1

)
2

. (2.8)

We define the following comparison rules.
Definition 2.11. Let sinh É1 and sinh É2 are any two sinh-FOLDFNs.

(1) If Λ(sinh É1) < Λ(sinh É2), then sinh É1 < sinh É2,

(2) If Λ(sinh É1) = Λ(sinh É2), then

(a) If Γ(sinh É1) < Γ(sinh É2), then sinh É1 < sinh É2,

(b) If Γ(sinh É1) = Γ(sinh É2), then sinh É1 ∼ sinh É2.

2.2. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy operation

In this part, utilizing the algebraic t-norm and t-conorm, we created sine hyperbolic FOLDF
operational laws (sinh-FOLDFOLs) for FOLDFNs. The development of some aggregation operators
for sinh-FOLDFNs will come after these.
Definition 2.12. Suppose sinh É1 =

{〈
sinh

(
µÉ1

) f
, sinh

(
1 − νÉ1

) f
, sinh

(
1 − ηÉ1

) f
〉
,
〈
αÉ1
, βÉ1
, γÉ1

〉}
and sinh É2 =

{〈
sinh

(
µÉ2

) f
, sinh

(
1 − νÉ2

) f
, sinh

(
1 − ηÉ2

) f
〉
,
〈
αÉ2
, βÉ2
, γÉ2

〉}
be two sine hyperbolic

FOLDFNs, where f ≥ 1 and λ > 0. Then, sine hyperbolic FOLDF operational laws (sinh-FOLDFOLs)
are defined as;

(1) sinh É1 ⊕ sinh É2 =




f
√

sinh
(
µÉ1

) f
+ sinh

(
µÉ2

) f
− sinh

(
µÉ1

) f
. sinh

(
µÉ2

) f
,

sinh
(
1 − νÉ1

) f
. sinh

(
1 − νÉ2

) f
,

sinh
(
1 − ηÉ1

) f
. sinh

(
1 − ηÉ2

) f

 , f
√(
αÉ1

) f
+

(
αÉ2

) f
−

(
αÉ1

) f
+

(
αÉ2

) f
,

βÉ1
.βÉ2
, γÉ1
.γÉ2




;
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(2) sinh É1 ⊗ sinh É2 =





sinh
(
µÉ1

) f
. sinh

(
µÉ2

) f
,

f

√√√
sinh

(
1 − νÉ1

) f
+ sinh

(
1 − νÉ2

) f

− sinh
(
1 − νÉ1

) f
. sinh

(
1 − νÉ2

) f ,

f

√√√
sinh

(
1 − ηÉ1

) f
+ sinh

(
1 − ηÉ2

) f
− sinh

(
1 − ηÉ1

) f
.

sinh
(
1 − ηÉ2

) f


,

 αÉ1
.αÉ2
,

f
√(
βÉ1

) f
+

(
βÉ2

) f
−

(
βÉ1

) f
.
(
βÉ2

) f
,

f
√(
γÉ1

) f
+

(
γÉ2

) f
−

(
γÉ1

) f
.
(
γÉ2

) f





;

(3) λ sinh É1 =




f

√
1 −

(
1 − sinh

(
νÉ1

) f
)λ
,
(
sinh

(
1 − νÉ1

) f
)λ
,(

sinh
(
1 − ηÉ1

) f
)λ

 , f

√
1 −

(
1 −

(
αÉ1

) f
)λ
,
(
βÉ1

)λ
,
(
γÉ1

)λ


;

(4)
(
sinh É1

)λ
=




(
sinh

(
νÉ1

) f
)λ
,

f

√
1 −

(
1 − sinh

(
1 − νÉ1

) f
)λ
,

f

√
1 −

(
1 − sinh

(
1 − ηÉ1

) f
)λ

 ,(αÉ1

)λ
,

f

√
1 −

(
1 −

(
βÉ1

) f
)λ
,

f

√
1 −

(
1 −

(
γÉ1

) f
)λ


.

3. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy averagingoperators

The weighted average and geometric aggregation operators are defined in this section using sinh-
FOLDFOLs of FOLDFNs as follows.

3.1. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy weighted averaging operator

Definition 3.1. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sine hyperbolic fractional orthotriple linear Diophantine fuzzy numbers (sinh-
FOLDFNs). Then, sinh-FOLDFWA operator is a mapping sinh Éň → sinh É, such that;

sinh−FOLDFWA(sinh É1, ..., sinh Éň) =
ň⊕
ı̆=1

(ξı̆ sinh Éı̆), (3.1)

where ξ = (ξ1, · · ·, ξň)T is a weight vector of sinh Éı̆(ı̆ = 1, · · ·, ň) with ξı̆ > 0 and
∑ň
ı̆=1 ξı̆ = 1.

As a result, an auxiliary theorem that explains the observed operations on sinh-FOLDFNs is
provided.

Theorem 3.1. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, ···, ň) be a family of (sinh-FOLDFNs). Then, the aggregated value utilizing sinh-FOLDFWA operator
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is still a sinh-FOLDFN, and

sinh−FOLDFWA(sinh É1, · · ·, sinh Éň) =
ň⊕
ı̆=1

(ξı̆ sinh Éı̆) (3.2)

=




f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
µÉı̆

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − νÉı̆

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − ηÉı̆

) f
)ξı̆

 , f

√
1 −

ň∏̆
ı=1

(
1 −

(
αÉı̆

) f
)ξı̆
,

ň∏̆
ı=1

(
βÉı̆

)ξı̆
,

ň∏̆
ı=1

(
γÉı̆

)ξı̆


,

where ξ = (ξ1, · · ·, ξň)T is the weight vector of sinh Éı̆(ı̆ = 1, · · ·, ň) with ξı̆ > 0 and
∑ň
ı̆=1 ξı̆ = 1.

