
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2020

Poisoning Attacks on Learning-Based Keystroke Authentication Poisoning Attacks on Learning-Based Keystroke Authentication

and a Residue Feature Based Defense and a Residue Feature Based Defense

Zibo Wang

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

 Part of the Computer Sciences Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Louisiana Tech Digital Commons

https://core.ac.uk/display/337613590?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F844&utm_medium=PDF&utm_campaign=PDFCoverPages

POISONING ATTACKS ON LEARNING-BASED KEYSTROKE

AUTHENTICATION AND A RESIDUE

FEATURE BASED DEFENSE

by

Zibo Wang M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2020

Replace this page with the Signature Page.

ABSTRACT

Behavioral biometrics, such as keystroke dynamics, are characterized by rela-

tively large variation in the input samples as compared to physiological biometrics such

as fingerprints and iris. Recent advances in machine learning have resulted in behavior-

based pattern learning methods that obviate the effects of variation by mapping the

variable behavior patterns to a unique identity with high accuracy. However, it has

also exposed the learning systems to attacks that use updating mechanisms in learning

by injecting imposter samples to deliberately drift the data to impostors’ patterns.

Using the principles of adversarial drift, we develop a class of poisoning attacks, named

Frog-Boiling attacks. The update samples are crafted with slow changes and random

perturbations so that they can bypass the classifiers detection. Taking the case of

keystroke dynamics which includes motoric and neurological learning, we demonstrate

the success of our attack mechanism. We also present a detection mechanism for the

frog-boiling attack that uses correlation between successive training samples to detect

spurious input patterns. To measure the effect of adversarial drift in frog-boiling

attack and the effectiveness of the proposed defense mechanism, we use traditional

error rates such as FAR, FRR, and EER and the metric in terms of shifts in biometric

menagerie.

iii

Replace this page with the approval for scholarly dissemination form.

DEDICATION

I dedicate this dissertation to my wife and daughters. Thanks to their support

along the journey.

v

TABLE OF CONTENTS

ABSTRACT ... iii

DEDICATION.. v

LIST OF TABLES.. ix

LIST OF FIGURES.. x

CHAPTER 1 INTRODUCTION... 1

1.1 Motivation and Overview.. 1

1.2 Behavioral Biometrics ... 4

1.3 Keystroke Dynamics ... 6

1.4 Dissertation Contributions .. 9

CHAPTER 2 RELATED WORK.. 11

2.1 The Aging of Biometric Templates ... 11

2.2 Biometric Template Update.. 13

2.3 Adversary Template Drift ... 16

2.4 Defense for Template Drift Attacks .. 18

CHAPTER 3 ANALYSIS OF BIOMETRIC TEMPLATE EVOLUTION 20

3.1 Dataset Description .. 20

3.2 Keystroke Verification Algorithms .. 21

3.3 Analysis Results .. 23

3.3.1 Distribution of Feature Changes.. 24

vi

vii

3.3.2 Analysis with Tests of Significance.. 26

3.3.3 Analysis of Equal Error Rate (EER) Performance 32

CHAPTER 4 DESIGN AND PERFORMANCE EVALUATION OF THE
FROG BOILING ATTACK .. 37

4.1 Design of Attack ... 37

4.2 Baseline Evaluation... 42

4.3 Attack Settings ... 43

4.4 Attack Results... 45

CHAPTER 5 RESIDUAL BASED DETECTOR AGAINST THE FROG-
BOILING ATTACK .. 57

5.1 Residual Distribution Features.. 57

5.2 Design of the Residual Based Detector ... 60

5.2.1 Random Forest Ensemble Classifier... 60

5.2.2 Two-Layer Defense Mechanism ... 62

5.3 Evaluation and Performance of Residual Distribution based Two-Layer
Defense Mechanism... 63

5.3.1 Experiment Setting.. 63

5.3.2 Experimental Results .. 65

5.4 Performance Evaluation of Biometric Authentication System Against
frog-boiling Attacks... 67

5.4.1 Experimental Settings ... 67

5.4.2 Performance Evaluation on Keystroke Verification System........... 67

CHAPTER 6 CONCLUSIONS AND FUTURE WORK..................................... 72

6.1 Conclusion... 72

6.2 Future Work.. 73

viii

6.2.1 Applications on Other Biometric Modalities 73

6.2.2 Potentials of Our Works in Real Life .. 75

BIBLIOGRAPHY... 78

LIST OF TABLES

Table 4.1: The mean (µEER) and standard deviation (σEER) of the EER of
each of the 3 verifiers at baseline. EERs are expressed as a percentage. 42

Table 4.2: The mean and standard deviation of the EERs for the three verifiers
after the Frog-Boiling attack. EERs are expressed as percentage. 45

Table 4.3: EER of the keystroke verification system under the frog-boiling
attack with mixed attempts.. 51

Table 5.1: Performance of RF-mix, RF-attack and Two-Layer Classifiers........... 64

Table 5.2: EER performance (in percentage) of keystroke verification system
with the proposed defense mechanism under the frog-boiling attack.. 68

ix

LIST OF FIGURES

Figure 1.1: Illustrating how keystroke features are computed from an arbitrary
types string. The example used here is the string KEY. 7

Figure 1.2: Overview of keystroke verification system on fixed text. In the
training phase, keystroke features are extracted and a template
(which is a matrix of order ab) is created for each user from a
features collected during b typing attempts. In the verification
phase, features extracted from a keystroke sample is compared with
the template to produce a verification decision. 8

Figure 3.1: CDF of User Feature Change in Milliseconds (ms) Across 3 Phases. 25

Figure 3.2: Distribution of the Percentage of Users’ Samples Significantly
different from an earlier profile. ... 28

Figure 3.3: Distribution of the P values from the significant tests. 29

Figure 3.4: Percentage of Users for whom the profile significantly different from
earlier profile with various string length. ... 30

Figure 3.5: An example ROC curve. The curve shows the trade-off between
the false accept rate (FAR) and the false reject rate (FRR). The
intersection is the equal error rate (EER). .. 33

Figure 3.6: EER performance with different testing phase. 20 training samples
are generated with MC. ... 34

Figure 3.7: EER performance with different testing phase. 50 training samples
are generated with MC. ... 36

Figure 4.1: Idea of the Frog-Boiling attack. Attacker intends to drift a user
template (gray circle on the left) to a target, by inserting fake
samples (red crosses) to a user template. .. 38

Figure 4.2: Idea of the Frog-Boiling attack. Attacker intends to drift a user
template (gray circle on the left) to a target, by inserting fake
samples (red crosses) to a user template. .. 39

x

xi

Figure 4.3: Menagerie transitions due to the frog-boiling attack launched with
Attacker #1’s (User #47’s) template as the destination template.
Each cross represents one of the 46 victims. The right side partition
of each graph contains goats, while the bottom segment of each
graph contains lambs. A user could be both a goat and a lamb.
Column 1 to 5 represents the original user status before attack, and
the 50th, 100th, 150th, and 200th iterations of Frog-Boiling attacks.
All scores shown on the plot are normalized....................................... 48

Figure 4.4: The changes of average FRR and FAR during the process of the
frog-boiling attack, with Attacker #1’s profile as the destination
template. ... 50

Figure 4.5: Menagerie transitions due to the frog-boiling attack launched with
Attacker #1’s (User #47’s) template as the destination template,
with mixed attack rate of 1:2. ... 53

Figure 4.6: Menagerie transitions due to the frog-boiling attack launched with
the population template as the destination template, with mixed
attack rate of 1:2. .. 54

Figure 4.7: The changes of FAR and FRR over time during frog-boiling attack
to the keystroke verification system. Each figure shows results of
three verifiers with mixed attack, with mixed rate of 1:2. 55

Figure 5.1: Correlation and residual distribution for keystroke samples 58

Figure 5.2: The flow diagram of the proposed two-layer defense mechanism........ 62

Figure 5.3: Menagerie transitions due to the frog-boiling attack launched with
Attacker #1’s (User #47’s) template as the destination template,
with mixed attack rate of 1:2. The residual-based detector is used
in the system... 69

Figure 5.4: The changes of FAR and FRR over time during frog-boiling attack
(e.g., mixed attack with a rate of 1:2) to the keystroke verification
system with the proposed residual-based detector. 70

Figure 6.1: The changes of FRR and FAR over time during frog-boiling attack
to the brainwave identification system. Attacks are generated with
attacker #1. .. 74

Figure 6.2: Correlation and residual distribution for ERP brainwaves samples.... 76

CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Motivated by the abundance of sensors built into computing devices these days,

there is now a wide range of research studies fronting behavioral biometrics modalities

that leverage data generated by these sensors. This family of behavioral biometric

modalities includes modalities such as gait [4] and touch dynamics [16] on smartphones

and desktop-centric modalities such as keystroke dynamics [26] and mouse dynamics

[3]. Different from physical biometric modalities such as fingerprints [22], face [10],

and iris recognition [13], behavioral biometric patterns tend to be unstable [39] [28]

as users generally exhibit significant variance in their patterns. While many of these

biometric modalities have been shown to produce low error rates during authentication

experiments conducted in controlled settings, it is not well understood how or whether

the known instability of the associated behavioral biometrics patterns would impact

the performance of a real authentication system in the wild.

For example, several studies have showcased error rates of less than 5% for

behavioral biometric modalities such as touch dynamics [16], keystroke dynamics [6]

and gait [20], to mention but a few. However, the majority of these studies were based

on experiments in which data was collected from a group of users who interacted with

1

2

the system over a period of a few days. From these studies, it is hence not possible to

determine how variations in users behavioral biometric patterns over time (say over

several months) would impact the overall system performance. Recent efforts to thwart

the potential negative impacts of these variations have showcased template update

mechanisms that correct these template variations to prevent them from negatively

impacting the classification engine (e.g., see [18]). However, these studies still suffer

from the same problem of studying behavioral biometrics using small datasets collected

over a short period, and mostly focus on showcasing the benefits of the template

update schemes without providing any systematic insights into the template variations

that the update mechanisms aim to fix.

Moreover, a noteworthy issue facing these template update schemes is that

they have the potential to be used as a vehicle of attacks on the system i.e., along

with the template update data, an adversary could insert bad data that is tuned to

systematically add noise to a user’s template. This problem has to some extent been

studied in more established biometric modalities such as face and fingerprints [37][32],

however, in behavioral biometrics, it is not known how or whether a template update

scheme could be leveraged by an adversary to compromise the system. In comparison

to physical biometrics such as fingerprints, behavioral biometrics exhibit much more

variance, which implies that past findings on template update-related challenges seen

with physical biometric modalities would not be directly applicable to a behavioral

biometric setting. To protect a biometric authentication system from “adversarial

drifting” type of attacks, several recent studies proposed defensive mechanisms [18, 19]

to reject fake updates. However, these mechanisms also have limitations, in terms that

3

the updating performance is compromised, since many of the samples from genuine

users are rejected from updating.

This dissertation takes steps to tackle several of the problems discussed above.

In particular, we take the case of keystroke dynamics and examine the problem of

feature evolution in behavioral biometric authentication. We explore the impact of

feature evolution on authentication error rates and conduct a systematic evaluation

of the mechanism of feature evolution over time. Armed with our findings on the

nature of users feature variations, we evaluate the performance of various template

update schemes and address the question of how an adversary could take advantage of

the template update scheme to systematically drift a user’s template. Specifically we

tackle this last question through the design of a new attack called a Frog-boiling attack

[38]. This attack is named after the tale of the boiling frog i.e., a frog which was

unaware that it was being boiled because the water temperature had been increased in

very tiny steps (see [17]). Our attack takes the same approach as the adversary aims

to drift the template using very small updates that are too small to be detected, yet

cumulatively able to cause a significant impact on the system over time. To prevent

the attack, we propose a residual-based defense mechanism to detect and reject fake

updates to a biometric system, without sacrificing and losing too many updates from

the genuine users To support our investigations, we use two large datasets, one of

which collected over a period of three years at Louisiana Tech University (see dataset

in [35]), and the other collected over two days at Carnegie Mellon University (see

[26]). The latter dataset contains data from 138 users while the former contains data

from 51 users. Both datasets were collected while users typed a fixed text. Usage of

4

two datasets collected in different settings enables us to get deeper insights into the

dynamics of template evolution.

1.2 Behavioral Biometrics

Biometrics is the technical term refers to measurements or metrics related to

human characteristics. Technologies which use these measurements to verify human

individuals are generally categorized under the term biometric authentication. Bio-

metric authentication can be based on physical attributes of humans (e.g., fingerprints,

face, iris patterns) or on the behavioral patterns of a human (e.g., walking patterns,

typing patterns, mouse movement patterns). In both cases, a biometric system works

by comparing a user’s data samples with a template stored in advance. Depending on

the score obtained during the comparison, a user may be rejected or accepted by the

system. Where a genuine user is rejected by the system, such an event is referred to

as a false rejection (or false negative) and would typically be caused by a user seeing

variations in the biometric pattern relative to the stored template. Where an impostor

gets accepted by the system, such an event is referred to as a false acceptance (or

false positive), and occurs when the impostor has a biometric pattern similar to that

of the genuine user. In general, behavioral biometrics see much more incidences of

false acceptances and false rejections relative to physical biometrics. Despite their

much higher susceptibility to recognition errors, behavioral biometrics retain certain

advantages over physical biometrics that continue to attract a significant amount of

research attention to them.

