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Abstract
by Habib Ahmed

The development of bridge inspection solutions has been discussed in the recent past.

In this dissertation, significant development and improvement on the state-of-the-

art in the field of bridge inspection using multiple sensors (e.g. ground penetrating

radar (GPR) and visual sensor) has been proposed. In the first part of this research

(discussed in chapter 3), the focus is towards developing effective and novel methods

for rebar detection and localization for sub-surface bridge inspection of steel rebars.

The data has been collected using Ground Penetrating Radar (GPR) sensor on real

bridge decks. In this regard, a number of different approaches have been successively

developed that continue to improve the state-of-the-art in this particular research

area. The second part (discussed in chapter 4) of this research deals with the de-

velopment of an automated system for steel bridge defect detection system using a

Multi-Directional Bicycle Robot. The training data has been acquired from actual

bridges in Vietnam and validation is performed on data collected using Bicycle Robot

from actual bridge located in Highway-80, Lovelock, Nevada, USA. A number of dif-

ferent proposed methods have been discussed in chapter 4. The final chapter of the

dissertation will conclude the findings from the different parts and discuss ways of

improving on the existing works in the near future.

hahmed@nevada.unr.edu
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Chapter 1

Introduction

Inspection of civil infrastructure by means of NDE techniques has been a growing

research area of interest in the recent past. Of the different types of civil infrastruc-

ture, the need for maintenance and evaluation of bridges has been stressed by studies

in the recent past [14], [15], [16], [17]. Some of the major emerging themes in recent

studies can be classified into research related to technological platforms, sensors and

instrumentation modules for data collection, and algorithms for data analyses. The

monitoring, maintenance and rehabilitation of critical civil infrastructure during their

life-cycle is of paramount importance. Of the different components of civil infrastruc-

ture, the need for periodic assessment, evaluation and maintenance of highway bridges

has been emphasized by studies in the recent past [14], [15], [16], [17].



2

1.1 Manual Inspection of Bridges

Traditionally, assessment of civil infrastructures has been performed manually by hu-

man inspectors, relying primarily on visual inspection [18]. However, visual inspection

work is time-consuming and prone to errors. Even the NDE methods, like GPR, re-

quire extensive effort to manually process raw data and extract relevant information

[19]. Lack of adequate attention towards maintenance and monitoring of bridges can

lead to disastrous incidents. The issue of bridge-related accidents will be discussed

in the next section. At the same time, a number of different bridge-related accidents

in the US will be highlighted, which lead to considerable loss of lives, property and

significant costs overhead.

The NDE of civil infrastructure has been a widely discussed research area in the

recent past. Figure 1.1 highlights the chronological developments in the research

field of the NDE of civil infrastructure, in particular bridge inspection. It can be

seen from figure 1.1 that the beginning period (1950–1978) of this research area

focused on the development of novel sensing technologies, for bridge inspection in

particular, and civil infrastructure in general [20], [21], [22], [23], [24]. Some of the

major sensing technologies developed include GPR, infrared thermography, electric

resistivity sensors, impact-echo-based techniques and ultrasonic pulse propagation-

based methods. After that time period, the focus was devoted towards using different

sensor fusion techniques and their application towards bridge inspection and civil

infrastructure evaluation [25], [26].
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Figure 1.1: The development in the field of bridge inspection using NDE tech-
nologies

1.2 Bridge-related Accidents in the United States

According to the recent statistics in 2021 and 2022, there are more than 617,000

(620,000 by 2022 estimates) bridges in the entirety of the United States [27, 28].

A number of different factors contribute towards the partial or total destruction of

bridges, ranging from design errors and construction defects to environmental degra-

dation, scour, flood, collision and overloading [29], [30]. The impact of bridge de-

struction and collapse far exceeds the overall material and financial costs associated

with the bridge construction, as it also includes the various direct and indirect costs,
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Figure 1.2: Bridge-related Disasters throughout the past decades in the United
States, along with casualties reported for each incident

which include, but are not limited to loss of lives, user delays, planning for alternate

routes, along with the greenhouse gas emissions linked to detours and delays in traffic

[29], [31], [32], [33]. Some of the serious recent bridge accidents in the United States

include a collapsed railroad bridge in Alabama that resulted in around 47 deaths

and Collapsed bridge that connected Point Pleasant, West Virginia with Gallipolis,

Ohio [14]. Figure 1.2 shows the major bridge-related incidents that took place in the

past few decades in the United States. It can be seen that the bridge destruction

is a recurring occurrence in the United States, which leads to devastating financial,

economic, lass of lives and considerable incurred costs that could have been easily

avoided.
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1.3 Bridge Defect Statistics in the United States

The recent statistics (year 2020-2021) provided by the American Society of Civil

Engineers (ASCE) on US infrastructure highlights that 46,154 bridges (out of total

617,000 bridges) have been categorized as structurally deficient in nature [27]. Ac-

cording to the US Department of Transportation [34], the number of bridges that

can be categorized as ”poor” or structurally deficient amount to 43,586 from a total

of 619,622 bridges in the US. Another recent statistics from 2022 reveal that out of

total 620,699 bridges in the US, 42,966 are labelled as having poor condition [28].

Although, the number of structurally deficient bridges has been declining over the

past years (57,049 in 2012, 50,917 in 2015, 48,559 in 2018, 43,586 in 2021, 42,966

in 2022), rapidly ageing infrastructure (42% of bridges are more than 50 years old)

and lack of adequate funding will cause a major backlog in bridges requiring repair

and maintenance in the long-run [27, 28, 34]. For many decades, health and status

assessment of these structures have been performed primarily through visual inspec-

tion using human inspectors. While this approach remains essential for structural

health assessment, it presents significant limitations that hinder the detection of var-

ious defect types and extent of damage that may lead to undesired consequences.

In addition to other types of inspection methods, non-destructive evaluation (NDE)

techniques have the potential to streamline various forms of periodic inspections and

to minimize the direct and indirect costs associated with failure of ageing bridges.

Therefore, the timely evaluation, monitoring and rehabilitation of bridges can reduce
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the overall direct as well as indirect costs and prevent loss of lives due to a possible

structural failure and collapse. In the light of this realization, a number of national-

level initiatives have been developed in the United States. One such example is the

Long-Term Bridge Performance Program (LTBP) initiated by the Federal Highway

Administration (FHWA) with the primary aim towards promoting the utilization of

non-destructive evaluation technologies and techniques for regular bridge inspection

and maintenance [35].

1.4 Costs of Bridge Repairs in the United States

In 2010, out of the $14.3 billion expenditure sanctioned for maintenance of exist-

ing bridges and construction of new bridges $12.8 billion was dedicated towards the

maintenance of existing bridges [36]. According to the 2021 estimates, this amount

of funding is insufficient and currently, $22.7 billion annual funding is required to

improve the current situation in relation to bridge repair and maintenance [27]. It

is being predicted that with the increase in climate change and frequency of adverse

climate incidents (e.g. hurricane, floods, tsunamis) on a global scale, the overall costs

related to bridge repair is also expected to accelerate from $140 billion to $250 billion

annually [32] with direct and indirect losses amounting to more than 17% of the total

costs [33]. Therefore, the timely evaluation, monitoring and rehabilitation of bridges

can result in reduced overall direct costs as well as the indirect costs in terms of

potential destruction of property and lives in the wake of bridge destruction.
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For the purpose of bridge monitoring and evaluation, the different techniques for NDE

have the potential towards minimizing the overall direct and indirect costs associated

with destruction of bridges caused by internal deficiencies, construction deficits and

maintenance-related issues. In the light of this realization, a number of national-

level initiatives have been developed in the United States. One such example is the

Long-Term Bridge Performance Program (LTBP) initiated by the Federal Highway

Administration (FHWA) with the primary aim towards promoting the utilization of

non-destructive evaluation technologies and techniques for regular bridge inspection

and maintenance [37].

1.5 Objectives of this Dissertation

Prior sections have highlighted the different factors that act as motivation for devel-

opment of systems for inspection of bridges. Therefore, the utilization of automation

of inspections processes (e.g. rebar detection and localization system, steel defect

detection system) will have broader, long-term objectives in relation to improving ef-

ficiency, reducing errors and costs of inspection. Since, these systems are currently in

the developmental phases with constant efforts towards improvement in comparison

with state-of-the-art systems, it will not be feasible to make estimations in relation to

reducing costs and performance in comparison with human inspectors for a number

of technical (the systems would need to operate regularly side-by-side with human
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inspectors), economic and practical reasons. Therefore, the broad, long-term objec-

tive of research conducted in this dissertation is not to replace human inspectors, but

to act as assistive technological systems that can reduce time, efficiency and perfor-

mance of human inspectors. Due to the diverse nature of inspection on the different

sections of the bridges, there is a need to clearly outline the scope and objectives of

the dissertation. For example, bridges are large-scale structures with complex struc-

tures above and below the bridge deck with large-scale structural variations from one

bridge to another. In this dissertation, the focus is not to provide inspection of the

complete bridge structure. There are two prime aspects of this dissertation. Each

aspect of this dissertation will focus on inspection of specific part of the bridge. It is

for this reason, the objectives will be discussed separately for the two aspects of this

dissertation, which are highlighted in the following sub-sections:

1.5.1 Sub-Surface-Level Analysis of Bridges for Rebar De-

tection and Localization System

The scope of sub-surface-level analysis performed in this dissertation will be limited

to bridge decks. Even within bridge decks, there is a need to further limit the scope,

as bridge decks can span for multiple miles with complex structures both above and

below the bridge decks. Within the bridge decks, rebar detection and localization

system deals with the detection and localization of parabola signals generated from

GPR sensor with data collected from bridge decks, which contain steel rebars to
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reinforce and support concrete bridge deck. For developing systems for rebar detection

and localization, there is a need to improve on existing methods in terms of the

approaches utilized with performance that is reliable after validation from real bridge

dataset. Due to lack of available dataset and differences in proposed approaches, it

is difficult to compare performance across different studies. Furthermore, different

studies rely on diverging metrics for assessing system performance, which can further

add to the challenges with respect to comparison between studies. Therefore, the

major objective for developing rebar detection and localization system should be as

follows:

(i). The proposed system should be novel in nature. It should not be a repetition of

existing methods proposed in earlier studies for rebar detection and localization.

(ii). The proposed system should be trained, and validated on data from multiple real

bridges. Using data from multiple bridges would ensure that the proposed system is

robust and generalizable for developing practical bridge inspection systems with rebar

detection and localization.

(iii). The proposed system should be able to provide reliable performance on data

from multiple bridges. The selection of metrics can vary depending on the type of

methods being utilized.
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1.5.2 Surface-Level Analysis of Bridges for Steel Defect De-

tection System

The scope of surface-level analysis performed in this dissertation will be limited to

steel structures in bridges. For developing steel defect detection system in bridges,

there is no existing study in this regard. Consequently, there are no available ap-

proaches and benchmarks that can be used to compare the performance of the pro-

posed system in defect detection system. Unlike the limited scope of rebar detection

and localization to bridge deck, the steel defect detection system should be able to

provide coverage to different steel parts of the bridges both above and underneath

the bridge decks.

(i). The proposed system should be novel in nature. It should not be a repetition of

existing methods proposed in earlier studies for defect detection system. Since, there

are no existing approaches for defect detection systems for steel bridges, this aspect

will not be an issue.

(ii). The proposed system should be trained and validated on data from multiple real

bridges. Using data from multiple bridges would ensure that the proposed system

is robust and generalizable for developing practical bridge inspection systems with

defect detection system.

(iii). The proposed system should be able to provide reliable performance with data

from robot platform equipped with high-quality visual sensor. The selection of metrics
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can vary depending on the type of methods being utilized.

(iv). The proposed multi-directional bicycle robot is able to reach places on the bridge

that are not easily accessible to human-inspectors. Due to the wireless operability

of the robot platform, the inspectors can use the multi-directional robot to perform

inspection tasks on inaccessible/hard to access areas of the bridge infrastructure with-

out putting themselves in harms way.

1.6 Chapter Summary

In this chapter, a number of key motivation aspects related to automated solution

for bridge inspection have been discussed. The earlier methods for non-destructive

evaluation (NDE) are based on human inspectors. There are various issues related

to the use of human inspectors to inspect bridges, which include human error, higher

cost of inspection, and its time-consuming nature. As a result, it increases the chance

of higher risk of bridge-related accidents, which usually are the result of small-scale

errors and lack of proper judgments in inspecting different sections of the bridge. In

the past few decades, it has been a regular occurrence in the United States that there

are different bridge-related accidents leading to considerable costs, loss of lives and

high amount of time taken to rebuilt the destroyed infrastructure. This further leads

to increased costs towards maintaining and inspecting bridges in the United States.

All of these factors act as catalysts towards developing algorithms, sensor deployment
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and integration and implementation on a real-time multi-sensor, multi-robotic system

for structural health monitoring and bridge inspection.
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Chapter 2

Background

In this chapter, there are a number of different aspects of literature pertaining to

automated systems for bridge inspection. surface and sub-surface analyses for bridge

inspection. In light of this novel taxonomy, three key aspects of automated bridge in-

spection systems will be discussed, namely robot platforms, sensors and methods for

surface-level and sub-surface-level analysis of bridges. The discussion regarding robot

platforms for bridge inspection will be provided with respect to ground, aerial and

underwater robots. At the same time, discussion regarding single sensor and multiple

sensor system will be outlined. The discussion regarding methods will be divided

into surface-level analysis and sub-surface-level analyses methods. In the context of

surface-level analysis, the studies related to steel defect detection system and con-

crete crack detection system will be highlighted. In the context of sub-surface-level
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analyses, the discussion regarding studies related to rebar detection and localization

will be outlined.