Proof. The Eq (3.2) is demonstrated as follows using the mathematical induction principle:
(1) According to sinh-FOLDFNs operations, we have the preceding consequence for ň = 2,

sinh−FOLDFWA(sinh É1, sinh É2) = ξ1 sinh É1 ⊕ ξ2 sinh É2

=






f

√
1 −

(
1 − sinh

(
µÉ1

) f
)ξ1
,(

sinh
(
1 − νÉ1

) f
)ξ1
,
(
sinh

(
1 − ηÉ1

) f
)ξ1

 , f

√
1 −

(
1 −

(
αÉ1

) f
)ξ1
,
(
βÉ1

)ξ1
,
(
γÉ1

)ξ1



⊕




f

√
1 −

(
1 − sinh

(
µÉ2

) f
)ξ2
,(

sinh
(
1 − νÉ2

) f
)ξ2
,
(
sinh

(
1 − ηÉ2

) f
)ξ2

 , f

√
1 −

(
1 −

(
αÉ2

) f
)ξ2
,
(
βÉ2

)ξ2
,
(
γÉ2

)ξ2





=




f

√
1 −

2∏̆
ı=1

(
1 − sinh

(
µÉı̆

) f
)ξı̆
,

2∏̆
ı=1

(
sinh

(
1 − νÉı̆

) f
)ξı̆
,

2∏̆
ı=1

(
sinh

(
1 − ηÉı̆

) f
)ξı̆

 , f

√
1 −

2∏̆
ı=1

(
1 −

(
αÉı̆

) f
)ξı̆
,

2∏̆
ı=1

((
βÉı̆

))ξı̆
,

2∏̆
ı=1

((
γÉı̆

))ξı̆


.

Thus, Eq (3.2) is true for ň = 2.
(2) Let Eq (3.2) is hold for ň = κ.
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sinh−FOLDFWA(sinh É1, · · ·, sinh Éκ) =
κ⊕
ı̆=1

(ξı̆ sinh Éı̆)

=




f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
µÉı̆

) f
)ξı̆
,

κ∏̆
ı=1

(
sinh

(
1 − νÉı̆

) f
)ξı̆
,
κ∏̆
ı=1

(
sinh

(
1 − ηÉı̆

) f
)ξı̆

 , f

√
1 −

κ∏̆
ı=1

(
1 −

(
αÉı̆

) f
)ξı̆
,
κ∏̆
ı=1

((
βÉı̆

))ξı̆
,
κ∏̆
ı=1

((
γÉı̆

))ξı̆


.

For ň = κ + 1, then

sinh−FOLDFWA(sinh É1, · · ·, sinh Éκ) =
κ⊕
ı̆=1

(ξı̆ sinh Éı̆) ⊕ (ξκ+1 sinh Éκ+1)

=






f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
µÉı̆

) f
)ξı̆
,

κ∏̆
ı=1

(
sinh

(
1 − νÉı̆

) f
)ξı̆
,
κ∏̆
ı=1

(
sinh

(
1 − ηÉı̆

) f
)ξı̆

 , f

√
1 −

κ∏̆
ı=1

(
1 −

(
αÉı̆

) f
)ξı̆
,
κ∏̆
ı=1

(
βÉı̆

)ξı̆
,
κ∏̆
ı=1

(
γÉı̆

)ξı̆


⊕




f

√
1 −

(
1 − sinh

(
µÉκ+1

) f
)ξκ+1

,(
sinh

(
1 − νÉκ+1

) f
)ξκ+1

,
(
sinh

(
1 − ηÉκ+1

) f
)ξκ+1

 ,
f

√
1 −

(
1 −

(
αÉκ+1

) f
)ξκ+1

,
(
βÉκ+1

)ξκ+1
,
(
γÉκ+1

)ξκ+1





=




f

√
1 −

κ+1∏̆
ı=1

(
1 − sinh

(
µÉı̆

) f
)ξı̆
,

κ+1∏̆
ı=1

(
sinh

(
1 − νÉı̆

) f
)ξı̆
,
κ+1∏̆
ı=1

(
sinh

(
1 − ηÉı̆

) f
)ξı̆

 , f

√
1 −

κ+1∏̆
ı=1

(
1 −

(
αÉı̆

) f
)ξı̆
,
κ+1∏̆
ı=1

(
βÉı̆

)ξı̆
,
κ+1∏̆
ı=1

(
γÉı̆

)ξı̆


.

Equation (3.2) is consequently correct for ň = κ + 1. As a result, we show that Eq (3.2) is true for
all ň. □

The sinh-FOLDFWA operator makes it relatively easy to check the following properties.
Theorem 3.2. (Idempotency). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)
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be a family of sinh-FOLDFNs, all are identical, i.e., sinh Éı̆ = sinh É. Then,

sinh−FOLDFWA(sinh É1, · · ·, sinh Éň) = sinh É. (3.3)

Theorem 3.3. (Boundedness). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs. Suppose sinh É− = min(sinh É1, · · ·, sinh Éň) and sinh É+ =
max(sinh É1, · · ·, sinh Éň). Then,

sinh É− ≤ sinh−FOLDFWA(sinh É, · · ·, sinh Éň) ≤ sinh É+. (3.4)

Theorem 3.4. (Monotonicity). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOFNs. If sinh Éı̆ ≤ sinh É/ı̆ . Then,

sinh−FOLDFWA(sinh É1, · · ·, sinh Éň) ≤ sinh−FOLDFOWA(sinh É/1, · · ·, sinh Éň), (3.5)

where, the permutation of sinh Éı̆(ı̆ = 1, · · ·, ň) is sinh É/ı̆ (ı̆ = 1, · · ·, ň).

3.2. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy ordered weighted averaging
operator

Definition 3.2. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFOWA operator for ň dimension is a mapping
sinh−FOLDFOWA : sinh Éň → sinh É with the corresponding weight ξ = (ξ1, · · ·, ξň)T along with
ξı̆ > 0, and

∑ň
ı̆=1 ξı̆ = 1, as

sinh−FOLDFOWA(sinh É1, · · ·, sinh Éň) =
ň⊕
ı̆=1

(ξı̆ sinh Éσ(ı̆)), (3.6)

and for sinh Éσ(ı̆−1) ≥ sinh Éσ(ı̆) the permutation is σ(1), · · ·, σ(ň) for all (ı̆ = 1, · · ·, ň) .