5

For example, physical biometrics require the user to perform a particular task

(e.g., hold the finger against a fingerprint reader, face the camera for a photograph to

be take, etc.). This requirement is acceptable where users have to authenticate once

before accessing a resource (e.g., when logging into a network). However, where users

have to be authenticated continuously, the requirement to have the user switch from

the task at hand to perform the dedicated authentication task is quite intrusive. As

an illustration of a situation where continuous authentication might be needed, take

the case of an individual accessing confidential data on a computer (e.g., installations

such as those in the Department of Defense). In order to determine that the individual

accessing the computer is the legitimate user, a password is typically entered at the

start of the session. However, shortly after entering the password, there is no way in

which the system can determine that the user accessing the resource is still the one

who provided the valid password. A naive solution to this problem would, for instance,

require the user to enter the password every few minutes. For many applications,

however, such an approach is bound to be rejected by users since it would perpetually

distract the user away from the main task on the computer.

Behavioral biometrics offer a natural solution to such a problem since they

are based on activities that the user is supposed to undertake anyway. For example,

a keystroke authentication mechanism only requires the user to go about his or her

routine tasks while the authentication mechanism extracts features from the typing

samples. In other words, the user can be continuously authenticated without even

having to be aware of, or pay attention to, the underlying authentication mechanism.

6

Other behavioral biometric modalities such as gait, mouse movements, and swiping

patterns follow the same philosophy.

Another scenario where behavioral biometrics have interesting characteristics

is that of password hardening ([31]). This scenario is most commonly studied in the

breath of typing-based behavioral biometrics and basically entails the combination of

a password and the typing pattern into a hardened password ([31]) that is verified

at login-time. When the user types the password, the system only authenticates the

user when the password, and the method of typing the password match those of the

genuine user. This idea of password hardening can be extrapolated to other emerging

behavioral authentication modalities such as brain activity-based authentication ([12]).

Overall, these cited scenarios (i.e., continuous authentication and password hardening)

illustrate why behavioral biometrics continue to be very widely studied despite being

more susceptible to errors than the more established physical biometric modalities.

The challenges of behavioral biometrics authentication discussed in Section

1.1 apply to all the behavioral biometric modalities mentioned here and more. This

dissertation is, however, focused only on keystroke dynamics so as to enable a thorough

investigation while at the same time minimizing duplications (as would be the case

if similar analysis is repeated for multiple modalities). In the following section we

present an overview of keystroke dynamics.

1.3 Keystroke Dynamics

Keystroke dynamics (KD) a biometric modality in which keyboard typing

patterns are used to authenticate users is categorized into fixed text verification, and

7

continuous text verification. In the latter category, a user’s keystrokes are monitored

continuously, or periodically during an entire typing session (typically after the login

phase), while the former category, which is also the focus of this dissertation, is based

on a fixed pre-determined text such as a password entered at login time. Verification

algorithms designed for both KD branches generally draw from the same pool of

features, of which the most commonly used are the key hold time (KHT), key interval

time (KIT) and the keypress time (KPT) [25][35]. KHT is the time between press

and release of the same key, KIT is the time between release of a key and press of

the next key, and KPT is the time between press of a key and press of the next key,

which equivalents to the sum of KHT of the first key and KIT of the two keys. Notice

that KIT could be zero or a negative value since users may press a key on or before

the previous key is released.

t1 t2 t3 t4

K E Y

t5 t6

Kpress Krelease EreleaseEpress Ypress Yrelease

t

Figure 1.1: Illustrating how keystroke features are computed from an arbitrary types
string. The example used here is the string KEY.

Figure 1.1 gives an example of how keystroke features are extracted when the

word KEY is typed on the keyboard. A key-logger captures the time of occurrence of

keypress and key release events, and keystroke features are calculated accordingly. For

example, with the character K pressed at time t1 and released at time t2, the KHT of

8

key K is calculated as t2 − t1. If the next key E is pressed at t3, the KIT and KPT

of the digraph KE are t3 − t2 and t3 − t1, respectively. Notice that since key E was

released after the keypress of the next key Y, the KIT of digraph EY is a negative (i.e.

t4 − t5).

Figure 1.2: Overview of keystroke verification system on fixed text. In the training
phase, keystroke features are extracted and a template (which is a matrix of order ab
) is created for each user from a features collected during b typing attempts. In the
verification phase, features extracted from a keystroke sample is compared with the
template to produce a verification decision.

Figure 1.2 illustrates the process of a typical keystroke verification system with

fixed text keystrokes. In the training phase, each user is asked to type keystrokes for

enrollment, and a template is created. In the verification phase, the system compares

a user’s keystroke typing against the template from this user, calculates a verification

score, and gives a verification decision based on a set threshold. In this dissertation,

9

we formalize a keystroke template as an ab matrix created from features collected

during b typing attempts, and each row represents a feature vector (i.e. KHTs, KITs,

and KPTs) extracted from a typing attempt.

1.4 Dissertation Contributions

The contributions of this dissertation are summarized below:

1. We analyze the variability of users keystroke biometric patterns (i.e., template

evolution or aging) based on data collected over a 2-year period. In particular, we

use a wide range of statistical and pattern analysis techniques to study the extent of

variations and whether they are statistically significant. We perform our analysis at

both feature and sample level and investigate how these variations are distributed

across the population, how they impact recognition error rates and how they interact

with different template update schemes. This analysis provides new insights into the

design of template update schemes as well as the possibility of attacks that exploit

the variations via template update schemes. To our knowledge, this is the first work

to study keystroke biometric aging effect. Results of the analysis will impact research

investigating template update strategies as well as motivate defenses against exploits

such as the adversarial template drifts.

2. We design and evaluate an attack mechanism that adversaries could employ

to defeat biometric verification systems which update users templates on a regular

basis. While this dissertation focuses on keystroke dynamics- based authentication,

we believe that our attack design offers some general insights into how other biometric

modalities could be attacked during the template update process. To our knowledge,

10

this is the first work to investigate such a kind of attack in keystroke biometric

authentication systems, and we thus believe that our attack model will motivate a

new direction of research seeking to fortify template update schemes against abuse.

3. We propose a residual feature-based attack detection mechanism to identify

the fake updates from adversaries. The proposed detection method can protect a

biometric authentication system from drifting attacks without compromising the

updating performance. A thorough evaluation about how the proposed mechanism

protects and affects a biometric authentication system under attacks is presented.

Although analysis results are presented in the domain of keystroke dynamics, we

believe that our mechanism can be extended to other biometric modalities to prevent

adversarial template drifting.

CHAPTER 2

RELATED WORK

2.1 The Aging of Biometric Templates

Template aging refers to the increase in error rates caused by time-related

changes in the biometric pattern [30]. Biometric template aging degrades the

performance of a biometric system over time, since after a sufficiently long period, the

initial enrollment template of a certain subject substantially differs from his current

biometric samples, producing lower similarity to the initial template and increasing

error rates of the system. In machine learning, the term concept drift is often used to

refer to changes in the profile of the data distribution [65]. In biometrics, the drift

is often caused by aging, and previous studies have how template aging impacts a

biometric system.

Recent studies on human biometric aging traits were used for verification or

identification. [29] described a method to model aging variation on human faces

based on a statistic face model. The statistic face model was a combination of a

shape model and an intensity model, both generated from a list of training face image

with 50 parameters. In their work, the aging pattern is represented by an aging

function age = f(b) where b is the vector of the 50 parameters, and f is the quadratic

function. The function was trained for each individual to fit his/her aging pattern.

11

12

They further tested the robustness of a face recognition system with aging simulation.

In the training phase, apart from the set of image used to train the face classifier, a

second set of image was used to generate the aging function for each individuals in

the database. In the test phase, given a face image, an appropriate aging function

was used to evaluate the age of the face and the recognition result was generated

along with the aging simulation. Their results showed that the improvement of the

classification rate was between 5% and 15% with aging simulation. In their following

works [27] [28], the focus was the development of artificial age progression algorithms

for forensics applications.

[15] analyzed the aging of iris biometrics with a dataset over a three-year period.

They compared the match scores distribution for short time-lapse iris image pairs,

with an average of one month apart between the enrollment image and testing image,

to the match score distribution for iris image pairs with one year, two years and

three year time-lapse. A clear evidence of template aging was noticeable with iris

images one year apart, with an average of 27% increment of false-reject-rate comparing

to the rate with short time-lapse images. Also, the false reject rate increased with

increasing time-lapse, and the average increments in false reject rate were 91% and

153% with images of two-year and three-year time-lapse, respectively. In a recent

study of biometric aging [47], a multiyear fingerprint dataset was evaluated. Results

presented the degrade of system performance without a template updating procedure.

A similar result on fingerprint biometric was shown in [64]. While recent works on

biometric template aging draw great attention to some modalities, such as face, iris

13

and fingerprint, there has not been any work on the template aging problem in KD.

This dissertation will fill this gap.

2.2 Biometric Template Update

Template update mechanisms keep track of a user’s biometric pattern in order

to detect and compensate for variations which could degrade system performance. In

particular, such mechanisms use the latest user samples accepted by the system to

update a user’s profile. Two types of template update procedures are studied in the

literature: the supervised method and the semi-supervised method. We describe the

two methods in the following paragraphs.

In the supervised method input updating data are labeled by a supervisor to

ensure only genuine data are updated to user templates. [37] proposed two methods to

select user templates in fingerprint biometric, based on multiple enrollments, in order

to perform template updates. The first method first clusters the samples then picks

the representative sample in each cluster. The other method finds a batch of samples

with shorter distances to others. Both template selection and template updates are

operated offline, while template updates involves newly accepted genuine samples

labeled by the supervisor. An improvement of between 5% and 10% in false accept

rate, comparing to the results without template update, was presented with various

experimental settings. The supervised method is expensive since it requires updating

data to be labeled by human expert, or multiple enrollment sessions with attention of

users, not mentioning the additional operators to authenticate users in enrollments.

14

The other option, the semi-supervised method, automatically updates user

templates with samples collected while the system is operating. In this method, the

updating data are selected based on the authentication decision, specifically, only

samples accepted by the verification system are eligible to apply template update. [23]

proposed a fingerprint verification system with online fingerprint template improvement.

Such systems merge the original user template during enrollment with input fingerprints

while the system is operating to update user templates. The updating threshold was

higher than the verification threshold to limit imposter updates. A recursive algorithm

decided the weights of the original template and the update sample while merging.

The improvement was presented as a significant reduction of error rates based on the

ROC curve, and a better representation in template minutiae.

The applications of template updating mechanism are not limited to the

academic area. Some of the recently released electronic devices use template updating

procedure to enhance their performance. As an example, both Apple’s FaceID [2] and

TouchID [1] perform template updating. FaceID updates user template either after

a succeeded face authentication, or a rejected face image is followed promptly by a

correctly typed backup passcode.

[34] build an experimental analysis to study the template update in face

verification. A “self-update” protocol was designed to update user templates with

unlabeled data, based on the verification results. With the initial template being

set, the rest of the face images are separated into prediction set, unlabeled set, and

test set. The prediction set is used to partitions users into different animal groups

in “Doddington’s Zoo” ([14]). The unlabeled set of each user is combined with the

15

same amount of images from other users’ (imposters) unlabeled set, to operate the

“self-update”, and the system performance is tested with the test set. The threshold for

update is evaluated based on the initial template of each user. With the prediction set,

users are cluster into four types of animals: lamb, goat, wolf, and sheep, as described

in [14].

Lamb: Lambs are users who are vulnerable to imposter attack; their FRRs are

higher than others.

Goat: Goats are users who find it difficult to match against their own template.

Specifically, goats has higher FAR than other users.

Wolf: Wolves are users who can match well against other users, therefore, they

are considered strong attackers.

Sheep: Sheep are users who do not belong to any of the above groups. They

are users who generally have good verification performance.

[34] studied the template update effect to each of the four animal groups.

Results showed that lambs’ templates accepted more updates (65.7% of unlabeled

samples were updated) but a high proportion (43.2%) of the updated samples came

from imposters. On the other hand, goats had updated lowest amount of updated

samples (23.3%) but were less vulnerable to imposter updates (11.8% of imposter

updates).

[18] analyzed various template updating approaches in KD, with semi-supervised

methods. These approaches update user templates with newly enrolled samples. A

threshold was set to select the update samples, and such threshold is stricter than

the authentication threshold so that only highly genuine samples are picked. With

16

two datasets in KD, the experimental results shows an improvement of around 45%.

Two ways of updating a user template were used: the sliding window and the growing

window. Both mechanisms are introduced by [24].

Sliding window : A sliding window updating mechanism uses a fixed template

size, i.e. the number of samples stored in the template is fixed. Once an eligible

updating sample is added to the system, the oldest sample in the template is removed.

Growing window : In this updating mechanism, the template size increases by

one sample when an eligible updating sample is added to the template since none of

the samples in the template is removed.

A recent study on adaptive keystroke system [66] put forward a keystroke

authentication system using template update and ”Doddington’s Zoo”. The system

first recognized a user’s category according to the animal based categories, then

adopted adaptive strategy to remedy problems of the user’s class. The sliding window

and the growing window mechanisms were applied, and their system achieved lower

than 1% of error rates.

