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ABSTRACT
The q-rung orthopair fuzzy set (qROFS) defined by Yager is a generalization of Atanassov intuitionistic fuzzy set (IFS) and
Pythagorean fuzzy sets (PyFSs). In this paper, we define the knowledge measure for qROFS by using the cosine inverse function.
The information precision and information content are two facets of knowledge measure. Both facets of knowledge measure
are considered. The properties of knowledge measure and their graphical explanations are discussed. An application of the
knowledge measure in multi-attribute group decision-making (MAGDM) problem under the confidence level approach is given.
A numerical example of the selection of renewable energy sources is discussed.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The membership function is employed to represent the informa-
tion in the fuzzy sets theory [1]. Real-world hesitations can be han-
dled impressively by fuzzy set theory. Atanassov explicated intu-
itionistic fuzzy set (IFS) as a generalization of the fuzzy set theory
[2]. The information in IFS is portrayed in the form of membership
(favor) and nonmembership (against) functions. The membership
and nonmembership degrees allocate the values from the unit inter-
val [0,1] with the constraint that their sum is less than or equal to
one that is if we represent the associate (membership) and nonas-
sociate (nonmembership) functions by 𝜉 and 𝜈, respectively, than
0 ≤ 𝜉 + 𝜈 ≤ 1. This constraint identifies a range of 𝜉 and 𝜈. The tri-
angular region in Figure 1 represents the set of order pairs available
for membership and nonmembership grades.

Yager defined Pythagorean fuzzy set (PyFS) as a generalization of
IFSs and extends the range of membership and nonmembership
functions that is decision-makers express their judgments more
freely than IFSs [3,4]. The membership 𝜉 and nonmembership
functions 𝜈 satisfies the following condition 0 ≤ 𝜉2 + 𝜈2 ≤ 1. The
circular region in Figure 1 represents the set of order pairs available
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Figure 1 Graphical representation of IFS, PyFS and
qROFSs (q = 3,10).

for membership and nonmembership grades for PyFSs. For more
about PyFSs, we refer to [5–8].
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Yager introduced the concept of q-rung orthopair fuzzy set
(qROFS) as a generalization of both IFSs and PyFSs [9,10]. The con-
dition for the membership 𝜉 and nonmembership 𝜈 functions is
0 ≤ 𝜉q + 𝜈q ≤ 1 where q ≥ 1. In Figure 1, the set of order pairs
available for membership and nonmembership grades for qROFSs
are displaced.

Figure 1 differentiate the set of order pairs available for member-
ship and nonmembership grades for IFSs, PyFSS and qROFSs (or
margin for decision-makers to make their judgments). According
to Ali [11], the range of the membership functions in IFS has an area
0.5 square unit in Figure 1. For PyFS the area increases to 0.77854
square unit which is 57% more than from the IFS case. For qROFS
(q=3), the area increases to 0.8832, which is approximately 13%
more than the PyFS case. The range of the membership function
covers up to 99% region of the unit square [0,1] × [0,1] for q=10
(see Figure 1). So for real-life applications, the value of q up to 10 is
more suitable although q is the real number.

The notion of neutrosophic sets is quite different from qROFSs. In
neutrosophic sets 𝜉 + i + 𝜈 ≤ 3 (where 𝜉, i and 𝜈 are membership,
indeterminacy and nonmembership grades respectively). There is a
paradoxical situation when 𝜉=i=𝜈=1, that is we cannot draw conclu-
sion for any element for which we have value (1,1,1), same happen
for the values in its neighborhood. That is there are infinite many
paradoxical values when we consider neutrosophic sets. But such
situations do not arise in qROFSs. Also, the neutrosophic set [12]
has three membership functions but the uncertainty index cannot
be dealt with in the neutrosophic set, and also there does not exist
any specific method to obtain an indeterminacy degree.

While dealing with real-life situations qROFSs provide more flex-
ible ways to define membership and non-membership grades.
That is why nowadays many researchers are showing keen inter-
est in qROFSs. Hussain et al. [13] combined the qROFS with
soft sets and defined their aggregation operators. The generalized
Maclaurin symmetric mean operators, the exponential aggregation
operators, the aggregation operators, the interaction Hamy mean
operators, the Dombi power partitioned Heronian mean opera-
tors, the power Maclaurin symmetric mean operators, the Heronian
mean operators and the power aggregation operators for qROFSs
were expounded in [14–20], respectively. The multiple heteroge-
neous relationships between membership functions and criterion
were explored by Yang et al. [21]. Verma [22] explained order-𝛼
divergence and entropy measures for qROFSs and applied to multi-
attribute group decision-making (MAGDM) problems. The enter-
prise resource planning systems selection problem was solved by
Hamy mean operators for qROFSs by Wang et al. [23]. The mul-
tiplicative consistency of preference relation of qROFSs was ana-
lyzed by Zhang et al. [24]. Du discussed the correlation coefficient
of qROFSs both on bounded and unbounded continuous universes
[25]. For more about decision-making and qROFSs, we refer to [26–
33].

De Luca and Termini [34] introduced the axioms for fuzzy entropy
which measures the fuzziness for fuzzy sets. Entropy has been
a rich area of interest for many researchers. Entropy for IFSs
was expounded by Bustince and Burillo [35]. Later Szmidt and
Kacprzyk [36] defined a ratio based entropy by using the Hamming
distance. The information about an intuitionistic fuzzy value (IFV)

is conveying properly by this entropy that is how much intuitionis-
tic fuzzy is an IFV? The distance, similarity, entropy and inclusion
measures for qROFSs were expounded by Peng and Liu [37].

The dissimilarity and similarity measures is a rich area for schol-
ars. Keeping in mind the applications of this area many researchers
work on dissimilarity and similarity measures. The applications of
this area was discussed in medical diagnosis, data mining, pattern
recognition, decision-making, clustering and in image processing.
The qROF multi-parametric similarity measure and combinative
distance-based assessment were used to assess the classroom teach-
ing quality [38]. The dissimilarity, similarity, entropy and inclusion
measures for qROFSs were defined by Peng and Liu [37]. The sim-
ilarity measures of qROFSs based on cosine and cotangent func-
tions were expounded by Wang et al. [39]. The Minkowski dissim-
ilarity measures (Hamming, Euclidean and Chebyshev distances)
for qROFSs were discussed in [40]. The TOPSIS method based on
improved cosine similarity measures was interpreted in [41]. A new
dissimilarity measure was defined with a nice interpretation. The
TOPSIS and ELECTRE were described based on this novel dissim-
ilarity measure for qROFSs in [42].

Knowledge is basically related to the information considered in
a particular useful context. The amount of information and the
amount of knowledge are closely linked. From practical point of
view, the transformation of information into the knowledge is very
important, like in decision-making. Generally it is thought that
knowledge measure is the dual of the entropy [43]. This approach
is also adopted in [44,45]. In this regard the point of view given by
Szmidt et al. [46] is bit different and they consider that a knowledge
measure must depend on both hesitancy index and the entropy.
Therefore while defining a knowledge measure in IFSs, both uncer-
tainty index and entropy must be taken into account [46]. So a
knowledge measure for IFSs is given in [46], which is based on both
uncertainty index and entropy. It was expected that for a constant
value of uncertainty index the knowledge measure defined in [46]
must behave dually to entropy. Actually this does not happen for
the above mentioned knowledge measure. Guo [47] and Guo and
Xu [48] think that the entropy and knowledge are two distinct mea-
sures therefore these should be dealt independently. An axiomatic
definition of knowledge measures is given in [47,48]. Knowledge
measure in [48] is based on information clarity and information
content. Singh et al. [49] proposed the knowledge, entropy and
inclusion measures for fuzzy sets and it’s application in image pro-
cessing. For more literature on knowledge measure, refer to [50,51].

