2,310 research outputs found

    Underground Gas and Oil Pipeline Monitoring System Using Embedded And Dip

    Get PDF
    In the field of industry, corrosion and defects are regarded as important issues. This paper describes a methodology for automatic analysis of the inner surface of Gas and oil pipelines by means of mobile robot and digital image processing. A mobile Robot carrying a digital camera is allowed inside the pipeline to inspect. We introduce an image processing method for automatically detecting the defects in pipelines automated detection. Image enhancement is also performed. These methods of inspection of underground gas and oil pipeline early predict the damaged area and reduce the risk of accidents. We implement this simulation using MATLAB R2015a.This algorithm provides about 80% accuracy in final result, which highlights the main purpose of DIP technique

    Surface and Sub-Surface Analyses for Bridge Inspection

    Get PDF
    The development of bridge inspection solutions has been discussed in the recent past. In this dissertation, significant development and improvement on the state-of-the-art in the field of bridge inspection using multiple sensors (e.g. ground penetrating radar (GPR) and visual sensor) has been proposed. In the first part of this research (discussed in chapter 3), the focus is towards developing effective and novel methods for rebar detection and localization for sub-surface bridge inspection of steel rebars. The data has been collected using Ground Penetrating Radar (GPR) sensor on real bridge decks. In this regard, a number of different approaches have been successively developed that continue to improve the state-of-the-art in this particular research area. The second part (discussed in chapter 4) of this research deals with the development of an automated system for steel bridge defect detection system using a Multi-Directional Bicycle Robot. The training data has been acquired from actual bridges in Vietnam and validation is performed on data collected using Bicycle Robot from actual bridge located in Highway-80, Lovelock, Nevada, USA. A number of different proposed methods have been discussed in chapter 4. The final chapter of the dissertation will conclude the findings from the different parts and discuss ways of improving on the existing works in the near future

    Automated Defect Detection Tool For Sewer Pipelines

    Get PDF
    In sewer networks, the economic effects and costs that result from a pipeline break are rising sharply. In Qatar, majority of the sewer network pipelines were installed in the last 20 years and are currently in poor condition and constantly deteriorating. As a result, there is huge demand for inspection and rehabilitation of sewer pipelines. In addition to being inaccurate, current Practices of sewer pipelines inspection are time consuming and may not keep up with the deterioration rate of the pipelines. Consequently, this research aims to develop an automated tool to detect different defects such as cracks, deformation, settled deposits and joint displacement in sewer pipelines. The automated approach is dependent upon using image-processing techniques and several mathematical formulas to analyze output data from CCTV camera photos. Given that one inspection session can result in hundreds of CCTV Camera footage, introducing an automated tool would help yield faster results. Additionally, given the subjective nature of most defects, it will result in more systematic results since the current method rely heavily on the operator's experience. The automated tool was able to successfully detect cracks, displaced joints, ovality and settled deposits in pipelines using CCTV Camera inspection output footage. Using two different data sets, the constructed Matlab code could successfully differentiate between cracks and displaced joints with an overall crack detection success rate of 84% and an overall displaced joint detection rate of 94%. The code was also able to efficiently detect settled deposits in the pipelines with a detection rate of 90%. In addition, the automated ovality detection resulted in 100% compatibility with the manual circularity detection