The benefits from using a template update system have been shown in previous

studies. Some researchers pointed out that attackers could exploit the template update

to intrude a system, by creating fake updates (i.e. [34]) to drift user template. Such

adversaries will be described in the next section.

2.3 Adversary Template Drift

A weakness of the template updating scheme is that adversaries can exploit the

opportunities of template updates to manipulate user templates. In particular, if an

17

attacker has some knowledge of a victim’s biometric pattern (i.e. snoops a biometric

sample from the victim), the attacker could poison the victim’s template by adding

carefully designed attack samples. As shown in some recent studies [61, 63], avoiding

imposter update in an adaptive biometric system could be challenging. [8] investigated

the poisoning attack in face biometrics. This attack send a set of fake face images

to the camera to gradually compromise a victim’s face template. With an image

from a victim, the attacker attempts to drift the victim’s template towards a targeted

template which was decided by the attacker. Each of the attack image was carefully

tuned so that each drift was small enough pass the verification. The presented results

showed that the attack increased the FAR of the system from 1% to between 5% and

10% with only 5 iterations, and up to 50% with 10 iterations; on the other hand, the

genuine users acceptance rate were degraded significantly. The design of the attack

requires that the attacker has the perfect knowledge of the verification system (i.e.

the verification algorithm, updating policy, victim’s templates). [7] further investigate

the scenario that the attacker only knows the verification algorithm and the updating

policy, with an estimation of victim’s template (i.e. a picture of a victim’s face from

the internet). The results showed that such attack has similar effectiveness to the

previous work, with more iterations as a trade-off.

Lovisotto et al. [48] proposed a “backdoor” procedure which allows a face

authentication system to accept an attacker’s face while minimizing the change of FAR

and FRR. The process was accomplished by injecting a series of carefully tuned face

images to a victim’s template. They claimed that the attack needs minimal knowledge,

18

but the mechanism was build based on the assumption that the authentication system

was a face recognition system using DNN as the verifier.

All works discussed above showed the vulnerability of template updating

scheme in biometric verification systems. However, the requirement of the attacker’s

knowledge to the system (i.e. the verification algorithm, the updating policy) reduces

the feasibility of the attack. In this dissertation, a more general template drifting

attack is presented in KD, with minimal knowledge and skill requirements from the

attacker.

2.4 Defense for Template Drift Attacks

On the defense against such template-drifting attacks, very little research can

be found in the literature. The hill-climbing attacks have been reported [50] focusing

on brainwave biometric system attacks, which keeps trying different versions of a

user’s EEG biometric templates until it can eventually access the brainwave biometric

authentication system. The synthetic samples were adjusted and improved according

to the returned matching scores.

Template protection scheme can be implemented on biometrics system for

protecting the template-drifting attacks through cryptographic protocols [49, 51].

Gomez et al. [45] used the uniform score quantization to enhance the system security,

but it actually restricted the system’s template updating ability by setting the number

of the desired quantization levels. Giot et al. [19] tested a “two-threshold” updating

strategy in order to filter the attack samples. In particular, samples that were added

to the template need to satisfy an “updating threshold” which is stricter than the

19

authentication threshold. Therefore, only the “highly genuine” samples were updated.

In this test, a mixed pool of genuine and imposter input samples were used to operate

the template updates. The amount of genuine sample was fixed, and the rate of

amount of imposter samples in the pool was decided by a parameter. In the enrollment

phase, the system created two templates which were the same for each user. In the

verification phase, each input sample compared with each of the two templates to

generate verification scores. The final score was the average of the two scores. An

authentication threshold decided whether the sample was accepted, and an updating

threshold further decided whether to use the sample to update user templates, if the

sample passed the authentication. The authentication threshold was the EER based

on the training, and two sets of updating threshold were used: 1) the EER threshold

which was the same as the authentication threshold, and 2) a threshold at 1% FAR.

The experimental results showed that a stricter threshold significantly reduced the

imposter update rate from around 10% to lower than 0.2%. On the other hand, the

genuine update miss rate was increased from around 20% to over 80%. These results

clearly showed that the “two-threshold” strategy limited the effect of imposter updates

by reducing numbers of imposter updates significantly. However, such mechanisms

may also affect the updating performance of the system since some genuine samples

were also rejected for updating.

Different from all prior efforts, in this dissertation we will propose a mechanism

to defend “poisoning” type of attacks without sacrificing the updating performance.

CHAPTER 3

ANALYSIS OF BIOMETRIC TEMPLATE EVOLUTION

In this chapter we study the evolution (or aging) of keystroke biometrics

features over time. We use a range of pattern analysis and statistical methods for

this analysis. Observations made in this section form the basis for the attack designs

and performance evaluations to be undertaken in the proceeding sections. We first

describe the dataset used for these evaluations before giving details of the results of

our analysis.

3.1 Dataset Description

In this dissertation we use two keystroke dynamic datasets. One collected by

Carnegie Mellon University (CMU data), the other one collected by Louisiana Tech

University (LTU data). Descriptions follow.

CMU data: This is a public dataset with keystroke typing data for 51 users.

All data was collected on a laptop Windows computer with an external keyboard. The

data collection was splitted into 8 sessions, and users were allowed to complete only

one session each day. The time span of 8 sessions of data collection varies from one

week to one month. In each session, users were asked to type a 10-character phrase

.tie5Roanl’ for 50 times. A total of 400 typing repetitions were collected from each

20

21

user. A Windows application was developed for the data collection. If a mistype

happens, users are prompt to type the phrase over again.

LTU data: The LTU data was collected in three sessions over two years, which

are fall 2009, fall 2010 and fall 2011. Totally 138 users joined all 3 sessions of data

collection. In each session, users are asked to type the same 58-character phrase

multiple times. The phrase was I am an undergraduate student of Louisiana Tech

University. Twelve repetitions of the phrase were collected in the first session (fall

2009), and 15 repetitions were collected in each of the second and the third session

(fall 2010 and fall 2011). All keystroke data was collected on a Windows PC with a

physical keyboard. A Windows application was developed to guide users to type. The

application displays a window with a line of text showing the word phrase, and a text

box below the line of text for users to type. Users need to correctly type the whole

phrase and hit Enter button to type the next repetition. If any mistype happens, a

single click of Backspace button will clear everything in the text box, and users need

to type the phrase over again. The keypress time and key release time of each of the

58 characters (including 8 space characters) were recorded by the application, and 58

KHT and 57 KIT were generated for each typing phrase.

3.2 Keystroke Verification Algorithms

Killourhy et al. [26] compared the performances of 14 keystroke verification

algorithms. They collected keystroke time data for typing password from 51 users.

Each user had 8 session of data with 50 repetitions in each session. The first 4 sessions

of data from each user were used to build the user template in the training phase,

22

and the last 4 sessions built the testing set for both genuine test (200 repetitions of

genuine samples) and imposter test (keystroke samples from other 50 users). With each

keystroke verification algorithm, the anomaly score of testing samples are calculated,

and a comparison of 14 algorithms was generated based on the error rates. three

verifiers stood out to be best, which are: 1) Scaled Manhattan, 2) Outlier Count,

and 3) Nearest Neighbor. We apply the first verifier, Scaled Manhattan in this

dissertation. The second algorithm Relative is another well-known high-performance

KD verification algorithm that was first proposed by Gunetti et al. [3]. The latter

algorithm was particularly used to complement the first three algorithms because they

are all Euclidean distance-based. Details of the verification algorithms follow:

Scaled Manhattan Verifier (SM): This detector was described by Araujo

et al. [5] The training phase involves computing the mean and mean absolute deviation

of each feature in a user template, while the mean absolute deviation is calculated

with the following equation:

ai =
n∑

j=1

|µi − xij|/n (3.1)

µi is the mean of the ith feature in the user template, xij is the ith feature value

of the jth sample in the template and n is the number of samples in the template.

The test phase involves computation of the anomaly score using the expression:

s =
m∑
i=1

|yi − µi|/ai (3.2)

yi is the ith features of the test vector with m number of features.

23

Relative Verifier (R): This verifier was described by [Bergadano et al., 2002].

In the training phase, the verifier computes the mean of each feature from a user

template. In the test phase the verifier assigns ranks to each of the elements in the

test and mean vectors, before computing the degree of disorder between the rank

vectors. The normalized degree of disorder equals the anomaly score.

Fusion Verifier (F): To further enhance the rigor of our performance analysis,

we experimented the fused verifier, since verifier fusion is known to improve the

performance of biometric classifiers [33, 34]. Note that our choice of the SM and R

verifiers for the fusion classifier was because the SM verifier was the best performing

verifier in the earlier mentioned study [26], while the R verifier, by virtue of being the

non-Euclidean verifier, should capture the users’ typing traits from a perspective that

complements that of the SM verifier.

Before fusing scores, we perform a genuine score centric normalization, in which

each score s is normalized to obtain a new score s′ , where s′ is calculated as:

s′ = (sµG)/σG (3.3)

µG and σG are respectively the mean and standard deviation of the genuine

training scores. For all fusion we use the weighted sum-rule [11] with equal weights.

3.3 Analysis Results

In the following subsections we present results on different perspectives of

feature evolution over time. We first compare the distribution of feature changes

(Section 3.3.1). Details of the feature distributions were already introduced in Section

24

3.3.1. Following the distribution comparisons we perform statistical significance tests

to assess the significance of feature variations seen in each individual feature and

different sizes of feature vectors (Section 3.3.2). In the last part of this analysis, we

perform user classification using training and testing data collected at different points

in time to determine whether or to what extent the feature changes seen via the

significance tests translate into decrements in user classification accuracy.

3.3.1 Distribution of Feature Changes

Figures 3.1 are the CDFs of the absolute changes in users’ mean values for

each feature between 2009 and 2011. For an arbitrary user who participated in our

data collection experiments in both 2009 and 2010, the change in mean feature values

seen between 2009 and 2010 is computed as follows. Over the 12 instances provided in

2009, we compute the mean of each KHT and each KIT. Since there were 58 distinct

KITs and 57 distinct KHTs in the paraphrase used for our experiments, this process

creates a 57-dimensional vector and a 58-dimensional vector for each user. Over the

15 instances provided in 2010, the KHT mean vector and the KIT mean vector are

computed in the same way for each user. Finally, for each user a differences vector

is computed by subtracting the KHT mean vector computed from the 2009 dataset

from that computed for the 2011 dataset, with the same process repeated for the KIT

mean vector. The difference is computed as an absolute value. Figures 3.1 shows the

cumulative distribution of the values in the differences vectors over the population for

the KHTs while Figure shows a similar distribution for the KITs.

25

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Average Absolute Feature Change in ms

C
D

F

2009 − 2010
2009 − 2011
2010 − 2011

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Average Absolute Feature Change in ms

C
D

F

2009 − 2010
2009 − 2011
2010 − 2011

Figure 3.1: CDF of User Feature Change in Milliseconds (ms) Across 3 Phases.

26

These distributions provide insights into the changes seen in the different

features on average. Observe that the KITs depict much higher differences than the

KHTs; the differences seen with the KITs go as high as 200+ ms while those seen

with the KHTs only reach 40ms at most. This points to KITs being more unstable

than the KHTs over time. The figures further show that there were some changes

that were considerably higher than the mean change behavior. E.g., over 20% of the

differences in KHTs were more than 20ms while over 20% of the KITs were more than

80ms. From this graph it is not possible to determine whether these considerably

higher changes were due to user behavior or due to the identities of the keys typed.

However, the figures indicate the existence of a change, which we further analyzed in

terms of EERs and with the aid of statistical tests of significance to get a concrete

picture of these changes in user features.

3.3.2 Analysis with Tests of Significance

In the previous plots (Figure 3.1) we studied the evolution of each individual

feature in a user’s feature vector. Here, we study evolution from the perspective of an

entire feature vector. We did this in two ways:

Approach 1: In the first approach, we use the typing samples collected in

2009 (or 2010) to compute a vector of feature means for each user, and then compare

this vector with a similarly created feature-means vector built for the same user from

typing samples collected in a later year.

For many keystroke verification algorithms (e.g., see [26] for a survey), this

vector is the main building block of a user’s profile, and we thus believe it should

27

be a plausible representation of a user’s typing pattern at any given point in time.

In the rest of this paper, we refer to this vector as the user’s profile. For a range

of string lengths between 8 and 58 characters, we run the K-S test for each user,

the null hypothesis being that the particular user’s reference profile for the string in

question does not vary significantly from the profile built using data collected in a

later year. These tests will give some answers as to whether a user could take up

different identities (in keystroke terms), if their profile was to be built at different

points in time.

Approach 2: In our second approach to studying keystroke feature vector

evolution, we test if each of the individual samples (feature vectors) provided by a

user in 2010/2011 differed significantly from the particular user’s reference profile.

Unlike the previous approach where the comparison between users’ profiles gave a

consolidated view of the evolution of a user’s keystroke traits, these tests will give

some insights into how well individual authentication attempts match with a profile

which was built years before the attempts are made. For the same range of string

lengths used in the previous tests, we run the tests using the feature vectors provided

by each user in the later years (2010 or 2011).

