83 research outputs found

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Contributions to the design of power modules for electric and hybrid vehicles: trends, design aspects and simulation techniques

    Get PDF
    314 p.En la última década, la protección del medio ambiente y el uso alternativo de energías renovables están tomando mayor relevancia tanto en el ámbito social y político, como científico. El sector del transporte es uno de los principales causantes de los gases de efecto invernadero y la polución existente, contribuyendo con hasta el 27 % de las emisiones a nivel global. En este contexto desfavorable, la electrificación de los vehículos de carretera se convierte en un factor crucial. Para ello, la transición de la actual flota de vehículos de carretera debe ser progresiva forzando la investigación y desarrollo de nuevos conceptos a la hora de producir vehículos eléctricos (EV) y vehículos eléctricos híbridos (HEV) más eficientes, fiables, seguros y de menor coste. En consecuencia, para el desarrollo y mejora de los convertidores de potencia de los HEV/EV, este trabajo abarca los siguientes aspectos tecnológicos: - Arquitecturas de la etapa de conversión de potencia. Las principales topologías que pueden ser implementadas en el tren de potencia para HEV/EV son descritas y analizadas, teniendo en cuenta las alternativas que mejor se adaptan a los requisitos técnicos que demandan este tipo de aplicaciones. De dicha exposición se identifican los elementos constituyentes fundamentales de los convertidores de potencia que forman parte del tren de tracción para automoción.- Nuevos dispositivos semiconductores de potencia. Los nuevos objetivos y retos tecnológicos solo pueden lograrse mediante el uso de nuevos materiales. Los semiconductores Wide bandgap (WBG), especialmente los dispositivos electrónicos de potencia basados en nitruro de galio (GaN) y carburo de silicio (SiC), son las alternativas más prometedoras al silicio (Si) debido a las mejores prestaciones que poseen dichos materiales, lo que permite mejorar la conductividad térmica, aumentar las frecuencias de conmutación y reducir las pérdidas.- Análisis de técnicas de rutado, conexionado y ensamblado de módulos de potencia. Los módulos de potencia fabricados con dies en lugar de dispositivos discretos son la opción preferida por los fabricantes para lograr las especificaciones indicadas por la industria de la automoción. Teniendo en cuenta los estrictos requisitos de eficiencia, fiabilidad y coste es necesario revisar y plantear nuevos layouts de las etapas de conversión de potencia, así como esquemas y técnicas de paralelización de los circuitos, centrándose en las tecnologías disponibles.Teniendo en cuenta dichos aspectos, la presente investigación evalúa las alternativas de semiconductores de potencia que pueden ser implementadas en aplicaciones HEV/EV, así como su conexionado para la obtención de las densidades de potencia requeridas, centrándose en la técnica de paralelización de semiconductores. Debido a la falta de información tanto científica como comercial e industrial sobre dicha técnica, una de las principales contribuciones del presente trabajo ha sido la propuesta y verificación de una serie de criterios de diseño para el diseño de módulos de potencia. Finalmente, los resultados que se han extraído de los circuitos de potencia propuestos demuestran la utilidad de dichos criterios de diseño, obteniendo circuitos con bajas impedancias parásitas y equilibrados eléctrica y térmicamente. A nivel industrial, el conocimiento expuesto en la presente tesis permite reducir los tiempos de diseño a la hora de obtener prototipos de ciertas garantías, permitiendo comenzar la fase de prototipado habiéndose realizado comprobaciones eléctricas y térmicas

    PV inverters for module level applications

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização SustentáveisNowadays, the photovoltaic (PV) energy is presented as one of the most promising source of clean energy, and so a good way for greenhouse gas emissions mitigation and reduce the fossil fuel dependence. Within it, the photovoltaic energy has caused a huge interest in the electronic converters, and the need to improve their efficiency and reducing their cost. With this work I present a solution for a module scale grid-connected single-phase inverter. The solution consists in a two-stage inverter insolated with a grid line transformer. The two-stage inverter is composed by a DC-DC converter and a DC-AC converter connected through a DC-link capacitor. The DC-DC converter in case is a boost converter used to elevate the voltage from the PV module to a higher level. For the DC-AC converter it is used a full-bridge inverter, and both the DC-DC and the DC-AC converters use the IGBTs form an integrated module with its respective drivers. To the boost control it is implemented a Maximum Power Point Tracking algorithm that can optimize the power extraction from the PV source and for the inverter it is used a sliding mode hysteretic control. Once this inverter is conceived to work connected to the grid, a single-phase PLL system is used to synchronize the injected current to grid voltage. All the control part is made digitally using an Arduino Uno board, which uses an Atmel microcontroller