Theorem 3.5. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFOWA operator of ň dimension is a mapping,
sinh−FOLDFOWA : sinh Éň → sinh É with corresponding weight ξ = (ξ1, · · ·, ξň)T along with ξı̆ > 0,
and

∑ň
ı̆=1 ξı̆ = 1. Then,

sinh−FOLDFOWA(sinh É1, · · ·, sinh Éň) =
ň⊕
ı̆=1

(ξı̆ sinh Éσ(ı̆))

=




f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
µÉσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − νÉσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − ηÉσ(ı̆)

) f
)ξı̆

 , f

√
1 −

ň∏̆
ı=1

(
1 −

(
αÉσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
βÉσ(ı̆)

)ξı̆
,

ň∏̆
ı=1

(
γÉσ(ı̆)

)ξı̆


,
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whereσ(1), ···, σ(ň) is the permutation of (ı̆ = 1, ···, ň),which as sinh Éσ(ı̆−1) ≥ sinh Éσ(ı̆), ∀(ı̆ = 1, ···, ň).
Using sinh-FOLDFOWA, the following characteristics are simply illustrated.

Theorem 3.6. (Idempotency). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs, all are identical. i.e., sinh Éı̆ = sinh É. Then,

sinh−FOLDFOWA(sinh É1, · · ·, sinh Éň) = sinh É. (3.7)

Theorem 3.7. (Boundedness). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs. Suppose that sinh É− = min(sinh É1, · · ·, sinh Éň) and sinh É+ =
max(sinh É1, · · ·, sinh Éň). Then,

sinh É− ≤ sinh−FOLDFOWA(sinh É, · · ·, sinh Éň) ≤ sinh É+. (3.8)

Theorem 3.8. (Monotonicity). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs. If sinh Éı̆ ≤ sinh É/ı̆ . Then,

sinh−FOLDFOWA(sinh É1, · · ·, sinh Éň) ≤ sinh−FOLDFOWA(sinh É/1, · · ·, sinh Éň),

where sinh É/ı̆ (ı̆ = 1, · · ·, ň) is the permutation of sinh Éı̆(ı̆ = 1, · · ·, ň).
We determine that sinh-FOLDFWA operator weights are the precise form of the structured

placement of sinh-FOLDF values from Def. (3.1) . In the sinh-FOLDFWA and sinh-FOLDFOWA
operators, weights denote the number of connected components. Since these components are typically
assumed to be the same, we define the sinh-FOLDFHA operator to remove this type of limitation.

3.3. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy hybrid averaging operator

Definition 3.3. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFHA operator of ň dimension is a mapping
sinh−FOLDFHA : sinh Éň → sinh É with the corresponding weight ξ = (ξ1, · · ·, ξň)T along with
ξı̆ > 0, and

∑ň
ı̆=1 ξı̆ = 1. Then,

sinh−FOLDFHA(sinh É1, · · ·, sinh Éň) =
ň⊕
ı̆=1

(ξı̆ sinh ˜́Eσ(ı̆))

=




f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(̃
µÉσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − ν̃Éσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
sinh

(
1 − η̃Éσ(ı̆)

) f
)ξı̆

 , f

√
1 −

ň∏̆
ı=1

(
1 −

(
α̃Éσ(ı̆)

) f
)ξı̆
,

ň∏̆
ı=1

(
β̃Éσ(ı̆)

)ξı̆
,

ň∏̆
ı=1

(̃
γÉσ(ı̆)

)ξı̆


,
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where sinh ˜́Eσ(ı̆) is the ı̆th greatest sine hyperbolic fractional orthotriple linear Diophantine fuzzy values

sinh ˜́Eσ(ı̆) = ňwı̆ sinh Éı̆(ı̆ = 1, · · ·, ň), and w = (w1, · · ·,wň)T be associated weights of
.

sinh Éσ(ı̆) with wı̆ >
0 and

∑ň
ı̆=1 wı̆ = 1, where ň is the matching coefficient. In the scenario where w = (1/ň, · · ·, 1/ň), sinh-

FOLDFWA and sinh-FOLDFOWA operators are regarded as a particular case of the sinh-FOLDFHA
operator. So, the sinh-FOLDFHA operator is a generalized version of the sinh-FOFWA and sinh-
FOLDFOWA operators, which reflect the structured condition and degree of disagreement statements.

4. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy geometric operators

Using sinh-fractional orthotriple linear Diophantine fuzzy operational rules, we defined sine
hyperbolic fractional orthotriple linear Diophantine fuzzy geometric operators.

4.1. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy weighted geometric operator

Definition 4.1. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sine hyperbolic fractional orthotriple linear Diophantine fuzzy numbers (sinh-
FOLDFNs). Then, sinh-FOLDFWG operator is a mapping sinh Éň → sinh É, such that;

sinh−FOLDFWG(sinh É1, · · ·, sinh Éň) =
ň⊗
ı̆=1

(sinh Éı̆)ξı̆ , (4.1)

where ξ = (ξ1, · · ·, ξň)T is the weight of sinh Éı̆(ı̆ = 1, · · ·, ň) with ξı̆ > 0 and
∑ň
ı̆=1 ξı̆ = 1.

Theorem 4.1. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. Then, the aggregated value utilizing sinh-FOLDFWG operator
is still a sinh-FOLDFNs, and

sinh−FOLDFWG(sinh É1, · · ·, sinh Éň) =
ň⊗
ı̆=1

(sinh Éı̆)ξı̆ (4.2)

=




ň∏̆
ı=1

(
sinh

(
µÉı̆

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − νÉı̆

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − ηÉı̆

) f
)ξı̆

 ,
ň∏̆
ı=1

(
αÉı̆

)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − βÉı̆

)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − γÉı̆

)ξı̆




,

where ξ = (ξ1, · · ·, ξň)T is the weight of sinh Éı̆(ı̆ = 1, · · ·, ň) with ξı̆ > 0 and
∑ň
ı̆=1 ξı̆ = 1.

Proof. The mathematical induction principle is employed to demonstrate this theorem:

AIMS Mathematics Volume 8, Issue 5, 11916–11942.