2.1 Proposed Taxonomy for Automated Bridge In-

spection Systems

In this section, a broad overview of the different automated solutions that have been

proposed in the past few decades will be highlighted. The overall research area has

been divided into three major streams with three major research aspects, namely

the robotic platforms, sensors deployed on the robotic platforms, and the different

algorithms developed for analyzing the different data from the wide-range of sensors

deployed on the particular robot platforms. Each of these research streams will be

separately discussed with considerable level of details, as given in the proceeding

sub-sections.

2.1.1 Platforms

Different robotic platforms being used to assess the various physical characteristics of

bridges. A taxonomy will be proposed, which will differentiate the different types of

robot platforms for the NDE of bridges. Some of the essential components for bridge

inspection will also be examined. Traditionally, infrastructure evaluation has been
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considered a manual labor-intensive task, which is carried out by civil personnel using

different sensors for data collection [38]. Despite recent technological advancements

in this research area [38] [39] [40], a majority of the infrastructure evaluation is still

performed by human operators using traditional modes for data collection, which

are composed of standalone single sensor-based systems. In Figure 2.1, a better

appreciation of the manner in which the available tools, techniques and platforms have

evolved in recent years can be observed. It can be seen that there are fundamental

divergences between the traditional methods and the innovative technological tools,

techniques and platforms that have been employed for the NDE of civil infrastructure

in the recent past.

Most of the traditional tools utilize single-sensor-based systems, which means that

the overall hardware and software requirements and complexities are limited in na-

ture. However, most of the traditional tools and techniques require human operators

a considerable number of man-hours to collect the data for assessing the structural fit-

ness for a particular type of infrastructure. In contrast, the technologically advanced

tools and techniques are efficient, such that they can use a limited amount of time

to collect data from a wide array of sensors to provide an in-depth and multi-faceted

assessment of the different structural deficiencies within infrastructures. In recent

decades, there has been an increased focus towards the development and usage of

semi-autonomous and fully autonomous robots for the NDE of civil infrastructures in

general and bridges in particular. A wide array of diverse robots have been developed

ranging from climbing robots (e.g., legged robots, wheel-based sliding robots and
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Figure 2.1: The development in the field of bridge inspection using NDE tech-
nologies

crawler robots) [41] [42] [30] [43] [38] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54]

[55] [56], and multi-rotor unmanned aerial vehicles (e.g., quad-rotors and octo-rotors)

[57] [58] [59] [60] [61] [60] [62] to unmanned ground vehicles (UGVs) (e.g., advanced

robotics and automation (ARA) lab robot, robotic crack inspection and mapping

(ROCIM), robotics-assisted bridge inspection tool (RABIT)) [5–9, 40, 63–68] and

water-based robotic crafts (e.g., unmanned submersible vehicles (USVs), underwater

marine vehicles (UMVs), underwater vehicles (UUVs)) [30, 69, 70].
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Some of the recent studies have also focused towards developing hybrid robotic frame-

works (e.g., wall-climbing unmanned aerial vehicles (UAVs), robots capable of flying

and crawling and other multi-rotor flying robots capable of latching on to specific parts

of infrastructure that require inspection), which are able to provide multi-functional

roles and capabilities for the different types of inspection activities [10, 71–76]. A

number of different types of robots (e.g., flying robots, walking robots, sliding robots,

climbing robots, and underwater diving robots) have been leveraged for the NDE of

bridges in order to gain access to different parts of the bridges. For example, eval-

uating and inspecting tall steel beams above bridges can be a hazardous task for

human inspectors to perform during different environmental conditions (e.g., rain,

snow, wind, day and night conditions). It is for this reason that different types of

climbing and aerial robots have been used to facilitate these tasks. In particular, the

versatility of the aerial robots has allowed their increased utilization for the inspection

of the different parts of bridges, such as the inaccessible underside of the bridge decks,

higher parts of the bridge beams and cables [30, 38, 47, 52, 59–61, 76]. Similarly, a

number of different wheel-based and legged robots have also been used for inspecting

concrete bridge decks, steel wires, concrete underside, and steel beams.

A number of different robot platforms are designed for inspection activities for specific

types of bridges (e.g., cantilever, arch, suspension, truss, cable-stayed, beam, girder

and tied-arch bridges) [30, 41–43, 45, 50, 52, 52, 53, 57–62, 65, 66, 77–79]. In order

to provide some level of insight regarding the different robotic solutions for bridge

inspection, the proceeding discussion will focus on the taxonomy provided in figure
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Figure 2.2: Taxonomy of different bridge robots, namely in the ground robots,
aerial robots and marine robots categories

2.2, namely: (i) ground robots, (ii) aerial robots, and (iii) marine robots. Some details

regarding the different platforms are outlined in the following sub-section:

2.1.1.1 Ground Robots

The majority of the robots developed for the NDE of bridges can be classified under

the category of ground-based robots, in view of the taxonomy proposed in Figure 2.2.

As it has been provided in Figure 2.2, the ground-based robots (these robots can also

be termed as land-based robots, as they are developed to function on land) can be

further classified based on the different types of locomotion capabilities developed,

which allow them to inspect specific parts of the bridge infrastructure. ROCIM is a
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robotic platform that has been developed for bridge deck inspection [45, 80]. Simi-

larly, RABIT is another wheel-based ground robot with a wide array of sensors and

autonomous navigational capabilities [35, 38, 40, 45, 68, 77, 80–82]. This particular

robotic platform has been equipped with state-of-the-art sensor technologies (e.g.,

impact echo, ultrasonic surface waves, electrical resistivity and GPR), which enable

the classification of some of the most common defects in bridge decks, such as con-

crete degradation, delamination and rebar corrosion [40, 82]. The ARA Lab Robot is

also a wheel-based robotic platform that has been recently developed for bridge deck

inspection. and maintenance [39, 44, 83]. With a similar array of sensors, another

autonomous platform for infrastructural inspection was developed by La et al. [30],

which provided a wide array of different functionalities related to the automated mon-

itoring of civil infrastructure, using on-surface crack detection and bridge evaluation

for signs of deterioration within the metal rebar and concrete slabs.

In this particular research, the overall effectiveness of the automated robotic inspec-

tion system was also assessed for the evaluation of actual bridges [38]. A climbing

robot was leveraged for the inspection of the underside of the bridge deck [53]. The

majority of these robots have primarily been used for bridge deck inspection applica-

tions. A number of climbing, walking and crawling robots have also been developed,

which are able to scale the vertical surfaces of the bridge infrastructure. Some of

these robots include the BRIDGE (Bridge Risk Investigation Diagnostic Grouped

Exploratory) bot [42], chain-lIkeda robot [78], magnetic wheeled robot [55], and the

vortex climbing robot [62]. Most of the climbing and sliding robots dedicated to the
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inspection of different parts of the bridges are small-scale in nature, with a primary

reliance on visual inspection methods using vision-based sensors.

Many bridges are equipped with cables to provide support and load balancing across

the different parts of the bridge. To provide the automatic maintenance and in-

spection of these parts of the bridges, a considerable amount of studies focuses to-

wards the mechanical design and development of different cable climbing robots [47–

49, 51, 53, 57, 58, 58, 61, 78, 84]. The use of bipedal and quadruped legged robots

has also been proposed for the inspection of civil infrastructures in general and the

vertical structures of bridges in particular [76, 79, 85–90].

Table 2.1 summarizes some of the major characteristics of the different platforms

for the NDE of bridges using a wide array of different robotic platforms and their

respective sensory modalities. Due to the wide array of different sensors available for

the NDE of bridges, the different sensory modalities are classified into radars (GPR

sensors that employ EM waves of different frequency and wavelength), vision (all

types of cameras and other sensors that provide visual information, e.g., red green

blue (RGB), RGB-Depth (RGB-D), time-of-flight, thermal cameras, and sensors for

infrared thermography), acoustic (all forms of sensors that employ sound for NDE,

e.g., different IE methods and microphones, ultrasonic sensors) and electric (sensors

that employ variations in current and voltage, e.g., ER, potential field mapping and

Eddy current sensors) sensory modalities. When comparing the different ground-

based platforms given in Table 2.1, it can be seen that the RABIT and ARA Lab
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Platform Type Radar Vision Acoustics Electric

RABIT-Bot Wheeled 1 GPR 1 Camera IE + USW 1 ER

ROCIM-Bot Wheeled N/A 1 Camera N/A N/A

ARA-Bot Wheeled 1 GPR 2 Cameras N/A 2 ER

ETH-Bot Wheeled N/A N/A N/A 1 HCPM

BridgeBot Wheeled N/A 1 ArduCAM N/A N/A

SBC-Bot Climbing N/A 2 Cameras N/A 1 EC

ABI-Bot Climbing N/A 1 Camera N/A N/A

Caterpillar Climbing N/A 1 Camera N/A N/A

SkySweeper Climbing N/A N/A N/A N/A

Cable-Bot Sliding N/A 4 CCD N/A N/A

CI-Bot Climbing N/A 3 Cameras N/A N/A

CCRobot-II Climbing N/A N/A N/A N/A

MRC-IN-II Sliding N/A 1 Camera N/A N/A

Quadrotor UAV N/A N/A N/A N/A

Manipulator UAV N/A N/A N/A N/A

CP-Bot UAV N/A N/A N/A N/A

FW-Bot UAV N/A N/A N/A N/A

Octo-rotor UAV N/A N/A N/A N/A

Quad-rotor UAV N/A 1 Camera N/A N/A

Hammer UAV N/A N/A 1 IE N/A

3D Mapper UAV N/A 1 3D LiDAR N/A N/A

DJIP UAV N/A 1 Camera N/A N/A

2D-LRF UAV N/A 2D LRF N/A N/A

Omni-Wheel UAV N/A 2 Cameras N/A N/A

II-Bot UAV N/A IR + RGB N/A N/A

UROV USV N/A 1 Camera N/A N/A

Sea-RAI USV N/A 4 Cameras N/A N/A

MW-Bot USV N/A 2 Cameras N/A N/A

Videoray USV N/A 1 CI Sonar N/A N/A

YSIE USV N/A 1 SS Sonar N/A N/A

Table 2.1: Different Bridge Inspection Robots and their Sensory Modalities

Robot are the two robotic platforms with existing hardware and software capabilities

that can allow them to function in an intelligent, autonomous fashion with regards

to path planning, collision avoidance, trajectory planning, trajectory generation and

sensor fusion techniques. As functional robots, they also have the ability to evolve over

time, by equipping them with the state-of-the-art sensors for enhanced autonomous
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capabilities and data collection. In comparison, the majority of the other ground-

based platforms relied on a single form of sensory modalities with limited hardware

and software capabilities.

2.1.1.2 Aerial Robots

The recent breakthroughs in the field of aerial robots has allowed the usage of various

multi-rotor platforms (e.g., four-rotor and eight-rotor-based platforms) in the field of

NDE, with various implementation focusing towards bridge inspection and mainte-

nance. The majority of the studies for bridge inspection using UAVs rely on visual

inspection methods [5–8, 66]. However, some of the recent studies have attempted to

explore different ways in which aerial robots can be modified to provide perching and

contact-based inspection capabilities [10, 63, 67, 73]. A number of recent studies have

also proposed the development of hybrid robots, which are able to provide multiple

functionalities (e.g., flying and walking mechanisms and a number of different flying

and contact-based approaches) [71] [72] [73]. Some of these platforms have provided a

proof-of-concept with considerable potential towards successful utilization for bridge

inspection in the future. Some of the different aerial robots deployed for the visual

inspection of bridges are outlined in Table 2.1. For example, a UAV platform devel-

oped in [72] provided contact-based bridge inspection capabilities. Similarly, research

by [63] examined the effect of contact force on pitch angle and vertical thrust force us-

ing one degree of freedom manipulator to perform the hammering analysis for bridge
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inspection. However, this platform did not rely on any NDE sensors, as the research

is still in its initial stages. Another study focused on the position determination of

UAV for the visual inspection of bridges using an on-board camera [8].This is a rel-

atively new field of research and further research is required in order to fully exploit

the flexibility and versatility of aerial robotic platforms towards the accessing and

monitoring of different parts of the bridge infrastructures.

2.1.1.3 Undersea Robots

Marine robots primarily deal with the inspection of parts of the bridge infrastruc-

ture, which are submerged underwater. One of the earliest studies in this category

emphasized the importance of examining and inspecting inaccessible or hard-to-access

regions of the bridge infrastructure by human inspectors [70]. This platform made

use of a camera for the visual inspection of submerged pier sections of the bridges

[70]. However, the overall effectiveness of visual inspection is heavily affected by the

clarity of the water and weather conditions, to name a few limitations of underwater

standalone vision-based systems. Over the years, this area has expanded to receive

attention with regards to post-disaster inspection as well as the regular inspection of

bridge piers [91]. A number of unmanned marine vehicles (UMV), unmanned under-

water vehicles (UUVs) and remotely operated vehicles (ROVs) have been deployed in

the past, which include semi-autonomous sensory platform, Muddy Waters, sea-RAI,

VideoRay and YSI Ecomapper [69] [91] [70]. The majority of the limited number
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of robotic platforms deployed underwater rely on the visual sensory information for

assessing the condition of bridge structure submerged under water, as it can be seen

from Table 2.1. However, due to the various challenges associated with underwater

inspection, there is a need for further research, which can provide improved sensory

capabilities for data collection as well as tools and techniques for analyses, which can

be used for the underwater inspection of bridges in the future. At the same time,

there is also a need for performing the comprehensive feasibility of the developed and

deployed robotic platforms within different underwater conditions for the inspection

of different bridges. In the following section, the prime focus will be towards dis-

cussing some of the different algorithms and techniques developed for the NDE of

bridges.

