431 research outputs found

    Low-Voltage Ultra-Low-Power Current Conveyor Based on Quasi-Floating Gate Transistors

    Get PDF
    The field of low-voltage low-power CMOS technology has grown rapidly in recent years; it is an essential prerequisite particularly for portable electronic equipment and implantable medical devices due to its influence on battery lifetime. Recently, significant improvements in implementing circuits working in the low-voltage low-power area have been achieved, but circuit designers face severe challenges when trying to improve or even maintain the circuit performance with reduced supply voltage. In this paper, a low-voltage ultra-low-power current conveyor second generation CCII based on quasi-floating gate transistors is presented. The proposed circuit operates at a very low supply voltage of only ±0.4 V with rail-to-rail voltage swing capability and a total quiescent power consumption of mere 9.5 µW. Further, the proposed circuit is not only able to process the AC signal as it's usual at quasi-floating gate transistors but also the DC which extends the applicability of the proposed circuit. In conclusion, an application example of the current-mode quadrature oscillator is presented. PSpice simulation results using the 0.18 µm TSMC CMOS technology are included to confirm the attractive properties of the proposed circuit

    Super-gain-boosted AB-AB fully differential Miller op-amp with 156dB open-loop gain and 174MV/V MHZ pF/uW figure of merit in 130nm CMOS technology

    Get PDF
    A fully differential Miller op-amp with a composite input stage using resistive local common-mode feedback and regulated cascode transistors is presented here. High gain pseudo-differential auxiliary amplifiers are used to implement the regulated cascode transistors in order to boost the output impedance of the composite input stage and the open-loop gain of the op-amp. Both input and output stages operate in class AB mode. The proposed op-amp has been simulated in a 130nm commercial CMOS process technology. It operates from a 1.2V supply and has a close to rail-to-rail differential output swing. It has 156dB DC open-loop gain and 63MHz gain-bandwidth product with a 30pF capacitive load. The op-amp has a DC open-loop gain figure of merit FOMAOLDC of 174 (MV/V) MHz pF/uW and large-signal figure of merit FOMLS of 3(V/us) pF/uW.This work was supported in part by the Spanish Government Agencia Estatal de Investigación (AEI) under Grant TEC2016-80396-C2, in part by the Consejería de Economía y Conocimiento of Junta de Andalucía under Grant P18-FR-4317 (both projects received support from the Fondo Europeo de Desarrollo Regional (FEDER)), and in part by the Consejo Nacional de Ciencia y Tecnologia (CONACyT) under Grant A1-S-43214

    Super-Gain-Boosted AB-AB Fully Differential Miller Op-Amp With 156dB Open-Loop Gain and 174MV/V MHZ pF/µW Figure of Merit in 130nm CMOS Technology

    Get PDF
    Article number 9400400A fully differential Miller op-amp with a composite input stage using resistive local common-mode feedback and regulated cascode transistors is presented here. High gain pseudo-differential auxiliary amplifiers are used to implement the regulated cascode transistors in order to boost the output impedance of the composite input stage and the open-loop gain of the op-amp. Both input and output stages operate in class AB mode. The proposed op-amp has been simulated in a 130nm commercial CMOS process technology. It operates from a 1.2V supply and has a close to rail-to-rail differential output swing. It has 156dB DC open-loop gain and 63MHz gain-bandwidth product with a 30pF capacitive load. The op-amp has a DC open-loop gain figure of merit FOMAOLDC of 174 (MV/V) MHz pF/µW and large-signal figure of merit FOMLS of 3(V/µs) pF/µW.Consejería de Economía y Conocimiento of Junta de Andalucía P18-FR-4317Consejo Nacional de Ciencia y Tecnología (España) A1-S-43214Agencia Estatal de Investigación TEC2016-80396-C

    ±0.3V Bulk-Driven Fully Differential Buffer with High Figures of Merit

    Get PDF
    A high performance bulk-driven rail-to-rail fully differential buffer operating from ±0.3V supplies in 180 nm CMOS technology is reported. It has a differential–difference input stage and common mode feedback circuits implemented with no-tail, high CMRR bulk-driven pseudo-differential cells. It operates in subthreshold, has infinite input impedance, low output impedance (1.4 kΩ), 86.77 dB DC open-loop gain, 172.91 kHz bandwidth and 0.684 μW static power dissipation with a 50-pF load capacitance. The buffer has power efficient class AB operation, a small signal figure of merit FOMSS = 12.69 MHzpFμW−1, a large signal figure of merit FOMLS = 34.89 (V/μs) pFμW−1, CMRR = 102 dB, PSRR+ = 109 dB, PSRR− = 100 dB, 1.1 μV/√Hz input noise spectral density, 0.3 mVrms input noise and 3.5 mV input DC offset voltage.Junta de Andalucía - Consejería de Economía, Conocimiento, Empresas y Universidades P18-FR-4317Agencia Estatal de Investigación - FEDER PID2019-107258RB-C3

    Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

    Get PDF
    In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process

    Low power class-AB VCII with extended dynamic range

    Get PDF
    voltage swing both at the X terminal and at the Z terminal. The VCII consists of a regulated common gate configuration at the Y current input terminal and a class-AB complementary-MOS closed loop output voltage follower that ensures the voltage buffering action between the voltage input X and the voltage output Z terminals. Spice simulation results using AMS 0.35 μm with a ±0.9 V supply voltage are provided to demonstrate the validity of the proposed topology. With a total power consumption of 28 μW, the VCII achieves a voltage swing at the X terminal of ±0.8 V, whereas a ±0.72 V is achieved on the Z terminal. Simulation results for DC and AC voltage and current gains are given, as well as harmonic distortions and noise figures. A final comparison table is also presented, where the proposed VCII is compared with other solutions presented in the literature

    Pseudo-three-stage Miller op-amp with enhanced small-signal and large-signal performance

    Get PDF
    A simple technique to implement highly power efficient class AB-AB Miller op-amps is presented in this paper. It uses a composite input stage with resistive local common mode feedback that provides class AB operation to the input stage and essentially enhances the op-amp's effective transconductance gain, the dc open-loop gain, the gain-bandwidth product, and slew rate with just moderate increase in power dissipation. The experimental results of op-amps in strong inversion and subthreshold fabricated in a 130-nm standard CMOS technology validate the proposed approach. The op-amp has 9 V·pF/μs·μW large-signal figure of merit (FOM) and 17 MHz · pF/μW small-signal FOM with 1.2-V supply voltage. In subthreshold, the op-amp has 10 V · pF/μs · μW large-signal FOM and 92 MHz · pF/μW small-signal FOM with 0.5-V supply voltage.This work was supported by Grant TEC2016-80396- C2-R (AEI/FEDER)

    A 0.8V, 7μA, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18μm CMOS

    Get PDF
    A two-stage amplifier, operational at 0.8V and drawing 7/spl mu/A, has been integrated in a standard digital 0.18/spl mu/m CMOS process. Rail-to-rail operations at the input are enabled by complementary transistor pairs with g/sub m/ control. The efficient rail-to-rail output stage is biased in class AB. The measured DC gain of the amplifier is 75dB, and the unity-gain frequency is 870kHz with a 12pF, 100k/spl Omega/load. Both input and output stage transistors are biased in weak inversion
    corecore