11929

(1) When ň = 2, we achieve the following result using sinh-FOLDFNs procedures.

sinh−FOLDFWG(sinh É1, sinh É2) =
(
sinh É1

)ξ1
⊗

(
sinh É2

)ξ2

=






(
sinh

(
µÉ1

) f
)ξ1
,

f

√
1 −

(
1 − sinh

(
1 − νÉ1

) f
)ξ1
,

f

√
1 −

(
1 − sinh

(
1 − ηÉ1

) f
)ξ1

 ,
(
αÉ1

)ξ1
,

f

√
1 −

(
1 −

(
βÉ1

) f
)ξ1
,

f

√
1 −

(
1 −

(
γÉ1

) f
)ξ1





⊗




(
sinh

(
µÉ2

) f
)ξ2
,

f

√
1 −

(
1 − sinh

(
1 − νÉ2

) f
)ξ2
,

f

√
1 −

(
1 − sinh

(
1 − ηÉ2

) f
)ξ2

 ,
(
αÉ2

)ξ2
,

f

√
1 −

(
1 −

(
βÉ2

) f
)ξ2
,

f

√
1 −

(
1 −

(
γÉ2

) f
)ξ2







=




2∏̆
ı=1

(
sinh

(
µÉı̆

) f
)ξı̆
,

f

√
1 −

2∏̆
ı=1

(
1 − sinh

(
1 − νÉı̆

) f
)ξı̆
,

f

√
1 −

2∏̆
ı=1

(
1 − sinh

(
1 − ηÉı̆

) f
)ξı̆

 ,
(

2∏̆
ı=1

(
αÉı̆

) f
)ξı̆
,

f

√
1 −

2∏̆
ı=1

(
1 −

(
βÉı̆

) f
)ξı̆
,

f

√
1 −

2∏̆
ı=1

(
1 −

(
γÉı̆

) f
)ξı̆





.

Thus, Eq (4.2) is true for ň = 2.

(2) Suppose Eq (4.2) is hold for ň = κ,

sinh−FOLDFWG(sinh É1, · · ·, sinh Éκ) =
κ⊗
ı̆=1

(sinh Éı̆)ξı̆
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=




κ∏̆
ı=1

(
sinh

(
µÉı̆

) f
)ξı̆
, f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
1 − νÉı̆

) f
)ξı̆
,

f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
1 − ηÉı̆

) f
)ξı̆

 ,
κ∏̆
ı=1

(
αÉı̆

)ξı̆
, f

√
1 −

κ∏̆
ı=1

(
1 −

(
βÉı̆

) f
)ξı̆
,

f

√
1 −

κ∏̆
ı=1

(
1 −

(
γÉı̆

) f
)ξı̆





.

For ň = κ + 1, then

sinh−FOFWG(sinh É1, · · ·, sinh Éκ) =
κ⊗
ı̆=1

(sinh Éı̆)ξı̆ ⊗ (sinh Éκ+1)ξκ+1

=




κ∏̆
ı=1

(
sinh

(
µÉı̆

) f
)ξı̆
, f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
1 − νÉı̆

) f
)ξı̆
,

f

√
1 −

κ∏̆
ı=1

(
1 − sinh

(
1 − ηÉı̆

) f
)ξı̆

 ,
κ∏̆
ı=1

(
αÉı̆

)ξı̆
, f

√
1 −

κ∏̆
ı=1

(
1 −

(
βÉı̆

) f
)ξı̆
,

f

√
1 −

κ∏̆
ı=1

(
1 −

(
γÉı̆

) f
)ξı̆





⊕




(
sinh

(
µÉκ+1

) f
)ξκ+1

,
f

√
1 −

(
1 − sinh

(
1 − νÉκ+1

) f
)ξκ+1

,

f

√
1 −

(
1 − sinh

(
1 − ηÉκ+1

) f
)ξκ+1

 ,
(
αÉκ+1

)ξκ+1
,

f

√
1 −

(
1 −

(
βÉκ+1

) f
)ξκ+1

,

f

√
1 −

(
1 −

(
γÉκ+1

) f
)ξκ+1





=




κ+1∏̆
ı=1

(
sinh

(
µÉı̆

) f
)ξı̆
,

f

√
1 −

κ+1∏̆
ı=1

(
1 − sinh

(
1 − νÉı̆

) f
)ξı̆
,

f

√
1 −

κ+1∏̆
ı=1

(
1 − sinh

(
1 − ηÉı̆

) f
)ξı̆

 ,
κ+1∏̆
ı=1

(
αÉı̆

)ξı̆
,

f

√
1 −

κ+1∏̆
ı=1

(
1 −

(
βÉı̆

) f
)ξı̆
,

f

√
1 −

κ+1∏̆
ı=1

(
1 −

(
γÉı̆

) f
)ξı̆





.
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This demonstrates that, for ň = κ + 1, the theorem is correct. Therefore, (1) and (2) imply that (4.2)
holds for any ň. □

Based on the sinh-FOLDFWG operator, the following properties can be easily held.
Theorem 4.2. (Idempotency). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs, all are identical, i.e., sinh Éı̆ = sinh É. Then,

sinh−FOLDFWG(sinh É1, · · ·, sinh Éň) = sinh É. (4.3)

Theorem 4.3. (Boundedness). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs. Suppose sinh É− = min(sinh É1, · · ·, sinh Éň) and sinh É+ =
max(sinh É1, · · ·, sinh Éň). Then,

sinh É− ≤ sinh−FOLDFDWG(sinh É1, · · ·, sinh Éň) ≤ sinh É+. (4.4)

Theorem 4.4. (Monotonicity). Suppose sinh Éı̆ and sinh É/ı̆ (ı̆ = 1, · · ·, ň) are two family of sinh-
FOLDFNs, if sinh Éı̆ ≤ sinh É/ı̆ . Then,

sinh−FOLDFWG(sinh É1, · · ·, sinh Éň) ≤ sinh−FOLDFWG(sinh É/1, · · ·, sinh É/ň).

