84 research outputs found

    Novel rejection methods and fusion approaches for multi-biometric verification

    Get PDF
    This dissertation proposes methods and algorithms to improve the performance of biometric verification systems. It introduces a new rejection method, symmetric rejection method, for multi-stage biometric verification. The symmetric rejection method significantly improves the performance over the state of the art rejection methods and controls the genuine reject rate which has not been specifically addressed in earlier studies. The dissertation also proposes a new fusion framework for multi-biometric verification systems, which achieves accuracy higher than parallel fusion framework, and provides convenience to genuine users. In addition, it proposes a framework consisting of impostor score based normalization, impostor score based rejection, and fusion to lower the verification errors of continuous keystroke verification with weak templates. It introduces a new formulation to incorporate the reject option in verification with weak templates and develops a new impostor score based rejection method called Order Statistic rejection method . Results show that the proposed framework in conjunction with the Order Statistic rejection method significantly reduces the equal error rates of continuous keystroke verification with weak templates

    Poisoning Attacks on Learning-Based Keystroke Authentication and a Residue Feature Based Defense

    Get PDF
    Behavioral biometrics, such as keystroke dynamics, are characterized by relatively large variation in the input samples as compared to physiological biometrics such as fingerprints and iris. Recent advances in machine learning have resulted in behaviorbased pattern learning methods that obviate the effects of variation by mapping the variable behavior patterns to a unique identity with high accuracy. However, it has also exposed the learning systems to attacks that use updating mechanisms in learning by injecting imposter samples to deliberately drift the data to impostors’ patterns. Using the principles of adversarial drift, we develop a class of poisoning attacks, named Frog-Boiling attacks. The update samples are crafted with slow changes and random perturbations so that they can bypass the classifiers detection. Taking the case of keystroke dynamics which includes motoric and neurological learning, we demonstrate the success of our attack mechanism. We also present a detection mechanism for the frog-boiling attack that uses correlation between successive training samples to detect spurious input patterns. To measure the effect of adversarial drift in frog-boiling attack and the effectiveness of the proposed defense mechanism, we use traditional error rates such as FAR, FRR, and EER and the metric in terms of shifts in biometric menagerie

    Dynamic Template Adjustment in Continuous Keystroke Dynamics

    Get PDF
    Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 dobrovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euklidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.Keystroke dynamics is one of behavioural biometric characteristics which can be employed for continuous user authentication. As typing style on a keyboard changes in time, the template adapting is necessary. No study covered this topic yet, as far as the author knows. This master thesis tries to fill this gap. Several classification techniques were exercised with help of keystroke data from 22 volunteers in order to test if they can be improved to unsupervised online classifiers. A significant improvement in impostor recognition was noted at one-class statistical classifier based on normed Euclidean distance. The impostor could make 23.7 % actions less than in offline version on average but the improvement was obseved with all test sets. In contrary, the genuine user recognition varied from user to user but it still kept at acceptable values.

    Vulnerability analysis of cyber-behavioral biometric authentication

    Get PDF
    Research on cyber-behavioral biometric authentication has traditionally assumed naïve (or zero-effort) impostors who make no attempt to generate sophisticated forgeries of biometric samples. Given the plethora of adversarial technologies on the Internet, it is questionable as to whether the zero-effort threat model provides a realistic estimate of how these authentication systems would perform in the wake of adversity. To better evaluate the efficiency of these authentication systems, there is need for research on algorithmic attacks which simulate the state-of-the-art threats. To tackle this problem, we took the case of keystroke and touch-based authentication and developed a new family of algorithmic attacks which leverage the intrinsic instability and variability exhibited by users\u27 behavioral biometric patterns. For both fixed-text (or password-based) keystroke and continuous touch-based authentication, we: 1) Used a wide range of pattern analysis and statistical techniques to examine large repositories of biometrics data for weaknesses that could be exploited by adversaries to break these systems, 2) Designed algorithmic attacks whose mechanisms hinge around the discovered weaknesses, and 3) Rigorously analyzed the impact of the attacks on the best verification algorithms in the respective research domains. When launched against three high performance password-based keystroke verification systems, our attacks increased the mean Equal Error Rates (EERs) of the systems by between 28.6% and 84.4% relative to the traditional zero-effort attack. For the touch-based authentication system, the attacks performed even better, as they increased the system\u27s mean EER by between 338.8% and 1535.6% depending on parameters such as the failure-to-enroll threshold and the type of touch gesture subjected to attack. For both keystroke and touch-based authentication, we found that there was a small proportion of users who saw considerably greater performance degradation than others as a result of the attack. There was also a sub-set of users who were completely immune to the attacks. Our work exposes a previously unexplored weakness of keystroke and touch-based authentication and opens the door to the design of behavioral biometric systems which are resistant to statistical attacks

    Score optimization and template updating in a biometric technique for authentication in mobiles based on gestures

    Get PDF
    This article focuses on the evaluation of a biometric technique based on the performance of an identifying gesture by holding a telephone with an embedded accelerometer in his/her hand. The acceleration signals obtained when users perform gestures are analyzed following a mathematical method based on global sequence alignment. In this article, eight different scores are proposed and evaluated in order to quantify the differences between gestures, obtaining an optimal EER result of 3.42% when analyzing a random set of 40 users of a database made up of 80 users with real attempts of falsification. Moreover, a temporal study of the technique is presented leeding to the need to update the template to adapt the manner in which users modify how they perform their identifying gesture over time. Six updating schemes have been assessed within a database of 22 users repeating their identifying gesture in 20 sessions over 4 months, concluding that the more often the template is updated the better and more stable performance the technique presents