Thus while the first method uses one test per user per string length, the second

approach uses several tests per user per string (the number of tests depends on the

number of feature vectors provided by the user in the later year), the null hypothesis

in each case being that the feature vector under consideration does not significantly

differ from the user’s reference profile.

28

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

% of Feature Vectors Seeing Change

8−Char
20−Char
40−Char

(a) 2009 - 2010 KHT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

% Feature Vectors Seeing Change

8−Char
20−Char
40−Char

(b) 2009 - 2010 KIT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

C
D

F

% Feature Vectors Seeing Change

8−Char
20−Char
40−Char

(c) 2010 - 2011 KHT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% Feature Vectors Seeing Change

C
D

F

8−Char
20−Char
40−Char

(d) 2010 - 2011 KIT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% Features Vectors Seeing Change

C
D

F

8−Char
20−Char
40−Char

(e) 2009 - 2011 KHT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% Feature Vectors Seeing Change

C
D

F

8−Char
20−Char
40−Char

(f) 2009 - 2011 KIT

Figure 3.2: Distribution of the Percentage of Users’ Samples Significantly different
from an earlier profile.

29

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

P Values

C
D

F

8−Char
20−Char
40−Char

(a) 2009 - 2010 KHT

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

P Values

C
D

F

8−Char
20−Char
40−Char

(b) 2009 - 2010 KIT

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

P Values

C
D

F

8−Char
20−Char
40−Char

(c) 2010 - 2011 KHT

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

P Values

C
D

F

8−Char
20−Char
40−Char

(d) 2010 - 2011 KIT

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

P Values

C
D

F

8−Char
20−Char
40−Char

(e) 2009 - 2011 KHT

10
−8

10
−6

10
−4

10
−2

10
0

0

0.2

0.4

0.6

0.8

1

C
D

F

P Values

8−Char
20−Char
40−Char

(f) 2009 - 2011 KIT

Figure 3.3: Distribution of the P values from the significant tests.

30

0 10 20 30 40 50 60
20

30

40

50

60

70

String Length

%
 o

f U
se

rs
 S

ee
in

g
C

ha
ng

e

 2009−2010
2009−2011
2010−2011

(a) KHT

0 10 20 30 40 50 60
0

5

10

15

20

String Length

%
 o

f U
se

rs
 S

ee
in

g
C

ha
ng

e

2009−2010
2009−2011
2010−2011

(b) KIT

Figure 3.4: Percentage of Users for whom the profile significantly different from earlier
profile with various string length.

31

Figures 3.2, 3.3 and 3.4 summarizes our findings from these feature evolution

tests. In Figure 4-2, we plot the CDF of the percentage of the feature vectors (from

the 2010/2011 experiments) that depict a significant change when compared to the

respective users’ reference profiles. The reference profiles are either based on the

2009 dataset or the 2010 dataset. For example, the plot labeled 2009-2010 refers to

a reference profile which was built based on 2009 dataset while the profile used for

comparison was based on data collected in 2010.

Observe that for both KHTs and KITs, the percentage of feature vectors seeing

significant change increased with increasing string length. The increments seen with

the KITs are more subtle but still apparent from the plots. The figures generally

confirm that the longer strings are more likely to be associated with unstable keystroke

profiles than the shorter strings (See Figure 3.3 for the distribution of P values returned

from the hypothesis tests used to plot Figure DD. The critical value used was 0.05. P

values lower than 0.05 indicate rejection of the earlier described null hypothesis.)

Figure 3.4 shows the results for the experiments run following Approach

1:. The figure confirms the earlier observed trend, as the percentage of 2010/2011

user-profiles depicting significant variation from the respective users’ reference profiles

generally increases with increase in string length.

While it has previously been shown that aging of users’ features can degrade

the performance of a keystroke verifier [Killourhy and Maxion 2010], no previous

work has investigated how keystroke features age with time. Our results here provide

empirical evidence detailing the nature of keystroke template evolution over a long

period.

32

We note that the discussion in this section applies to the evolution of keystroke

features from the statistical perspective and does not necessarily point to how/whether

feature evolution may result into authentication failure for the user in question. Next,

we address how the analyzed keystroke feature evolution patterns impact the classifier

Equal Error Rates.

3.3.3 Analysis of Equal Error Rate (EER) Performance

The performance of a keystroke verification algorithm is often measured with

error rates, specifically, false accept rate (FAR), false reject rate (FRR), and equal error

rate (EER). FAR is the probability that a biometric verification system incorrectly

accept a verification attempt by an unauthorized user. The FAR typically is calculated

as the number of false acceptance divided by the number of access attempts by

imposters. FRR is the probability that a system incorrectly rejects an access attempt

from a genuine user. FRR is calculated as the number of false rejects divided by the

number of verification attempts by genuine users. EER is the rate at which the FAR

and the FRR are equal. EER can be obtained by the ROC curve, as in Figure 3.5.

To measure the performance of the keystroke verification algorithms, we

generate the anomaly score of each testing sample, and the FAR and FRR depend on

how the threshold of the anomaly score is chosen. The choice of threshold establishes

the operating point of the verifier on the ROC curve. Over the continuum of possible

thresholds, the ROC curve illustrates the FAR and FRR that would be attained at

each possible detector operating point. EER is then calculated as in the intersection

of the ROC curve and the line FAR = FRR.

33

Figure 3.5: An example ROC curve. The curve shows the trade-off between the false
accept rate (FAR) and the false reject rate (FRR). The intersection is the equal error
rate (EER).

Figure 3.6 shows the impact of template aging on classifier performance. Three

classification algorithms have been used for this analysis, i.e., Scaled Manhattan

algorithm (SM) [], R verifier (R) [] and a fusion of the R and SM verifiers based on

the weighted sum rule (F)[].

For each algorithm we perform training and testing in three different scenarios:

1. Data collected from each user in 2009 is divided into two portions; one of which

is used for training and the other for testing. 5 samples typed in 2009 are

augmented with 15 samples generated by a Monte Carlo simulation to create a

training set of 20 samples. Testing is based on 7 samples collected in 2009.

34

2009 2010 2011
0

10

20

30

40

Testing Session

E
E

R
%

8−Char
20−Char
40−Char

(a) SM KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(b) SM KIT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

 8−Char
20−Char
40−Char

(c) R KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(d) R KIT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

 8−Char
20−Char
40−Char

(e) F KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(f) F KIT

Figure 3.6: EER performance with different testing phase. 20 training samples are
generated with MC.

35

2. Training is done similarly to scenario 1 while all 15 samples collected in 2010

are used for testing.

3. Training is done similarly to scenario 1 while all 15 samples collected in 2011

are used for testing.

Figure 3.6 (a), (c) and (e) show the performance of the classifiers when training

and testing was done based on KHTs respectively extracted from an 8-character string,

a 20-character string and a 40-character string. The figures show that for all 3 verifiers,

the classifier Equal Error Rates were lowest for scenario 1, followed by scenario 2 and

highest for scenario 3. The same trend is seen when the features used were KITs

(see Figure 4-5 (b), (d) and (f)), and when the Monte Carlo simulation was used to

produce 50 samples (see Figure 3.7) as opposed to 20 samples. The reason behind this

trend is that as time went by, each user’s features underwent a drift, which resulted in

worsening classification performance over time. In all cases the fusion verifier performs

at least as well as the individual verifiers, however, it still depicts the same trend.

These results provide solid evidence for the evolution of users’ templates over time,

and the need for template update mechanisms to remedy this situation.

36

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(a) SM KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(b) SM KIT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

 8−Char
20−Char
40−Char

(c) R KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(d) R KIT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

 8−Char
20−Char
40−Char

(e) F KHT

2009 2010 2011
0

10

20

30

40

Testing Phase

E
E

R
%

8−Char
20−Char
40−Char

(f) F KIT

Figure 3.7: EER performance with different testing phase. 50 training samples are
generated with MC.

CHAPTER 4

DESIGN AND PERFORMANCE EVALUATION OF THE
FROG BOILING ATTACK

4.1 Design of Attack

The previous section has shown evidence for the evolution of keystroke features

over time. A standard solution to this kind of problem is the usage of template update

mechanisms. Such mechanisms make corrective changes to a user’s template when the

user’s features are deemed to have changed significantly relative to the stored template.

While ours is the first work to provide concrete insights into the evolution of user’s

keystroke features over time, there are interestingly already some existing proposals

on corrective mechanisms (or template update mechanisms) against template aging.

In this section we investigate the notion that these corrective mechanisms can be

exploited to inject malicious samples into the template. Specifically, we design an

attack called a frog-boiling attack that seeks to stealthily drift a user’s features. We

evaluate the performance and practicality of the attack in different settings.

Rubinstein et al. [43] introduced the term ”Boiling Frog” as a type of

poisoning attacks in which ”the adversary slowly, but increasingly, poisons the principal

components by adding small amounts of chaff, in gradually increasing quantities.”

Chan-Tin et al.[9] coined the term Frog-Boiling attack in reference to an attack which

37

38

uses a sequence of carefully tuned fake updates to stealthily perturb the coordinate

system of a network. This stealthy modification of the coordinates is likened to the

tale of a frog which ended up being boiled in water just because the temperature

was increased in very small undetectable steps. In this dissertation, we adapt the

philosophy of the Frog-Boiling attack to the domain of keystroke based verification.

In particular, our frog-boiling attack is built upon the following assumptions:

1. an adversary who is able to snoop on a user’s typing session and use the captured

timing data to synthesize and replay authentication attempts with the aid of

software tools (i.e. key-loggers and keystroke generators); and

2. a keystroke verification system that uses template updates to correct variations

seen in a user’s template over time (i.e., template aging).

Figure 4.1: Idea of the Frog-Boiling attack. Attacker intends to drift a user template
(gray circle on the left) to a target, by inserting fake samples (red crosses) to a user
template.

Figure 4.1 presents the general idea of the Frog-Boiling attack. The gray circle

on the left represents the original template of a KD user. The Frog-Boiling attacker

seeks to drift the user template towards some target template, using carefully tuned

fake samples which marginally deviate from the user’s own samples. This marginal

39

variation from the user’s own template helps fool’ the system into accepting them,

with the cumulative impact of these samples eventually aimed to transform the user’s

template into a target template that is very different from that of the genuine user.

An example of the target template could be a template that belongs to the attacker

(that would eventually give the attacker unfettered access to the system), or some

generic weak template aimed to degrade the authentication performance of a user.

Figure 4.2: Idea of the Frog-Boiling attack. Attacker intends to drift a user template
(gray circle on the left) to a target, by inserting fake samples (red crosses) to a user
template.

Figure 4.2 is a flow chart of the Frog-Boiling attack. A list of fake samples

is generated based on a snooped user sample and a target template chosen by the

attacker. These samples are well-tuned to create a drift to a victim’s template, while

staying in the range to be verified by the system. Gaussian random noise is added to

the samples to create some randomness, hence avoiding suspicion. Algorithm 1 shows

a formal view of the attack.

40

Input: F, D̄,N, n
Input: σ = {σ1, σ2, · · · , σn}
∆← (D̄ − F)/N ;
for i← 1 to P do

//P iterations in total

for j← 1 to n do
x← N (1, σj);
if i ≤ N then

F ′ ← (F + (i− 1) ·∆) · x;
end
else

F ′ ← (F +N ·∆) · x;
end
//attack vector

if Verification(F ′) == true then
//verifier accepts vector F ′

v ← 1; break();
end

end
if v 6= 1 then

break(); //Abort attack

end

end
ALGORITHM 1: The Frog-Boiling Attack

Given a user with a keystroke template denoted by S, the Frog-Boiling attack

(see Algorithm 1) seeks to transform S towards a destination template D, where D

stands for an arbitrary keystroke template, which could, for instance, be built from

the attacker’s own keystroke features, or from data collected from several users over

a population. We shall refer to the latter form of the destination template D, as a

Population Template, and the former as a User-specific Template.

F ′ =


x · (F + (i− 1) ·∆), 1 ≤ i ≤ N

x · (F +N ·∆), i > N

(4.1)

41

Equation 4.1 generalizes the feature vector F ′, used to make the ith Frog-Boiling

attempt. F represents the feature vector that the adversary directly synthesizes

from data collected during the initial keylogging process (see Assumption 1), while

∆ = (D̄− F)/N is the vector of small latency modifications being used to slowly drift

S towards D with the aid of the Sliding Window template update mechanism. D̄ is a

vector whose elements are obtained by computing the mean values of the different

features in the template D, while the scalar N represents an arbitrary number of

small steps used during the first stage of the template transformation (i.e., the stage

represented by the interval 1 ≤ i ≤ N in Equation 4.1).

The noise term x is added to make each forged feature value appear random,

since a set of regularly spaced feature values could easily raise suspicion. We model the

noise using the Gaussian random variable with fixed mean, 1, and standard deviation

σj ∈ {σ1, σ2, · · · , σn}, where σ1 > σ2 > · · · > σn. The default value of σj is set such

that σj = σ1, the lower values of σj being used only when the forged feature vector F ′

fails to authenticate against the victim’s template.