4.2. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy ordered weighted geometric
operator

Definition 4.2. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFOWG operator for ň dimension is a mapping,
sinh−FOLDFDOWG : sinh Éň → sinh É with the corresponding vector ξ = (ξ1, · · ·, ξň)T along with
ξı̆ > 0, and

∑ň
ı̆=1 ξı̆ = 1, as

sinh−FOLDFOWG(sinh É1, · · ·, sinh Éň) =
m⊗
ı̆=1

(sinh Éσ(ı̆))ξı̆ , (4.5)

where σ(1), · · ·, σ(ň) is a permutation of the (ı̆ = 1, · · ·, ň), for which sinh Éσ(ı̆−1) ≥ sinh Éσ(ı̆)

Theorem 4.5. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFOWG operator of dimension ň is a mapping,
sinh−FOLDFOWG : sinh Éň → sinh É with corresponding weight vector ξ = (ξ1, · · ·, ξň)T along with
ξı̆ > 0, and

∑ň
ı̆=1 ξı̆ = 1. Then,
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sinh−FOLDFOWG(sinh É1, · · ·, sinh Éň) =
ň⊗
ı̆=1

(sinh Éσ(ı̆))ξı̆

=




ň∏̆
ı=1

(
sinh

(
µÉσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − νÉσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − ηÉσ(ı̆)

) f
)ξı̆

 ,
ň∏̆
ı=1

(
αÉσ(ı̆)

)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 −

(
βÉσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 −

(
γÉσ(ı̆)

) f
)ξı̆





,

where σ(1), · · ·, σ(ň) is the permutation of the (ı̆ = 1, · · ·, ň), for which sinh Éσ(ı̆−1) ≥ sinh Éσ(ı̆).

The following properties can be easily illustrated by utilizing sinh-FOFOWG.
Theorem 4.6. (Idempotency). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOFNs, all are identical, i.e., sinh Éı̆ = sinh É. Then,

sinh−FOLDFOWG(sinh É1, · · ·, sinh Éň) = sinh É. (4.6)

Theorem 4.7. (Boundedness). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs. Suppose that sinh É− = min(sinh É1, · · ·, sinh Éň) and sinh É+ =
max(sinh É1, · · ·, sinh Éň). Then,

sinh É− ≤ sinh−FOLDFOWG(sinh É, ..., sinh Éň) ≤ sinh É+. (4.7)

Theorem 4.8. (Monotonicity). Suppose

sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ = 1, · · ·, ň)

be a family of sinh-FOLDFNs, if sinh Éı̆ ≤ sinh É/ı̆ . Then,

sinh−FOLDFOWG(sinh É1, · · ·, sinh Éň) ≤ sinh−FOLDFOWG(sinh É/1, · · ·, sinh É/ň).

where, the permutation of sinh Éı̆(ı̆ = 1, · · ·, ň) is sinh É/ı̆ (ı̆ = 1, · · ·, ň).
By Def. (4.2) , we determine that the sinh-FOLDFWG operator weights are the efficient way to

calculate the sinh-FOLDF value. The sinh-FOFOWG operator weight vector is the precise form of
the organized position of sinh-FOLDF values. The sinh-FOLDFWG and sinh-FOFOWG operators use
weights to express a number of interrelated elements. Since it is typically believed that these aspects
will be the same, we create the sinh-FOLDFHG operator to get around this restriction.
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4.3. Sine hyperbolic fractional orthotriple linear Diophantine fuzzy hybrid geometric operator

Definition 4.3. Suppose sinh Éı̆ =
{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
(ı̆ =

1, · · ·, ň) be a family of sinh-FOLDFNs. A sinh-FOLDFHG operator of ň dimension is a mapping,
sinh−FOLDFHG : sinh Éň → sinh É with corresponding weight ξ = (ξ1, · · ·, ξň)T as ξı̆ > 0, and∑ň
ı̆=1 ξı̆ = 1. Then,

sinh−FOLDFHG(sinh É1, · · ·, sinh Éň) =
ň⊗
ı̆=1

(
sinh ˜́Eσ(ı̆)

)ξı̆

=




ň∏̆
ı=1

(
sinh

(̃
µÉσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − ν̃Éσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 − sinh

(
1 − η̃Éσ(ı̆)

) f
)ξı̆

 ,
ň∏̆
ı=1

(
α̃Éσ(ı̆)

)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 −

(
β̃Éσ(ı̆)

) f
)ξı̆
,

f

√
1 −

ň∏̆
ı=1

(
1 −

(̃
γÉσ(ı̆)

) f
)ξı̆





,

where sinh ˜́Eσ(ı̆) denotes the value of the ı̆th largest weight sine hyperbolic FOLDFNs, and sinh ˜́Eσ(ı̆) =(
sinh Éı̆

)ňwı̆
(ı̆ = 1, · · ·, ň), and w = (w1, · · ·,wň)T is the associated weights of

.

sinh Éσ(ı̆) with wı̆ > 0,
and

∑ň
ı̆=1 wı̆ = 1, ň is the balancing coefficient. When the operator is equal to w = (1/ň, · · ·, 1/ň)T ,

sinh-FOLDFWG and sinh-FOLDFOWG are regarded as a special case of sinh-FOLDFHG operator.
Since the sinh-FOLDFHG operator denoted the degree and structured condition of the disagreement
statements, it is a generalized version of the sinh-FOFWG and sinh-FOLDFOWG operators.

5. MCGDM approach based on sinh-fractional orthotriple linear Diophantine fuzzy
aggregation operators

Let’s assume, we have a DM problem with m possible alternatives
(
ℜ1, · · ·,ℜm

)
, ň possible

attributes
(
ℑ1, · · ·,ℑň

)
and d experts (E1, · · ·, Ed). Let the expert and attribute weights ϖ = (ϖ1, · ·

·, ϖd)T and ξ = (ξ1, · · ·, ξň)T , respectively. Where, ϖ, ξ ∈ [0, 1] and
∑ň

j=1ϖ j, ξ j = 1 are exist. Each
expert Eκ evaluates the offered options ℜı̆ in terms of FOLDFNs and rates them according to the
attribute ℑ j. The steps listed below are used.

Step 1. Using the fractional orthotriple fuzzy information developed in the decision matrix.
Step 2. If the decision matrix contains cost type data, normalize it according to the following

principle, such as

ℜκı̆ j =


{〈

sinh
(
µÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
1 − ηÉı̆

) f
〉
,
〈
αÉı̆ , βÉı̆ , γÉı̆

〉}
, sinh Éı̆ is benefit type;{〈

sinh
(
1 − ηÉı̆

) f
, sinh

(
1 − νÉı̆

) f
, sinh

(
µÉı̆

) f
〉
,
〈
γÉı̆ , βÉı̆ , αÉı̆

〉}
, sinh Éı̆ is cost type.
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Step 3a. Combine the various preferences of the alternatives ℜκı̆ j (κ = 1, · · ·, d) using the sinh-
FOLDFWA operator to createℜı̆ j.

