312 research outputs found

    New method to find corner and tangent vertices in sketches using parametric cubic curves approximation

    Full text link
    Some recent approaches have been presented as simple and highly accurate corner finders in the sketches including curves, which is useful to support natural human-computer interaction, but these in most cases do not consider tangent vertices (smooth points between two geometric entities, present in engineering models), what implies an important drawback in the field of design. In this article we present a robust approach based on the approximation to parametric cubic curves of the stroke for further radius function calculation in order to detect corner and tangent vertices. We have called our approach Tangent and Corner Vertices Detection (TCVD), and it works in the following way. First, corner vertices are obtained as minimum radius peaks in the discrete radius function, where radius is obtained from differences. Second, approximated piecewise parametric curves on the stroke are obtained and the analytic radius function is calculated. Then, curves are obtained from stretches of the stroke that have a small radius. Finally, the tangent vertices are found between straight lines and curves or between curves, where no corner vertices are previously located. The radius function to obtain curves is calculated from approximated piecewise curves, which is much more noise free than discrete radius calculation. Several tests have been carried out to compare our approach to that of the current best benchmarked, and the obtained results show that our approach achieves a significant accuracy even better finding corner vertices, and moreover, tangent vertices are detected with an Accuracy near to 92% and a False Positive Rate near to 2%.Spanish Ministry of Science and Education and the FEDER Funds, through CUESKETCH (Ref. DPI2007-66755-C02-01) and HYMAS projects (Ref. DPI2010-19457) partially supported this work.Albert Gil, FE.; García Fernández-Pacheco, D.; Aleixos Borrás, MN. (2013). New method to find corner and tangent vertices in sketches using parametric cubic curves approximation. Pattern Recognition. 46(5):1433-1448. https://doi.org/10.1016/j.patcog.2012.11.006S1433144846

    Improvements to the TCVD method to segment hand-drawn sketches

    Full text link
    Tangent and Corner Vertices Detection (TCVD) is a method to detect corner vertices and tangent points in sketches using parametric cubic curves approximation, which is capable to detect corners with a high accuracy and a very low false positive rate, and also to detect tangent points far above other methods in literature. In this article, we present several improvements to TCVD method in order to establish mathematical conditions to detect corners and make the obtaining of curves independent from the scale, what increases the success ratio in transitions between lines and curves. The new conditions for obtaining corners use the radius as the inverse of the curvature, and the second derivative of the curvature. For the detection of curves, a new descriptor is presented, avoiding the parameters dependent of scale used in TCVD method. In order to obtain the performance of the implemented improvements, several tests have been carried out using a dataset which contains sketches more complex than those used for validation of TCVD algorithm (sketches with more curves and tangent points and sketches of different sizes). For corners detection, the accuracy obtained was pretty similar to that obtained with the previous TCVD, however, for curves and tangent points detection the accuracy increases significantly.Spanish Ministry of Science and Education and the FEDER Funds, through HYMAS project (Ref. DPI2010-19457) and INIA project VIS-DACSA (Ref. RTA2012-00062-C04-03) partially supported this work.Albert Gil, FE.; Aleixos Borrás, MN. (2017). Improvements to the TCVD method to segment hand-drawn sketches. Pattern Recognition. 63:416-426. https://doi.org/10.1016/j.patcog.2016.10.024S4164266

    High-order adaptive methods for computing invariant manifolds of maps

    Get PDF
    The author presents efficient and accurate numerical methods for computing invariant manifolds of maps which arise in the study of dynamical systems. In order to decrease the number of points needed to compute a given curve/surface, he proposes using higher-order interpolation/approximation techniques from geometric modeling. He uses B´ezier curves/triangles, fundamental objects in curve/surface design, to create adaptive methods. The methods are based on tolerance conditions derived from properties of B´ezier curves/triangles. The author develops and tests the methods for an ordinary parametric curve; then he adapts these methods to invariant manifolds of planar maps. Next, he develops and tests the method for parametric surfaces and then he adapts this method to invariant manifolds of three-dimensional maps

    GarmentCode: Programming Parametric Sewing Patterns

    Full text link
    Garment modeling is an essential task of the global apparel industry and a core part of digital human modeling. Realistic representation of garments with valid sewing patterns is key to their accurate digital simulation and eventual fabrication. However, little-to-no computational tools provide support for bridging the gap between high-level construction goals and low-level editing of pattern geometry, e.g., combining or switching garment elements, semantic editing, or design exploration that maintains the validity of a sewing pattern. We suggest the first DSL for garment modeling -- GarmentCode -- that applies principles of object-oriented programming to garment construction and allows designing sewing patterns in a hierarchical, component-oriented manner. The programming-based paradigm naturally provides unique advantages of component abstraction, algorithmic manipulation, and free-form design parametrization. We additionally support the construction process by automating typical low-level tasks like placing a dart at a desired location. In our prototype garment configurator, users can manipulate meaningful design parameters and body measurements, while the construction of pattern geometry is handled by garment programs implemented with GarmentCode. Our configurator enables the free exploration of rich design spaces and the creation of garments using interchangeable, parameterized components. We showcase our approach by producing a variety of garment designs and retargeting them to different body shapes using our configurator.Comment: Supplementary video: https://youtu.be/16Yyr2G9_6E