In these cases of failed authentication, where the forged feature vector F ′ fails

to authenticate against the victim’s template, the Frog-Boiling attack stipulates a total

of n re-authentication attempts, for which the standard deviation of the noise term is

reduced after each failed authentication. Reduction of the noise term is done through

use of a lower standard deviation for the Gaussian variable X. If authentication still

fails after the n times, the attack against that particular user is aborted. For the

attacks in this work we used n = 5, since many password authentication systems

permit an average of 5 failed authentication attempts before initiating additional

42

defensive measures. Details of the other attack parameters are discussed in Section

4.3.

4.2 Baseline Evaluation

Before evaluating the attack, we performed a set of baseline experiments whose

results will serve as a reference point to gauge the impact of the Frog-Boiling attack.

These experiments were based on data collected from the first 46 of the 51 users,

as samples collected from the remaining 5 users were reserved for the design of the

Frog-Boiling attack. The steps followed for each user in the training and testing

process of the baseline experiments are listed below:

1. With one of the first 46 users designated as a genuine user, the other 45 users

are designated as the impostors. Data collected from the first 2 typing sessions

of the genuine user (equivalent to 100 typing repetitions) is then used to train

each of the six verifiers.

2. To generate genuine scores of a given genuine user, data from Sessions 3

(equivalent to 50 typing repetitions) is used to attempt the user’s model.

3. Finally to generate impostor scores, data from the first five typing attempts of

each impostor in Sessions 3 is used to attack the genuine user’s model.

Table 4.1: The mean (µEER) and standard deviation (σEER) of the EER of each of
the 3 verifiers at baseline. EERs are expressed as a percentage.

SM R Fusion
µEER 13.29 18.10 9.97
σEER 7.73 9.20 6.10

43

Table 4.1 summarizes the performance of the classifiers in terms of their EER

at baseline. The fusion verifier performs the best, and SM verifier performs better

among the two single verifiers. The next section details the attack process, and how

the baseline performances of the different verifiers are affected by the attack.

4.3 Attack Settings

We perform two types of Frog-Boiling attack: the user-specific attack, for which

the target template is a specific attacker, and the population attack, for which the

target template is the average of a population. For both biometric systems, the last

five users in each dataset are designated as the attackers, and the Population template

is computed based upon the profiles of the last 5 users. The snooped samples used to

initiate the attack are obtained from Session 4 of the keystroke victim.

The standard deviation of the noise distribution is drawn from the set σ =

[0.4, 0.3, 0.2, 0.15, 0.1], while N = 100 and P = 300 (see Algorithm 1, for meanings

of parameters). The large value of N ensures that the individual template drifts

causing the transition from S to D are sufficiently small, while the large value of P

enables the victim’s template to eventually get completely flushed by samples from the

Frog-Boiling attack attempts made when the counter variable, i, is such that i > N

(see Equation 4.1). We set N = 100 and P = 200.

We perform the Frog-Boiling attack in two scenarios, the so-called pure attack

and mixed attack. With pure attacks, all authentication attempts during the Frog-

Boiling attacks are attack samples, hence the attacks proceed while a victim is not

using the system. The results of the pure attacks will show the full potential of the

44

Frog-Boiling attack. However, a large amount of attack attempts during a short

amount of time could be suspicious (considering a victim may still use the system

occasionally). If the attack could proceed without interrupting a victims normal usage,

the intrusion would be more difficult to detect. Therefore, we also investigate the

more challenging and demanding mixed attack, in which the biometric system receives

both genuine and attack attempts. A prior study [36] used the Poisson distribution to

model users’ login behaviors, and we use a similar approach in this work.

In our experiments, Poisson random numbers that represent the instant at

which a login attempt is made are generated for both genuine and attack attempts

using Equation 4.2, with λ = 2500. n represents the number of attempts generated.

In our experiment, nG = 300 for genuine samples, nA = 150, 300, or 600 for attack

samples, which correspond to the ratios between the genuine and the imposter attempts

as 2:1, 1:1, or 1:2, respectively. With pure attack we flush victims’ template with 200

attack samples. With mixed attack, we use a virtual timeline to show the process

of the attack. All the genuine and attack attempts are Poisson distributed on the

timeline, and the process of the attack lasts 200 time units with keystroke system. The

expected numbers of genuine attempts (through the Poisson random generator) within

the timeline are 200, and the expected numbers of attack attempts varies based on the

mixed rate. Note that even we use fixed rates on the amount of genuine and attack

samples, since all the attempts are randomly generated, there could be consecutive

genuine or attack attempts.

[x1, x2, · · · , xn] = P(λ) (4.2)

45

Table 4.2: The mean and standard deviation of the EERs for the three verifiers after
the Frog-Boiling attack. EERs are expressed as percentage.

Attacker
Verifier

SM R Fusion
Attacker #1 64.27 (23.51) 37.43 (34.46) 47.43 (40.79)
Attacker #2 62.28 (21.98) 30.48 (27.44) 47.52 (36.04)
Attacker #3 56.77 (33.19) 20.65 (29.67) 24.00 (31.78)
Attacker #4 52.37 (25.93) 16.09 (17.94) 22.83 (26.88)
Attacker #5 53.85 (21.96) 23.04 (25.65) 32.11 (30.71)

Population attack 54.80 (23.98) 20.59 (10.83) 26.62 (13.07)

4.4 Attack Results

Table 4.2 summarizes the performance of the three verifiers after the full

Frog-Boiling attack was launched. To compute the EERs, we subject the victim’s

transformed template to the same training and genuine-score generation procedure

that was used in Section 4.2, but generate the impostor scores using the attackers’

samples from session 2 (50 repetitions). Impostor samples are perturbed with noise

before the attack is launched. A total of 1000 impostor attempts are made.

Table 4.2 generally reveals that all classifiers see increased EERs as a result of

the attack. The EER increments vary across attackers, since, for instance, attacker

#1 causes EER increments as high as 400% (e.g., SM verifier, from 13.29 (see Table

4.1) to 64.27 (Table 4.2), Fusion verifier, from 9.97 (Table 4.1) to 47.43 (Table 4.2),

etc.), while attacker #5 affects all verifiers just slightly. This trait is a direct result of

our attack model, in which the victim’s destination template directly depends on the

attacker’s template. As such, an attacker with a weak destination template should,

with high likelihood cause higher EER increments than an attacker with a strong

template.

46

Another interesting observation about the results in Table 4.2 is that the R

verifier, which performed worst at baseline, appears to resist the attack more than

the other verifiers. This could be because the R verifier’s mechanism rotates around

the relative ranks of the features (see Section 3.2 for its description), yet the SM

specifically focus on the magnitudes of the feature values, which are directly modified

by the Frog-boiling attack.

The relatively good performance of the A-fusion verifier could also be attributed

to the resistance of the R verifier (which is one of the individual verifiers used in the

fusion) to the attack. Meanwhile, the significant performance degradation seen by

the S-fusion verifier was likely because the set of well-performing users that are not

considered for fusion by this verifier could have changed into weak users after the Frog-

Boiling attack. This observation suggests that in an adversarial environment, S-fusion

verifiers would have to be dynamic, continuously monitoring users’ performance after

enrollment. The implication of the S-fusion verifier’s behavior under attack is that

for biometrics modalities where a template update scheme could be abused, user’s

the distinction between good and poor users would have to be continuously done, as

opposed to biometric performance would have to be continuously monitored.

Next, we investigate the impact of the attack on the user groups (or animals)

specified by the biometric menagerie. The biometric menagerie is a categorization

of users of a biometric system into groups depending on how well or poorly a user

performs.

Grouping these animals depends on a set of thresholds that express how well

users authenticate on the system. In this work we fix these thresholds that we find to

47

partition the users according to their classification performance. A similar approach

was also used in [34]. We classify users whose mean genuine scores are above the

89th percentile as goats, and those whose mean impostor scores are below the 33rd

percentile as lambs. Our analysis will focus on these two classes since they generally

represent the weak users, whose proportion at different stages of the Frog-Boiling

attack will help demonstrate the impact of the attack.

Figure 4.3 captures the attack victims’ template transformations as a function

of the genuine and impostor scores, after different iterations of the Frog-Boiling attack.

The destination template in this case is that of Attacker #1 (User #47). The solid

vertical line represents the goats threshold, while the solid horizontal line represents

the lambs threshold. For each verifier (i.e., each row), the first graph gives the baseline

performance before the Frog-Boiling attack was launched, the other plots capturing

steps number 50, 100, 200 and 300 of the attack.

By step number 100, all classifiers see a marked increase in the number of lambs,

while an increased number of goats takes a much larger number of steps. This slow

increment in the number of goats is likely because the attack employs very small feature

modifications, which enables the genuine users to continue to match well against their

templates after the first few (say, 100) attacks. On the other hand, the fast increase in

the number of lambs could be because a sequence of forged authentication attempts

increases the extent of variability of the victim’s template, while at the same time

decreasing the distance between each pair of genuine and impostor feature vectors.

Respective increment and decrement of these two variables then results into a decrease

of the impostor scores (see Section 3.2 for score computation formulae).

48

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6 8

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

Goat

Lamb

(a) Scaled Manhattan verifier

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

(b) Relative verifier

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6 8

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

(c) Fusion verifier

Figure 4.3: Menagerie transitions due to the frog-boiling attack launched with Attacker
#1’s (User #47’s) template as the destination template. Each cross represents one
of the 46 victims. The right side partition of each graph contains goats, while the
bottom segment of each graph contains lambs. A user could be both a goat and a
lamb. Column 1 to 5 represents the original user status before attack, and the 50th,
100th, 150th, and 200th iterations of Frog-Boiling attacks. All scores shown on the
plot are normalized.

49

Another attribute of the attack depicted by Figure 4.3 is that some users

completely resist the animal transformations (e.g., second user from the top axis of

Figure 4.3 (c)), while others see transformations only during the first few stages of

the attack (e.g., first user from the top axis). This aspect of the Frog-Boiling attack is

crucial for the obfuscation of the attack, since an attack-induced transformation of

all victims to a common category/animal (as specified by the destination template),

would likely ease the task of detecting the attack. In practice however, it is noteworthy

that the attack could be tweaked to transform as many users’ templates as possible

(e.g., by using a greater number of re-authentication attempts during failed attacks,

using very small template modifications at each stage, etc.) depending on the aims of

the adversary.

A counter-argument that could be raised against the practical implications of

the results depicted by Figure 4.3 is that, the 50+ steps required for the attack to

cause a significant effect is too high to go undetected in a real system. To address this

question, we note that as long as a computer system is compromised by malware, the

question of a bot logging into a site multiple times is not an insurmountable challenge

today (e.g., see [52]). Additionally, we note that for verifiers built to use 8 to 30

samples during template building (see [26] for a survey), the process of flushing the

template should certainly take a much fewer number of steps than those used in this

work. We are mostly compelled to use templates containing 100 typing samples (and

thus 100+ steps for the attack), because of the large size of the dataset we used.

Up to this point, we have not addressed the question of how long users continue

to log into their accounts during the course of the attack. If users fail to log onto

50

0 50 100 150 200

Frog-Boiling attack step

0

0.2

0.4

0.6

0.8

1
F

R
R

SM
R
Fusion

(a) False Rejection Rate (FRR)

0 50 100 150 200

Frog-Boiling attack step

0.1

0.2

0.3

0.4

0.5

F
A

R

SM
R
Fusion

(b) False Acceptance Rate (FAR)

Figure 4.4: The changes of average FRR and FAR during the process of the frog-boiling
attack, with Attacker #1’s profile as the destination template.

51

Table 4.3: EER of the keystroke verification system under the frog-boiling attack with
mixed attempts.

Mixed Rate
Attacker #1 Population Attack

SM R Fusion SM R Fusion

Mixed 2:1 20.70 19.74 13.91 20.63 19.98 12.11
Mixed 1:1 31.34 24.57 26.08 27.15 22.45 24.55
Mixed 1:2 40.47 28.04 32.53 32.51 26.53 30.84

their accounts after just a few steps of the template transformation process, the attack

could be easily detected and precluded in its early stages. On the other hand, if

users still access their accounts during the course of the attack, the adversary could

expose users’ profiles to intrusion by both synthetic and zero-effort impostors (after

weakening their templates) for a long time before detection. Figure 4.4 gives some

insights into this aspect of the attack, where we show the evolution of system FRR

and FAR during the frog-boiling attack. FRR are calculated with the same genuine

testing set as in baseline test, and the samples to generate FARs are subtracted from

the attacker’s own typing sample. For all verifiers, the users represented in Figure 4.4

see very little change in their FRRs up to a number of attacks somewhere between

50 and 100. Meanwhile, the FAR begins to increase sharply after just a few attacks.

This trend in error rates shows that the likelihood of an attacker accessing a user’s

account increases fast while the likelihood that a genuine user fails to access their

own accounts only starts to get high after a very large number of attacks. Next, we

test the attack performance with the mixed attack scenario, and see how the attack

performs while victims keep using the system during the attack process.

Table 4.3 summarizes the EER performance of the keystroke verification system

under the Frog-Boiling attack with both genuine and attack attempts. Although the

52

EERs are not as high as the results with pure attack (Table 4.2), we see an increased

EER over the baseline. For example, with Attack #1’s template as the destination

template, the EER performance of SM verifier has over 200% increment over baseline

(from 13.29% to 40.47%), and the Fusion verifier has over 220% increment on EER.