Step 3b. Combine the various preferences of the alternatives ℜκı̆ j (κ = 1, · · ·, d) using the sinh-
FOLDFWG operator to createℜı̆ j.

Step 4a. Get the sum of the values for each ℜı̆ using the suggested operator (sinh-FOLDFOWA)
and the weight vector ξ = (ξ1, · · ·, ξň)T .

Step 4b. Get the sum of the values for each ℜı̆ using the suggested operator (sinh-FOLDFOWG)
and the weight vector ξ = (ξ1, · · ·, ξň)T .

Step 5. Determine the alternative score values, use Eq (2.7).

Step 6. Give each possibility ℜı̆(ı̆ = 1, · · ·, 4) a ranking based on the definition of (2.1) and then
select the top one.

6. Numerical example

Using a numerical example to choose the best industry for investment out of four options, the
proposed MCGDM method is illustrated (adapted from [18]).

The company’s board of directors decided to make use of idle capital by making an investment in
a new sector of the economy. Four industries were chosen as prospective areas for investment after
the preliminary assessment. The four alternative ℜ1 : Industries are manufacturing industry, ℜ2 :
Real estate development industry, ℜ3 : Education and training industry, and ℜ4 : Medical industry.
The directors have assembled a group of specialists to decide which investment would be the greatest
decision. These professionals were asked to rate the four alternative industries using the following four
criteria:

ℑ1 : Level of capital gain,

ℑ2 : Market potential,

ℑ3 : Growth potential,

ℑ4 : Political stability,

The three experts, E1, E2, and E3, were permitted to employ sinh-FOLDFNs to provide adequate
freedom in their assessments of the values of the key criteria of each alternative industry.

Assume that the weights for the expert and the criteria are, respectively, ϖ = (0.4, 0.3, 0.3)T and
ξ = (0.3, 0.2, 0.3, 0.2)T . The sinh-FOLDFWA and sinh-FOLDFWG operators first remedied the issue.
The following matrix includes specific information on expert evaluation.

Step 1. Three decision Tables given by three experts are listed below (see Tables 1–3):
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Table 1. sinh-FOLDF information given by first expert.

ℑ1 ℑ2 ℑ3 ℑ4

ℜ1

(
⟨0.6, 0.5, 0.4⟩ ,
⟨0.4, 0.6, 0.4⟩

) (
⟨0.6, 0.4, 0.3⟩ ,
⟨0.7, 0.3, 0.2⟩

) (
⟨0.6, 0.4, 0.5⟩ ,
⟨0.5, 0.4, 0.4⟩

) (
⟨0.4, 0.5, 0.2⟩ ,
⟨0.7, 0.3, 0.2⟩

)
ℜ2

(
⟨0.7, 0.3, 0.2⟩ ,
⟨0.4, 0.6, 0.3⟩

) (
⟨0.7, 0.2, 0.5⟩ ,
⟨0.4, 0.5, 0.2⟩

) (
⟨0.5, 0.4, 0.3⟩ ,
⟨0.4, 0.5, 0.2⟩

) (
⟨0.3, 0.7, 0.5⟩ ,
⟨0.5, 0.4, 0.4⟩

)
ℜ3

(
⟨0.5, 0.4, 0.4⟩ ,
⟨0.6, 0.4, 0.3⟩

) (
⟨0.4, 0.6, 0.3⟩ ,
⟨0.7, 0.5, 0.2⟩

) (
⟨0.7, 0.5, 0.2⟩ ,
⟨0.5, 0.4, 0.2⟩

) (
⟨0.5, 0.4, 0.5⟩ ,
⟨0.4, 0.5, 0.2⟩

)
ℜ4

(
⟨0.7, 0.5, 0.3⟩ ,
⟨0.6, 0.7, 0.2⟩

) (
⟨0.6, 0.7, 0.2⟩ ,
⟨0.4, 0.2, 0.4⟩

) (
⟨0.4, 0.5, 0.2⟩ ,
⟨0.4, 0.6, 0.3⟩

) (
⟨0.4, 0.2, 0.4⟩ ,
⟨0.4, 0.6, 0.3⟩

)

Table 2. sinh-FOLDF information given by second expert.

ℑ1 ℑ2 ℑ3 ℑ4

ℜ1

(
⟨0.6, 0.4, 0.7⟩ ,
⟨0.5, 0.2, 0.3⟩

) (
⟨0.4, 0.5, 0.7⟩ ,
⟨0.3, 0.5, 0.4⟩

) (
⟨0.5, 0.6, 0.4⟩ ,
⟨0.6, 0.5, 0.2⟩

) (
⟨0.3, 0.6, 0.2⟩ ,
⟨0.5, 0.7, 0.3⟩

)
ℜ2

(
⟨0.5, 0.7, 0.3⟩ ,
⟨0.3, 0.6, 0.7⟩

) (
⟨0.3, 0.6, 0.2⟩ ,
⟨0.5, 0.2, 0.3⟩

) (
⟨0.5, 0.2, 0.3⟩ ,
⟨0.3, 0.6, 0.2⟩

) (
⟨0.5, 0.4, 0.3⟩ ,
⟨0.2, 0.3, 0.4⟩

)
ℜ3

(
⟨0.2, 0.6, 0.3⟩ ,
⟨0.6, 0.5, 0.2⟩

) (
⟨0.5, 0.3, 0.4⟩ ,
⟨0.3, 0.7, 0.4⟩

) (
⟨0.6, 0.4, 0.5⟩ ,
⟨0.6, 0.2, 0.5⟩

) (
⟨0.3, 0.7, 0.4⟩ ,
⟨0.6, 0.5, 0.2⟩

)
ℜ4

(
⟨0.5, 0.4, 0.5⟩ ,
⟨0.5, 0.2, 0.3⟩

) (
⟨0.6, 0.5, 0.2⟩ ,
⟨0.4, 0.3, 0.6⟩

) (
⟨0.4, 0.5, 0.6⟩ ,
⟨0.3, 0.7, 0.4⟩

) (
⟨0.6, 0.3, 0.6⟩ ,
⟨0.3, 0.6, 0.5⟩

)

Table 3. sinh-FOLDF information given by third expert.