2.1.2 Sensors

An array of instrumentation modules used for data collection will also be discussed

with specific distinction between the single sensor-based and multiple sensor-based

systems for NDE of bridges. Data from multiple sources require an additional level of

complexity with regards to specifying the appropriate sensor fusion techniques. This

particular aspect will also be analyzed in sufficient details.

Sensors allow the different NDE platforms to collect data, which can be used to assess

the overall conditions of the infrastructure in terms of its suitability and safety for

humans in the near future without endangering their lives in any way. For studies in
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Figure 2.3: The different sensor configurations within the NDE literature

this particular field, it is important to incorporate sensors, which are able to analyze

the overall internal and external conditions without physically tampering with the

infrastructural materials (e.g., concrete, steel). In the previous section, it can be seen

in Table 2.1 that the different types of sensors deployed on the various platforms

had been classified into four main categories, namely vision, acoustics, radar, and

electric sensors. The classification proposed in Table 2.1 was based on the different

sensory modalities that were equipped in the different NDE platforms. However, in

this section, the scope is broader than the usability and applicability of the variety

of sensors on NDE-based robotic platforms. In this section, the primary discussion

will relate to the different types of sensor-based systems utilized for infrastructure

evaluation and structural health monitoring.

It can be seen in Figure 2.3 that NDE systems can be broadly classified into single-

sensor and multi-sensor-based systems. Most of the single sensor systems, such as
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Roadmap [92] and BYU (Brigham Young University) IE scanner [93] employ a sin-

gle sensor each, namely GPR and IE respectively. Conversely, multi-sensor systems

(e.g., RABIT [30, 35, 40, 45, 64] and Seekur Jr. [38]) make use of different types of

sensors, which allows them to provide an accurate and multi-faceted evaluation of

the infrastructure, such that the limitations of one sensor type (e.g., infrared ther-

mography, which is limited in terms of providing information regarding near-surface

delamination [82] can be mitigated by the use of other sensors (e.g., GPR, which

is able to provide information regarding the structural defects present at sufficient

depth underground [40]). However, this platform did not rely on any NDE sensors,

as the research is still in its initial stages.

2.1.2.1 Single-Sensor Systems

It has already been discussed in the prior sections that many of the earlier studies in

the field of the NDE of bridges deal with single sensor-based systems. At the same

time, according to table 2.1, the majority of the existing robotic solutions developed

can also be classified as single-sensor-based systems. However, there are a number

of different sensory modalities available for the NDE of bridges and civil infrastruc-

tures in general, which will be discussed in sufficient detail in this section. For the

case of impact-echo-based NDE techniques, metallic objects (e.g., metal chains, ball

bearings) are used to create acoustic vibrations and contact sensors are employed to

record the reflected sound waves from the different underground materials and the
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defects within infrastructures. A number of studies in the field of the NDE of in-

frastructures have reported the utilization of impact-echo sensors in the recent past

[93–98, 98–101]. These studies have focused towards examining the different types of

defects present within civil infrastructures. For the case of the research proposed by

Zhu and Popovics [95], an air-coupled impact-echo sensor and recording devices have

been used to analyze the extent and depth of delamination within concrete structures.

The effectiveness of the impact-echo sensors is dependent on the type of impactor used

[95]. This particular tool for data collection has been extensively used for infrastruc-

ture evaluation in a number of recent studies [94, 95]. Another study validating the

effectiveness and efficiency of air-coupled sensors was also validated [95]. However, for

rapid scanning-based applications, the use of air-coupled sensors can pose challenges

for real-time data collection [100]. To improve the overall efficiency of data collection

for NDE-based applications, different NDE-based applications, different studies have

developed automated IE systems with complicated electromechanical mechanisms for

the repeated and consistent impacts on structure surfaces [31, 93, 97, 102]. Figure 2.4

provides details regarding the impact-echo method and its utilization for the NDE

of civil infrastructures using different components, such as impactors (metal objects

used to create sound vibrations), transducers (sensor used to detect the sound reflec-

tions), data acquisition module (hardware components used to filter sound vibrations)

and the data analysis module (software used for analyzing and visualizing the signal

output from the sensor over time).



28

Figure 2.4: Different elements of the IE method for NDE of infrastructure

In the wake of technological improvements in commercially available infrared de-

tectors, infrared (IR) thermography has gained considerable popularity in the past

decade, specifically after being established as an American Society of Testing and Ma-

terials (ASTM)-certified method to detect delamination in bridges in 2003 [103, 104].

The use of infrared thermography has been discussed, not only in the context of in-

frastructure evaluation [103, 105–108], but also for tunnel excavation [109–111] and

for the examination of different materials (e.g., metals, aluminum laminates, carbon

fiber reinforced polymers and glass fiber-reinforced polymers), which is important

towards assessing the structural integrity of different mechanical parts specifically de-

veloped for the aerospace industry [112, 113]. In comparison with other methods for

the NDE of infrastructure, infrared thermography has been recommended to provide

the real-time, objective assessment of infrastructural health, specifically for the case
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of near-surface delamination detection [114–116]. However, with the increasing depth

of the underground defects within infrastructures, the overall accuracy and reliability

of the infrared thermography technique decreases substantially [117–119]. Some of

the other factors which can impede on the accuracy of the data collected include the

type of sensor equipment being used, shadows, moisture, surface debris, wind speed

and sustained solar heat [107, 120, 121].

The governing principles underlying the usage of infrared thermography include con-

duction, convection and radiation. For the case of the near-surface delamination of the

presence of underground void spaces, infrared thermography leverages the concept of

variation of the temperature gradient between the defective and non-defective regions

within infrastructures [1] [2]. Figure 2.5 (a,b) outline the ways in which heat conduc-

tion and radiation emission during day and night time, respectively, allow the infrared

thermography sensors to differentiate between delaminated and non-delaminated re-

gions [1]. It can be seen in Figure 2.4 (c,d) that the regions with potential underground

structural defects are visible as bright regions on the thermogram [2].

Another widely utilized sensor is the ground-penetrating radar (GPR), which has

been the focus of a number of recent studies related to the infrastructure inspection

and evaluation of civil infrastructures and bridges [38] [39] [40] [39] [19] [122] [123]

[124] [125] [126] [127] [128] [129] [130] [131]. Within civil engineering, GPR has been

utilized for diverse applications, which include, but are not limited to, detecting and

measuring pipes, mines, other underground utilities, the health monitoring of bridges,
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Figure 2.5: Data collection using a thermography sensor: (a) the absorption of
solar radiation by the different parts of the infrastructure during the day time [1],
(b) the emission of radiation from the different parts of the infrastructure during
night time [1], (c) the output of the data collection unit in the form of a digital

image [2], and (d) the output of the data collection unit [2]

railway tracks, tunnels, roads and pavements, as well as for the detection and local-

ization of underground rebar [38] [39] [40] [19] [122] [123] [124] [125] [126] [127] [128]

[129] [130] [131] [132] [133]. The B-scan data from GPR sensors provide a visual

transformation of the radar waves reflected from different parts of the underground

infrastructure (e.g., concrete, steel rebars, void spaces), which can be used to highlight

the corrosion, delamination, presence of void spaces and structural damage to rebars

[39] [19] [122] [123]. The details regarding different data analysis techniques will be

discussed in the following sub-section. Figure 2.6 (a) provides information regarding

the underlying principles for wave propagation using the fixed-offset-based method
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Figure 2.6: Principles for the GPR wave transmission: (a) wave transmission
with the fixed-offset profiling method for data collection, (b) the use of a common
midpoint method for data collection using GPR [3] [4] with different visual sensors
to provide surface-level information to assess the structural health of bridges [5] [6]

[7] [8] [9] [10]

for data collection using GPR [3] [4]. Similarly, the use of a common midpoint-based

method has been shown in Figure 2.6 (b) [3] [4]. The radar waves from the trans-

mitter penetrate the ground, and based on the different properties of the underlying

construction materials and other artefacts (e.g., location, dimensions, density, depth),

the intensity and signature of the waves reflected back from the different regions to

the receiver can vary to a considerable extent.

Vision-based sensors have received considerable attention in the recent past towards

the NDE of diverse civil infrastructures, ranging from sewers [134], tunnels [135] [136],

structural ceilings [137], roads [138] [139] [140], dams [141], pavements [142] [143]

[144] [145], and bridge decks [30] [43] [64] [146] [147]. The advent of state-of-the-art

learning-based techniques for data analysis has facilitated the widespread usage of

vision-based sensors within different robotic systems for the NDE of bridges [82] [39]
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[30] [40] [64] [44] [45] [68] [119] [80] [83]. The visual inspection of infrastructure is

important to provide information regarding the surface-level defects and damages in

concrete. A number of vision sensors have been utilized to perform the inspection

of civil infrastructures, namely the smartphone camera [137], digital cameras [30, 45,

82, 119, 135, 148], depth sensors [147] [91], time-of-flight cameras [149], closed-circuit

television (CCTV) [134], laser-scanners [9, 90, 140, 147] and Visual SONAR (Sound

Navigation and Ranging) sensor [69]. The vision-based sensors are dependent on the

reflection of light from infrastructure surfaces to provide an assessment of surface-

level NDE. Based on the data in Table 2.1, it can be seen that many of the aerial

robots are equipped with different visual sensors to provide surface-level information

to assess structural health of bridges [5–10, 66, 90].

A number of different electrical sensors have also been used for the assessment of

bridge infrastructure [30, 35, 39, 39, 44, 45, 53, 64, 68, 78, 80, 82, 83, 119, 150, 151],

which are primarily used in a ground-based robot. A half-cell potential sensor was

used by the ETH (Eidgenössische Technische Hochschule) Zurich autonomous robot

for potential mapping to detect a level of corrosion within the concrete structures

(e.g., bridge deck underside and parking lots) [53]. Electrical Resistivity (ER) probes

have been one of the most widely used electrical sensors, which have been incorporated

within two of the most widely discussed ground robots for the inspection of bridge

decks in the recent past, namely the ARA Lab Robot [39] [44] and RABIT platforms

[30] [83] [150] [151]. The purpose of ER probes is to examine the level of sub-surface

corrosion within bridge decks and other infrastructures [68]. The RABIT platform is
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equipped with four Wenner-type ER probes; two outer probes generate an electrical

current and the two inner probes measure the intensity of electrical field, which is

used to calculate the electrical resistivity [68]. Another type of electrical sensor was

used by the steel climbing robot, namely the Eddy current sensor [47, 150, 151], which

is used to measure the level of corrosion, rust and crack within the steel structures of

bridges.

2.1.2.2 Multi-Sensor Systems

For the case of traditional tools, techniques and platforms, any one of the aforemen-

tioned data collection methods (e.g., impact echo, GPR or infrared thermography)

can be utilized for performing inspection of civil infrastructures. However, state-of-

the-art platforms (e.g., Seekur Jr., RABIT) [38] [68] [30] [40] [45] [64] have utilized

an array of different sensors, which provide an in-depth evaluation of the civil infras-

tructures. In this section, the primary purpose is to explore the different ways in

which sensor fusion techniques can be used for different modalities (discussed in the

previous section) to collectively allow the development of efficient and cost-effective

systems for the NDE of bridges.

Sensor fusion within multi-sensor systems allows the improvement in the ability of

those systems towards effectively obtaining insights from the available data. Prior

studies have revealed that sensor fusion techniques also improve the overall accu-

racy and efficiency as well as reduce the data-level and system-level redundancy of
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multi-sensor-based systems [152, 153]. Sensor fusion is being widely utilized in a wide

array of applications, ranging from medical diagnostics [154], aerospace [155], plant

inspection, and high-precision manufacturing [156] [157] to remote sensing [158] and

the NDE of civil infrastructures [153]. One of the various functions of sensor fusion

is to ensure that the data from multiple sources can be combined together to fa-

cilitate appropriate analyses, leading to the enhanced efficiency and effectiveness of

the deployed practical systems [159] [160]. Some of the earlier studies have explored

different types of fusion techniques, which can be broadly classified into the following:

1. Data-level fusion: Raw data from the different sensors are transformed and con-

catenated together. A single technique for data processing and analysis is applied

collectively to the fused data from the different sensors [50] [117] [161];

2. Feature-level fusion: Feature from the multi-modal data are collated collectively.

In order to ensure that data from different sensors are fused together effectively,

different types of data transformation technique are utilized [50] [117] [161];

3. Classifier-level fusion: A number of different classifiers are used together to develop

hybrid classifiers. The final performance of the hybrid classifier is based on the average

of the individual classifiers chosen for analyzing multi-sensory data [50] [117] [161];

4. Result-level fusion: A number of techniques are employed to individually analyze

data from individual sensors. The results from each method are combined together

based on specified criteria [50] [117] [161].
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It is important to understand that different sources provide varying classifications for

understanding the different types of data fusion techniques. For example, a review

of NDE sensor fusion techniques by Liu et al. [50] outlined the different approaches

that can be broadly divided into signal-level, feature-level, pixel-level and symbol-

level fusion techniques. Meanwhile, the survey of different data fusion techniques

in another study developed a taxonomy in terms of the different underlying chal-

lenges, namely data imperfection, data correlation, data inconsistency and varying

data forms [162]. For catering to the various technical requirements of multi-sensor-

based systems, a major stream of literature related to NDE has focused towards

developing the different techniques of sensor fusion [50] [117] [153] [163]. A common

method for data fusion is the Dempster–Shafer Theory, which has been widely used

for NDE applications ranging from data fusion between ultrasonic and X-ray imagery

to the techniques developed from the data fusion between infrared thermography and

GPR-based sensor modalities [152] [153] [164]. One of the earlier studies on the fusion

of data from NDE sensors (e.g., GPR, portable seismic analyzer, and falling weight

deflectometer) utilized a number of different fusion techniques, which include fuzzy

logic, Bayesian, statistical weighted average and hybrid fusion techniques [165]. The

use of adaptive fusion operators with customized decision criteria was employed by

one of the relevant studies for performing the fusion of multi-modal data (e.g., elec-

trical resistivity, ultrasonic waves, infrared thermography) represented in the form of

possibility distributions and fuzzy sets [153]. The use of radar and ultrasonic sensory

modalities was performed in another study by Maierhofer and colleagues [152], which



36

utilized data pre-processing, normalization, filtering and amplification techniques for

data transformation before different fusion techniques (e.g., summation, subtraction

and maximum amplitude-based methods) were performed on the multi-sensor data.