In the first approach, the axiomatic framework of knowledge mea-
sures for qROFSs was defined [52]. The previous approach has con-
sidered the hesitancy index only. The higher value of knowledge
measure is attached to qROFS with lower hesitancy indices. In other
words, the approach considers the information content that is the
maximum information content that results in the maximum knowl-
edge measure. But the approach not considered the information
clarity or information precision. So, the proposed approach con-
template the both aspect of knowledge measure that is the informa-
tion content and information precision.

Since the qROFS is a generalization of both IFSs and PyFSs. Thus
the existing models to quantify the knowledge from the intuition-
istic fuzzy information are not suitable for Pythagorean and q-rung
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orthopair fuzzy environment. Therefore, we need to define a new
generalized knowledge measure for q-rung orthopair fuzzy envi-
ronment that quantifies the information from qROFSs.

Motivated by the Yager approach, we propose a method to quan-
tify the knowledge associated with qROFS. The knowledge asso-
ciated with q-rung orthopair fuzzy values (qROFVs) increases for
assured and precise information and decreases when the ambigu-
ity and uncertainty factor increases. The knowledge measure also
depend both on information precision and information content.
Also, the confidence level approach towards MAGDM problems is
essential in the information fusion step. But there does not exist any
study about how to find the confidence level. We have formulated
a procedure to find the confidence level in the information fusion
step.

To measure the amount of knowledge from information provided
in the form of qROFS, a novel axiomatic framework is proposed in
this paper that consider the information precision and information
content. The main contributions of our work are:

∙ A knowledge measure for qROFS based on inverse cosine
function is defined.

∙ The axiomatic characterization results are obtained for the
proposed knowledge measure.

∙ Properties of knowledge measure with their graphical
representation are discussed.

∙ A method to solve MAGDM problems under confidence level
is proposed.

The proposed knowledge measure differentiates among the
two clearly different situations: (i) the membership and non-
membership functions both have same values (i.e., we have equal
number of arguments in favor and against). (ii) We have no infor-
mation at all (i.e., the membership and nonmembership functions
both have values zero).

The remaining part of the paper is designed as follows: Section
2 consists of the basic definitions related to the IFS, PyFS and
qROFS. An axiomatic definition of knowledge measure and its
related properties with graphical explanations are investigated in
Sections 3–5. The applications of the proposed knowledge mea-
sure in MAGDM problems under confidence level approach are
explored in Section 6. The summary, limitations and future direc-
tions are debated in Section 8.

2. PRELIMINARIES

In this segment, the definitions of IFS, PyFS and qROFS and their
properties are mentioned. Let X = {t1,t2,...,tn} represents the uni-
versal set throughout the paper which is discrete, finite and non-
void discourse set. The membership and nonmembership functions
and unit interval [0,1] are represented as 𝜉R, 𝜈R and Δ, respectively,
throughout the paper.

Definition 1. An IFS R on a universal set X is defined as

R = {(𝜉R(ti),𝜈R(ti)) | ti ∈ X},

where 𝜉R : X → Δ and 𝜈R : X → Δwith constraint 𝜉R(ti)+𝜈R(ti) ≤ 1.
The quantity𝜋R(ti)=1−(𝜉R(ti)+𝜈R(ti)) is called the hesitancy degree
of the element ti ∈ X.

Definition 2. [3,4] A PyFS R on a universal set X is defined as

R={(𝜉R(ti),𝜈R(ti)) | ti ∈ X},

where 𝜉R : X → Δ and 𝜈R:X → Δ with constraint 𝜉2
R(ti)+𝜈2

R(ti) ≤ 1.

The quantity 𝜋R(ti)=
√

1 − (𝜉2
R(ti) + 𝜈2

R(ti)) is called the hesitancy
degree of the element ti ∈ X.

Definition 3. [9,10] A qROFS R on a universal set X is defined as

R = {(𝜉R(ti), 𝜈R(ti)) | ti ∈ X},

where 𝜉R : X → Δ and 𝜈R : X → Δwith constraint 𝜉q
R(ti)+𝜈

q
R(ti) ≤ 1.

The quantity 𝜋R(ti)=
(

1 − (𝜉q
R(ti) + 𝜈q

R(ti)
) 1

q is called the hesitancy
degree of the element ti ∈ X. For a fixed element ti ∈ X, the qROFS
(𝜉R(ti),𝜈R(ti)) is called the q-rung orthopair fuzzy value (qROFV).
For simplicity, we write (𝜉Ri

,𝜈Ri
) a qROFV instead of (𝜉R(ti),𝜈R(ti)).

For any two qROFVs b1 = (𝜉b1
,𝜈b1

) and b2 = (𝜉b2
,𝜈b2

), the basic laws
are defined as follows:

1. bc
1 = (𝜈b1

,𝜉b1
)

2. b1 ∨ b2 = (max{𝜉b1
,𝜉b2

},min{𝜈b1
,𝜈b2

})

3. b1 ∧ b2 = (min{𝜉b1
,𝜉b2

},max{𝜈b1
,𝜈b2

})

3. KNOWLEDGE MEASURE

Knowledge is basically related to the information considered in
a particular useful context. The amount of information and the
amount of knowledge are closely linked. From practical point of
view, the transformation of information into the knowledge is very
important, like in decision-making. In this part, we define the
knowledge measure for qROFS by using the cosine inverse function.
The information precision and information content are two facets
of knowledge measure. Both facets of knowledge measure are con-
sider in the given method.

In the following, we provide the axiomatic definition of knowledge
measure for qROFSs.

Definition 4. The knowledge measure Iq of a qROFS in X is a
function from a qROFS to a unit interval, that is, Iq : qROFS →
[0,1], which satisfies the following properties:

K1. Iq(R) = 1, iff R is a crisp set.

K2. Iq(R) = 0, iff 𝜋R(ti) = 1, ∀ti ∈ X.

K3. Iq(R) ≥ Iq(S), iff the higher information content of the elements
of R with greater information precision in comparison with S, that
is, (

𝜉q
R(tj) + 𝜈q

R(tj)
) ≥ (

𝜉q
S (tj) + 𝜈q

S (tj)
)
and|||𝜉q

R(tj) − 𝜈q
R(tj)

||| ≥ |||𝜉q
S (tj) − 𝜈q

S (tj)
||| , ∀ tj ∈ X.

K4. Iq(R) = Iq(Rc), where Rc represents the complement of R.
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Now, we define the knowledge measure for qROFS by using cosine
inverse function. The knowledge is measured by considering mem-
bership, nonmembership and hesitancy degrees.

Definition 5. Let R be a qROFS in X. Then, the knowledge mea-
sure of R is defined and expressed as

Iq
c (R) =

(
1

2n

n∑
j=1

(|𝜉q
R
(

tj
)
− vq

R
(

tj
) |+

2
𝜋

cos−1 [𝜋q
R
(

tj
)])) 1

9

(1)

Since 𝜋R(tj)=
(

1 −
(
𝜉q

R(tj) + 𝜈q
R(tj)

)) 1
q , Iq

c (R) can be expressed as

Iq
c (R) =

(
1

2n

n∑
j=1

(|𝜉q
R
(

tj
)
− vq

R
(

tj
) |+

2
𝜋

cos−1 [1 −
(
𝜉q

R
(

tj
)
+ vq

R
(

tj
))])) 1

q

(2)

If X = {t}, then the knowledge measure for a qROFS R is represented
as

Iq
c (R) =

(
1
2

(|𝜉q
R(t) − vq

R(t)|+
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

)]))1∕q (3)

Remark 1. It is important to note that the knowledge measure
presented in Equation (3) has two parts, that is, |𝜉q

R(t) − 𝜈q
R(t)|

and 2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + 𝜈q
R(t)

)]
. Since the knowledge measure has

two facets that is information content and information precision.
The first part

(|𝜉q
R(t) − 𝜈q

R(t)|) represents the information preci-
sion, while the second part

(
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + 𝜈q
R(t)

)])
indi-

cates the information content.