    Sensor-based autonomous pipeline monitoring robotic system

    Get PDF
    The field of robotics applications continues to advance. This dissertation addresses the computational challenges of robotic applications and translations of actions using sensors. One of the most challenging fields for robotics applications is pipeline-based applications which have become an indispensable part of life. Proactive monitoring and frequent inspections are critical in maintaining pipeline health. However, these tasks are highly expensive using traditional maintenance systems, knowing that pipeline systems can be largely deployed in an inaccessible and hazardous environment. Thus, we propose a novel cost effective, scalable, customizable, and autonomous sensor-based robotic system, called SPRAM System (Sensor-based Autonomous Pipeline Monitoring Robotic System). It combines robot agent based technologies with sensing technologies for efficiently locating health related events and allows active and corrective monitoring and maintenance of the pipelines. The SPRAM System integrates RFID systems with mobile sensors and autonomous robots. While the mobile sensor motion is based on the fluid transported by the pipeline, the fixed sensors provide event and mobile sensor location information and contribute efficiently to the study of health history of the pipeline. In addition, it permits a good tracking of the mobile sensors. Using the output of event analysis, a robot agent gets command from the controlling system, travels inside the pipelines for detailed inspection and repairing of the reported incidents (e.g., damage, leakage, or corrosion). The key innovations of the proposed system are 3-fold: (a) the system can apply to a large variety of pipeline systems; (b) the solution provided is cost effective since it uses low cost powerless fixed sensors that can be setup while the pipeline system is operating; (c) the robot is autonomous and the localization technique allows controllable errors. In this dissertation, some simulation experiments described along with prototyping activities demonstrate the feasibility of the proposed system

    Securing Natural Gas: Entity-Attentive Security Research

    Get PDF
    Natural gas is a troublesome and ‘wayward’ material (Bridge, 2004; 396). Amongst other qualities, it is invisible, intangible, naturally odorless, highly inflammable, and constantly resistant to the forces that contain it. This thesis provides an account of how these qualities both introduce a series of insecurities to everyday social environments, and also make it a challenging material to govern. Specifically, I examine the way that security is performed around gas circulations in the UK’s transmission and distribution pipelines, and I describe how a range of specialized security practices have been developed according to the particular challenges that gas’s materiality presents. In developing this account, I make two claims. First, I argue that performances of security cannot be adequately understood without attending to the specific qualities of the circulating elements around which it is practiced. Here I build upon Dillon’s (1996) observation that security has tended to be treated as a noun that is independent of the elements that it is practiced in relation to. As a consequence, it has typically been framed as a broadly transferrable set of practices that can be more-or-less unproblematically applied to very different elements. I suggest that this abstraction has resulted in the further reduction of security into two broad practices: acts of circulatory filtration (in which risky elements are separated from flows of safe bodies, materials and things), and acts of circulatory maintenance (whereby security is performed by ensuring the continuity of particular circulations). It is my contention in this thesis that security scholars need to pay better attention to the ways in which the specific material qualities of circulating elements are generative of particular forms of securing practice. Indeed, by examining the way that security is performed around gas, I describe a series of practices that far exceed those described in accounts that present security as a matter of circulatory filtration or maintenance. My second claim is that the spaces and scales at which security is analyzed need to be expanded. I demonstrate how the critical security studies and energy security literatures have both tended to focus on security’s practice within particular nodes, at the exclusion of the performances of security (and forms of insecurity) that develop across the journeys of circulating elements; as they move between nodes. Indeed, I suggest that circulation has often been reduced in these accounts to thin, straight, and featureless lines that are largely inconsequential for performances of security. I seek to trouble this reduction, following gas as it travels through the UK gas transport infrastructures, tracing the various forms of (in)security that develop across these journeys. As a consequence of these two claims, security takes quite a different form in this account to its various depictions in the existing security literatures. I describe it as consisting of a series of ontological projects that are enacted across the lengths and breadths of gas’s circulations, and through which the material reality of natural gas is constantly (re)organised in attempts to facilitate, ‘compensate for’, and ‘cancel out’ particular kinds of perceived potential phenomena (Foucault, 2007; 36). Significantly, these performances are shown to be structured, or ‘programmed’ (Latour, 1991), through the coming together of multiple interests that pertain to a variety of heterogeneous actors and manifold referent objects. Different interests are shown to come together across gas’s journeys, and to undergo ongoing processes of negotiation that result in a variety of security performances, through which different imperatives are pursued. As such, I suggest that gas becomes ‘modulated’ (Deleuze, 1992) – it is constantly transformed from moment to moment, across the full duration of its circulatory journeys