In their research, Kee et al. [117] proposed the usage of tools related to infrared

thermography and air-coupled impact echo, along with their fusion techniques, which

was based on simple rule-based criteria to provide valuable insights towards effective

infrastructural maintenance.

However, the data were not obtained from an actual bridge, but from a bridge test-

bed specimen, which means that this method has not been tested on a practical

system using data from actual bridges. Data from a wide array of different sensors

were utilized within the RABIT platform in another study related to the NDE of

bridges [30]. However, the use of sensor fusion techniques was not outlined to ensure

that the data from different modalities could be effectively leveraged to provide an

in-depth inspection of bridges. For the case of the deployment of the ARA Lab Robot

for the NDE of bridges, a sensor fusion algorithm was deployed, which allowed the

robot to optimize the duration of time taken to perform the necessary operations

required for data collection using a camera, GPR and IE sensors across the different

regions of the bridge deck infrastructure [39]. According to Brierley et al. [157],

the questions related to the selection of an appropriate sensor fusion technique is

application specific in nature. Some of the considerations in this regard are given as

follows: (i) the type of problem being addressed, (ii) the type and scale of the sensory

data being handled, and (iii) the assessment criteria for performance evaluation, as



37

the sensor fusion techniques can provide varying results in different contexts and

applications [157].

2.1.3 Methods for Surface-level and Sub-Surface-level Anal-

ysis

In this section, the focus will be towards outlining the different analysis techniques

using data from a wide array of NDE sensors for bridge infrastructural evaluation,

which were highlighted in the previous sub-sections. The discussion in this section

will be divided into two sub-sections, namely:

(i) Different techniques pertaining to analysis of the surface-level data for bridges

and other civil infrastructures. The surface-level analysis for NDE is used to examine

the level of cracks, and the corrosion of the concrete surfaces of civil infrastructures.

Another stream of literature pertaining to surface-level analysis of bridges include

steel defect detection. Although, there is a dearth of studies in this research area,

but this dissertation has made some progress to extend the state-of-the-art.

(ii) Myriad of techniques developed for analyzing sub-surface-level data for bridge

decks. The sub-surface-level analysis allows the evaluation of the steel rebars in

the bridge decks. The research in this dissertation deals with the detection and

localization of rebars. The condition assessment of bridge rebars is beyond the scope

of this dissertation.
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2.1.3.1 Surface-Level Analysis: Concrete Crack Detection

There is a considerable amount of research effort devoted towards concrete crack de-

tection for the surface-level inspection of civil infrastructures in general and bridges

in particular [39, 43, 45, 80, 101, 166–175, 175–195]. Due to the concrete-based

composition of the majority of civil infrastructures (e.g., dams, roads, buildings, sew-

ers, bridges, tunnels), the techniques developed for concrete crack detection within

a particular type of concrete structure can also be generalized towards other civil

infrastructures. Some of the earlier works focused on the utilization of basic-level

image-processing techniques for crack detection in concrete structures [43, 45, 80],

which included basic-level morphological approaches [149, 175–177, 196], digital im-

age correlation techniques [178–180, 197] and different segmentation-based approaches

[181].

A number of different image-based filtering techniques were also employed, namely

Gabor filtering [182], median filtering[169] [183], texture filtering [172] [185] and data

fusion-based filtering approaches [161] [186]. The efficacy of different image trans-

formation techniques has also been discussed, ranging from the watershed transform

[175] [177] [178], wavelet transform [183] [184] [187] [188], and randomized Hough

transform [183] [189]. The use of fast Fourier and fast Haar algorithms with Sobel

and Canny edge detectors was developed for the concrete crack detection in one of the

earlier studies [190]. A block-based crack detection approach was developed for the

bridge decks in another study. Another study made use of histogram-based method
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for the extraction of crack features from the input images of bridge decks [43]. A

genetic learning-based network optimization algorithm was also proposed with the

application for concrete crack detection [168].

Data from the GPR sensor were used for sensitive concrete crack detection using

a super high-frequency band system and time-variant deconvolution-based approach

[191]. The use of different deep-learning frameworks has gained considerable atten-

tion in recent works related to concrete crack detection [140, 166, 167, 174, 192]. A

deep-learning-based SSD Inception V2 and SSD MobileNet models for concrete road

damage detection was developed in another recent study [138] [142, 193]. Similarly,

the crack detection problem was solved using semantic segmentation with the help

of deep residual neural networks (NNs) in a number of recent studies [194, 195]. A

Faster-region-based CNN model (Faster R-CNN) was proposed towards the quasi-

real-time system development for the detection of different types of defects (e.g.,

concrete crack detection, steel delamination, bolt corrosion, etc.) [135, 192]. An-

other recent study utilized a U-net-based fully connected CNN model for concrete

crack detection [173]. Some of the most recent studies have made use of different

encoder–decoder-based deep-learning architectures to improve the existing limita-

tions of crack detection systems using a pixel-wise classification of concrete images

[140, 159, 166, 167, 174, 198].

DeepCrack is the name proposed for a deep learning-based framework designed specif-

ically for the crack detection using crack probability maps obtained with the help of
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a deep-encoder–decoder-based network [199]. A comparison in the performance and

techniques employed by the different studies in the past towards concrete crack de-

tection have been outlined in Table 2.2. A number of other deep-learning frameworks

have also been developed for crack detection, such as the CrackNet [199], CrackNet

II [200] and CrackNet V [201] models, which have further improved the performance

of the crack detection systems. Another study made use of multiple visual sensors

(e.g., digital camera, laser scanner and distance sensor) for concrete crack detection

and measurement with the help of the YOLO (You Only Look Once)-v3-tiny model

[147]. An autonomous crack width-measurement system using medial axis transform

and flexible kernel was also proposed in another recent study [202].

Study Struct. Data Img. Size Method Result

Li Bridge 1,000 N/A IS Acc.= 92.6%

Fujita General 60 640 x 480 LAT AuC=98.0%

Chen Bridge 40 3,088 x 2,056 SOMO Acc.=89-91%

Oh Bridge 80 640 x 480 MO Acc.=94.1%

Li Bridge 1,200 4288 x 2848 ACM/SVM Acc.=92.1%

Liu General 84 512 x 512 U-Net F1=90.0%

Ren Tunnels 409 4032 x 3016 CSN Rec.=85.54%

Dung General 40,600 227 x 227 FCN/VGG Prec.=90.0%

Zhou Road 52,408 256 x 256 ResNet F1=99.8%

Billah Bridge 43,996 256 x 256 ResNet Acc.=94.0%

Park General 1,800 N/A YOLO-T Err.=0.09mm

Billah Bridge 12,000 256 x 256 SegNet F1=24.1%

Li Sewer 18,333 224 x 224 ResNet/HS Acc.=64.8%

Wang Ceiling 1,953 400 x 600 DCNN Acc.=86.22%

Table 2.2: Comparison between the state-of-the-art techniques for Concrete Crack
Detection
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2.1.3.2 Surface-Level Analysis: Steel Defect Detection

The research pertaining to the steel defect detection system for steel bridges has been

a relatively under-studied area of research in the past [203–207]. In this respect, a

handful of studies have been reported, which will be presented here to provide a brief

overview of the state-of-the-art before highlighting the proposed methods developed

in this dissertation. One of the earliest studies in this regard utilized a texture-based

approach for detecting corrosion in steel bridge surfaces [203]. In this approach, the

proposed system converted images into the RGB color space, calculated the statistical

information (e.g. difference, mean, and standard deviation of each color component)

[203]. Wilks’ lambda and data range analysis was applied to the aforementioned

metrics to calculate three indices (e.g. mean values in red, difference in green, and

difference in blue) to assess whether steel bridge coating images contained corrosion

or not [203]. This method [203] works effectively with blue-paint-coated steel bridge

images. However, its effectiveness with other coating colors and coating images with

background noise or non-uniform illumination or low-contrast has not been examined.

A detection method for rust defects on steel bridge coatings was developed in [204].

An automated rust-defect-determination method that leverages aerial imagery has

been presented in [207] with image registration (for which a binary information

method is proposed to match the infrared images to their respective RGB images),

bridge component retrieval (automated segmentation obtained by fusion of RGB and

infrared images) and rust region identification (rust regions are identified in YCbCr
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colorspace and rust percentage is calculated). The approach to corrosion detection in

steel bridges developed in [206] was able to provide an unsupervised learning-based

approach (e.g. K-means clustering). An automated steel bridge coating rust defect

recognition method based on color and texture feature was developed in [205]. The

proposed method performed color transformation on the original image, followed by

the application of Fourier Transform and low-pass filters [205]. Another approach

discussed in [208] make use of roughness analysis and color comparison on image

patches to separate corrosion patches for steel images. Another study [209] made use

of texture analysis with variables such as contrast, correlation and energy. Study by

[210] is used for crack and corrosion detection, which made use of a supervised classi-

fication method with code-word dictionary consisting of stacked RGB histograms for

image patches symmetric gray-level co-occurrence matrix for each patch.

Some of the studies in this respect tackle bridge steel defect detection as a bridge

coating assessment problem (i.e. when paint coating removes from the steel surface

of the bridge, followed by steel corrosion and rust formation. Therefore by examin-

ing the uniformity of coating, the percentage of corrosion and rust present on bridge

surface can also be highlighted) [204, 211–221]. One of the earliest studies in this

regard [211] was able to highlight the efficacy of color-based features as an effective

approach for rust detection under varying light conditions. An image recognition

technique for bridge coating assessment with multi-resolution pattern classification

(MPC) and double sampling was developed in [212]. Another study [213] developed

a neuro-fuzzy recognition approach (NFRA) to solve the non-uniform illumination
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problem. A number of studies [214–218] selected the L*a*b* color space to develop

an Adaptive Ellipse Approach (AEA), along with solution for non-uniform illumi-

nation problem. A Support Vector Machine-based Rust Assessment (SVMRA) was

developed in [216] to tackle the issue of non-uniform illumination in outdoor images

captured for bridge condition assessment. Another study [220] proposed a method

for steel bridge maintenance with emphasis on accurate and rapid rust detection with

consideration for current standards of practice (considering rust distribution type,

e.g. spot, general or pinpoint rusting). A wavelet transform for rust detection with

dimensionality reduction to improve computational efficiency was proposed in [221].

Another study [219] developed a wavelet-based de-noising method with wavelet-based

edge detection methods to specify rust and its spatial distribution. [204] used ranges

of H layers and the co-efficient of variation (COV) of grayscale to divide images into

three groups. Three separate image recognition techniques were used in the different

color spaces [204]. K-means clustering method was used in the H layer and Double-

Center-Double-Radius (DCDR) algorithm was used in the Red-Green-Blue (RGB)

and Hue-Saturation-Intensity (HSI) color spaces [204]. The Least Square Support

Vector Machine (LS-SVM) was adopted to predict the radii in the DCDR approaches

[204].
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2.1.3.3 Sub-Surface-Level Analysis: Rebar Detection and Localization

One of the primary emphases of this section will be towards the algorithms pro-

posed for rebar detection and localization, which is essential for the structural health

monitoring of bridges. For the case of bridge monitoring, earlier studies utilized

different pattern recognition and image-processing techniques for rebar detection

and localization by hyperbola extraction from GPR radargrams [222] [164] [202].

Different hand-crafted features were employed by many of the earlier studies, such

as the edge-based features [132] [133] [223] [163] [224] [225], texture-based features

[164] [226], template matching [222] [222], histogram of oriented gradients (HOG)

[40] [39] [126], feature transformation methods, e.g., Radon transform [128], and

Hough transform [158, 227–229] and statistics-based methods, such as clustering-

based approaches[202] [230], least-square methods [163], and higher-order moments

[231, 232]. These features were trained using a wide range of different learning-based

techniques towards developing effective rebar detection and localization algorithms

in the past [19, 39, 40, 123, 124, 225, 233]. Research by Gibb and La [39] trained

a Näıve Bayesian classifier using HOG features. Support Vector Machine (SVM)

has also been used in prior studies [40, 131]. A number of different neural network

(NN) frameworks have also been employed in earlier studies for rebar classification

[133, 223, 225, 233]. Many of the earlier methods failed to effectively leverage the

capabilities of NN models using edge-based features [133] [223] [225], which are not

suitable for real-world systems dealing with GPR data that contain varying rebar
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signatures and fluctuating noise levels. Some of the recent studies have made use of

convolutional neural networks for rebar detection [19, 123, 124, 234, 235]. A study

by Dinh et al. [19] proposed the usage of a 24-layer deep CNN model for rebar clas-

sification. The use of residual neural networks (ResNet-50) has also been proposed

in recent studies related to rebar detection and localization [123, 124].