Since there is maximum opacity at 𝜉(t) = 𝜈(t) and no information
precision. So, the first part becomes zero for this case and the
knowledge is measured by the second part that is information con-
tents based knowledge is measured.

The information content is maximum at
(
𝜉q

R(t) + 𝜈q
R(t)

)
= 1.

There are infinite many combinations of membership and non-
membership degrees for which

(
𝜉q

R(t) + 𝜈q
R(t)

)
= 1. The second part

remains maximum one for this case that is constant. Therefore, the
knowledge is measured based on the first part.

The graphical representation of both parts displaced in Figures 2
and 3. It can easily be seen from Figure 2 that the first part have value
one two times for crisp cases and remains zero for 𝜉(t) = 𝜈(t). While
the second part displaced in Figure 3 and touches zero at (0,0). The
graph remains maximum one for

(
𝜉q

R(t) + 𝜈q
R(t)

)
= 1.

The following axiomatic properties are satisfied for the proposed
knowledge measure Iq

c (Definition 5).

Theorem 1. If R and S be two qROFSs in X = {t}, then knowledge
measure Iq

c satisfies the following axiomatic properties:

(K1). Iq
c (R) = 1, iff R is a crisp set.

(K2). Iq
c (R) = 0, iff 𝜋R(t) = 1.

Figure 2 First part of Equation (3).

Figure 3 Second part of Equation (3).

(K3). Iq
c (R) ≥ Iq

c (S), iff the higher information content of the elements
of R with greater information precision in comparison with S, that is,(

𝜉q
R(t) + 𝜈q

R(t)
) ≥ (

𝜉q
S (t) + 𝜈q

S (t)
)
and

|𝜉q
R(t) − 𝜈q

R(t)| ≥ |𝜉q
S (t) − 𝜈q

S (t)|, t ∈ X.

(K4). Iq
c (R) = Iq

c (Rc).

Proof. Proof. (K1). Since 𝜋R =
(

1 − 𝜉q
R − 𝜈q

R
) 1

q , we have

Iq
c (R) = 1

⇔ 1
2

(|𝜉q
R(t) − vq

R(t)|+
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

)])
= 1

⇔
(|𝜉q

R(t) − vq
R(t)|+

2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

)])
= 2.

(4)

The left-hand side of the Equation (4) has two parts, that is, |𝜉q
R(t)−

𝜈q
R(t)| and 2

𝜋
cos−1 [1 −

(
𝜉q

R(t) + 𝜈q
R(t)

)]
. The both parts have the

following boundaries:

0 ≤ |𝜉q
R(t) − 𝜈q

R(t)| ≤ 1 and
0 ≤ 2

𝜋
cos−1 [1 −

(
𝜉q

R(t) + 𝜈q
R(t)

)] ≤ 1

Thus Equation (4) holds only when both parts have value one,
that is,

|𝜉q
R(t) − 𝜈q

R(t)|= 1 and
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + 𝜈q
R(t)

)]
= 1. (5)
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Now, |𝜉q
R(t)−𝜈q

R(t)|= 1 only when 𝜉R(t) = 1 and 𝜈R(t) = 0 or 𝜉R(t) = 0
and 𝜈R(t) = 1. The second part 2

𝜋
cos−1 [1 −

(
𝜉q

R(t) + 𝜈q
R(t)

)]
is one

when 𝜉q
R(t) + 𝜈q

R(t) = 1. This can also be obtained for 𝜉R(t) = 1 and
𝜈R(t)=0 or 𝜉R(t) = 0 and 𝜈R(t) = 1. Simultaneously, the both parts of
Equation (5) obtained only when 𝜉R(t) = 1 and 𝜈R(t) = 0 or 𝜉R(t) = 0
and 𝜈R(t) = 1.

Therefore, the necessary and sufficient condition for Equation (4)
to hold is 𝜉R(t)=1 and 𝜈R(t)=0 or 𝜉R(t)=0 and 𝜈R(t)=1.

Hence it holds only for crisp sets.

(K2). From Equation (2), we have

Iq
c (R) = 0

⇔ 1
2

(|𝜉q
R(t) − vq

R(t)|+
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

)])
= 0

⇔
(|𝜉q

R(t) − vq
R(t)|+

2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

)])
= 0.

(6)

The left-hand side of the Equation (6) has two parts, that is, |𝜉q
R(t)−

𝜈q
R(t)| and 2

𝜋
cos−1 [1 −

(
𝜉q

R(t) + 𝜈q
R(t)

)]
. Thus Equation (6) holds

only when

|𝜉q
R(t) − 𝜈q

R(t)|= 0 and

2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + 𝜈q
R(t)

)]
= 0.

(7)

Now, |𝜉q
R(t) − 𝜈q

R(t)|= 0 when 𝜉R(t) = 𝜈R(t) and this includes
𝜉R(t) = 𝜈R(t) = 0. The second part 2

𝜋
cos−1 [1 −

(
𝜉q

R(t) + 𝜈q
R(t)

)]
is

zero only when 𝜉q
R(t) + 𝜈q

R(t) = 0. This can only be obtained for
𝜉R(t) = 𝜈R(t) = 0. Simultaneously, the both parts of Equation (7)
obtained only when 𝜉R(t) = 𝜈R(t) = 0.

Therefore, the necessary and sufficient condition for Equation (6)
to hold is 𝜉R(t) = 𝜈R(t) = 0. Thus Iq

c (R) = 0, iff 𝜋R = 1.

(K3). To prove the axiom K3, let u = |𝜉q
R(t) − 𝜈q

R(t)| and
v =

(
𝜉q

R(t) + 𝜈q
R(t)

)
, where 0 ≤ u ≤ v ≤ 1. Equation (3) can take the

from as

Iq
c (R) =

(1
2

(
u + 2

𝜋
cos−1 [1 − v]

))1/q
(8)

To complete the proof, we need to show the function in Equation
(8) monotonically increasing with respect to u and v.

𝜕Iq
c (R)
𝜕u

=
2−1/q

(
u + 2

𝜋
cos−1[1 − v]

) 1
q
−1

q
> 0, (9)

𝜕Iq
c (R)
𝜕v

=
2

1−
1
q
(

u + 2
𝜋

cos−1 [1 − v]
) 1

q
−1

𝜋q
√

1 − (1 − v)2
> 0 (10)

So, the Equations (9) and (10) show the required monotonicity.

(K4). Iq
c (R)=Iq

c (Rc) is obvious from Equation (2).

4. PROPERTIES OF KNOWLEDGE
MEASURE Iqc

This part consist of properties and analysis of the knowledge mea-
sure Iq

c . The graphical explanations are given to support the analysis.

P1: Figure 4 shows the geometric interpretation of knowledge mea-
sure Iq

c for qROFSs. For each qROFS, there exists a point from region
ADE. By analyzing Figure 4, we have noticed following properties:

1. Point A represents the most fuzzy qROFS
(0, 0, 1)(𝜉R(t)=𝜈R(t)=0) and the value of Iq

c is zero. It means, we
have no information.