    Towards Engineering Reliable Keystroke Biometrics Systems

    Get PDF
    In this thesis, we argue that most of the work in the literature on behavioural-based biometric systems using AI and machine learning is immature and unreliable. Our analysis and experimental results show that designing reliable behavioural-based biometric systems requires a systematic and complicated process. We first discuss the limitation in existing work and the use of conventional machine learning methods. We use the biometric zoos theory to demonstrate the challenge of designing reliable behavioural-based biometric systems. Then, we outline the common problems in engineering reliable biometric systems. In particular, we focus on the need for novelty detection machine learning models and adaptive machine learning algorithms. We provide a systematic approach to design and build reliable behavioural-based biometric systems. In our study, we apply the proposed approach to keystroke dynamics. Keystroke dynamics is behavioural-based biometric that identify individuals by measuring their unique typing behaviours on physical or soft keyboards. Our study shows that it is possible to design reliable behavioral-based biometrics and address the gaps in the literature

    Complementary Feature Level Data Fusion for Biometric Authentication Using Neural Networks

    Get PDF
    Data fusion as a formal research area is referred to as multi‐sensor data fusion. The premise is that combined data from multiple sources can provide more meaningful, accurate and reliable information than that provided by data from a single source. There are many application areas in military and security as well as civilian domains. Multi‐sensor data fusion as applied to biometric authentication is termed multi‐modal biometrics. Though based on similar premises, and having many similarities to formal data fusion, multi‐modal biometrics has some differences in relation to data fusion levels. The objective of the current study was to apply feature level fusion of fingerprint feature and keystroke dynamics data for authentication purposes, utilizing Artificial Neural Networks (ANNs) as a classifier. Data fusion was performed adopting the complementary paradigm, which utilized all processed data from both sources. Experimental results returned a false acceptance rate (FAR) of 0.0 and a worst case false rejection rate (FRR) of 0.0004. This shows a worst case performance that is at least as good as most other research in the field. The experimental results also demonstrated that data fusion gave a better outcome than either fingerprint or keystroke dynamics alone

    Advanced user authentification for mobile devices

    Get PDF
    Access to the full-text thesis is no longer available at the author's request, due to 3rd party copyright restrictions. Access removed on 28.11.2016 by CS (TIS).Metadata merged with duplicate record ( http://hdl.handle.net/10026.1/1101 - now deleted) on 20.12.2016 by CS (TIS).Recent years have witnessed widespread adoption of mobile devices. Whereas initial popularity was driven by voice telephony services, capabilities are now broadening to allow an increasing range of data orientated services. Such services serve to extend the range of sensitive data accessible through such devices and will in turn increase the requirement for reliable authentication of users. This thesis considers the authentication requirements of mobile devices and proposes novel mechanisms to improve upon the current state of the art. The investigation begins with an examination of existing authentication techniques, and illustrates a wide range of drawbacks. A survey of end-users reveals that current methods are frequently misused and considered inconvenient, and that enhanced methods of security are consequently required. To this end, biometric approaches are identified as a potential means of overcoming the perceived constraints, offering an opportunity for security to be maintained beyond pointof- entry, in a continuous and transparent fashion. The research considers the applicability of different biometric approaches for mobile device implementation, and identifies keystroke analysis as a technique that can offer significant potential within mobile telephony. Experimental evaluations reveal the potential of the technique when applied to a Personal Identification Number (PIN), telephone number and text message, with best case equal error rates (EER) of 9%, 8% and 18% respectively. In spite of the success of keystroke analysis for many users, the results demonstrate the technique is not uniformly successful across the whole of a given population. Further investigation suggests that the same will be true for other biometrics, and therefore that no single authentication technique could be relied upon to account for all the users in all interaction scenarios. As such, a novel authentication architecture is specified, which is capable of utilising the particular hardware configurations and computational capabilities of devices to provide a robust, modular and composite authentication mechanism. The approach, known as IAMS (Intelligent Authentication Management System), is capable of utilising a broad range of biometric and secret knowledge based approaches to provide a continuous confidence measure in the identity of the user. With a high confidence, users are given immediate access to sensitive services and information, whereas with lower levels of confidence, restrictions can be placed upon access to sensitive services, until subsequent reassurance of a user's identity. The novel architecture is validated through a proof-of-concept prototype. A series of test scenarios are used to illustrate how IAMS would behave, given authorised and impostor authentication attempts. The results support the use of a composite authentication approach to enable the non-intrusive authentication of users on mobile devices.Orange Personal Communication Services Ltd

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Design and Evaluation of a Pressure Based Typing Biometric Authentication System

    Get PDF
    The design and preliminary evaluation of a pressure sensor-based typing biometrics authentication system (PBAS) is discussed in this paper. This involves the integration of pressure sensors, signal processing circuit, and data acquisition devices to generate waveforms, which when concatenated, produce a pattern for the typed password. The system generates two templates for typed passwords. First template is for the force applied on each password key pressed. The second template is for latency of the password keys. These templates are analyzed using two classifiers. Autoregressive (AR) classifier is used to authenticate the pressure template. Latency classifier is used to authenticate the latency template. Authentication is complete by matching the results of these classifiers concurrently. The proposed system has been implemented by constructing users’ database patterns which are later matched to the biometric patterns entered by each user, thereby enabling the systemto accept or reject the user. Experiments have been conducted to test the performance of the overall PBAS system and results obtained showed that this proposed system is reliable with many potential applications for computer security
    corecore