ℑ1 ℑ2 ℑ3 ℑ4

ℜ1

(
⟨0.6, 0.3, 0.5⟩ ,
⟨0.2, 0.5, 0.3⟩

) (
⟨0.6, 0.7, 0.3⟩ ,
⟨0.3, 0.4, 0.6⟩

) (
⟨0.7, 0.5, 0.3⟩ ,
⟨0.3, 0.4, 0.5⟩

) (
⟨0.5, 0.3, 0.2⟩ ,
⟨0.5, 0.2, 0.4⟩

)
ℜ2

(
⟨0.7, 0.3, 0.5⟩ ,
⟨0.3, 0.4, 0.5⟩

) (
⟨0.7, 0.5, 0.4⟩ ,
⟨0.6, 0.3, 0.5⟩

) (
⟨0.5, 0.3, 0.2⟩ ,
⟨0.5, 0.3, 0.2⟩

) (
⟨0.3, 0.4, 0.5⟩ ,
⟨0.7, 0.5, 0.3⟩

)
ℜ3

(
⟨0.6, 0.7, 0.2⟩ ,
⟨0.5, 0.3, 0.2⟩

) (
⟨0.3, 0.4, 0.5⟩ ,
⟨0.2, 0.6, 0.5⟩

) (
⟨0.6, 0.4, 0.5⟩ ,
⟨0.3, 0.4, 0.5⟩

) (
⟨0.5, 0.5, 0.4⟩ ,
⟨0.5, 0.3, 0.2⟩

)
ℜ4

(
⟨0.3, 0.4, 0.6⟩ ,
⟨0.6, 0.4, 0.3⟩

) (
⟨0.4, 0.2, 0.4⟩ ,
⟨0.7, 0.5, 0.3⟩

) (
⟨0.2, 0.5, 0.3⟩ ,
⟨0.6, 0.2, 0.3⟩

) (
⟨0.6, 0.4, 0.3⟩ ,
⟨0.2, 0.4, 0.5⟩

)

Step 2. Since every criterion represents a benefit, normalization is not necessary.
Step 3a. Let the experts’ weight, which equals ϖ = (0.4, 0.3, 0.3)T and f = 3, be the deciding

factor. Then, using the supplied decision matrix, apply the sinh-FOLDFWA operator to produce a new
aggregated Table 4.
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Table 4. Aggregated values based on sinh-FOLDFWA operator.

ℑ1 ℑ2 ℑ3 ℑ4

ℜ1

(
⟨0.35, 0.36, 0.41⟩ ,
⟨0.43, 0.13, 0.32⟩

) (
⟨0.23, 0.35, 0.42⟩ ,
⟨0.23, 0.33, 0.27⟩

) (
⟨0.22, 0.28, 0.36⟩ ,
⟨0.25, 0.23, 0.33⟩

) (
⟨0.36, 0.27, 0.19⟩ ,
⟨0.25, 0.25, 0.34⟩

)
ℜ2

(
⟨0.26, 0.53, 0.29⟩ ,
⟨0.61, 0.45, 0.15⟩

) (
⟨0.46, 0.32, 0.21⟩ ,
⟨0.19, 0.24, 0.35⟩

) (
⟨0.53, 0.38, 0.42⟩ ,
⟨0.55, 0.17, 0.25⟩

) (
⟨0.43, 0.42, 0.23⟩ ,
⟨0.53, 0.28, 0.43⟩

)
ℜ3

(
⟨0.49, 0.14, 0.50⟩ ,
⟨0.27, 0.25, 0.36⟩

) (
⟨0.37, 0.24, 0.32⟩ ,
⟨0.41, 0.42, 0.24⟩

) (
⟨0.31, 0.16, 0.33⟩ ,
⟨0.36, 0.23, 0.30⟩

) (
⟨0.31, 0.34, 0.36⟩ ,
⟨0.34, 0.42, 0.15⟩

)
ℜ4

(
⟨0.56, 0.26, 0.34⟩ ,
⟨0.35, 0.47, 0.423⟩

) (
⟨0.56, 0.13, 0.13⟩ ,
⟨0.28, 0.24, 0.42⟩

) (
⟨0.33, 0.23, 0.24⟩ ,
⟨0.46, 0.457, 0.29⟩

) (
⟨0.25, 0.13, 0.45⟩ ,
⟨0.43, 0.236, 0.30⟩

)

Step 3b. Let the experts’ weight, which equals ϖ = (0.4, 0.3, 0.3)T and f = 3, be the deciding
factor. Then, using the supplied decision matrix, apply the sinh-FOLDFWG operator to produce a new
aggregated Table 5.

Table 5. Aggregated values based on sinh-FOLDFWG operator.

ℑ1 ℑ2 ℑ3 ℑ4

ℜ1

(
⟨0.45, 0.49, 0.24⟩ ,
⟨0.44, 0.24, 0.52⟩

) (
⟨0.35, 0.23, 0.52⟩ ,
⟨0.43, 0.52, 0.52⟩

) (
⟨0.43, 0.39, 0.21⟩ ,
⟨0.35, 0.23, 0.40⟩

) (
⟨0.34, 0.52, 0.25⟩ ,
⟨0.36, 0.23, 0.23⟩

)
ℜ2

(
⟨0.53, 0.16, 0.33⟩ ,
⟨0.35, 0.43, 0.39⟩

) (
⟨0.28, 0.51, 0.38⟩ ,
⟨0.31, 0.43, 0.42⟩

) (
⟨0.20, 0.42, 0.36⟩ ,
⟨0.51, 0.45, 0.31⟩

) (
⟨0.31, 0.41, 0.34⟩ ,
⟨0.40, 0.31, 0.32⟩

)
ℜ3

(
⟨0.21, 0.46, 0.27⟩ ,
⟨0.23, 0.32, 0.42⟩

) (
⟨0.46, 0.42, 0.46⟩ ,
⟨0.32, 0.25, 0.21⟩

) (
⟨0.34, 0.25, 0.23⟩ ,
⟨0.29, 0.41, 0.59⟩

) (
⟨0.23, 0.36, 0.47⟩ ,
⟨0.24, 0.42, 0.56⟩

)
ℜ4

(
⟨0.61, 0.31, 0.13⟩ ,
⟨0.39, 0.62, 0.35⟩

) (
⟨0.47, 0.31, 0.20⟩ ,
⟨0.54, 0.33, 0.33⟩

) (
⟨0.21, 0.56, 0.30⟩ ,
⟨0.45, 0.32, 0.53⟩

) (
⟨0.47, 0.26, 0.32⟩ ,
⟨0.31, 0.32, 0.36⟩

)

Step 4a. Using f = 3 and the sinh-FOLDFOWA operator, we find the performance values for each
alternativeℜı̆(ı̆ = 1, · · ·, 4) using the specified weight vector ξ = (0.3, 0.2, 0.3, 0.2)T .