2. While points B and C represent the crisp sets and the value
of Iq

c is one for both points. From Figure 4, we observed
that the graph approaches value 1 two times for crisp sets
(i.e., 𝜉R(t) = 1 or 𝜈R(t) = 1). It means, we are sure about data or
have complete information.

3. The graph remains symmetric around line AD, which shows
the complement case that is the values remains same for com-
plement of the qROFSs.

P2: The proposed knowledge measure Iq
c differentiates among the

two clearly different situations:

(i) The membership (𝜉R(t)) and nonmembership (𝜈R(t)) func-
tions have same values (we have equal number of arguments
in favor and against, i.e., 𝜉R(t)=𝜈R(t)).

(ii) We have no information at all (the membership and non-
membership functions have values zero, i.e., 𝜉R(t)=𝜈R(t)=0).

In fact, the information measure should be different for the
most fuzzy qROFS R = (x,0,0) (𝜉R(t) = 𝜈R(t) = 0) and the case when
𝜉R(t) = 𝜈R(t) ≠ 0. The Equation (3) can be rewritten as

Iq
c (R) =

(
cos−1 [1 − 2𝜉R(t)q]

𝜋

) 1
q

(11)

Figure 4 Graphical representations of knowledge
measure I3

c .
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Figure 5 Knowledge measure when 𝜉R(t)=𝜈R(t).

Equation (11) shows that there is no information precision for
𝜉(t) = 𝜈(t) and the first part becomes zero for this case. Thus the
knowledge is measured by the second part that is information con-
tents based knowledge is measured.

Figure 5 shows the geometric interpretation of knowledge measure
I3

c for qROFSs when 𝜉R(t) = 𝜈R(t) and I3
c is a strictly increasing func-

tion with respect to membership degree. It means the knowledge
measure I3

c is consistent with the case when 𝜉R(t) = 𝜈R(t).

P3: Now we consider the case when 𝜋R(t) = 0. Since

𝜋R(t) =
(

1 − 𝜉q
Rj
− 𝜈q

Rj

) 1
q , therefore, 𝜈q

Rj
= 1 − 𝜉q

Rj
. Then Equation

(3) can be rewritten as

Iq
c (R) =

(
1
2

(|2𝜉q
R(t) − 1| + 2

𝜋
cos−1 [0]

))1/q

Iq
c (R) =

(
1
2

(|2𝜉q
R(t) − 1| + 1

))1/q (12)

Since the information content is maximum at 𝜋R(t) = 0, therefore,
the second part is maximum, that is, one. Also, it is important to
note that there are infinite combinations of 𝜉R(t) and 𝜈R(t) for which
𝜋R(t) = 0. Graphically view of that points can be seen in Figure 1,
where the graph start from (1,0) and end at (0,1). Since the knowl-
edge is maximum at crisp points, therefore, the knowledge got high-
est value at end points and minimum at the middle point, that is,
𝜉R(t) = 𝜈R(t). So, when move from (1,0) to 𝜉R(t) = 𝜈R(t), the knowl-
edge decreases, while increases from 𝜉R(t) = 𝜈R(t) to (0,1).

P4: The proposed knowledge measure I1
c is consistent with entropy

measure of De Luca and Termini34. Since every element belonging
to the fuzzy set R can be written as a point = (𝜉R(t),𝜈R(t)), where
𝜈R(t) = 1 − 𝜉R(t). Therefore, I1

c can be expressed as

I1
c(R) =

(1
2
(|2𝜉R(t) − 1| + 1

))
As a dual measure, the entropy measure of fuzzy set R is given by

E(R) = 1 −
(

1
2

(|2𝜉R(t) − 1| + 1
))

= 1
2

(
1 − |2𝜉R(t) − 1|) (13)

The geometric interpretation of E(R) is given in Figure 6. From
Figure 6, we can easily see that E(R) has value zero only for crisp
cases. E(R) has maximum value at (x,0.5,0.5). At last, E(R) is greater

Figure 6 Knowledge measure as De Luka and Termini
entropy.

than E(S) where R is any “sharpened” version of S, that is any fuzzy
set such that E(S) ≥ E(R) if 𝜉R(t) ≥ 0.5 and E(S) ≤ E(R) if
𝜉R(t) ≤ 0.5. Hence all the properties for De Luca and Termini
entropy are satisfied for E(R).

P5: Next, we have seen that when 𝜋(t)=c (constant), then Iq
c reaches

a minimum for 𝜉(t) = 𝜈(t). Since 𝜋(t) = (1 − (𝜉q(t) + 𝜈q(t)))
1
q and

(𝜉q(t) + 𝜈q(t)) = 1 − 𝜋q(t) = 1 − cq, therefore, 𝜈q(t) = 1 − cq − 𝜉q(t).
Then Equation (2) takes the form

Iq
c (R) =

(
1
2

(|𝜉q
R(t) − vq

R(t)|+
2
𝜋

cos−1 [1 −
(
𝜉q

R(t) + vq
R(t)

]))1∕q

=
(

1
2

(|2𝜉q
R(t) + cq − 1| + 2

𝜋
cos−1 [cq]

))1∕q
(14)

Now, the part |2𝜉q
R(t) + cq − 1| in Equation (14) is responsible for

the minimal point. The minimal point exists at 2𝜉q
R(t) + cq − 1 = 0,

that is 𝜉R(t) = ((1 − cq)/2)1/q.

Definition 6. To make analysis more clear and understandable,
for each fixed value of 𝜋=c (constant), we define a relation ∼Iq

R
such

that

𝛼 ∼Iq
R
𝛽 ⇔ 𝜋(𝛼) = 𝜋(𝛽). (15)

Remark 2. For each fixed value of 𝜋, we have an infinite num-
ber of combinations for qROFVs. But the value of knowledge mea-
sure is not necessarily the same for two qROFVs having the same
value of 𝜋. For example, (0.4,0.2) and (0.3,0.3) have same hesitancy
index 𝜋=0.4. But the values of knowledge measure are 0.46901 and
0.36901, respectively. Now all such points having the same hesi-
tancy index constitute an equivalence class. We observe the behav-
ior of knowledge measures in particular equivalence classes.

Theorem 2. The relation ∼Iq
R
define in Equation (15) is an equiva-

lence relation.

Proof. Straightforward ☐

From Theorem 2, it is clear that the quotient set is defined with the
help of ∼Iq

R
and Ⓡ (set of all qROFVs). That is,

K=Ⓡ/ ∼Iq
R

={[𝛼]∼Iq
R

: 𝛼 ∈ Ⓡ}. (16)
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Figure 7 The shape of some classes generated by relation
∼I1

R
(q=1).

It is important to note that for each class [𝛼]∼Iq
R
∈ K, the value of

hesitancy index 𝜋 is constant (fixed) for all qROFVs 𝛼 ∈ Ⓡ. The
graphical view of some classes in K obtained by the relation ∼I1

R
is

given in Figure 7.

It is necessary to observe the behavior of the classes in K. We have
seen from Figure 7 that the minimal point of classes exists at 𝜉 = 𝜈.
Since the maximum uncertainty/ambiguity is attached when the
membership degree is equal to the nonmembership degree. Also,
knowledge is related to information. Therefore, it is intuitive to
obtain the minimum value of knowledge measure when member-
ship degree is equal to the non-membership degree in a class.