Similar to the results in Table 4.2, although the R verifier performs the worst at

baseline, it has the lowest EER after the Frog-Boiling attack, due to the nature of

the verifier being non-Euclidean. Additionally, we could observe the trend that when

attack samples share a larger proportion in all the authentication attempts, the EER

after attack is higher, which indicates a greater impact from the frog-boiling attack.

This trend shows that the attacker should generate sufficient amount of attack samples

in order to create an effective attack. However, a more frequent attack rate would

also raise the suspicion, and when the victim’s attempts share the majority (in which

case the attack would unlikely be detected), the attack has little to no impact to the

system.

Figures 4.5 and 4.6 show the menagerie transitions due to the frog-boiling

attack in mixed attack scenario, and the mixed rates are 1:2. Figure 4.5 are generated

with Attacker #1’s template as the destination template and Figure 4.6 shows the

transition with population attack. It is observed that the users are moving from the

top left section (sheep) to the right section (goat) or bottom section (lamb), a similar

trend as shown in Figure 4.3. We see an increased number of goats with all verifiers

when the system suffers from 200 time unit of attacks (i.e., the most right column).

Comparing with the three verifiers, users have the least menagerie transition with R

verifier. This matches the results we have in Table 4.3.

53

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6
M

ea
n

Im
po

st
er

 S
co

re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(a) Scaled Manhattan verifier

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(b) Relative verifier

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(c) Fusion verifier

Figure 4.5: Menagerie transitions due to the frog-boiling attack launched with Attacker
#1’s (User #47’s) template as the destination template, with mixed attack rate of 1:2.

54

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6
M

ea
n

Im
po

st
er

 S
co

re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(a) Scaled Manhattan verifier

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(b) Relative verifier

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4

Mean Genuine Score

-2

0

2

4

6

M
ea

n
Im

po
st

er
 S

co
re

(c) Fusion verifier

Figure 4.6: Menagerie transitions due to the frog-boiling attack launched with the
population template as the destination template, with mixed attack rate of 1:2.

55

0 50 100 150 200

Frog-Boiling attack time

0

0.1

0.2

0.3

0.4

F
R

R
SM
R
Fusion

(a) False Rejection Rate (FRR)

0 50 100 150 200

Frog-Boiling attack time

0

0.1

0.2

0.3

0.4

0.5

F
A

R

SM
R
Fusion

(b) False Acceptance Rate (FAR)

Figure 4.7: The changes of FAR and FRR over time during frog-boiling attack to the
keystroke verification system. Each figure shows results of three verifiers with mixed
attack, with mixed rate of 1:2.

56

Figure 4.7 shows the change of FRR and FAR with mixed attack (i.e., mix

rate of 1:2) from Attack #1. All verifiers see an increased FRR and FAR because of

the attack. However, most of the changes occur after 100 time steps. Comparing the

results with the pure attack, the mixed attack takes more attacks to make impact to

the system. Although the R verifier (in red) performs the best against the frog-boiling

attack, the error rates changed by the attack occur prior to the other two verifiers.

We have shown how the Frog-Boiling attack can effectively intrude a keystroke

biometric systems with both error rate increments and menagerie transitions. In the

next chapter, we will describe our proposed defensive mechanism, the residual-based

detector, against the Frog-Boiling attack.

CHAPTER 5

RESIDUAL BASED DETECTOR AGAINST THE
FROG-BOILING ATTACK

Through the frog-boiling attack, attackers can generate the attacking samples

extremely similar to the genuine user templates but with slight differences and thus can

gradually drift the original template towards a target template by template updating.

So it is imperative to develop an effective defense mechanism which can effectively

identify the differences between the genuine user templates and the drifting attacker

templates. In this chapter, we will describe a residual-based detector to prevent

suspicious updates to the system.

5.1 Residual Distribution Features

Inspired by the existing work in steganography [44], we propose a new approach

to detect the frog-boiling attack, specifically to identify those attack samples that

have a very high level of similarity as the genuine samples, leveraging the statistical

residue distribution features. The rationale of this approach is to capture the intrinsic

dependency within the original genuine samples. Such dependency will be altered or

even lost when artificial attack samples are synthesized or generated based on the

genuine samples. Figure 5.1 (a) depict the average correlation levels corresponding

to the varying distances between any two sample points within 300 samples. It is

57

58

(a) Correlation between sample points of keystrokes

(b) Cumulative density distribution of residuals for genuine
samples, attack samples, and mixed attack samples of
keystrokes

Figure 5.1: Correlation and residual distribution for keystroke samples

59

shown that both types of data show strong correlation (i.e., dependency) among a

small set of closely adjacent sample points (e.g., correlation coefficient > 0.9). Such

dependency will drop dramatically as the increase of the distance between any two

sample points.

The residual among i adjacent sample points is defined as:

Ri = X̂i(Ni)− cX̄i (5.1)

For each feature (n represent the index of the corresponding feature), the first-order

and second-order residuals are extracted as follows:

Rn
1 (i) = Xn

i+1 −Xn
i (5.2)

Rn
2 (i) = Xn

i−1 +Xn
i+1 − 2Xn

i (5.3)

Xn
i represents the nth feature value in the ith sample. So the corresponding first order

residual Rn
1 (i) is calculated by the difference between Xn

i and its following sample’s

nth feature Xn
i+1. The second-order residual Rn

2 (i) is the difference between the sum of

ith sample’s neighbors’ nth feature value Xn
i−1 and Xn

i+1 minus Xn
i times by 2. Then

a probability density distribution is calculated based on k (k is the block size, k ∈ N)

residuals in the first and second order. Figure 5.1 (b) shows the cumulative density

distribution of the 1st-order residuals for the Feature 18 in the genuine samples of

Subject S002 and the frog-boiling attack samples to S002. It is observed that, there are

distinguishable differences of the residual distributions among the genuine samples (in

blue), the pure attack samples (in red) and the mixed attack samples (in green). It is

shown that the residual distribution of the genuine samples has a smoother transition

60

over a relative larger interval, unlike the sharp transition seen for the attack samples,

which indicates the manipulating nature of the attack samples. For each feature of

keystroke data, a residual distribution will be generated and used as the inputs of the

classifier (to be detailed in the next section).

In our prior work [46], we explored the use of residual distributions to differ-

entiate the genuine ERP samples against the synthesized ERP samples by injecting

a very small level of Gaussian noises onto the authentic samples. In this study,

residual distribution is adopted as an effective tool to represent the dependency nature

of sample points and identify the differences of sample points between the genuine

samples and the more demanding frog-boiling attack samples.

5.2 Design of the Residual Based Detector

5.2.1 Random Forest Ensemble Classifier

Due to the high variance in keystroke data and the large dimension of the

residual distribution features, a classifier could be easily over-fitted. Moreover, the

residual distribution features often possess different importance levels. For example, the

residual distributions of some sample features may demonstrate a clear distinguishable

difference between the genuine data and the attack data, such type of residual

distributions shall play more important role (i.e., have higher weight) in recognizing

the attack samples. Therefore, in this study we propose to use the Random Forest

Ensemble Classifier (RFEC) which has been proven to be effective in handling

high variance, high dimensional data; be resistant to over-fitting; and be able to

estimate the feature importance. RFEC is an aggregation of multiple weak classifiers

61

{h(X,Θk), k = 1, 2...K}, where Θk is the parameter set of the individual decision

tree k, and K represents the number of trees. The forming process of a RFEC and

principle of feature importance estimation by RFEC are as follows:

1. K subsets are randomly extracted from the original training dataset via boot-

strapping [42]. Corresponding to these K subsets, K decision trees are con-

structed and trained. For each extraction, the subset which is not chosen is

named as “Out-of-Bag” (OOB) data (OOBk);

2. For each decision tree, if there are n features, each time m features are extracted

(m ≤ n). The decision tree keeps choosing and splitting the “most significant”

feature (f ∈ m) until it is fully grown;

3. Aggregation at decision-making is realized through the majority voting of these K

decision trees with weights wk (wk ∝ 1
E(OOBk)

, in which E is the error estimation

function);

4. The feature importance estimation is calculated by permuting one feature across

OOB data and measuring how worse the MSE of RFEC predictions becomes

after the permutation.

Fully growing each decision tree allows RFEC to be capable of processing high

dimensional features. The creation of splits is then based on a random set of bootstrap

samples, which help reduce variance and avoid over-fitting. The majority voting with

wk aggregation method makes RFEC resistant to over-fitting and effective in handling

high variance data. With the importance estimation of the random forest, a filtering

and retraining model similar to the gene selection [41] is designed as follows: In every

iteration, according to the importance estimation result, part of the less important

62

Figure 5.2: The flow diagram of the proposed two-layer defense mechanism

features are filtered out and discarded, a new RFEC is then trained with the remaining

feature set. Through the testing of the validation data, the RFEC which performs the

best and the corresponding feature set is kept. In this case, for different subjects, the

most suitable and important feature set can be identified and chosen for training the

classifier.

5.2.2 Two-Layer Defense Mechanism

In some circumstances, data received by the authentication system is mixed

with the samples from both the attacker and the genuine user. In this case, a single

binary or ternary (three categories including genuine samples, attack samples, and

mixed samples) RFEC is not capable of distinguishing the mixed data. However, the

transitions from the genuine user to the attacker, and vice versa, can produce some

high amplitude residuals which will result in a much wider residual distribution than

the one of the genuine user or the attacker. For instance, according to Figures 5.1

(b), it is observed that the mixed data’s residual distribution (in green) is remarkably

deviated from the distributions of the genuine samples (in blue) and the attack samples

(in red). On the other side, although all centered around the value of zero, the residuals

63

of the genuine samples and the attack samples still demonstrate distinct distributions.

Based upon these observations, a two-layer defense mechanism is proposed in this

study, as illustrated in Figure 5.2. Any input sample will pass through the first RFEC

(“RF-mix”) which distinguishes the mixed data and the pure data (including both the

genuine and attack samples), and the identified pure data will be further processed by

the second RFEC (“RF-attack”) to distinguish the genuine data and the attack data.

5.3 Evaluation and Performance of Residual Distribution based
Two-Layer Defense Mechanism

To evaluate the effectiveness and efficiency of the proposed two-layer, residual

distribution based defense mechanism (see Figure 5.2) for the Frog-Boiling attacks on

biometric authentication systems, we develop the evaluation protocols based on the

keystroke dynamics biometrics investigated in this study.

5.3.1 Experiment Setting

RF-mix: an RFEC with the goal of distinguishing the mixed data and the pure

data.

Training: RF-mix is trained with the mixed data and the pure data for each

user. The pure data consists of the genuine keystroke data from sessions 2 to 5 and

the attacking samples generated by Gaussian random noises. The mixed samples

is created with a mix of both pure data sources. Genuine and attack samples are

uniformly random ordered in the training data.

Testing: RF-mix is tested with the genuine samples from sessions 6 to 8, the

frog-boiling attack samples and the mixed test data from the general population or a

64

Table 5.1: Performance of RF-mix, RF-attack and Two-Layer Classifiers

Classifiers FRR
FAR

Pure
Attack

Mix
1:2

Mix
1:1

Mix
2:1

pop A1 pop A1 pop A1 pop A1
RF-mix 1.73a/1.8b N/A 17.82 16.24 20.34 19.53 23.67 22.58

RF-attack 7.25 1.75 1.37 49.55 50.88 62.39 65.54 70.86 67.45
Two-Layer 8.53 1.37 0.98 14.15 12.80 15.24 16.71 26.83 27.80
Note: a for pure genuine and population attack samples, b for pure genuine and user-specific attack
samples.

specific user (for population attack or user-specific attack, respectively). The mixed

test data is generated with a mix of the genuine samples and the attack samples with

varying proportions, and is Poisson randomly distributed.

RF-attack: a second RFEC for categorizing data into the genuine or attack samples.

Training: RF-attack is trained with the genuine data and the attack data for

each user. With 8 sessions of the genuine keystroke data from each user, we train the

RF-attack with sessions 2 to 5 (200 keystroke repetitions for each user) as the genuine

training set. Keystroke samples in session 1 are discarded because it is found that the

residuals in session 1 are very unstable given the nature of practicing an unfamiliar

set of keystrokes. For attack training set, we randomly generate 10 attack training

samples from each genuine training sample with Gaussian random noises.

Testing: RF-attack is tested with the genuine samples from session 3 (50

repetitions) and the frog-boiling attack samples. We perform both the user-specific

attack and the population attack in the testing. The frog-boiling attack test samples

are generated in the same way as Section 4.3.

65

5.3.2 Experimental Results

Table 5.1 summarizes the performance of the proposed classifiers (including

the RF-mix, the RF-attack, and the two-layer structure) when provided with the pure

genuine samples, the pure frog-boiling attack samples, and the mixed samples with

varying proportions (the ratios between the genuine and the attack samples are 1 : 1,

1 : 2, and 2 : 1, respectively).

The goal of the RF-mix classifier is to distinguish the pure data (including both

the genuine and attack samples) and the mixed data, which works as a preprocessing

filter to detect and remove the more challenging and demanding mixed data samples.