    Development of a fault tolerant MOS field effect power semiconductor switching transistor

    Get PDF
    This work describes the development of a semiconductor switch to replace an electromechanical contactor as used within the electrical power distribution system of the More Electric Aircraft (MEA; a project begun in the 1990‟s by the United States Air Force). The MEA is safety critical and therefore requires highest reliability components and systems, but subsequent to a short circuit load fault the electro-mechanical contactor switch often welds shut. This risk is increased when using high discharge energy lithium ion dc batteries. Predominately the semiconductor switch controls inductive loads and is required to safely turn off current of up to 10 times the nominal level during sporadic load fault events. The switch requires the lowest static loss (lowest on state resistance), but also the lowest dynamic loss (losses due to the switching event). Presently, unipolar devices provide the lowest dynamic loss, but bipolar devices provide the lowest static loss. One possible solution is use of a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), the area of which is sized to suit the fault current, but at relatively high cost in terms of silicon area. The resultant area is typically achieved by several die connected in parallel, unfortunately, such a solution suffers from current share imbalance and the potential of cascade die failure. The use of a parallel combination of unipolar and bipolar device types (MOSFET and Insulated Gate Bipolar Transistors, IGBTs) to form a hybrid appears to offer the potential to reduce the silicon area, and static loss, whilst reducing the impact of the increased dynamic losses of the IGBT. Unfortunately, this goal requires optimised gate timing of the resultant hybrid which proves challenging if the load current is to be shared appropriately during fault switching in order to prevent failure. Some form of single MOS (Metal Oxide Semiconductor) gated integrated hybrid device with self biased bipolar injection is therefore required to ensure highest reliability through a non latching design which offers lowest losses under all conditions and achieves an even temperature distribution. In this work the novel concept of the integrated hybrid device has been investigated at a low Blocking Voltage (BV) rating of 100 V, using computer simulation. The three terminal hybrid silicon DMOS (Double diffused Metal Oxide Semiconductor) device utilises a novel merged Schottky p-type injector to provide self biased entry into a reduced static loss bipolar state in the event of high fault current. The device achieves a specific on state resistance, R(ON,SP) = 1.16 mΩcm2 in bipolar mode (with BV=84 V), that is below the silicon limit line and requires half the area of a traditional unipolar MOSFET to conduct fault current. During comparative standard unclamped inductive switching trials, the hybrid device provides a self clamping action which enables increased inductive energy switching (higher inductance and/or higher load current), relative to that achieved by either the MOSFET or IGBT. The hybrid conducting in bipolar mode switches an inductive load off much faster than that typically achieved by an IGBT (toff =20 ns, in comparison to typically >10 μs for an IGBT). This results in a low turn off energy for the hybrid (1.26*10-4 J/cm2) as compared to that of the IGBT (8.72*10-3 J/cm2). The hybrid dynamic performance is enhanced by the action of the merged Schottky contact which, unlike the IGBT, acts to limit the emitter base voltage (VEB) of the internal PNP Bipolar Junction Transistor, BJT (the integral PNP BJT is otherwise a shared feature with the IGBT). The self biased bipolar activation is achieved at a forward bias (VAK) =1.3 V at temperature (T)= 300 K. The device is latch up free across the operational temperature range of T=233 K to 400 K. A viable charge balanced structure to increase the BV rating to approximately 600 V is also proposed. The resulting performance of the single gated, self biased, hybrid, utilising a novel merged Schottky/P type injector, could lead to a new class of rugged MOS gated power switching devices in silicon and potentially silicon carbide

    A high-voltage pulsed power modulator for fast-rising arbitrary waveforms

    Get PDF
    This work presents the design and testing of a new semiconductor-based pulsed power modulator meeting the challenging requirements of a pulsed electron beam device (GESA): a fast-rising (10^12 V/s) output voltage with arbitrary waveform of maximum 120 kV at a maximum current of 600 A for a pulse duration of up to 100 µs

    Thermal characterisation and reliability analysis of power electronic devices in wind and solar energy systems