5. ENTROPY INDEPENDENT KNOWLEDGE
MEASURE

In this section, the analytical and numerical proofs are provided
to prop the entropy independent knowledge measure. Entropy for
qROFSs was defined by Peng and Liu [37] and discussed twelve
different models that fulfilled the required properties for entropy
measure. To discuss the relation between knowledge and entropy
measures for qROFSs, let us recall the axioms for entropy measure
presented in [37].

Definition 7. The entropy measure Eq of a qROFS in X is a func-
tion from a qROFS to a unit interval, that is, Eq:qROFS → [0,1],
which satisfies the following properties:

E1. Eq(R) = 0, iff R is a crisp set.

E2. Eq(R) = 1, iff 𝜉R(ti) = 𝜈R(ti), ∀ti ∈ X.

E3. Eq(R) ≤ Eq(S), iff R is less fuzzy than S, that is, 𝜉R(tj) ≤ 𝜉S(tj) ≤
𝜈S(tj) ≤ 𝜈R(tj) or 𝜈R(tj) ≤ 𝜈S(tj) ≤ 𝜉S(tj) ≤ 𝜉R(tj).

E4. Eq(R) = Eq(Rc), where Rc represents the complement of R.

Axioms E1 and E4 in Definition 5 are closely related to the axioms
K1 and K4 in Definition 3. The Axioms E2 and K2 are significantly
different from each other, like if we consider the knowledge measure
as a dual of entropy then it attains value one whenever 𝜉R(ti)=𝜈R(ti).
It means entropy or its dual can’t differentiate among them. But Iq

c
has ability to differentiate between them, that is, the information
content plays an important role to measure the knowledge when
𝜉R(ti)=𝜈R(ti).

Now, the conditions in axiom E3 implies that |𝜉q
R(tj) − 𝜈q

R(tj)| ≥|𝜉q
S (tj) − 𝜈q

S (tj)|. Whenever,
(
𝜉q

R(tj) + 𝜈q
R(tj)

) ≥ (
𝜉q

S (tj) + 𝜈q
S (tj)

)
then both measures behave as a dual (Theorem 3). For exam-
ple, if we consider the two single element qROFSs R and S
defined as R=(0.3,0.6) and S=(0.4,0.4). Then 𝜉R(tj) ≤ 𝜉S(tj) ≤
𝜈S(tj) ≤ 𝜈R(tj) with

(
𝜉q

R(tj) + 𝜈q
R(tj)

) ≥ (
𝜉q

S (tj) + 𝜈q
S (tj)

)
. The

results are E1(R) = 0.571429 ≤ E1(S) = 1 and I1
c(R)=0.618116 ≥

I1
c(S)=0.435906. Thus the qROFS with less entropy carries higher

value of knowledge measure.

On the other hand if |𝜉q
R(tj) − 𝜈q

R(tj)| ≥ |𝜉q
S (tj) − 𝜈q

S (tj)| with(
𝜉q

R(tj) + 𝜈q
R(tj)

) ≤ (
𝜉q

S (tj) + 𝜈q
S (tj)

)
then it is not necessary that a

qROFS with less entropy carries a higher value of knowledge mea-
sure. For example, if we consider the two single element qROFSs R
and S defined as R=(0,0.1) and S=(0.1,0.1). Then 𝜉R(tj) ≤ 𝜉S(tj) ≤
𝜈S(tj) ≤ 𝜈R(tj) with

(
𝜉q

R(tj) + 𝜈q
R(tj)

) ≤ (
𝜉q

S (tj) + 𝜈q
S (tj)

)
. The results

of entropy and knowledge measures are E1(R) = 0.9 ≤ E1(S) = 1
and I1

c(R) = 0.193566 ≤ I1
c(S) = 0.204833, respectively. This means

it is possible that a qROFS with less entropy carries less knowledge
measure. Thus the proposed knowledge measure is independent of
entropy measure.

6. APPLICATION IN MCGDM PROBLEMS

This section is devoted to the application of knowledge measure in
MCGDM problems. The confidence q-rung orthopair fuzzy Ein-
stein weighted averaging (CqREWA) operator, decision-making
process, CRITIC method are discussed in this section. At the end,
a step-wise procedure for MCGDM problems is discussed.

6.1. q-Rung Orthopair Fuzzy
Einstein-Weighted Averaging Operator
Under Confidence Level

Besides these achievements under the generalizations of a fuzzy
environment, few existing approaches consolidate the familiarity
degree in the information fusion step. The specialist in an MCDM
problem assesses the alternatives based on the mentioned criteria
only, that is, the familiarity (called confidence levels) of the special-
ist with the evaluation objects is not incorporated in most of the
existing studies. So, it is a must to include the familiarity of an expert
in the original information. Xia et al. [53] formulated the induced
aggregation operators for fuzzy and hesitant fuzzy sets. The aggre-
gation operators under the confidence level for IFSs were consid-
ered by Yu [54]. Garg [55] expounded the confidence levels based
on Pythagorean fuzzy aggregation operators. The qROF aggrega-
tion operators under confidence level were proposed by Joshi and
Gegov [56].

Yu [54] and Rahman et al. [57] discussed the confidence intu-
itionistic fuzzy Einstein weighted averaging operators and general-
ized confidence intuitionistic fuzzy Einstein hybrid averaging/ge-
ometric operators, respectively. They discussed the closure prop-
erty with respect to their environments. So, we will extend their
approach to qROFSs and define CqREWA operator. Since, the oper-
ator CqREWA is a natural extension of them, so it definitely closed
with respect to qROFSs. The details of the proposed aggregation
operator and geometric and hybrid aggregation operators will be
discuss in another paper.



M. J. Khan et al. / International Journal of Computational Intelligence Systems 14(1) 1700–1713 1707

Table 1 A linguistic ratings and their corresponding.

Linguistic
Variables

Corr.
qROFVs

Linguistic
Variables

Corr.
qROFVs

EH (0.9, 0.1) L (0.4, 0.6)
VH (0.8, 0.2) VL (0.25, 0.75)
H (0.7, 0.3) EL (0.1, 0.9)
F (0.5, 0.5)

Definition 8. Let 𝜌i = (𝜉i,𝜈i)1 ≤ i ≤ m, are the qROFVs with 𝜆i
as the confidence level of 𝜌i with 0 ≤ 𝜆i ≤ 1. If 𝜛i, 1 ≤ i ≤ m are

the weights of the qROFVs with 𝜛j ≥ 0 and
m∑

i=1
𝜛i=1. Then the

CqREWA operator under confidence level is define as follows:

CqREWA𝜛
((
𝜌1, 𝜆1

)
,
(
𝜌2, 𝜆2

)
,… ,

(
𝜌m, 𝜆m

))
= ⊕m

i=1𝜛i
(
𝜆i𝜌i

)
=
⎛⎜⎜⎝
[∏m

i=1

(
1 + 𝜉q

i
)𝜆i𝜛i −

∏m

i=1

(
1 − 𝜉q

i
)𝜆i𝜛i∏m

i=1

(
1 + 𝜉q

i
)𝜆i𝜛i +

∏m

i=1

(
1 − 𝜉q

i
)𝜆i𝜛i

]1∕q

,

(2)1∕q
∏m

i=1

(
vi
)𝜆i𝜛i[∏m

i=1

(
2 − vq

i
)𝜆i𝜛i +

∏m

i=1

(
vq

i
)𝜆i𝜛i

]1∕q

⎞⎟⎟⎠

(17)