The preliminary examination of the results using GPR data from real-world bridges

has shown that different ResNet models (i.e., ResNet-18, ResNet-32, ResNet-50,

ResNet-101, ResNet-152) provide increased accuracy and generalizability [123, 124,

234]. Another study implemented the multi-objective genetic algorithm for the clas-

sification of rebar images [236]. Due to its critical importance, many of the studies

focused on the development of rebar detection and localization systems in a collec-

tive fashion [40] [39] [19] [122]. The earlier studies made use of hand-crafted features

with edge-fitting or curve-fitting algorithms to localize rebar signatures from GPR

radargrams containing multiple rebar profiles [129] [133] [222] [230]. Hough trans-

form fitting has also been leveraged with edge features to localize individual rebar

profiles [230]. Yuan et al. [224] proposed the drop-flow algorithm using edge fea-

tures to decompose individual hyperbolas and cater to over-segmentation. The edge-

feature-based localization methods suffer from a lack of generalizability to rebar size,

dimensions, location and variations in the noise levels. An expectation-maximization

algorithm was proposed by Chen and Cohn [231], which has various limitations for

implementation in real-time systems, in terms of computational complexity, difficulty

in
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Detection Detection Localiz. Localiz.
Study Feats. Data Method Result Method Result

Dou Edges N/A C3+NN Rec.=70.4 OHF Prec.=70.8

Kaur HOG 3B SVM Acc.=91.98 RANSAC Acc.=91.98

Gibb HOG 4B Naive Bayes Acc.=95.05 PHL t=32.4s

Dinh HOG 26B CNN Acc.=99.6 RP Acc.=99.6

Ahmed N/A 6B ResNet-50 Acc.=99.42 KMC Acc.=94.53

Harkat HOS 133RG MOGA/CNN Acc.=88.99 Hough N/A

Ahmed N/A 9B Deep ResNet Acc.=97.20 NRL F1=95.58

Table 2.3: Comparison between the state-of-the-art techniques for Rebar Detec-
tion and Localization

convergence and sensitivity to the variations in configuration points. A column-

connecting clustering algorithm with orthogonal hyperbola fitting was developed in

[19]. Another study proposed a precise hyperbola localization algorithm, which made

use of the hyperbola fitting and local maxima. However, this method has limitations

towards providing results for real-time systems. In contrast to previous hyperbola-

fitting methods, the study by Kaur et al. [40] made use of random sample consensus

(RANSAC), which is an iterative method for robust hyperbola fitting with corrective

capabilities, specifically with noisy data and outliers.

The different characteristics of the studies related to rebar detection and localization

have been outlined in Table 2.3. There are various other studies utilizing GPR sensors

with rebar detection and localization algorithms, which focus on other underground

buried objects, such as landmines, void spaces, and pipes. These studies have not

been included in the table, as they are beyond the scope of this discussion. Despite

considerable research in this field, the effective acquisition of hyperbolic signature re-

mains a complicated research problem with various challenges, such as the separation
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of intersecting rebar profiles, the full/partial occlusion of hyperbolic signatures, and

the complexities within the underground spatial configurations [124, 125, 224].

2.2 Challenges

There are a number of different challenges affecting the development of semi or fully

autonomous systems for the NDE of civil infrastructures in general and bridges in

particular. Most of the processes underlying NDE systems (e.g., manufacturing NDE,

industrial NDE and civil infrastructure NDE) are time and resource intensive in

nature. This means that NDE is performed only if the cost of failure (in terms of

capital and loss of human lives) is greater than the costs associated with performing

NDE, but with timely inspection and remedial measures, the probability of defect

can be substantially reduced [157]. Over the years, a number of robotic platforms

have been developed for performing the NDE of infrastructure [30] [82] [39] [40] [78].

However, there are a limited number of different initiatives towards the development

of semi or fully autonomous systems that can reduce the overall time and resources

taken to provide regular health monitoring services for civil infrastructures. It is for

this reason that the current situation warrants the development of robust and cost-

effective technological platforms for the inspection of civil infrastructures in general

and bridge inspection in particular.
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From a sensor and data fusion perspective, there are a number of challenges that

have hindered the development of effective sensor fusion techniques for practical sys-

tems in the past. The deployment of contact-based sensors for the NDE of civil

infrastructure is time-consuming in nature [39]. In this respect, there is a need for

the development of stochastic, optimal path planning algorithms that utilize sensor

fusion-based decision making to differentiate between areas of higher and lower prior-

ities for inspection, depending on the input from different sensory modalities. At the

same time, the majority of the existing studies related to sensor fusion do not provide

reliable performance evaluation metrics [162]. Some of the other challenges towards

the development of performance criteria for effective sensor fusion techniques include

a lack of effective ground truth, multiple, often conflicting dimensions of different

performance metrics, and the need for the modification of the performance criteria

for sensor and data fusion in view of the underlying criteria, context and applications

[162]. A similar issue has also been encountered with respect to the examination of

studies related to rebar detection and localization. In table 2.3, only a handful of

studies have been reviewed, as the majority of the studies related to rebar detection

and localization do not provide reliable and effective performance evaluation metrics.

Apart from that, there are many studies that do not provide any information regard-

ing the performance criteria used to assess the quality of findings in their respective

studies.

Many of the existing studies utilizing robotic platforms for the bridge inspection rely

on single sensors, which can provide limited insight into the multi-faceted problem
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related to bridge inspection in particular and civil infrastructures in general. In this

regard, the increased utilization of vision-based inspection methods has been stressed

in one of the recent studies [237]. A scientometric analysis of the relevant research

field provided insight regarding the lack of multi-disciplinary research, which is hin-

dering and limiting the development of effective solutions for the NDE of bridges

[237]. A number of studies in other research domains related to robotics have ex-

tensively examined the human-level factors that affect the development of relevant

systems. However, the use of civil infrastructure-based robotic systems has not ex-

amined the human factors, which include, but are not limited to, the civil inspectors’

skills, trust in automation-based platforms, situation awareness, and the workload

demands of civil inspectors [238]. There is also a need to assess the human–robot col-

laborative factors that can determine the effectiveness of deploying inspection-based

robotic platforms in the different environments and contexts within the field of civil

infrastructure evaluation.

Another limitation towards the development of effective real-time robotic solutions

for the NDE of bridges is the lack of adequate funding towards the development of

automated solutions to provide the regular inspection of bridges. In order to expe-

dite the process of the regular maintenance of public infrastructure, there is a need

for investment in the field of NDE of infrastructure, which can allow the develop-

ment of effective autonomous and semi-autonomous platforms. One of the recent

studies in this regard emphasized the high costs regarding development, the testing

and practical deployment of on-ground robotic systems for facilitating the inspection
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of civil infrastructure [239]. Earlier studies have emphasized the effectiveness and

superiority of the robot-based NDE systems in comparison with the traditional main-

tenance techniques that have been in practice in the past [239] . Nevertheless, the

overall advantages of developing autonomous/ semi-autonomous robotic platforms for

inspection outweigh the underlying costs and challenges.

2.3 Performance Benchmarks

In this section, the primary focus will be towards highlighting the availability as well

as the need and lack of widely-established and highlighted benchmarks in relation to

the research in this dissertation. Since, the research in this dissertation can be divided

into two separate streams, the discussion regarding benchmarks and its availability

will also be discussed separately for the two research streams. These two sub-sections

are given below:

2.3.1 Sub-Surface-Level Analysis of Bridges for Rebar De-

tection and Localization System

It has been highlighted in the prior section 2.1.3.3 that the studies developing parabola

detection and localization systems in different contexts and environments (e.g. hyper-

bola recognition in GPR images [125], underground mines [126, 127] ,concrete bridge

deck rebar [123, 124, 128] cylindrical objects [129], no apriori knowledge on medium
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[131, 132], buried underground objects and utiliies [130, 133]). Unfortunately, some

of the issues and limitations in the way of benckmark development include diversity

of applications, lack of availability of open-source data for the different applications,

type of algorithms leveraged (i.e. benchmark for one type of methods might not

be valid for other types of methods), limited usage of real-world data for different

studies, and lack of effective performance metrics for assessing the different systems

developed. The manner in which the systems are developed and the results are pre-

sented and evaluated also varies from one study to another. This shows that despite

studies in this field dating back to early 2000s, there has not been any established

benchmarks or any attempts by studies to highlight any established framework for

assessing the performance of the GPR rebar detection and localization systems. Many

studies only focus on rebar detection system, while only a handful of studies provide

details and performance analysis of rebar detection and localization systems both

[39, 40, 125, 234, 236, 240].

In this respect, for the context of bridge decks, the proposed studies [234, 240, 241]

have attempted to provide some benchmarks with regards to the performance metrics

and the level of analysis to provide in order to guarantee comprehensive evaluation

of the proposed approaches utilizing Deep Learning-based approaches. At the same

time, an approach has been established for separately discussing the performance

of rebar detection and localization system. Furthermore, the performance is also

discussed from a qualitative and quantitative perspectives. The quantitative aspects

deal with discussing the visual elements of the results (e.g. the parts of the result
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images the proposed system was able to detect correctly and what limitations and

issues of the proposed system can be detected visually).

2.3.2 Surface-Level Analysis of Bridges for Steel Defect De-

tection System

There are some relevant studies, which deal with different approaches towards steel

corrosion detection [208–210]. Similarly, the steel defect detection systems exist for

other applications. For example, for improving steel manufacturing process, steel

sheet defect detection has received attention in the past [242–244]. However, these

methods are not relevant or generalizable to this context (e.g. steel defect detection

in bridges) due to a number of factors. These factors include outdoor environment

(this comes with challenges with respect to change in lighting condition, shadows

and other effects that can hinder accurate defect detection relying on vision-based

sensors for data collection), complex steel structures (steel structures below and above

the bridge decks are composed of complicated steel beams, trusses and other steel-

based support structure), large variance in bridge steel structures (different bridges

have varying level of steel above and underneath the bridge decks), and robot-based

application (The system has to be ultimately be deployed in real-time on an actual

robot for bridge inspection).

Due to lack of adequate attention in this field of study, there has not been any develop-

ment of benchmark that can assist in the accurate evaluation of system performance.
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Existing studies in this regard covered in this dissertation [245, 246] have proposed the

utilization of novel framework for steel bridge defect detection using robotic platform.

The development of benchmarks require a steady number of studies in a particular

field. Future studies in this respect will focus towards benchmark development for

robotic bridge inspection.

2.4 Novel Contributions of this Dissertation

The prior sections outlined careful assessment of the underlying literature pertaining

to the inspection of bridges using different robots and sensors. In this section, the

prime focus will be towards highlighting the novel contributions of this dissertation

in the context of state-of-the-art. The novel contributions of this dissertation can

be broadly classified into two folds, namely with respect to the development of novel

methods for sub-surface-level analysis (i.e. rebar detection and localization systems)

and surface-level analysis (i.e. steel defect detection system). To discuss the intricate

details regarding the novelties in each of these two aspects of the literature, the

following sub-sections will shed light on each of the individual parts.
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2.4.1 Sub-Surface-Level Analysis of Bridges for Rebar De-

tection and Localization

As highlighted in section 2.1.3.3, it can be concluded that the research area pertain-

ing to the development of rebar detection and localization has received considerable

attention in the past. In relation to these studies, the novelty of the proposed ap-

proaches, which will highlighted as a successive series of five separate publications

that will outline the evolution in the approach taken to provide more robust and

effective systems for rebar detection and localization. The individual novel elements

of each study developed for rebar detection and localization can be broken down into

key parts that are given below:

1). Dataset: The GPR dataset that has been used in these studies is novel in

the sense that it has not been used in any prior study. The data from a total of

eight bridges (novel data not used in prior studies), along with one open-source GPR

data [40] has been used in majority of the studies published. All of the data was

collected using RABIT platform [81, 247, 248] in an automated fashion between 2013

and 2014 from diverse bridges from all across the United States. The use of data

from multiple bridges ensured that the proposed rebar detection and localization is

able to provide reliable performance for bridges with different physical properties. In

terms of quantity, this dataset provides a reasonable amount of data, as quality and

quantity of data is critical for development of robust and reliable Deep Learning-based

algorithms for rebar detection and localization.
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2). Proposed Approaches: A number of novel approaches have been developed

in published work associated with this dissertation. In [123], a novel approach for

rebar detection was developed that leveraged Deep Residual Networks (ResNet-50).

The results were promising and the follow-up to this study were planned accord-

ingly. This work [123] was extended from multiple perspectives in future studies.

Firstly, [123] proposed a rebar detection system without any method for rebar lo-

calization. In order to mitigate that, [124] was able to provide a novel framework

for rebar detection and localization. The rebar detection system proposed in [123]

and rebar localization system proposed in [40] was extended in [234]. For rebar

detection and localization system in [234], a combination of supervised (e.g. mul-

tiple Residual Frameworks and DenseNet framework (e.g. ResNet-18, ResNet-34,

ResNet-50, ResNet-101, DenseNet-121, DenseNet-161)) and unsupervised (K-means

clustering with sliding-window-based approach) methods were leveraged to provide a

novel rebar detection and localization framework. In light of the various challenges

and limitations of block-based approaches (e.g. [39, 40, 123, 124, 234]) highlighted in

[234], thee was a need for developing a better way to provide more accurate detec-

tion and localization system. It is for this reason, the use of Deep Encoder-Decoder

networks was adopted in [240, 241]. The difference between Deep Encoder-Decoder

networks [240, 241] and earlier Deep Networks used in [123, 124, 234] is the manner

in which data is annotated and analyzed, namely the block-based approach (regions

within GPR B-scan images are either classified as belonging to rebar or background

classes) in [123, 124, 234] and pixel-based approach (each pixel is either assigned a
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class label of rebar or background) in [240, 241]. By leveraging the pixel-based ap-

proach in [240, 241], a fine-grained and more accurate analysis of rebar B-scan images

can be performed. In [240], based on prior knowledge, a novel multi-stage framework

leveraging deep encoder-decoder network was developed for rebar detection and lo-

calization with a unique approach towards tackling this research problem. In the

first stage of the novel framework in [240], the goal is to separate rebar layer from

background regions. In the second stage of the novel framework in [240], the goal is

to separate rebar pixels from the background pixels. Using this approach, the effect

of noise and reflective signals can be reduced in an effort to mitigate some of the

challenges and issues highlighted in [234].