    Get PDF
    Power electronic converters (PECs) are used for conditioning the flow of energy between renewable energy applications and grid or stand-alone connected loads. Insulated gate bipolar transistors (IGBTs) are critical components used as switching devices in PECs. IGBTs are multi-layered devices made of different coefficient of thermal expansion (CTE) based materials. In wind and solar energy applications, IGBT’s reliability is highly influenced by the operating conditions such as variable wind speed and solar irradiance. Power losses occur in switching transient of high current/voltage which causes temperature fluctuations among the layers of the IGBTs. This is the main stress mechanism which accelerates deterioration and eventual failures among IGBT layers due to the dissimilar CTEs. Therefore, proper thermal monitoring is essential for accurate estimation of PECs reliability and end lifetime. Several thermal models have been proposed in literature, which are not capable of representing accurate temperature profiles among multichip IGBTs. These models are mostly derived from offline modelling approaches which cannot take operating conditions and control mechanisms of PECs into account and unable to represent actual heat path among each chip. This research offers an accurate and powerful electro thermal and reliability monitoring tool for such devices. Three-dimensional finite element (FE) IGBT models are implemented using COMSOL, by considering complex heat interactions among each layer. Based on the obtained thermal characteristics, electro thermal and thermo mechanical models were developed in SIMULINK to determine the thermal behaviour of each layer and provide total lifetime consumption analysis. The developed models were verified by real-time (RT) experiments using dSPACE environment. New materials, such as silicon carbide (SiC) devices, were found to exhibit approximately 20°C less thermal profile compared to conventional silicon IGBTs. For PECs used within wind energy systems, PECs driving algorithms were derived within the proposed models and by adjusting switching frequency PECs cycling temperatures were reduced by 12°C which led to a significant reduction in thermal stress; approximately 27 MPa. Total life consumption for the proposed method was calculated as 3.26x10-5 which is approximately 1x10-5 less compared to the other both methods. Effects of maximum power tracking algorithms, used in photovoltaic solar systems, on thermal stress were also explored. The converter’s thermal cycling was found approximately 3 °C higher with the IC algorithm. The steady state temperature was 52.7°C for the IC while it was 42.6 °C for P&O. In conclusion, IC algorithm offers more accurate tracking accuracy; however, this is on the expense of harsher thermal stress which has led to approximately 1.4 times of life consumption compared to P&O under specific operating conditions

    The role of power device technology in the electric vehicle powertrain

    Get PDF
    In the automotive industry, the design and implementation of power converters and especially inverters, are at a turning point. Silicon (Si) IGBTs are at present the most widely used power semiconductors in most commercial vehicles. However, this trend is beginning to change with the appearance of wide-bandgap (WBG) devices, particularly silicon carbide (SiC) and gallium nitride (GaN). It is therefore advisable to review their main features and advantages, to update the degree of their market penetration, and to identify the most commonly used alternatives in automotive inverters. In this paper, the aim is therefore to summarize the most relevant characteristics of power inverters, reviewing and providing a global overview of the most outstanding aspects (packages, semiconductor internal structure, stack-ups, thermal considerations, etc.) of Si, SiC, and GaN power semiconductor technologies, and the degree of their use in electric vehicle powertrains. In addition, the paper also points out the trends that semiconductor technology and next-generation inverters will be likely to follow, especially when future prospects point to the use of “800 V" battery systems and increased switching frequencies. The internal structure and the characteristics of the power modules are disaggregated, highlighting their thermal and electrical characteristics. In addition, aspects relating to reliability are considered, at both the discrete device and power module level, as well as more general issues that involve the entire propulsion system, such as common-mode voltage.This work has been supported in part by the Government of the Basque Country through the fund for research groups of the Basque University System IT1440-22 and the Ministerio de Ciencia e Innovación of Spain as part of project PID2020-115126RB-I00 and FEDER funds. Finally, the collaboration of Yole Développement (Yole) is appreciated for providing updated data on its resources

    Two decades of condition monitoring methods for power devices

    Get PDF
    Condition monitoring (CM) of power semiconductor devices enhances converter reliability and customer service. Many studies have investigated the semiconductor devices failure modes, the sensor technologies, and the signal processing techniques to optimize the CM. Furthermore, the improvement of power devices’ CM thanks to the use of the Internet of Things and artificial intelligence technologies is rising in smart grids, transportation electrification, and so on. These technologies will be widespread in the future, where more and more smart techniques and smart sensors will enable a better estimation of the state of the health (SOH) of the devices. Considering the increasing use of power converters, CM is essential as the analysis of the data obtained from multiple sensors enables the prediction of the SOH, which, in turn, enables to properly schedule the maintenance, i.e., accounting for the trade-off between the maintenance cost and the cost and issues due to the device failure. From this perspective, this review paper summarizes past developments and recent advances of the various methods with the aim of describing the current state-of-the-art in CM research

    Reliability Analysis of Power Electronic Devices

    Get PDF
    The thesis deals with the reliability of Power Electronic Devices to the purpose of evaluating the phenomena which mainly dictate the limiting conditions where a power device can safely operate. Reliability analyses are conducted by means of either simulations and experimental measurements
    • …
    corecore