6.2. Decision-Making Process

The aim of decision making process is to select the favorite alterna-
tive on the basis of the criteria defined by the experts. In decision-
making process, let X={t1,t2,...,tm} be the m alternatives which are
assessed against n attributes (criteria) represented as E={e1,e2,...,en}.
Each alternative ti evaluated with respect to each criteria ej and the
evaluated values are saves in the form of linguistic variables. Then
linguistic information converted into qROF information by seven
point scale given in Table 1. The qROF decision matrix M=[𝜌ij]m×n,
where 𝜌ij represents the evaluation of ith alternative against jth cri-
teria. The qROF decision matrix M=[𝜌ij]m×n can be represented as
follows:

M =
[
𝜌ij
]

m×n =

⎛⎜⎜⎜⎜⎝
𝜌11 𝜌12 ⋯ 𝜌1n

𝜌21 𝜌22 ⋯ 𝜌2n
⋮ ⋮ ⋱ ⋮

𝜌m1 𝜌m2 ⋯ 𝜌mn

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

(
𝜉11, v11

) (
𝜉12, v12

)
⋯

(
𝜉1n, v1n

)(
𝜉21, v21

) (
𝜉22, v22

)
⋯

(
𝜉2n, v2n

)
⋮ ⋮ ⋱ ⋮(

𝜉m1, vm1
) (

𝜉m2, vm2
)
⋯

(
𝜉mn, vmn

)
⎞⎟⎟⎟⎟⎠

(18)

6.3. CRITIC Method

Diakoulaki et al. [58] have proposed the CRITIC (The Criteria
Importance Through Intercriteria Correlation) method that uses
correlation analysis to detect contrasts between criteria and stan-
dard deviation, which quantifies the contrast intensity of the cor-
responding criterion [59]. The method developed is based on the

analytical investigation of the evaluation matrix for extracting all
information contained in the evaluation criteria [59]. The CRITIC
method reflects the inner information of data transmission and the
approximation of subjective weight to some extent. Thus Yalcin and
Unlu [60] used CRITIC method to obtain weights for IPO perfor-
mance analysis, Tus and Adali [61] used for attendance software
assessment, and Peng et al. [62] used to obtain weights for 5G indus-
try evaluation.

The weights of criteria are formulated by CRITIC method by fol-
lowing steps:

Step 1: Calculate the knowledge measure A=[aij]m×n of each qROFV
𝜌ij=(𝜉ij,𝜈ij) by Equation (19).

aij =
(

1
2

(|𝜉q
ij − vq

ij|+
2
𝜋

cos−1
[

1 −
(
𝜉q

ij + vq
ij

)]))1∕q
.

(19)

Step 2: Normalize the matrix A by using Equation (20) and repre-
sented as A′=[a

′

ij]m×n.

a′ij =
aij − mini aij

maxi aij − mini aij
(20)

Step 3: The standard deviations for each criterion are calculated by
Equation (21).

Θj =

√√√√√√ m∑
i=1

(
a′ij − âj

)2

m
, (21)

where âj =

m∑
i=1

a′ij
m

.

Step 4: Correlation coefficients between each criterion are calcu-
lated by Equation (22) which constitute the correlation coefficient
matrix B=[bij]n×n.

bjk=

m∑
i=1

(a′ij − âj)
m∑

i=1
(a′ik − âk)√

m∑
i=1

(a′ij − âj)
2

m∑
i=1

(a′ik − âk)2

. (22)

Step 5: The quantity of information of each criterion are computed
using standard deviation and correlation coefficient as follows:

Υj =Θj

n∑
k=1

(1 − bjk). (23)

Step 6 The weights of criteria are based on quantity of information
and determine by Equation (24) as follows:

𝜛j =
Υj

n∑
j=1

Υj

. (24)



1708 M. J. Khan et al. / International Journal of Computational Intelligence Systems 14(1) 1700–1713

6.4. Proposed MCGDM Method

To understand the whole procedure of the MCGDM method, we
divided into 6 steps.

Let D =
{

d1,d2,...,dr
}

be the group of experts/decision mak-
ers with weights 𝜏𝓁 , 1 ≤ 𝓁 ≤ r. Individual expert evalu-
ates each alternative against criteria and give his preferences in
the form of qROFV which composed the qROF decision matrix
M𝓁=[𝜌𝓁ij ]m×n=(𝜉𝓁ij ,𝜈𝓁ij )m×n. The confidence level 𝜆 for each qROFV
is calculated by using knowledge measure Iq

c . The qROF decision
matrix M𝓁 is converted to N𝓁=((𝜉𝓁ij ,𝜈𝓁ij ),𝜆𝓁ij )m×n by including the
confidence level values 𝜆𝓁ij for each qROFV (𝜉𝓁ij ,𝜈𝓁ij ).

Step 2: Normalize the qROF decision matrix N𝓁 for each expert
according to the benefit and cost criteria as follows:

𝜌𝓁ij =

{
(𝜉𝓁ij ,𝜈𝓁ij ), for benefit criteria,
(𝜈𝓁ij ,𝜉𝓁ij ), for cost criteria. (25)

Since the knowledge measure Iq
c is symmetric, therefore, the value

of confidence level for each qROFV remains unchanged.

Step 3: The information from qROF decision matrices N𝓁 , 1 ≤ 𝓁 ≤
r is aggregated by using CqREWA operator (Equation (17)) and
constitutes a single qROF decision matrix N=[𝜎ij]m×n=(𝜉ij,𝜈ij)m×n,
where 𝜎ij are calculated as follows:

𝜎ij = ⊕r
𝓁=1𝜏𝓁

(
𝜆𝓁ij𝜌

𝓁
ij

)
=

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣
∏r

𝓁=1

(
1 +

(
𝜉𝓁ij
)q)𝜆𝓁ij𝜏𝓁

−
∏r

𝓁=1

(
1 −

(
𝜉𝓁ij
)q)𝜆𝓁ij𝜏𝓁

∏r

𝓁=1

(
1 +

(
𝜉𝓁ij
)q)𝜆𝓁ij𝜏𝓁

+
∏r

𝓁=1

(
1 −

(
𝜉𝓁ij
)q)𝜆𝓁ij𝜏𝓁

⎤⎥⎥⎥⎦
1∕q

,
(2)1∕q

∏r

𝓁=1

(
v𝓁ij
)𝜆𝓁ij𝜏𝓁

⎡⎢⎢⎣
∏r

𝓁=1

(
2 −

(
v𝓁ij
)q)𝜆𝓁ij𝜏𝓁

+
∏r

𝓁=1

((
v𝓁ij
)q)𝜆𝓁ij𝜏𝓁 ⎤⎥⎥⎦

1∕q

⎞⎟⎟⎟⎟⎠
= (𝜉ij,𝜈ij).

(26)

Step 4: Weights (𝜛j, 1 ≤ j ≤ n,𝜛j ≥ 0 and
n∑

j=1
𝜛j=1) are calcu-

lated by using CRITIC method as described in Section 6.3. CRITIC
method use information aggregated in qROF decision matrix N.