To maximumly retain the genuine samples for updating the authentication system,

we give a higher priority to the FRR (i.e., the percentage of pure data including

both genuine and attack samples that are falsely labeled as the mixed data and thus

discarded) than the FAR (i.e., the percentage of mixed data samples that are falsely

labeled as the pure data and are further sent to RF-attack for processing). It is

shown that, RF-mix classifier achieves a very low level of FRR (< 2%) as well as

an acceptable level of FAR (∼ 20%). It is worthy to note that, given the different

goals of RF-mix and RF-attack classifiers, the definitions of FRR and FAR are also

different. For RF-attack and the two-layer classifiers, the FRR indicates the amount

of the genuine samples (not including attack samples) are falsely recognized as the

attack, and in contrast, the FAR represents the amount of the attack samples are

falsely accepted by the system.

According to Table 5.1, it is shown that only 1.75% of pure population attack

samples are accepted to update users’ templates in the keystroke authentication

66

system. Similar results can be seen for user-specific attacks. When facing the more

challenging mixed data including both the genuine and attack samples, unsurprisingly,

a significant amount of mixed samples are falsely accepted. The higher the percentage

of the genuine samples in the mixed dataset is, the more difficult it is to identify the

attack samples. As the mix ratio increases from 1:2 to 1:1 and then to 2:1, the FAR

correspondingly increases from 49.55% to 62.39% and then 70.86% for the keystroke

system and from 29.87% to 34.67%. Based on this observation, it is clear that the

RF-attack classifier itself can effectively distinguish the genuine and attack samples,

which however, is less capable when a more challenging mixed dataset is presented.

This also proves the necessity of applying another separate filtering mechanism — the

RF-mix classifier in our approach.

Combining the aforementioned RF-mix and RF-attack classifiers, the pro-

posed two-layer defense technique shows a very impressive performance in detecting

frog-boiling attack samples while retaining the genuine samples. In the keystroke

authentication system, FRR is 8.53%, and FAR is 1.37% (population attack) or

0.98% (user-specific attack) when facing the pure attack samples. When the input

data is mixed with both genuine and attack samples, the proposed two-layer defense

mechanism can still effectively detect and recognize the attack samples most of the

time. As explained in Section 4.4, the mixed data with the ratio of genuine samples

to attacks which is higher than 1:1 will significantly decrease the frog-boiling effect to

the system. That means, if the mixed data is dominated by the genuine samples, it is

less likely for the attacker to drift and influence the template updating results of the

67

target authentication system. Consequently, the FARs at ratio 1:1 and 1:2 are still

acceptable for a qualified defensive system.

5.4 Performance Evaluation of Biometric Authentication System Against
frog-boiling Attacks

We have demonstrated that our proposed residual distribution based, two-layer

defense mechanism can effectively detect and block fake updates to the authentication

system, as shown in Section 5.3.2. In this section, we will further evaluate how this

mechanism protect and affect the performance of the keystroke authentication systems

under frog-boiling attacks.

5.4.1 Experimental Settings

We use a similar experimental setting as in Section 4.3, except that the

two authentication systems are equipped with the proposed residual-based defensive

mechanism to authenticate the input template updates as well. As described in Section

5.4.2, the systems make an updating decision for every 20 legit incoming samples,

and we use the sliding window updating mechanism. We evaluate the two systems

with both user-specific attacks and population attacks. For the user-specific attacks,

destination templates are generated from Attacker #1 in both biometric systems, the

most effective attackers in both cases.

5.4.2 Performance Evaluation on Keystroke Verification System

Table 5.2 summarizes the EER performance of the keystroke verification system

with the proposed defense mechanism under the frog-boiling attack. Comparing against

the baseline performance (see Table 4.1), the EERs stay almost the same, or even

68

Table 5.2: EER performance (in percentage) of keystroke verification system with the
proposed defense mechanism under the frog-boiling attack.

Attacker #1 Population Attack
SM R Fusion SM R Fusion

Pure attack 15.33 19.79 10.91 14.21 19.88 9.89
Mixed 1:2 14.65 18.63 9.87 13.32 17.50 9.66
Mixed 1:1 13.78 18.14 9.69 13.11 17.42 9.65
Mixed 2:1 13.57 17.55 9.67 12.96 17.48 9.66

lower than the baseline. For example, the SM verifier has an average EER percentage

of 13.29 at baseline, and 12.96%, 13.11%, and 13.32% under the population attack

with genuine/imposter attempt proportion of 2:1, 1:1, and 1:2, respectively. The

results show that the enhanced keystroke verification system becomes very resistant

to the frog-boiling attack and the template updating mechanism can work properly

even in the presence of fake samples.

Figure 5.3 shows the menagerie transition when the keystroke system with

residual-based detector is under the frog-boiling attack, and the type of attack is

mixed attack with a rate of 1:2. All the movements of the crosses are insignificant and

neglectable, and no animal transition can be observed. This indicates that the frog-

boiling attack has limited impacts to transfer good performed users to bad performed

users. Similar results are observed for the menagerie transition with pure attack, which

are thus not presented here due to the space limit.

Figure 5.4 shows the FRR and FAR performance of the keystroke verification

system with the proposed residual-based defensive mechanism, under the frog-boiling

attack (i.e., mixed attack with a rate of 1:2). It is observed that the changes to

the error rates are very small, and the most remarkable change seen for the SM

verifier only increases the FRR from around 0.13 to around 0.16. Some other verifiers

69

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4
M

ea
n

Im
po

st
er

 S
co

re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6 8

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

(a) Scaled Manhattan verifier

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6 8

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

(b) Relative verifier

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6

Mean Genuine Score

-2

0

2

4

M
ea

n
Im

po
st

er
 S

co
re

-2 0 2 4 6 8

Mean Genuine Score

-2

0

2

4
M

ea
n

Im
po

st
er

 S
co

re

(c) Fusion verifier

Figure 5.3: Menagerie transitions due to the frog-boiling attack launched with Attacker
#1’s (User #47’s) template as the destination template, with mixed attack rate of 1:2.
The residual-based detector is used in the system.

70

0 50 100 150 200

Frog-Boiling attack time

0.1

0.15

0.2
F

R
R

SM
R
Fusion

(a) False Rejection Rate (FRR)

0 50 100 150 200

Frog-Boiling attack time

0.1

0.15

0.2

F
A

R

SM
R
Fusion

(b) False Acceptance Rate (FAR)

Figure 5.4: The changes of FAR and FRR over time during frog-boiling attack (e.g.,
mixed attack with a rate of 1:2) to the keystroke verification system with the proposed
residual-based detector.

71

even see a decrement in error rates. For example, the FRR and FAR of the fusion

verifier decrease from 0.1 to around 0.09. Results in Table 5.2, Figure 5.3 and 5.4 all

provide evidences that our residual-based defensive mechanism successfully prevents

the intrusion from the frog-boiling attack.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

In this dissertation we analyzed the template evolution in keystroke dynamics,

investigated an adversarial template drift (i.e. the Frog-boiling attack) and analyzed

the trade-off between defending adversarial template drift and ability to update user

templates. Our results of template evolution analysis shows that although KIT features

have higher difference than KHT features, KHT features seeing more significant change,

and the evolution of keystroke templates strongly degrades the EER performance.

While our analysis of template evolution provides solid evidence that template updating

mechanism is needed, the study of the Frog-boiling attack reveals the risk of adversarial

template drift, showing how the attack changes well-performed users to ill-performed

users. After adding defensive design in the system (i.e. two-threshold updating)

with various scenarios, our analysis gives strong evidence that a system with better

effectiveness to update user template has larger vulnerability to adversarial template

drift, and shows that the impact of the Frog-boiling attack can be limited while the

updating threshold reaches a certain point. We have also introduced a novel detection

mechanism that exploits correlation between samples to find spurious update samples.

72

73

We posit that the attacks and the detection mechanism can be extended to any

learning mechanism and thus require serious consideration by the community.

6.2 Future Work

6.2.1 Applications on Other Biometric Modalities

With evidences of biometric aging effect in other biometric modalities in

previous studies [27, 28, 29, 15, 47], we believe the applications of our attack and

defense mechanism is not limited to keystroke dynamics, and we will extend our work

to other modalities in the future. As described in Section 4.1, one of the advantage of

our attack mechanism is that it requires minimum knowledge from the attacker. We

will keep the same approach when we extend our mechanisms with minor tuning for

various biometric systems. As an example of our future work, we sampled an ERP

brainwave dataset [53] with some brief results. Some recent studies on brainwave

biometric [62] showed the impact of aging effect in EEG data, which indicated that

an adaptive system for brainwave authentication is needed.

We tested the Frog-Boiling attack in an ERP brainwave identification system

based on cross-correlation [53, 54], with a similar attack design as our keystroke

system (see Section 4.1). Figure 6.1 shows the error rate changes of the brainwave

identification system due to the influence of the frog-boiling attack. With the pure

attack, (the blue lines in both figure), we can see significant increments for both FRR

and FAR, from close to 0 to over 90%. With the mixed attack, FRR is increased from

around 6% to around 20%, and a slight increment in FAR. An interesting observation

from Figure 6.1 is that the increment of FAR with the pure attack starts at around

74

250 500 750 1000

Frog-Boiling attack time

0

0.2

0.4

0.6

0.8

1
F

R
R

Pure attack
Mixed 1:2
Mixed 1:1
Mixed 2:1

(a) False Rejection Rate (FRR)

250 500 750 1000

Frog-Boiling attack time

0

0.2

0.4

0.6

0.8

1

F
A

R

Pure attack
Mixed 1:2
Mixed 1:1
Mixed 2:1

(b) False Acceptance Rate (FAR)

Figure 6.1: The changes of FRR and FAR over time during frog-boiling attack to the
brainwave identification system. Attacks are generated with attacker #1.

75

500th iteration of the frog-boiling attack, this is because after 500 iterations, the attack

sample transfers to the attacker’s template (the destination template, see Section 4.1

for details about how the attack samples transfer to the attacker’s template), and

FAR is calculated based on the attacker’s brainwave samples. This attack’s results

indicates the effectiveness of Frog-Boiling attack with ERP brainwave biometric. Next

we analyzed the correlation and residual distribution for ERP samples.

In Figure 6.2, the correlation, the first order and the second-order residual were

calculated with the same method described in Section 5.1. Comparing to the results

for keystroke in Figure 5.1, similar distinguishable differences among the genuine

samples (in blue), the pure attack samples (in red) and the mixed attack samples (in

green), can be observed on ERP brainwaves as well. It is shown that the residual

distribution of the genuine samples has a smoother transition over a relative larger

interval, unlike the sharp transition seen for the attack samples, which indicates the

manipulating nature of the attack samples. Figure 6.1 and 6.2 gave us some insights

of how our attack and defense mechanisms may work in other biometric modalities

and we will perform more throughout tests and analysis in the future.

6.2.2 Potentials of Our Works in Real Life

The goal of studying attacks and defenses in biometrics is to build a more

secure, stable, and efficient biometric identification or authentication system. With

the growing popularity of various biometric systems [55] in recent years, our works

could be extended furthermore in many real-life scenarios. The followings are some

examples to apply our works.

76

0 50 100 150 200 250 300

Distance

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

(a) Correlation between sample points of ERP brainwaves

Pure Genuine User
Pure Attacks
Mix data

(b) Cumulative density distribution of residuals for genuine
samples, attack samples, and mixed attack samples of ERP
brainwaves

Figure 6.2: Correlation and residual distribution for ERP brainwaves samples

77

Mobile technologies: Mobile devices (i.e. smartphones, tablets) play a more

and more important role in our life, and the security issue raises with the stored

personal data. Many modern mobile devices have build-in biometric authentication

systems with automatic updates, using fingerprints and face sensor(see [1, 2]), to

replace the traditional PIN lock. Some other works built continuous verification with

touch sensors and accelerometer on smartphones [56, 57]. These systems are proved to

be effective, but they still have space to improve (see a recent reported flaw [58]). Our

proposed attack and defense could help enhance these mobile devices by improving

their updating procedure and intrusion detection systems.

Car technologies: the technique of self-driving vehicle is a research trend in

recent years [59]. One of the greatest challenges for automated cars is the vast variety

of vehicle environment and decision making [60], as many noise and outliers in real-

world scenarios greatly impact the system. The residual-based mechanism has great

potential to filter noise and outliers as many of them are not implications of natural

behavior. Our defense procedure could improve the robustness of an automated car.

BIBLIOGRAPHY

[1] Apple. 2017. About Touch ID advanced security technology. https://support.
apple.com/en-gb/HT204587. (2017). (accessed July 2019).

[2] Apple. 2017. Face ID Security. https://images.apple.com/business/docs/FaceID
Security Guide.pdf. (2017). (accessed July 2019).

[3] Ahmed Awad E Ahmed and Issa Traore. A new biometric technology based
on mouse dynamics. IEEE Transactions on dependable and secure computing,
4(3):165, 2007.

[4] Heikki J Ailisto, Mikko Lindholm, Jani Mantyjarvi, Elena Vildjiounaite, and
Satu-Marja Makela. Identifying people from gait pattern with accelerometers. In
Defense and Security, pages 7–14. International Society for Optics and Photonics,
2005.

[5] Ĺıvia CF Araújo, Luiz HR Sucupira, Miguel Gustavo Lizarraga, Lee Luan Ling,
and João Baptista T Yabu-Uti. User authentication through typing biometrics
features. IEEE Transactions on Signal Processing, 53(2):851–855, 2005.