3). Level of Analysis: Earlier studies for rebar detection and localization were

not able to appreciate the separate nature of the rebar detection and rebar localiza-

tion. The manner in which results were outlined in [124, 234, 240], a clear distinction

was maintained between the two tasks and benchmark for evaluating the rebar de-

tection and localization from quantitative and qualitative analysis was developed in

[124, 234, 240]. This approach to analyzing the performance of the rebar detection

and localization system separately can allow the researchers to gain a better under-

standing of the underlying systems and the performance of rebar detection and rebar

localization systems.

4). Key Challenges: Unlike earlier studies that merely provided results without

shedding light on limitations and challenges of dealing with diverse GPR data, [234]
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was able to spend considerable effort towards highlighting various issues and limita-

tions that inhibit the development of an effective, robust system for rebar detection

and localization. This can serve as guidance for researchers in this field as well as

field experts in order to find effective ways to tackle various limitations and challenges

outlined in [234].

2.4.2 Surface-Level Analysis of Bridges for Steel Defect De-

tection

In the context of steel bridges, the literature on steel defect detection is limited in

nature. There are only a handful of studies that discuss steel crack and corrosion de-

tection [203–210]. When comparing the other studies [203–210] with proposed studies

in this dissertation, there are wide divergences in terms of: (i) depth of evaluation

of system performance, and (ii) the metrics used for performance evaluation. It is

for this reason, a need was felt to develop steel defect detection systems that can

be practical, and provide greater coverage in terms of detecting defect in difficult-to-

reach and remote regions of the bridge infrastructure. The individual novel elements

of each study developed for steel defect detection can be broken down into key parts

that are given below:

1). Robot Platform: A novel multi-directional bicycle robot has been designed and

its performance has been discussed in [245]. The robot is novel in terms of its hardware
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specifications and design. This robot has been used to collect data for validation of

the steel defect detection system that has been discussed in this dissertation [245].

2). Dataset: There are two novel dataset used for the development and validation

of steel defect detection system discussed in this dissertation [245, 246]. Colleagues

of the Advanced Robotics and Automation (ARA) Lab located in Vietnam were

able to collect around 5,000 high-resolution images with steel parts containing de-

fects. Furthermore, in order to validate the robustness and real-time performance

of the proposed steel defect detection system, the validation dataset was 1,500 high-

resolution images collected from an actual bridge inspection performed in Lovelock,

NV, USA. This dataset has also not been used in any other studies.

3). Proposed Approaches: In light of the benefits and improved gains from usage

of Deep Encoder-Decoder networks in the context of rebar detection and localization

[240, 241], decision was made to leverage Deep Encoder-Decoder networks for steel de-

fect detection. This approach is novel in the context of steel defect detection systems,

as existing methods have not leveraged Deep Neural Networks for defect detection.

In this respect, a recent study leverage UNet as the primary architecture, along with

different encoder modules were used for steel defect detection with promising results

[246]. This was followed by another study that proposed a novel pipeline for real-time

processing for steel defect detection in [245] with results highlighted for different set

of Deep Encoder-Decoder frameworks and encoder modules.

4). Real-Time Evaluation: The novel pipeline for steel defect detection developed
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in [240, 241] is able to provide real-time validation for defect detection in steel bridges.

Two different systems with varying hardware and software specifications were used to

validate the proposed system. The system was trained offline and the trained models

were used for real-time validation in two systems. The results revealed real-time

capabilities, which can be leveraged in the near-future to develop systems on board

bridge inspection robots to provide real-time defect detection of steel regions.

2.5 Performance Metrics

This section will discuss the background regarding statistical metrics for performance

evaluation used in this dissertation, along with developing a contextual understanding

of the results for each metric used. Some of the metrics used to verify and validate

the performance of the Machine Learning-based systems include accuracy, loss, pre-

cision, recall, F1-score (also known as Dice Loss), and mean-Intersection-over-Union

(mIoU). Prior to discussing the mathematical foundation and contextual understand-

ing, there are a few metrics relevant to the classification problem in Machine Learning

systems that need to be understood. Figure 2.7 highlights the confusion matrix for

a Machine Learning system that is used for binary classification (i.e. classification

of images into two classes, here referred to as class 0 and class 1). For developing a

multi-class classifier, the confusion matrix will have more row and columns identifying

the different classes (i.e. ML-based classifier for 3 classes will have three rows and

three columns in confusion matrix, ML-based classifier for 4 classes will have four
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rows and four columns in confusion matrix and so on). Confusion matrix for two

classes with four metrics given in the four boxes in relation to positive/positive, pos-

itive/negative, negative/negative, and negative/positive for the actual and predicted

values are given in figure 2.7. Actual values correspond to the ground truth for the

image classes. Predicted values are the results of prediction results provided by the

ML-based classification system. With regards to True Positive (TP), it is the number

of images that were correctly classified as belonging to the class 1. Similarly, for True

Negative (TN), it is the number of images that were correctly classified as belonging

to class 0. For False Positive (FP), this metric outlines the misclassification of images

belonging to class 0 as inaccurately belonging to class 1. For False Negative (FN),

this metric tells us about the quantity of the misclassification of images belonging to

class 1 as inaccurately belonging to class 0.

These four metrics are important, as at the end of each training/validation session

of the different ML-based models with binary classification, the output is in the

form of TP, FP, FN, and TN (More classes means that there will be more pairs of

positive and negative metrics for each class, i.e. three classes will lead to 9 metrics,

four classes will have 16 and so on). These metrics are further leveraged to provide

calculations regarding other more useful metrics that can be directly used to assess

the performance of the proposed models. FP and FN are also referred to as Type-

1 and Type-II error respectively. Equation 2.1 provides mathematical formula for

calculating the accuracy of the proposed system, which is a ratio of sum of TP and

TN and sum of TP, TN, FP, and FN. This basically means that the total number
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Figure 2.7: Confusion matrix for two classes with four metrics given in the four
boxes in relation to positive/positive, positive/negative, negative/negative, and
negative/positive for the actual and predicted values. Actual values correspond to
the ground truth for the image classes. Predicted values are the results of prediction

provided by the ML-based classification system.

of correctly classified images for the two classes as a proportion of total number of

validated images is referred to as accuracy. Conversely, loss is the ratio of incorrectly

classified images (i.e. sum of FP and FN) and total validated images (i.e. sum of TP,

FP, FN, and TN), which is given in 2.2.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Loss =
FP + FN

TP + TN + FP + FN
(2.2)
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Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

Precision and Recall are two other performance metrics that are regularly used in

order to assess the performance of ML-based systems. Precision is the ratio of TP

over actual positive (i.e. sum of TP and FP). Recall is the ratio of TP over predicted

positives (i.e. sum of TP and FN). Recall and Precision are given in equations 2.4

and 2.3. F1-measure (also referred to as Dice Loss) is the harmonic mean of precision

and recall, as highlighted in 2.5.

F1−measure = 2 ∗ Precision ∗Recall

Precision+Recall
(2.5)

IoU =
PredictedB ∩ ActualB
PredictedB ∪ ActualB

(2.6)

mIoU =

∑
(IoU)

N
(2.7)

Another metric that has been widely deployed in various ML-based systems in order to
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provide a better understanding of the performance of the system is called Intersection-

over-Union (IoU) and mean-IoU. IoU is the ratio of area of intersection between

predicted bounding box and ground truth/ actual bounding box (referred in the

equation 2.6 as PredictedB and ActualB respectively). mIoU is the sum of all IoU

values calculated for all validated images divided by the total number of validated

images (total number of validated images are given as N in equation 2.7). For the case

of bounding-box-based annotation approach, the aforementioned calculations related

to IoU and mIoU are applicable. In the context of pixel-based approaches, as in the

case of semantic segmentation, the bounding box can be understood as composition

of individual pixels, where each pixel has its own class label.

In order to provide contextualization for the different metrics and the manner in which

performance outlined by different metrics is interpreted, there is a need to highlight a

basic example to provide basic understanding to the readers of this dissertation. Table

2.4 outlines the dataset information of three hypothetical studies with their respective

performance metrics. this example is specific to rebar detection and localization

system with dataset information regarding number of bridges from which the data is

collected and the total number of images in the dataset. Other information is related

to the performance of the proposed systems in study 1, study 2 and study 3. To make

things easier to understand, the calculations are traced back from the hypothetical

values of TP, TN, FP and FN specified. For each dataset of the different studies, it

is assumed that the class distribution of data is same (e.g. out of 1,000 image, 500
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belong to positive and 500 to negative class for study 1 and 2 and out of total of

100,000 images, 50,000 for each class for study 3).

Metrics Study 1 Study 2 Study 3

No. of Bridges 1 10 25

No. of Images 1,000 1,000 100,000

TP 450 400 40,000

TN 450 400 30,000

FP 50 100 10,000

FN 50 100 20,000

Accuracy 90% 80% 70%

Loss 10% 20% 30%

Precision 90% 80% 80%

Recall 90% 80% 67%

F1-measure 90% 80% 72.9%

mIoU N/A 78% 82%

Table 2.4: A hypothetical example outlining three hypothetical studies with their
respective dataset and performance information given

The analysis of data and its results can be challenging for a number of factors, which

will be highlighted from example given in table 2.4. From a dataset perspective, the

three studies disclose that they have data from 1, 10 and 25 bridges with number

of images amounting to 1,000, 1,000 and 100,000 respectively. It is clearly evident

that when comparing dataset alone, the diversity of data is much higher in study 3,

when compared with study 1 and 2. This means that the with this amount of data

available, any system developed will be able to generalize to unknown, new dataset

from real bridges. In comparison, the amount of data available in study 1 and 2 is

limited and any performance-related indicators used, their implications will be much

lower than study 3, even if the performance of study 3 is lower in comparison to study

1 and 2. As, is the case shown in table 2.4. When comparing statistical measures
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for different studies, it is important to understand that the statistics should not be

directly compared, rather they should be compared with respect to their own dataset.

So this means that 90% accuracy and 10% loss for study 1 has less significance as

compared to 70% accuracy and 30% loss for study 3 because of the size of dataset

(i.e. 100,000 images for study 3 against 1,000 for study 1). As, the number of images

for both study 1 and 2 are same, it is clear that study 2 has lower accuracy, loss, and

other metrics as compared to study 1. For studies not incorporating mIoU will provide

partial picture of the performance of the systems. It is important to understand that

mIoU as a metrics sheds light on non-statistical aspects of the results and system

performance. Study 1 did not employ mIoU, so there is no way to find out about the

level of overlap between ground truth and validated results. For study 2 and 3, mIoU

shows that there is a greater level of overlap between ground truth and validated

images for study 3.

2.6 Chapter Summary

In this chapter, a comprehensive overview of the relevant literature has been discussed,

ranging from the development of different robotic platforms for bridge inspection

and the taxonomy of different robot platforms used in the past to different sensors

that have been leveraged for bridge inspection. Within the different sensors utilized,

the distinction between single sensor and multiple sensor-based systems has been

outlined. With the usage of multiple sensors, the development of different sensor
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fusion techniques for bridge inspection have also been highlighted. For surface-level

analysis of bridges, the extant literature pertaining to the crack detection systems has

also been provided with comparison between different approaches. For sub-surface-

level analysis, the focus has been towards discussing different studies developed for

rebar detection and localization. In the concluding parts of the chapter, discussion

regarding performance benchmarks for sub-surface-level and surface-level analysis has

been provided. In order to contextualize the research in this dissertation with respect

to the state-of-the-art in surface-level analysis (e.g. steel defect detection system) and

sub-surface-level analysis (e.g. rebar detection and localization system) of bridges,

the novel contributions of this dissertation have been discussed in the last section of

this chapter.
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Chapter 3

Rebar Detection and Localization

for Sub-Surface Analysis of GPR

Data

3.1 Study 1

3.1.1 System Methodology

The proposed technique for evaluating the effectiveness of Deep Residual Networks

(ResNets) towards rebar detection has not been reported in the existing literature.

It is for this reason that one of the variants of the Deep Residual Networks, namely

ResNet-50 [249], has been employed in this research for the development of rebar
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Figure 3.1: Proposed Method for Rebar Detection

detection system. Figure 3.1 highlights the basic model, which has been used for

the development of ResNet-50. ResNet is one of the recently developed variants of

CNN [249], which has gained increased acceptance and popularity in the research

community in terms of its widespread application to various computer vision-based

problems (e.g. object recognition, image recognition, image segmentation, image

super-resolution) [249] [250] [224].

Figure 3.1 shows the model proposed in this study with Contrast Limited Adaptive

Histogram Equalization (CLAHE), which was first proposed in Gibb and La [251].

Unlike Residual Networks, the traditional CNNs suffered from substantial decrease

in the overall accuracy as well as increasing error rates with increasing depth of the

neural networks [249]. The basic building block and structure of ResNet can clearly

outline the ways in which ResNet differs from its ‘plain’ CNN-based counterparts, as

each residual block (given in the lower part of the figure) skips a few convolutional

layers, which enhances its overall optimization and resistance to degradation [199].

For the construction of ResNet-50, the block given in figure 2 is replicated multiple

times to provide a network with increased depth as well as an overall improved
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Network
Parameters Dataset 1 Dataset 2

Network Name ResNet-50 ResNet-50

Bridge Name East Helena
Bridge, MT

Warren
County, NJ

Number of Layers 50 50

Number of Epochs 24 8

Batch Size 4 4

Learning Rate 0.0001 0.0001

Total Number of
Images

600 5,100

Train/Validation
Split

520:80 3,300:1,800

Image Size 81 x 81 33 x 52

Table 3.1: Network Specifications and dataset information in relation to the
training and validation of the proposed system

performance. The numbers given on each of the residual blocks correspond to their

respective feature sizes. In this study, the system was trained on the existing dataset

using learning rate of 10-5 to fine-tune the system to the most optimum performance.