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens

    Forum Bildverarbeitung 2022

    Get PDF
    Bildverarbeitung verknüpft das Fachgebiet die Sensorik von Kameras – bildgebender Sensorik – mit der Verarbeitung der Sensordaten – den Bildern. Daraus resultiert der besondere Reiz dieser Disziplin. Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 24. und 25.11.2022 in Karlsruhe als Veranstaltung des Karlsruher Instituts für Technologie und des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung stattfand, enthält die Aufsätze der eingegangenen Beiträge

    Automated Sewer Inspection Analysis and Condition Assessment

    Get PDF
    Underground infrastructure serves an essential need for the society. Huge number of facilities is dedicated to facilitate the well-being’s needs. Sewer infrastructure, one of the facilities, plays a major role in maintaining healthier environment. Its main duty is to transfer sewage material to treatment plants or any designated disposal area. Therefore, providing well performing sewer systems is essential to avoid any breakdown. Nevertheless, sewer pipelines’ condition in North America is deteriorating. In fact, studies have shown that 30% of municipal infrastructure in Canada is in either fair or very poor condition. As a result, there is a significant requirement for inspection and rehabilitation. Many municipalities utilize Closed Circuit Television (CCTV) inspection technique in inspecting sewer pipelines. However, this technique suffers from significant subjective and imprecise conclusions. Hence, studying, analyzing and applying different sewer inspection technologies and designing a condition assessment model are necessary to reduce subjectivity and errors and produce accurate and reliable results. This research aims to develop an automated tool to quantify: deformation, settled deposits, infiltration and surface damage sewer defects. The automated approach is dependent upon using image processing techniques and several models to analyze output data from 2D laser profiler, sonar and electroscan. Other than using ASTM F1216 formula, the research suggests applying the roundness factor in quantifying the deformation defect. The research develops a condition assessment model, based on the aforementioned defects, to arrive to an aggregated index suggesting the condition of sewer pipelines. Multi Attribute Utility Theory (MAUT) approach is used for each defect. The research also suggests a methodology to evaluate the surface damage defect of sewer pipelines for reinforced concrete, vitrified clay and ductile iron sewer pipeline materials. An interface, using MATLAB, was developed to implement the designed quantification algorithms and the MAUT model on real case studies. After implementing and validating the two deformation quantification methods, the Mean Absolute Error (MAE) utilizing the ASTM F1216 was 4.27%, while the MAE using the roundness factor was 4.83%. The maximum difference percentage was found to be 40.06%; however, the minimum difference percentage was 0.59%. The average difference percentage for all the cases was calculated as 16.67%. Later, the MAUT model was validated with actual case studies. Three rounding types (rounding to nearest number, rounding up and down) were tested to change the aggregated index, containing decimals, to a whole number. Mean Absolute Error (MAE) was utilized to compare the rounding types. In all case studies, rounding up type produced the lowest MAE values. When rounding up the computed index in case study 1, the MAE for Concordia Sewer Protocol (CSP), Water Research Centre (WRc) and New Zealand were 0.33, 0.33 and 0.42, respectively. This research shall encourage subject matters to utilize technologies, other than or beside CCTV, to conclude sound results. The developed automated user interface shall reduce inaccuracy and subjectivity through the application of robust image processing algorithms. After extending this research in including several sewer’s components and defects, the condition assessment model shall aid asset managers to allocate their maintenance and rehabilitation budgets

    Reuse of Steel in the Construction Industry: Challenges and Opportunities

    Get PDF
    The construction industry plays a critical role in tackling the challenges of climate change, carbon emissions, and resource consumption. To achieve a low-emission built environment, urgent action is required to reduce the carbon emissions associated with steel production and construction processes. Reusing structural steel elements could make a significant impact in this direction, but there are five key challenges to overcome: limited material availability, maximizing different reusable materials from demolition, lack of adequate design rules and standards, high upfront costs and overlooked carbon impact of the demolition prior to construction, and the need to engage and coordinate the complete construction ecosystem. This article described these barriers and proposed solutions to them by leveraging the digital technologies and artificial intelligence. The proposed solutions aim to promote reuse practices, facilitate the development of certification and regulation for reuse, and minimize the environmental impact of steel construction. The solutions explored here can also be extended to other construction materials
    • …
    corecore