304 research outputs found

    Lossy/Lossless Floating/Grounded Inductance Simulation Using One DDCC

    Get PDF
    In this work, we present new topologies for realizing one lossless grounded inductor and two floating, one lossless and one lossy, inductors employing a single differential difference current conveyor (DDCC) and a minimum number of passive components, two resistors, and one grounded capacitor. The floating inductors are based on ordinary dual-output differential difference current conveyor (DO-DDCC) while the grounded lossless inductor is based one a modified dual-output differential difference current conveyor (MDO-DDCC). The proposed lossless floating inductor is obtained from the lossy one by employing a negative impedance converter (NIC). The non-ideality effects of the active element on the simulated inductors are investigated. To demonstrate the performance of the proposed grounded inductance simulator as an example, it is used to construct a parallel resonant circuit. SPICE simulation results are given to confirm the theoretical analysis

    DCCII-Based Novel Lossless Grounded Inductance Simulators With No Element Matching Constrains

    Get PDF
    In 1996, the differential current conveyor (DCCII) was introduced as a versatile active element with current differencing capability. Therefore, in this study, the usefulness of the DCCII is shown on six novel lossless grounded inductance simulator circuits. Proposed circuits simultaneously employ minimum number of elements, i.e. single DCCII, one capacitor, and two resistors. No passive element matching restriction is needed and all solutions are electronically tunable in case that one of resistors is replaced by MOSFET-based voltage-controlled resistor. The internal structure of the active element has been implemented using the TSMC 0.25 um SCN025 CMOS process BSIM3v3.1 parameters. Firstly, the performance of the selected inductor simulator is evaluated and subsequently verified in the design of 5th-order high-pass ladder and 2nd-order frequency filters. In addition, experimental results using commercially available AD844/ADs are given to verify the theoretical analysis and SPICE simulations

    Tunable Lossy and Lossless Grounded Inductors Using Minimum Active and Passive Components

    Get PDF
    In this contribution, nine new Grounded Inductance Simulators (GISs) using a single Multiple-Output Current Controlled Current Conveyor Transconductance Amplifier (MO-CCCCTA) and one grounded capacitor are proposed. Among them, two are lossless types and seven are lossy types. The use of a single grounded capacitor makes the circuits suitable for fabrication. All the proposed circuits are electronically tunable through the bias currents of MO-CCCCTA. Furthermore, no component matching conditions are needed for realizing them. The designed circuits are verified through PSPICE simulator with ± 0.9 V power supply. The simulation results show that for all the proposed circuits: maximum operating frequencies are about 12 MHz, power dissipation is less than 0.784 mW, Total Harmonic Distortions (THDs) are under 8.09%, and maximum output voltage noise at 1 MHz frequency is 14.094 nV/√Hz. To exhibit the workability of the proposed circuits, they are used to design band-pass, low-pass filter, parallel RLC resonator, and parasitic inductance cancelator

    A New Grounded Current Controlled Inductor Based on Simplified Current Conveyors

    Get PDF
    In this paper, a new active grounded inductor controlled in current is described. This structure is realized using negative second generation current controlled conveyors and a single grounded capacitor, with no external resistance. The proposed circuit offers many advantages, such as: operation at high frequencies, simple circuit, tuning by the bias current, low power dissipation, etc. Comparison between this topology and those presented in literature is done to highlight the benefits of our structure. As an application, a bandpass filter based on the proposed active inductance is constructed to confirm the usability of the circuit and illustrate these performances. The filter center frequency and quality factor can be tuned independently. Simulation results, given under PSPICE software, present good agreement with the theoretical ones

    Grounded capacitor-based new floating inductor simulators and a stability test

    Get PDF
    In this paper, two new floating inductor simulators (FISs), both using two differential difference current conveyors, are considered. The proposed FISs do not suffer from passive component matching constraints and employ a minimum number of passive elements. They use a grounded capacitor; accordingly, they are suitable for integrated circuit technology. They have good low- and high-frequency performances. Simulations are performed with the SPICE program to verify the claimed theory. Moreover, for the first FIS used in a second-order low-pass filter, a stability test is performed as an example. © TÜBITAK

    A Versatile Active Block: DXCCCII and Tunable Applications

    Get PDF
    The study describes dual-X controlled current conveyor (DXCCCII) as a versatile active block and its application to inductance simulators for testing. Moreover, the high pass filter application using with DXCCCII based inductance simulator and oscillator with flexible tunable oscillation frequency have been presented and simulated to confirm the theoretical validity. The proposed circuit which has a simple circuit design requires the low-voltage and the DXCCCII can also be tuned in the wide range by the biasing current. The proposed DXCCCII provides a good linearity, high output impedance at Z terminals, and a reasonable current and voltage transfer gain accuracy. The proposed DXCCCII and its applications have been simulated using the CMOS 0.18 ”m technology

    Supplementary Inductance Simulator Topologies Employing Single DXCCII

    Get PDF
    In this study, six grounded inductance simulator circuits are presented including additional useful features in comparison to previous dual-X current conveyor (DXCCII) based implementations. To demonstrate the performance and usefulness of the presented circuits, one of them is used to construct a fifth order Butterworth high-pass filter and a current-mode multifunction filter as application examples. Simulation results are given to confirm the theoretical analysis. The derived DXCCII and its applications are simulated using CMOS 0.35 ÎŒm technology

    Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs

    Get PDF
    This paper presents inductance simulators using the voltage differencing differential input buffered amplifier (VD-DIBA) as an active building block. Three types of inductance simulators, including floating lossless inductance, series inductance-resistance, and parallel inductance-resistance simulators, are proposed, in addition to their application to the 4th order elliptic lowpass ladder filter. The simple design procedures of these inductance simulators using a circuit block diagram are also given. The proposed inductance simulators employ two VD-DIBAs and two passive elements. The complementary metal oxide semiconductor (CMOS) VD-DIBA used in this design utilizes the multiple-input metal oxide semiconductor (MOS) transistor technique in order to achieve a compact and simple structure with a minimum count of transistors. Thanks to this technique, the VD-DIBA offers high performances compared to the other CMOS structures presented in the literature. The CMOS VD-DIBAs and their applications are designed and simulated in the Cadence environment using a 0.18 mu m CMOS process from Taiwan semiconductor manufacturing company (TSMC). Using a supply voltage of +/- 0.9 V, the linear operation of VD-DIBA is obtained over a differential input range of -0.5 V to 0.5 V. The lowpass (LP) ladder filter realized with the proposed inductance simulators shows a dynamic range (DR) of 80 dB for a total harmonic distortion (THD) of 2% at 1 kHz and a 1.8 V peak-to-peak output. In addition, the experimental results of the floating inductance simulators and their applications are obtained by using VD-DIBA constructed from the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental ones, confirming the advantages of the inductance simulators and their application
    • 

    corecore