Depending on the type of dataset being used, the system was trained for a variable

number of epochs. Table 3.1 outlines the different network parameters and dataset

information for the two dataset utilized in this study. The separation between training

and validation dataset is performed randomly during each training/validation phase

and this process is repeated multiple times and the average values for different metrics

are used.
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3.1.2 Results and Discussion

In this section, the overall performance of the proposed system will be discussed, along

with some insights with respect to the dataset that have been used for the training

and evaluation of ResNet- 50 for rebar detection. Table 3.2 outlines some of the salient

features of the different dataset and the location from which the data was collected,

as it has been acquired from some of the earlier studies (e.g. dataset for Warren

County, NJ from [40]), which allow validation of proposed system by comparing its

performance with prior studies. Table 3.2 outlines the performance of the proposed

system trained on the different available dataset using some of the widely employed

performance metrics, namely accuracy rate and error rate. The proposed system was

trained and evaluated using data from the two dataset individually, which allowed an

assessment of different factors affecting the system accuracy. Afterwards, the data

was concatenated for the system training using the two dataset.

In order to accomplish that, all of the input images were resized to ensure that the

system was trained on images with the same size. It can be seen from table 3.2 that

when training for a dataset with limited amount of positive and negative images, there

was a need for training the system using a significant number of epochs. However,

despite that, the overall error rate was very high (22%), as

the overall accuracy of the CNNs and their variants is highly dependent on the quan-

tity of data used for system training. Conversely, when training for a dataset with a

reasonable amount of data (e.g. Warren Country, NJ), the system was trained for 8
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Dataset Image Size Epochs Accuracy Error

East Helena, MT 81 x 81 24 92.88% 22%

Warren County, NJ 33 x 52 8 98.11% 6%

Total 81 x 81 8 98.47% 4%

Table 3.2: Performance of the proposed system using the existing system

epochs to reveal promising results. It can be seen that the system trained using the

collective dataset was able to provide an overall accuracy of 98.47%.

3.2 Study 2

3.2.1 System Methodology

In this section, a comprehensive evaluation of the different elements within the pro-

posed method for rebar detection and localization will be highlighted. The present

study employs one of the variants of the Deep Residual Networks Rebar Detection

and Localization (i.e. ResNet-50) [249] as a critical sub-component of the overall sys-

tem for rebar detection and localization. A preliminary analysis has been discussed

in one of the recent works by the authors [122]. The present study is essentially a

continuation and in-depth evaluation of the performance of Deep Residual Networks,

along with its various pros and cons for the application towards NDE of bridges. Fig-

ure 3.2 depicts some of the salient features of the proposed system for rebar detection

and localization. The first block of the proposed model is the GPR database, which

leverages B-Scan data from different bridges to separate data for the two classes (i.e.
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Figure 3.2: Proposed Model for Rebar Detection and Localization

rebar and non-rebar classes). The statistical information regarding the data and its

distribution for testing and validation will be highlighted in the proceeding sections.

For system training using Deep Residual Network architecture (i.e. ResNet-50),

a number of different operations have been performed, which include image pre-

processing (different image operations are performed to reduce image noise and de-

blurring), image augmentation (different transformation functions are applied to each

image, which increases the dataset size and system performance), data distribution

(random distribution of data into training and validation sets), ResNet-50 model

training (use of data set for model training and validation to assess the performance of

the rebar classification system) and performance evaluation and visualization (differ-

ent performance measures are used to evaluate and visualize the system performance).
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Network
Parameters Dataset 1 Dataset 2

Network Name ResNet-50 ResNet-50

Bridge Name Warren
County, NJ

5 bridges

Number of Layers 50 50

Number of Epochs 5/10/20/100 5/10/20/100

Batch Size 4/8/16/32 4/8/16/32

Learning Rate 0.005 0.005

Total Number of
Images

4,500 10,338

Train/Validation
Split

2,243:528 9,427:2,640

Image Size 81 x 81 81 x 81

Table 3.3: Network Specifications and dataset information in relation to the
training and validation of the proposed system

The separation between training and validation dataset is performed randomly during

each training/validation phase and this process is repeated multiple times and the

average values for different metrics are used. Table 3.3 outlines the system parameters,

along with information regarding the dataset used in this study. The learning rate for

all of the instances of system training was 0.005, which allowed for steady convergence

with reduced probability of overfitting. The size of images in the dataset 1 and

2 had been fixed to 81 x 81 pixels. The system used for performing the different

computations had the following specifications: Intel® i5 processor with 2.3 GHz clock

speed, 4 GB RAM, and 500 GB hard disk. All other relevant details are highlighted

in table 3.3.
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With regard to the overall system for rebar detection and localization system, it is

important to understand that there is a sequential order between the consecutive

blocks. This means that before the data is available to the different processes in the

rebar localization sub-system, the data undergoes processing through the different

functions outlined in rebar detection sub-system, which are given in figure 3.2. Once

the rebar detection subsystem is able to differentiate between the rebar and non-rebar

images, the images belonging to the former category are acquired by rebar localization

sub-system to establish the physical presence of rebar artefact within the available

data. Similar to the rebar detection sub-system, image pre-processing functions are

used in the rebar localization sub-system to sharpen the intricate details and enhance

the overall boundary between the background and parabolic artefact outlining the

presence of underground steel rebars. K-means clustering algorithm is used to segment

the background (image pixels that do not contain rebar artefact information) and

foreground (pixels that contain information related to rebar artefacts) information.

In order to extract relevant information, the Image Thresholding technique has been

used, which leads to the binarization of the original RGB image, along with some

non-rebar artefacts. To separate noise from rebar artefacts, different morphological

operations are utilized, namely morphological opening and closing operations. Finally,

the Region-of-Interest (ROI) is highlighted using bounding box approach.



75

Figure 3.3: Barplot showing effect of different number of epochs and batch sizes
on performance of the proposed model for Rebar Detection and Localization for
dataset 1 (a) accuracy with number of batch size and epoch, and (b) training time

with number of batch size and epoch

3.2.2 Results and Discussion

In this section, the results obtained during the training and validation of the pro-

posed system are presented. One of the most important system characteristics is the

trained system accuracy, which is shown in figures 3.3(a) and 3.4(a) for dataset 1 and

2 respectively. In these figures, it can be seen that for the case of systems trained

for different batch sizes, the overall system accuracy converges when the system is

trained for 20 epochs, which means that training beyond this point does not result is

significant gains in system performance. When examining figure 3.3 and 3.4 collec-

tively it is important to realize that the y-axis scales vary for both these figures. In

general, systems trained for higher epochs have higher accuracy than system trained

for lower epochs. Figures 3.3 (b) and 3.4 (b) demonstrate the overall trend between
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Figure 3.4: Barplot showing effect of different number of epochs and batch sizes
on performance of the proposed model for Rebar Detection and Localization for
dataset 2 (a) accuracy with number of batch size and epoch, and (b) training time

with number of batch size and epoch

number of epoch and time (in seconds) for the different values specified for batch size

during training of the proposed system using dataset 1 and 2 respectively. From fig-

ure 3.3 (b), it can be seen that when comparing the time taken for successful training

of systems with different batch sizes, the batch size with the highest overall training

time is 4. This shows that in order to optimize the training of the proposed system,

a high level of batch size should be preferred. In order to fully appreciate the scale of

improvement in computational performance of the proposed system, Figures 3.3 and

3.4 show that the time necessary for training with batch size of 32 and 16 epochs is

comparable to the training time for batch size of 4 and 8 epochs.

In this regard, figure 3.4 (a) presents the results of system training for dataset 2 in

terms of accuracy with increase in batch size and epochs for a specific range of values
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chosen for different system parameters. In contrast to the results obtained for dataset

1, it can be seen that the overall improvement in accuracy with increase in number of

epochs is not pronounced for dataset 2. Similarly, it can be seen in figure 3.4 (a), that

increase in batch size does not necessarily result in considerably higher performance,

specifically for the case of dataset 2. At the same time, there is very small variation in

accuracy for the systems trained with different batch sizes. Furthermore, the results

obtained for the case of batch size of 32 do not correspond to the highest performance.

Due to the increased size of dataset 2, the training time is much higher in comparison

to dataset 1, as highlighted in figure 3.3 (b), which shows that system trained with

smaller batch sizes undergo higher increase in training time. In general, for the

training of the rebar detection sub- system, the inverse relationship between batch

size and training time is evident, i.e. increase in batch size reduces the overall time

taken for system training. In order to fully benefit from the magnitude of available

GPR data, both dataset 1 and 2 had been concatenated. It has been examined in the

relevant studies that the performance of Deep Learning-based algorithms is highly

dependent on the scale of dataset being used for the system training [123].

Table 3.4 outlines the overall performance of the system trained using data from

different dataset. It can be seen that the system trained after concatenation of the

Dataset Accuracy Loss Training Time

Dataset 1 99.11% 2.91% 7,229 s

Dataset 2 98.75% 3.73% 17,067 s

Total 99.42% 1.88% 21,687 s

Table 3.4: Summary of the results for the Rebar Detection System using different
dataset



78

dataset 1 and 2 lead to the highest accuracy and lowest system loss metrics. However,

in contrast to the training of dataset 1 and 2 separately, which were trained for 20

epochs each, the system utilizing both dataset 1 and 2 had to be trained for 100

epochs. It can be seen in table 3.4 that the training time for system trained on the

total data has the highest training time. In comparison with relevant studies [251]

[19] [122] [40], the results highlighted in this research provide the highest system-level

performance for rebar detection system.

In the following discussion, some of the important details regarding rebar localization

subsystem will be outlined. The rebar localization sub-system is the final component

of the overall system proposed for rebar detection and localization in this research.

Table 3.5 outlines the overall performance of rebar localization sub-system in terms

of accuracy and precision. The performance of the proposed rebar localization sub-

system was evaluated on images with single and multiple rebar signatures. It can be

seen from Table 3.5 that the overall accuracy for single rebar images is higher than for

B-scan images containing multiple rebar signatures. For images with multiple rebar

profiles, the sliding window-based approach was used to highlight different rebars

Single Single Multiple Multiple
Dataset Correct Incorrect Correct Incorrect

Dataset 1 1,426 73 854 64

Dataset 2 1,299 45 869 76

Total 2,725(95.85%) 118(4.15%) 1,723(92.49%) 140(7.51%)

Total Total
Accuracy 94.52% Precision 95.18%

Table 3.5: Summary of the results for the Rebar Localization System using dif-
ferent dataset
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within B-scan images. The overall accuracy of the rebar localization sub-system is

at par with the different rebar localization systems developed in the previous studies

[251] [19] [122] [40]. A number of factors can affect the overall accuracy of localiza-

tion of rebars in the B-scan images, such as high-level of noise artefacts in images,

presence of multiple wave reflections, overlapping rebar signatures in B-scan images

for multiple rebars, use of construction materials with varying properties (e.g. den-

sity, permittivity) and presence of non-rebar underground objects (e.g. pipes, utility

lines, void spaces and underground metal objects) that exhibit similar hyperbolic

signatures.

3.3 Study 3

3.3.1 System Methodology

In this section, a detailed examination of the proposed rebar detection and localization

system will be provided. Based on Fig. 3.5, the proposed model for rebar detection

and localization can be divided into three main sections, namely: (i) GPR data

collection: In the previous sub-section, a considerable level of theoretical detail has

been outlined for data collection using GPR sensors. In this section, some additional

details regarding the practical implementations for data collection in this research

will be discussed.
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Figure 3.5: Proposed Model for Rebar Detection and Localization

(ii). Rebar detection system: Some of the salient features of rebar detection method

will be highlighted in the following sub-section, and.

(iii). Rebar localization system: The discussion in one of the subsection will also

outlined the proposed method for rebar localization.

Fig. 3.5 outlines some of the different steps undertaken from data collection using

GPR sensor to getting the images output from Rebar Detection and Localization
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Systems. The rebar detection system utilizes different Deep Residual Network ar-

chitectures (e.g. ResNet-34, ResNet-50, ResNet-101, ResNet-152) [249] with varying

network parameters (e.g. systems trained with different batch size, number of epochs

and number of layers). The performance of the Deep Residual Network with the

most optimal network configuration is compared with relevant DenseNet architectures

(DenseNet-121, DenseNet-161) [252], which is another Deep Convolutional Network

that has gained considerable attention in the recent past. The rebar localization

algorithm performs the different image pre-processing functions to ensure that the

smaller regions of GPR images can be used to extract the relevant rebar signatures.

K-means clustering has been employed as an unsupervised form of learning algorithm,

which enables the effective separation between the foreground and background regions

within the GPR images. Due to the level of noise and other artefacts present in the

GPR data, a number of different visual artefacts are also included in the foreground.

In order to decrease the interference of noise and other artefacts, a number of different

morphological operations are used, which ensure that the original image is converted

into binary image with foreground regions separated from the background regions.

With the use of morphological features, many of the noise and other reflective signals

are separated and bounding box.

The rebar localization system is used to highlight the rebar signature within the GPR

images. The details of the proposed rebar localization system have been highlighted

in Fig. 3.5. The different processes for rebar localization and rebar detection systems

are separate in nature, which means that they can work simultaneously towards
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providing the desirable output within the larger framework of the overall system.