Step 5: Again, the CqREWA operator is use to aggregate the infor-
mation from qROF decision matrix N with weights obtained in pre-
vious step and qROFVs 𝜒i, 1 ≤ i ≤ m are obtain as follows:

𝜒i = ⊕n
j=1

(
𝜛j𝜎ij

)
=⎛⎜⎜⎜⎝

⎡⎢⎢⎣
∏n

j=1

(
1 + 𝜉q

ij

)𝜛j
−
∏n

j=1

(
1 − 𝜉q

ij

)𝜛j∏n

j=1

(
1 + 𝜉q

ij

)𝜛j
+
∏n

j=1

(
1 − 𝜉q

ij

)𝜛j

⎤⎥⎥⎦
1∕q

,

(2)1∕q
∏n

j=1

(
vij
)𝜛j

[∏n

j=1

(
2 − vq

ij

)𝜛j
+
∏n

j=1

(
vq

ij

)𝜛j
]1∕q

⎞⎟⎟⎟⎠
(27)

Step 6: Rank the qROFVs 𝜒i, 1 ≤ i ≤ m and optimal value Opt(𝜒i)
corresponds to the optimal alternative Opt(ti). To rank the alterna-
tives ti, the graphical method for ordering the qROFVs based on the
uncertainty index and entropy is used. The graphical method for
ranking the qROFVs was proposed by Khan et al. [63], where we
have seen that the most of the already proposed ranking methods
are not locally orthodox criterion.

6.5. Renewable Energy Source Selection by
Proposed Method

The dependence on imported sources are very much reduced and
the security of supply are provided by renewable energy (RE). RE
addressed our energy needs by replacing foreign energy imports
with reliable and clean home-grown electricity. Also, RE added
bonus of fantastic local economic opportunities. By using RE
instead of fossil fuels, we would significantly decrease the current
levels of greenhouse gas emissions, and this would have positive
environmental impact for our entire planet. RE is not all about envi-
ronment as it can also give strong boost to our economy in form of
new jobs. RE often referred to as clean energy, comes from natural
sources or processes that are constantly replenished. For example,
sunlight or wind keep shining and blowing, even if their availability
depends on time and weather. Many studies have made to analyze
and prioritize the RE sources for a region. These studies were based
on some suitable MCGDM methods. Interested reader can find the
relevant studies in [64,65]. We discuss here a general method to
select and prioritize the RE source against the prescribed criteria.

Let X={t1,t2,t3,t4,t5} = { wind energy, biomass energy, tidal
energy, solar energy, hydro-power} represents five renewable
energy sources (alternatives) and the set E represents the criteria,
where E =

{
e1,e2,e3,...,e12}={ water pollution, need for waste dis-

posal, air pollutant emissions, land requirement, economic risk,
security, sustainable energy, land disruption, durability, adaptabil-
ity to energy policy, cost, feasibility}. The qROFV is given to each
alternative ti, 1 ≤ i ≤ 5 on the basis of each criterion ej, 1 ≤ j ≤ 12.
Let D =

{
d1,d2,d3

}
be the group of three experts/ decision-makers

with weight vector Υ={Υ1,Υ2,Υ3}T={0.3,0.3,0.4}T. To understand
well, we follow the procedure discussed above.

Step 1 & 2: Each individual decision maker d𝓁 makes his/her assess-
ment of alternatives against criteria and give their preferences in
the form of linguistic variable. The information in the form of lin-
guistic variables are presented in Tables 2–4. Table 1 is used to con-
vert information from linguistic to qROFVs and obtained qROF
decision matrices M𝓁=[𝜌𝓁ij ]5×12=(𝜉𝓁ij ,𝜈𝓁ij )5×12. The confidence level 𝜆
for each qROFV is calculated by using knowledge measure I3

c(q=3).
The qROF decision matrix M𝓁 is converted into N𝓁=((𝜉𝓁ij ,𝜈𝓁ij ),𝜆𝓁ij )
by including the confidence level values and presented in Tables 5–
7. We supposed that the matrices obtained are normalized, that is
each criterion deals as benefit criteria. The confidence level 𝜆𝓁ij for
each qROFV is calculated by using knowledge measure I3

c for q=3
as follows:

𝜆𝓁ij = I3
c

(
𝜌𝓁ij
)
=

(
1
2

(
∣ 𝜉3

𝜌𝓁ij
− v3

𝜌𝓁ij
+ 2

𝜋
cos−1

[
1 −

(
𝜉3
𝜌𝓁ij
+ v3

𝜌𝓁ij

)]))1∕3
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Table 2 Performance comparison with state-of-the-art methods. The number in red
indicates the best result and the number in blue indicates the second best result.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12
t1 VH F H EH F EH VH F H EL F EH
t2 L F VH H EH H L F VH H EH H
t3 EH L F VH VL VH EH L F VH VL VH
t4 H F VH L H F H F VH L H F
t5 F H VH VL VH F F H VH VL VH VL

Table 3 Associated linguistic information by d2 expert.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12
t1 F F H H F EH VH F H L F EH
t2 EL F VH H H H L F VH H F H
t3 H L F H VL VH EH L F H VL H
t4 H H H L H EH H F VH VL H F
t5 H L VH L VH F F H VH L VH VL

For example,

𝜆1
11 = I3

c
(
𝜌1

11
)

=
(

1
2

(|𝜉3
𝜌1

11
− v3

𝜌1
11
|+

2
𝜋

cos−1
[

1 −
(
𝜉3
𝜌1

11
+ v3

𝜌1
11

)]))1∕3

=
(

1
2

(|0.83 − 0.23|+
2
𝜋

cos−1 [1 −
(

0.83 + 0.23)]))1∕3

= 0.82.

Similarly, we calculate the confidence levels of all qROFVs.

Step 3: To aggregate the information from each qROF decision
matrix N𝓁 , (𝓁=1,2,3), CqREWA operator defined in Equation (26)
is used. A single qROF decision matrix N=[𝜎ij]5×12=(𝜉ij,𝜈ij)5×12 is
obtain and display in Table 8.

Step 4: Information in Table 8 is used to calculate weights by
CRITIC method described in Section 6.3 and the weights are as fol-
lows:

𝜛1 = 0.0693,𝜛2 = 0.0676,𝜛3 = 0.1127,

𝜛4 = 0.0753,𝜛5 = 0.0900,𝜛6 = 0.0688,

𝜛7 = 0.0652,𝜛8 = 0.0695,𝜛9 = 0.1370,

𝜛10 = 0.0817,𝜛11 = 0.0957,𝜛12 = 0.0672.

Step 5: Again, the CqREWA operator define in Equation (27) is use
to aggregate the information from qROF decision matrix N with

Figure 8 Position of the associated qROFVs

weights obtained in previous step and qROFVs 𝜒i, 1 ≤ i ≤ m are
obtain as follows:

𝜒1 = (0.6165,0.5319),𝜒2 = (0.6604,0.6038),

𝜒3 = (0.5933,0.4740),𝜒4 = (0.6085,0.5575),

𝜒5 = (0.6292,0.5536).

Step 6: We used the graphical ranking method to rank the qROFVs.
Figure 6 shows that all qROFVs are below the equal line and thus
rank based on the hesitancy index. The qROFVs with less hesi-
tancy index ranked highest. The hesitancy degrees of qROFVs are as
follows:

𝜋(𝜒1) = 0.8505, 𝜋(𝜒2) = 0.7893, 𝜋(𝜒3) = 0.881,
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Table 4 Associated linguistic information by d2 expert.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12
t1 VH F F EH F H VH L H EL F H
t2 H F H H EH H L F F H EH H
t3 H F F VH L H EH L F VH VL VH
t4 VH F H L H F H F VH F H F
t5 H H VH L VH F F H VH VL L L

Table 5 Converted qROFVs information for d1 expert (N1).

e1 e2 e3 e4 e5 e6
t1 ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92) ((0.5, 0.5), 0.61) ((0.9, 0.1), 0.92)
t2 ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92) ((0.7, 0.3), 0.76)
t3 ((0.9, 0.1), 0.92) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84)
t4 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61)
t5 ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61)

e7 e8 e9 e10 e11 e12
t1 ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.1, 0.9), 0.92) ((0.5, 0.5), 0.61) ((0.9, 0.1), 0.92)
t2 ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92) ((0.7, 0.3), 0.76)
t3 ((0.9, 0.1), 0.92) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84)
t4 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61)
t5 ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80)