    Corner point detection for the map of kariah Kg. Bukit Kapar / Siti Sarah Raseli, Afina Amirhussain and Norpah Mahat

    Get PDF
    Corner point detection are the important technique for many image processing applications including image enhancement, object detection and pattern recognition. The purpose of this study is to detect the corner points of a map of Kariah Kampung Bukit Kapar image by using Harris Corner Detector. Corner points in an image represents a lot of important information of the image. Detection of corner points accurately is significant to image processing, which can reduce much of the calculations. In this study, the initial technique is smoothing the image and extract the boundary of the image. Then, Harris Corner Detector is used to detect the corner points by considering the amount of corner point detection and run time processing. This study proposed the Harris Corner Detector which can detect 154 points with 12.9552 second

    A hybrid hair model using three dimensional fuzzy textures

    Get PDF
    Cataloged from PDF version of article.Human hair modeling and rendering have always been a challenging topic in computer graphics. The techniques for human hair modeling consist of explicit geometric models as well as volume density models. Recently, hybrid cluster models have also been successful in this subject. In this study, we present a novel three dimensional texture model called 3D Fuzzy Textures and algorithms to generate them. Then, we use the developed model along with a cluster model to give human hair complex hairstyles such as curly and wavy styles. Our model requires little user effort to model curly and wavy hair styles. With this study, we aim at eliminating the drawbacks of the volume density model and the cluster hair model with 3D fuzzy textures. A three dimensional cylindrical texture mapping function is introduced for mapping purposes. Current generation graphics hardware is utilized in the design of rendering system enabling high performance rendering.Aran, Medeni ErolM.S

    Computer-aided sketching: incorporating the locus to improve the three-dimensional geometric design

    Get PDF
    This article presents evidence of the convenience of implementing the geometric places of the plane into commercial computer-aided design (CAD) software as auxiliary tools in the computer-aided sketching process. Additionally, the research considers the possibility of adding several intuitive spatial geometric places to improve the efficiency of the three-dimensional geometric design. For demonstrative purposes, four examples are presented. A two-dimensional figure positioned on the flat face of an object shows the significant improvement over tools currently available in commercial CAD software, both vector and parametric: it is more intuitive and does not require the designer to execute as many operations. Two more complex three-dimensional examples are presented to show how the use of spatial geometric places, implemented as CAD software functions, would be an effective and highly intuitive tool. Using these functions produces auxiliary curved surfaces with points whose notable features are a significant innovation. A final example provided solves a geometric place problem using own software designed for this purpose. The proposal to incorporate geometric places into CAD software would lead to a significant improvement in the field of computational geometry. Consequently, the incorporation of geometric places into CAD software could increase technical-design productivity by eliminating some intermediate operations, such as symmetry, among others, and improving the geometry training of less skilled usersPostprint (published version

    A new paradigm based on agents applied to free-hand sketch recognition

    Get PDF
    Important advances in natural calligraphic interfaces for CAD (Computer Aided Design) applications are being achieved, enabling the development of CAS (Computer Aided Sketching) devices that allow facing up to the conceptual design phase of a product. Recognizers play an important role in this field, allowing the interpretation of the user’s intention, but they still present some important lacks. This paper proposes a new recognition paradigm using an agent-based architecture that does not depend on the drawing sequence and takes context information into account to help decisions. Another improvement is the absence of operation modes, that is, no button is needed to distinguish geometry from symbols or gestures, and also “interspersing” and “overtracing” are accomplishedThe Spanish Ministry of Science and Education and the FEDER Funds, through the CUESKETCH project (Ref. DPI2007-66755-C02-01), partially supported this work.Fernández Pacheco, D.; Albert Gil, FE.; Aleixos Borrás, MN.; Conesa Pastor, J. (2012). A new paradigm based on agents applied to free-hand sketch recognition. Expert Systems with Applications. 39(8):7181-7195. https://doi.org/10.1016/j.eswa.2012.01.063S7181719539

    ShapeWright--finite element based free-form shape design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1990.Includes bibliographical references (p. 179-192).by George Celniker.Ph.D
    • …
    corecore