ℜ1 = (⟨0.672, 0.550, 0.344⟩ , ⟨0.678, 0.614, 0.457⟩),
ℜ2 = (⟨0.667, 0.358, 0.455⟩ , ⟨0.567, 0.448, 0.568⟩),
ℜ3 = (⟨0.461, 0.543, 0.341⟩ , ⟨0.767, 0.594, 0.367⟩),
ℜ4 = (⟨0.558, 0.462, 0.535⟩ , ⟨0.676, 0.348, 0.551⟩).

Step 4b. Using f = 3 and the sinh-FOLDFOWG operator, we find the performance values for each
alternativeℜı̆(ı̆ = 1, · · ·, 4) using the specified weight vector ξ = (0.3, 0.2, 0.3, 0.2)T .

ℜ1 = (⟨0.750, 0.561, 0.555⟩ , ⟨0.671, 0.588, 0.568⟩),
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ℜ2 = (⟨0.671, 0.535, 0.675⟩ , ⟨0.567, 0.469, 0.547⟩),
ℜ3 = (⟨0.567, 0.468, 0.459⟩ , ⟨0.776, 0.517, 0.468⟩),
ℜ4 = (⟨0.573, 0.446, 0.365⟩ , ⟨0.539, 0.660, 0.644⟩).

Step 5. The values of the alternativesℜı̆(ı̆ = 1, · · ·, 4) for all sinh-FOLDFNs are determined using
Def. (2.1) as follows;

Λ(ℜ1) = 0.040,Λ(ℜ2) = 0.032,Λ(ℜ3) = 0.045,Λ(ℜ4) = 0.011.

And

Λ(ℜ1) = −0.005,Λ(ℜ2) = −0.121,Λ(ℜ3) = 0.010,Λ(ℜ4) = −0.173.

Step 6. The following outcome is obtained by ranking the alternativesℜı̆(ı̆ = 1, · · ·, 4).

ℜ3 > ℜ1 > ℜ2 > ℜ4.

ℜ3 is therefore the most beneficial alternative.

7. Comparative analysis

In this section, the comparative study of sinh-FOFWA and sinh-FOFWG operators is established
with Spherical fuzzy and fractional orthotriple fuzzy aggregation operators. From our study, we claim
that the pre-existing aggregation operators in the environment of SFSs and FOFSs cannot handle the
data provided in the form of FOLDFNs.

We compare our defined method with current methods, such as [4, 6, 15, 23, 25, 26], which deal
with Spherical fuzzy operators and fractional orthotriple fuzzy operators. Our defined method is based
on sinh-FOF information. Operators exhibit advanced reliability in the sphere of actual manipulation.
Table 6 presents the results of the comparison. It has been found from the assessment Table 6 that
the best alternative produced utilizing the suggested strategy conforms to the results of these earlier
experiments. As a result, compared to other existing techniques, our suggested alternative selection
methodology using sinh-FOLDFWA and sinh-FOLDFWG operators is more adaptable and efficient.
ℜ3 is the preferred option according to all procedures, as indicated in Table 6, but different approaches
need different computation steps. For instance, the authors of the prior approaches aggregated
information using Spherical fuzzy and fractional orthotriple fuzzy operators, however in our suggested
method, we use sinh-FOLDF aggregation operators.
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Table 6. Score values and ranking using different methods.

Methods ℜ1 ℜ2 ℜ3 ℜ4 Ranking order
Kutlu et al. [15] 0.27 0.24 0.32 0.20 ℜ3 > ℜ1 > ℜ2 > ℜ4

Ashraf et al. [4] 0.77 0.679 0.82 0.64 ℜ3 > ℜ1 > ℜ2 > ℜ4

Riaz et al. [33] 0.39 0.376 0.47 0.44 ℜ3 > ℜ4 > ℜ1 > ℜ2

Abosuliman et al. [6] 0.145 0.15 0.15 0.14 ℜ3 > ℜ2 > ℜ1 > ℜ4

Naeem et al. [23] 0.46 0.41 0.49 0.43 ℜ3 > ℜ1 > ℜ4 > ℜ2

Qiyas et al. [25] 0.81 0.86 0.93 0.88 ℜ3 > ℜ4 > ℜ2 > ℜ1

Qiyas et al. [26] 0.72 0.72 0.75 0.68 ℜ3 > ℜ1 > ℜ2 > ℜ4

8. Conclusions

In this article, we investigated the issue of choosing a better alternative while employing sine
hyperbolic fractional orthotriple fuzzy information. We investigated averaging and geometric
operations based on algebraic operations in order to create specialized sinh-FOLDF aggregation
operators, such as the sinh-FOLDFWA, sinh-FOLDFOWA, sinh-FOLDFHA, sinh-FOLDFWG, sinh-
FOLDFOWG, and sinh-FOLDFHG operators. Some properties of the produced operators are
discussed. To deal with the ambiguity in the data, we applied operational laws based on sine hyperbolic
functions, which will prevent information loss during the study. The suggested strategy takes care of the
DM issue as well. The study is based on the representation of the sinh-FOLDFOLs, and the resulting
operators are generalizations of the existing operators from the provided instances. The defined AOs
are utilized for solving a MCGDM problem. Using a real-world situation, the effectiveness of the
suggested operators is evaluated. Finally, a comparison study has been given to demonstrate how the
suggested operators are advantageous. As a result, the suggested operators are more broad, consistent,
and detailed in order to address DM concerns in the FOLDFS environment.

In the future, we will extend our proposed idea to the Einstein operation, Hamacher operation,
Frank operation, and Bonferroni mean operation, Heronian mean operation. Also, in a decision-
making problem relate group decision makers, it should be reach a consensus before using aggregation
operators to get a collective opinion, such as [19, 35, 38, 46].
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