Table 6 Converted qROFVs information for d2 expert (N2).

e1 e2 e3 e4 e5 e6
t1 ((0.5, 0.5), 0.61) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.9, 0.1), 0.92)
t2 ((0.1, 0.9), 0.92) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76)
t3 ((0.7, 0.3), 0.76) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84)
t4 ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92)
t5 ((0.7, 0.3), 0.76) ((0.4, 0.6), 0.68) ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61)

e7 e8 e9 e10 e11 e12
t1 ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.9, 0.1), 0.92)
t2 ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76)
t3 ((0.9, 0.1), 0.92) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.25, 0.75), 0.80) ((0.7, 0.3), 0.76)
t4 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61)
t5 ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80)

𝜋(𝜒4) = 0.8441, 𝜋(𝜒5) = 0.8346

𝜋(𝜒2) <𝜋(𝜒5) <𝜋(𝜒4) < 𝜋(𝜒1) < 𝜋(𝜒3)

t2 ≻ t5 ≻ t4 ≻ t1 ≻ t3

Remark 3. It can be easily observed from Table 9 that optimal
alternative remain same for all values of parameter q. However,
there is a slightly change in the developed ranking for q = 1. Table
9 contains the hesitancy values for aggregated qROFVs.

7. COMPARISON ANALYSIS

This paper provides us the improved knowledge measure for
qROFSs. Khan el al. [52] was first discussed the knowledge

measures for qROFSs. According to them, the knowledge measure
decreases with higher values of the hesitancy index, that is, the max-
imum information content leads to maximum knowledge. But they
have not considered the information clarity facets of knowledge
measure. But, as we discussed in Section 3, our proposed knowledge
measure considers both perspectives of knowledge measure, that is,
information content and information clarity. Hence the proposed
approach is better than the previous one.

The entropy for qROFSs was discussed by Peng and Liu [37] and
Verma [22]. The maximum entropy is obtained when the member-
ship degree is equal to the nonmembership degree, that is, 𝜉 = v.
So, in these complex situations, the entropy alone can’t handle the
situation. Thus it is necessary and significant work to develop an
independent technique with robust properties to take measure-
ments of the amount of knowledge in the context of qROFSs to
distinguish between them. From Remark 1, we have seen that
when the membership degree is equal to the nonmembership
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Table 7 Converted qROFVs information for d3 expert (N3).

e1 e2 e3 e4 e5 e6
t1 ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.5, 0.5), 0.61) ((0.9, 0.1), 0.92) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76)
t2 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92) ((0.7, 0.3), 0.76)
t3 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76)
t4 ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61)
t5 ((0.7, 0.3), 0.76) ((0.7, 0.3), 0.76) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61)

e7 e8 e9 e10 e11 e12
t1 ((0.8, 0.2), 0.84) ((0.4, 0.6), 0.68) ((0.7, 0.3), 0.76) ((0.1, 0.9), 0.92) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76)
t2 ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.9, 0.1), 0.92) ((0.7, 0.3), 0.76)
t3 ((0.9, 0.1), 0.92) ((0.4, 0.6), 0.68) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.8, 0.2), 0.84)
t4 ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61) ((0.8, 0.2), 0.84) ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.5, 0.5), 0.61)
t5 ((0.5, 0.5), 0.61) ((0.7, 0.3), 0.76) ((0.8, 0.2), 0.84) ((0.25, 0.75), 0.80) ((0.4, 0.6), 0.68) ((0.4, 0.6), 0.68)

Table 8 Aggregated information (Matrix N).

e1 e2 e3 e4 e5 e6
t1 (0.70, 0.36) (0.43, 0.68) (0.58, 0.51) (0.84, 0.18) (0.43, 0.68) (0.82, 0.20)
t2 (0.50, 0.64) (0.43, 0.68) (0.72, 0.32) (0.64, 0.42) (0.84, 0.18) (0.64, 0.42)
t3 (0.75, 0.29) (0.38, 0.71) (0.43, 0.68) (0.73, 0.31) (0.29, 0.77) (0.72, 0.32)
t4 (0.69, 0.36) (0.51, 0.59) (0.68, 0.37) (0.35, 0.73) (0.64, 0.42) (0.38, 0.70)
t5 (0.59, 0.49) (0.64, 0.43) (0.74, 0.3) (0.28, 0.78) (0.74, 0.3) (0.38, 0.72)

e7 e8 e9 e10 e11 e12
t1 (0.76, 0.27) (0.40, 0.70) (0.64, 0.42) (0.24, 0.85) (0.43, 0.68) (0.82, 0.20)
t2 (0.35, 0.73) (0.43, 0.68) (0.67, 0.40) (0.64, 0.42) (0.82, 0.21) (0.64, 0.42)
t3 (0.88, 0.12) (0.35, 0.73) (0.43, 0.68) (0.73, 0.31) (0.23, 0.80) (0.73, 0.31)
t4 (0.64, 0.42) (0.43, 0.68) (0.76, 0.27) (0.36, 0.73) (0.64, 0.42) (0.43, 0.68)
t5 (0.49, 0.63) (0.60, 0.47) (0.76, 0.27) (0.23, 0.81) (0.63, 0.45) (0.37, 0.71)

Table 9 Sensitivity analysis.

q π(𝜒1) π(𝜒2) π(𝜒3) π(𝜒4) π(𝜒5) Developed Ranking
1 0.10617 0.01938 0.14110 0.14645 0.10162 t2 ≻ t5 ≻ t1 ≻ t3 ≻ t4

2 0.65516 0.54507 0.70729 0.64501 0.61932 t2 ≻ t5 ≻ t4 ≻ t1 ≻ t3

3 0.85052 0.78930 0.88100 0.84412 0.83461 t2 ≻ t5 ≻ t4 ≻ t1 ≻ t3

4 0.92558 0.88906 0.94338 0.92204 0.91676 t2 ≻ t5 ≻ t4 ≻ t1 ≻ t3

5 0.95887 0.93592 0.96909 0.95738 0.95383 t2 ≻ t5 ≻ t4 ≻ t1 ≻ t3

degree, the information clarity becomes zero and the knowledge is
measured from an information content perspective. The higher
value of knowledge measure is attached to higher value information
content. Hence our proposed knowledge measure is appropriate for
such situations.

8. CONCLUSION

In this paper, the knowledge measure for qROFSs is discussed with
respect to information clarity and information content. Both facets
of knowledge are used to quantify the knowledge from associated
qROFSs. The knowledge measure is monotonically nonincreas-
ing with respect to hesitancy index. The maximum and minimum

values of knowledge measure are attached at crisp and (0,0) cases,
that is, the knowledge is maximum at sure information and min-
imum when there is not information. For constant values of hesi-
tancy index (say c), the equivalence classes are generated and each
class has a minimum at 𝜉=𝜈=( 1−cq

2
)1/q. It has been shown that the

knowledge measure is entropy independent. At the end, a MCGDM
method has established based on CqREWA operator under con-
fidence level, CRITIC method and knowledge measure. The pro-
posed approach is effective only when the value of qis less than or
equal to 10. When the value of qincreases from 10the knowledge
measures approaches to zero from both the 𝜉-axis and 𝜈-axis. That
is the knowledge measure approaches zero around the neighbor-
hood of the point (0,0). In the future, we will apply the proposed
method for ranking and image processing, and so on.
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