[6] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. User authentication
through keystroke dynamics. ACM Transactions on Information and System
Security (TISSEC), 5(4):367–397, 2002.

[7] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine
learning at test time. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 387–402. Springer, 2013.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[9] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim. The frog-
boiling attack: Limitations of anomaly detection for secure network coordinate
systems. In International Conference on Security and Privacy in Communication
Systems, pages 448–458. Springer, 2009.

[10] Rama Chellappa, Charles L Wilson, and Saad Sirohey. Human and machine
recognition of faces: A survey. Proceedings of the IEEE, 83(5):705–741, 1995.

78

79

[11] Sungzoon Cho, Chigeun Han, Dae Hee Han, and Hyung-Il Kim. Web-based
keystroke dynamics identity verification using neural network. Journal of
organizational computing and electronic commerce, 10(4):295–307, 2000.

[12] John Chuang, Hamilton Nguyen, Charles Wang, and Benjamin Johnson. I think,
therefore i am: Usability and security of authentication using brainwaves. In
International Conference on Financial Cryptography and Data Security, pages
1–16. Springer, 2013.

[13] John Daugman. High confidence recognition of persons by rapid video analysis
of iris texture. In Security and Detection, 1995. European Convention on, pages
244–251. IET, 1995.

[14] George Doddington, Walter Liggett, Alvin Martin, Mark Przybocki, and Douglas
Reynolds. Sheep, goats, lambs and wolves: A statistical analysis of speaker
performance in the nist 1998 speaker recognition evaluation. Technical report,
DTIC Document, 1998.

[15] Samuel P Fenker and Kevin W Bowyer. Analysis of template aging in iris
biometrics. In 2012 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pages 45–51. IEEE, 2012.

[16] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral biometric
for continuous authentication. IEEE transactions on information forensics and
security, 8(1):136–148, 2013.

[17] The tale of a boiling frog. http://awesci.com/the-old-tale-of-a-boiling-frog. (2014).
(accessed July 2019).

[18] Romain Giot, Bernadette Dorizzi, and Christophe Rosenberger. Analysis of
template update strategies for keystroke dynamics. In 2011 IEEE Workshop on
Computational Intelligence in Biometrics and Identity Management (CIBIM),
pages 21–28. IEEE, 2011.

[19] Romain Giot, Christophe Rosenberger, and Bernadette Dorizzi. A new protocol to
evaluate the resistance of template update systems against zero-effort attacks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 131–137, 2013.

[20] Michela Goffredo, Imed Bouchrika, John N Carter, and Mark S Nixon. Self-
calibrating view-invariant gait biometrics. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 40(4):997–1008, 2010.

80

[21] Sajjad Haider, Ahmed Abbas, and Abbas K Zaidi. A multi-technique approach for
user identification through keystroke dynamics. In Systems, Man, and Cybernetics,
2000 IEEE International Conference on, volume 2, pages 1336–1341. IEEE, 2000.

[22] Anil Jain, Lin Hong, and Ruud Bolle. On-line fingerprint verification. IEEE
transactions on pattern analysis and machine intelligence, 19(4):302–314, 1997.

[23] Xudong Jiang and Wee Ser. Online fingerprint template improvement. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(8):1121–1126,
2002.

[24] Pilsung Kang, Seong-seob Hwang, and Sungzoon Cho. Continual retraining
of keystroke dynamics based authenticator. In International Conference on
Biometrics, pages 1203–1211. Springer, 2007.

[25] R Khandaker, K Balagani, and V Phoha. Making impostor pass rates meaningless:
A case of snoop-forge-replay attack on continuous cyber-behavioural verification
with keystrokes. In Proceedings of the IEEE Computer Society and IEEE
Biometrics Council Workshop on Biometrics (BIOM), 2011.

[26] Kevin S Killourhy and Roy A Maxion. Comparing anomaly-detection algorithms
for keystroke dynamics. In 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 125–134. IEEE, 2009.

[27] Andreas Lanitis, Chrisina Draganova, and Chris Christodoulou. Comparing
different classifiers for automatic age estimation. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 34(1):621–628, 2004.

[28] Andreas Lanitis. A survey of the effects of aging on biometric identity verification.
International Journal of Biometrics, 2(1):34–52, 2009.

[29] Andreas Lanitis, Christopher J. Taylor, and Timothy F Cootes. Toward automatic
simulation of aging effects on face images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):442–455, 2002.

[30] Anthony J Mansfield and James L Wayman. Best practices in testing and
reporting performance of biometric devices. Centre for Mathematics and Scientific
Computing, National Physical Laboratory Teddington, Middlesex, UK, 2002.

[31] Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening
based on keystroke dynamics. International Journal of Information Security,
1(2):69–83, 2002.

81

[32] Javier Ortega-Garcia, Julian Fierrez, Fernando Alonso-Fernandez, Javier Galbally,
Manuel R Freire, Joaquin Gonzalez-Rodriguez, Carmen Garcia-Mateo, Jose-
Luis Alba-Castro, Elisardo Gonzalez-Agulla, Enrique Otero-Muras, et al. The
multiscenario multienvironment biosecure multimodal database (bmdb). IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(6):1097–1111,
2010.

[33] Arun Ross and Anil Jain. Information fusion in biometrics. Pattern recognition
letters, 24(13):2115–2125, 2003.

[34] Arun Ross, Ajita Rattani, and Massimo Tistarelli. Exploiting the doddington
zoo effect in biometric fusion. In Biometrics: Theory, Applications, and Systems,
2009. BTAS’09. IEEE 3rd International Conference on, pages 1–7. IEEE, 2009.

[35] Abdul Serwadda, Vir V Phoha, and Ankunda Kiremire. Using global knowledge
of users’ typing traits to attack keystroke biometrics templates. In Proceedings
of the thirteenth ACM multimedia workshop on Multimedia and security, pages
51–60. ACM, 2011.

[36] Michael Trusov, Anand V Bodapati, and Randolph E Bucklin. Determining
influential users in internet social networks. Journal of Marketing Research,
47(4):643–658, 2010.

[37] Umut Uludag, Sharath Pankanti, Salil Prabhakar, and Anil K Jain. Biometric
cryptosystems: issues and challenges. Proceedings of the IEEE, 92(6):948–960,
2004.

[38] Zibo Wang, Abdul Serwadda, Kiran S Balagani, and Vir V Phoha. Transforming
animals in a cyber-behavioral biometric menagerie with frog-boiling attacks.
In Biometrics: Theory, Applications and Systems (BTAS), 2012 IEEE Fifth
International Conference on, pages 289–296. IEEE, 2012.

[39] Juefei Xu, Miriam Cha, Joseph L Heyman, Shreyas Venugopalan, Ramzi Abiantun,
and Marios Savvides. Robust local binary pattern feature sets for periocular
biometric identification. In Biometrics: Theory Applications and Systems (BTAS),
2010 Fourth IEEE International Conference on, pages 1–8. IEEE, 2010.

[40] Neil Yager and Ted Dunstone. The biometric menagerie. IEEE transactions on
pattern analysis and machine intelligence, 32(2):220–230, 2010.

[41] Ramón Dı́az-Uriarte and Sara Alvarez De Andres. Gene selection and classification
of microarray data using random forest. BMC Bioinformatics, 7(1):3, 2006.

[42] Bradley Efron and R.J. Tibshirani. An Introduction to the Bootstrap (Monographs
on Statistics & Applied Probability). Chapman & Hall, Inc., 1993.

82

[43] Benjamin I. P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. ANTIDOTE: understanding
and defending against poisoning of anomaly detectors. In Proceedings of the 9th
ACM SIGCOMM Internet Measurement Conference (IMC), pages 1–14. ACM,
2009.

[44] Jessica Fridrich and Jan Kodovsky. Rich models for steganalysis of digital images.
IEEE Transactions on Information Forensics and Security, 7(3):868–882, 2012.

[45] Marta Gomez-Barrero, Javier Galbally, Julian Fierrez, and Javier Ortega-Garcia.
Face verification put to test: A hill-climbing attack based on the uphill-simplex
algorithm. In Proceedings of the 5th IAPR/IEEE International Conference on
Biometrics (ICB), pages 40–45, 2012.

[46] Qiong Gui, Wei Yang, Zhanpeng Jin, Maria V Ruiz-Blondet, and Sarah Laszlo. A
residual feature-based replay attack detection approach for brainprint biometric
systems. In Proceedings of the IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6, 2016.

[47] John Harvey, John Campbell, and Andy Adler. Characterization of biometric
template aging in a multiyear, multivendor longitudinal fingerprint matching
study. IEEE Transactions on Instrumentation and Measurement, 68(4):1071–1079,
2018.

[48] Giulio Lovisotto, Simon Eberz, and Ivan Martinovic. Biometric backdoors:
A poisoning attack against unsupervised template updating. arXiv preprint
arXiv:1905.09162, 2019.

[49] Emanuele Maiorana and Patrizio Campisi. Fuzzy commitment for function based
signature template protection. IEEE Signal Processing Letters, 17(3):249–252,
2010.

[50] Emanuele Maiorana, Gabriel E Hine, and Patrizio Campisi. Hill-climbing attack:
Parametric optimization and possible countermeasures. An application to on-line
signature recognition. In 2013 International Conference on Biometrics (ICB),
pages 1–6. IEEE, 2013.

[51] Enrique Argones Rua, Emanuele Maiorana, Jose Luis Alba Castro, and Patrizio
Campisi. Biometric template protection using universal background models: An
application to online signature. IEEE Transactions on Information Forensics
and Security, 7(1):269–282, 2012.

[52] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu, Yan Chen, and Eliot Gillum.
BotGraph: Large scale spamming botnet detection. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
volume 9, pages 321–334, 2009.

83

[53] Maria V Ruiz-Blondet, Zhanpeng Jin, and Sarah Laszlo. CEREBRE: A novel
method for very high accuracy event-related potential biometric identification.
IEEE Transactions on Information Forensics and Security, 11(7):1618–1629, 2016.

[54] Blair C Armstrong, Maria V Ruiz-Blondet, Negin Khalifian, Kenneth J Kurtz,
Zhanpeng Jin, and Sarah Laszlo. Brainprint: Assessing the uniqueness, collectabil-
ity, and permanence of a novel method for ERP biometrics. Neurocomputing,
166:59–67, 2015.

[55] Angelo Genovese, Enrique Muñoz, Vincenzo Piuri, and Fabio Scotti. Advanced
biometric technologies: Emerging scenarios and research trends. In From Database
to Cyber Security, pages 324–352. Springer, 2018.

[56] Abdul Serwadda, Vir V Phoha, and Zibo Wang. Which verifiers work?: A
benchmark evaluation of touch-based authentication algorithms. In 2013 IEEE
Sixth International Conference on Biometrics: Theory, Applications and Systems
(BTAS), pages 1–8. IEEE, 2013.

[57] Abdul Serwadda, Vir V Phoha, Zibo Wang, Rajesh Kumar, and Diksha Shukla.
Toward robotic robbery on the touch screen. ACM Transactions on Information
and System Security (TISSEC), 18(4):14, 2016.

[58] BBC. 2019. Samsung: Anyone’s thumbprint can unlock Galaxy S10 phone. https://
www.bbc.com/news/technology-50080586. (2019). (accessed December 2019).

[59] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli.
A survey of motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[60] Supriya B Sarkar and B Chandra Mohan. Review on autonomous vehicle
challenges. In First International Conference on Artificial Intelligence and
Cognitive Computing, pages 593–603. Springer, 2019.

[61] Battista Biggio. Machine learning under attack: Vulnerability exploitation and
security measures. In Proceedings of the 4th ACM Workshop on Information
Hiding and Multimedia Security, pages 1–2, 2016.

[62] Emanuele Maiorana and Patrizio Campisi. Longitudinal evaluation of eeg-based
biometric recognition. IEEE Transactions on Information Forensics and Security,
13(5):1123–1138, 2017.

[63] Paulo Henrique Pisani, Abir Mhenni, Romain Giot, Estelle Cherrier, Norman
Poh, André Carlos Ponce de Leon Ferreira de Carvalho, Christophe Rosenberger,
and Najoua Essoukri Ben Amara. Adaptive biometric systems: Review and
perspectives. ACM Computing Surveys (CSUR), 52(5):1–38, 2019.

84

[64] Gorazd Praprotnik and Nikola Pavešić. The impact of template aging on the
performance of automatic fingerprint recognition. Revija za kriminalistiko in
kriminologijo/Ljubljana, 67(4):371–388, 2016.

[65] Indrė Žliobaitė, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff Holmes.
Evaluation methods and decision theory for classification of streaming data with
temporal dependence. Machine Learning, 98(3):455–482, 2015.

[66] Abir Mhenni, Estelle Cherrier, Christophe Rosenberger, and Najoua Essoukri Ben
Amara. Adaptive biometric strategy using doddington zoo classification of users
keystroke dynamics. In 2018 14th International Wireless Communications &
Mobile Computing Conference (IWCMC), pages 488–493. IEEE, 2018.

	Poisoning Attacks on Learning-Based Keystroke Authentication and a Residue Feature Based Defense
	tmp.1591823942.pdf.KSy6G