Rebar localization system employs elements of the rebar detection system to ensure

that it is able to perform different image processing functions on the parts of the larger

GPR images that contain rebar signatures. Due to the large-scale size of the GPR

images obtained from the raw GPR scan data, the rebar localization algorithm only

works on portions of the GPR image using the sliding window-based approach. In the

following section of the paper, the focus will be towards highlighting the effectiveness

of the proposed rebar detection and localization method.

3.3.2 Results and Discussion

In this section, the overall performance of the proposed system will be discussed in

terms of qualitative and quantitative level of analysis. Table 3.6 outlines the network

parameters and dataset information from the three separate dataset used in this

study. The specification for system labelled as CPU are given as follows: Ubuntu

16.04 LTS, 32 GB memory, 350 GB hard disk, Intel ® Core i7–8700 CPU with 3.2

GHz clock speed. Meanwhile, the system labelled as GPU had the following hardware

and software specifications: Ubuntu 18.04 LTS, 32 GB memory, 350 GB hard disk,

Intel ® Core i7–8700 CPU with 3.2 GHz clock speed and NVIDIA® GeForce®

GTX 1080 TI Graphical Processing Unit (GPU). The systems information for CPU

and GPU will be useful when comparing the difference in time taken for training for

each network.
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Network
Parameters Dataset 1 Dataset 2 Dataset 3

Network Name Multiple ResNets Multiple ResNets Multiple ResNets
Multiple DenseNets Multiple DenseNets Multiple DenseNets

Number of bridges 1 bridge 4 bridges 4 bridges

Number of Layers 18/34/50/101/152 18/34/50/101/152 18/34/50/101/152
121/161 121/161 121/161

Number of Epochs 20/40/80/100 20/40/80/100 20/40/80/100

Batch Size 4/8/16/32 4/8/16/32 4/8/16/32

Learning Rate 0.005 0.005 0.005

Total Number of
Images

10,338 4,500 18,421

Train/Validation
Split

8,070:2,268 3,600:900 16,421:2,000

Image Size 81 x 81 81 x 81 81 x 81

Table 3.6: Network Specifications and dataset information in relation to the
training and validation of the proposed system

3.3.2.1 Rebar Detection System

The details of the performance of the different ResNet architecture networks have

been given in Fig. 3.6, 3.7 and 3.8. Figs. 3.6 and 3.7 show bar-plot with average,

maximum and minimum values for the different Deep Residual networks. It can be

seen from Fig. 3.6(a) and 3.7(b) that the average accuracy of ResNet frameworks

increases with number of epochs and batch sizes. The increase is steady and varies

from one network architecture to another. Similar results are revealed for findings

in Fig. 3.6(a) and Fig. 3.7(b). Overall, the increase in the number of epochs lead

to increase in the accuracy of the rebar detection systems. It can be concluded from

Figs. 3.6 and 3.7 that there is a positive correlation between number of layers and

performance of rebar detection method, which is measured here using accuracy and

loss metrics.
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Figure 3.6: Result from dataset 3 providing information regarding change in
accuracy with constant batch sizes and (a). number of epoch = 20, and (b) number

of epoch = 100

The separation between training and validation dataset is performed randomly during

each training/validation phase and this process is repeated multiple times and the

average values for different metrics are used. It can be seen from Fig. 3.8(a) that

increasing number of layers by a small fraction leads to greater increase in training

for the different ResNet frameworks,

Figure 3.7: Result from dataset 3 providing information regarding change in
accuracy with constant batch sizes and (a). batch size = 4, and (b) batch size =

32
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Figure 3.8: The results for dataset 3 provide information regarding training time
with respect to the number of layers for which the system is being trained for the

case of CPU, and GPU.

especially when training using CPU alone. The training time increases from less

than 1000 min for ResNet-18 to approximately 5000 min for ResNet-152 architecture,

which is roughly five times increase in the training time with eight times increase in

network size (in terms of number of layers).

In comparison with these results, it can be seen that the system trained on GPU

take significantly reduced time for training and there is a marginal increase in the

training time with corresponding increase in the number of layers of the networked

architecture. There is a wide difference in training time between CPU and GPU for

the different layered architectures, which is evident from cross-examination of Fig.

3.8(a) and 3.8(b).

Table 3.7 outlines the final results for the rebar detection system, which shows the

system training using the most promising system training configuration, based on the

results obtained in the previous sections. Consequently, each of the system is trained

with batch size of 32 and number of epochs equal to 100. In the final evaluation of the
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Train Train Validation Validation Train
Network Accuracy Loss Accuracy Loss Time

ResNet-18 99.23% 2.15% 80.60% 10.2% 25

ResNet-34 99.31% 2.03% 84.70% 8.51% 47

ResNet-50 99.37% 1.66% 93.20% 7.44% 75

ResNet-101 99.37% 1.69% 94.30% 7.05% 118

ResNet-152 99.23% 2.00% 96.67% 18.9% 273

DenseNet-121 99.42% 1.51% 97.20% 5.32% 190

DenseNet-161 99.30% 1.89% 97.19% 11.2% 622

Table 3.7: Summary of the results for the Rebar Detection System using different
Deep Convolutional Neural Network Architecture

rebar detection system, the total dataset containing data from nine bridges is divided

into six bridges for testing and three bridges for validation of the system training.

The overall performance is examined using training accuracy, training loss, validation

accuracy, validation loss and training time. It can be seen in Table 3.7 that increase

in the number of layers of network architecture improves the overall capabilities of the

system to accurately detect rebar images from bridges that have not been previously

been encountered by the rebar detection system.

Comparison of ResNet and DenseNet architectures and their performance given in

Table 3.7 reveal that ResNet-152 contains an increased number of parameters, but

provides better performance than Densenet-161 in terms of training time, validation

accuracy, training accuracy, validation loss and training loss. These results are com-

parable to the state-of-the-art in the rebar detection systems [122] [123] [124] [19]

[40].
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3.3.2.2 Rebar Localization System

In this section, the performance of the rebar localization system will be discussed.The

discussion of the results for rebar localization will be divided into two sections, namely

the qualitative and quantitative analyses. In the qualitative analysis section, the focus

will be towards examining the qualitative aspects of the results, which pertain to the

visual evaluation of the way in which the rebar localization process has taken place.

For the quantitative analysis of the results, there will be a need to examine the

performance of the proposed rebar localization using different statistical measures.

The qualitative analysis for rebar localization system deals with the examination of

the results obtained using the human visual system in terms of accuracy and the

overall quality of rebar localization.

3.3.2.3 Qualitative Analysis

Fig. 3.9 outlines results for rebar localization from different dataset using green

bounding boxes within GPR images. The GPR scan images in Fig. 3.9 are small

portions of the overall GPR scan. data obtained from different bridges. It can be

seen that each of the dataset from the different bridges contain varying levels of noise,

reflection signals and other non-rebar artefacts. For the case of Fig. 3.9(a), which

contains GPR image from dataset 1 (i.e. Warren County, NJ bridge) with limited

amount of noise leading to effective rebar detection and localization. Similar findings
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Figure 3.9: Rebar Localization Data Output with Bounding Boxes highlighting
the different rebar signatures for the varying bridge data used in this study
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are revealed for Fig. 3.9(b) containing GPR image from dataset 2 leading to accurate

localization of rebar signatures.

Conversely, for the case of bridge dataset from Dove Creek bridge and Fordway bridge,

which are given in Fig. 3.9(c) and 3.9(d) respectively, there is a considerable level of

noise and reflection artefacts, which prevented the successful recognition and localiza-

tion of different rebar signatures. At the same time, there is some misclassification of

reflective signals and artefacts as correct rebar signatures. There are reflective signals

in the shape of parabolic shapes that are depicted above and below the actual rebar

profiles, which has led to the false classification of some of these reflective signals as

actual rebar signatures. Due to the noise-related artefacts in the GPR data, there

are some instances of false negative (the actual rebar profiles that are not accurately

detected) and false positive (noise and other artefacts that are wrongly classified as

rebar profile) within the dataset 3. In contrast to the dataset 1 and 2, the GPR data

for bridges in dataset 3 contain considerable level of noise, and reflective artefacts,

which leads to difficulties in the accurate localization of the rebar signals. These types

of anomalous artefacts are not present in GPR data from dataset 1 and 2.

3.3.2.4 Quantitative Analysis

The quantitative analysis deals with the statistical aspect of the performance re-

lated to the rebar localization system developed in this study. A number of different

performance evaluation metrics are used in the relevant literature for the effective
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Study Accuracy Error Precision Recall F1-score Time

Dou [125] N/A N/A 70.07% 70.80% 70.20% 730 ms

Kaur [40] 91.98% N/A N/A N/A N/A N/A

Gibb [39] 95.05% N/A N/A N/A N/A N/A

Dinh [19] 99.60% N/A N/A N/A N/A N/A

Ahmed [124] 94.52% N/A % N/A N/A N/A

Harkat [236] 88.99% N/A N/A N/A N/A N/A

This Study
[234]

91.91% 8.14% 96.89% 94.41% 90.20% 372 ms

Table 3.8: Summary of the results for the Rebar Localization System with Com-
parison of the different metrics used in the state-of-the-art

examination of system performance. For the calculation of the different statistical

properties related to performance evaluation, a number of different mathematical for-

mulas have been used. Table 3.8 outlines the comparison between the performance

of the proposed method in this research with state-of-the-art for rebar localization

methods in relation to the different performance evaluation metrics [125] [40] [251]

[19] [123] [236]. The performance of the rebar localization system is comparable or

superior to the different algorithms discussed in the state-of-the-art.

3.4 Study 4

3.4.1 System Methodology

In this section, the particular details of the proposed method will be discussed. The

building blocks for the proposed system for rebar detection and localization has been

outlined in figure 1. The original raw data is in the form of one-dimensional A-scan
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Figure 3.10: Proposed Method for Rebar Detection and Localization

signals, which is converted to GPR B-scan images with varying dimensions. Before

SegNet is able to train on the GPR image data, different pre-processing techniques

(e.g. editing, cropping and resizing) are used to convert the raw GPR B-scan im-

age data from different bridges each of varying dimensions to image data with fixed

dimensions. In contrast to most of the existing studies in this research area [125]

[40] [251] [19] [123] [236], which utilize the bounding box approach of annotation,

this study employs the pixel-level annotation technique. This allows the system to

train the different model parameters to enable the pixel-level classification of input

data into either belonging to foreground (e.g. rebar signatures) or background (e.g.

non-rebar regions, noise, signal reflection).

With the different encoder modules, the decoder module used is this study employs

the original native SegNet decoder that has been used in the original seminal study

[253], which includes 13 consecutive decoding and up-sampling layers from the original

VGG16 network. The GPR B-scan images, after undergoing different pre-processing
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functions are given as input to the SegNet for training with seven bridge data and the

performance is validated using data from the other remaining bridge. This ensures

that the training and validation are performed on completely different data. There

are different encoder modules (e.g. Vanilla-CNN, VGG16, VGG19, ResNet50, and

ResNet-Xception modules) that have been used within the framework of SegNet.

After the B-scan images are segmented using SegNet, a number of different post-

processing operations (e.g. region pruning, removal of erroneous segmented artefact

and noise) are performed to remove noise, reflection and other artefacts from the

segmented image.

Table 3.9 outlines the network specifications and dataset information for the dataset

from eight bridges used in this research. It is important to note that, due to the large

size of the images, the overall number of images appear to be limited. However, this

Network
Parameters Dataset 1

Network Name SegNet with multiple
Encoder modules and
default Decoder module

Number of bridges 8 bridges

Number of Layers 16/19/50/71

Number of Epochs 100

Batch Size 8

Learning Rate 0.001

Total Number of
Images

920

Train/Validation
Split

7:1

Image Size 768 x 768

Table 3.9: Network Specifications and dataset information in relation to the
training and validation of the proposed system
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number of sufficient to develop system that is able to provide reliable performance for

data from different bridges. The detailed specifications of the computer system used

for the training and validation of the proposed rebar detection and localization system

are given as follows: Ubuntu 18.04 LTS, 32 GB memory, 350 GB hard disk, Intel ®

Core i7–8700 CPU with 3.2 GHz clock speed and NVIDIA® GeForce® GTX 1080 TI

Graphical Processing Unit (GPU). For the purpose of training and validation of the

proposed system for rebar detection and localization, Tensorflow and Keras libraries

have been used within Python programming language framework. The data is divided

between training and validation sets based on “leave-one-out” approach, such that

out of the total data from eight bridges, training of SegNet [253] is conducted on seven

bridges and validation is performed on data from one bridge. This process is used

to perform validation on all of the bridges to assess the performance of the proposed

system for rebar detection and localization.

3.4.2 Results and Discussion

3.4.2.1 Quantitative Results

For the quantitative aspect of performance, the performance will be examined in

terms of mean intersection-over-union (mIOU), which highlights the level of difference

between the masks obtained for the ground-truth and output from trained SegNet.

Table 3.10 outlines the performance of the different Architecture-Encoder pairs from a
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Model Encoder mIoU(%) Train Time(s)

SegNet Vanilla CNN Min. 62.1 12,600

” ” Max. 71.8 12,700

” ” Avg. 66.9 12,600

” VGG-16 Min. 51.8 24,300

” ” Max. 72.0 47,100

” ” Avg. 63.6 35,800

” VGG-19 Min. 52.8 27,400

” ” Max. 71.9 27,500

” ” Avg. 62.6 27,500

” ResNet-50 Min. 53.7 38,100

” ” Max. 71.3 38,200

” ” Avg. 65.1 38,100

” Xception Min. 62.4 39,400

” ” Max. 73.9 77,600

” ” Avg. 67.3 60,200

” Overall Average 72.2 40,620

Table 3.10: Summary of the results for the Rebar Detection and Localization
System with maximum, average and minimum values given for each encoder module

for the two quantitative metrics used in this study

quantitative aspect. Different encoder modules have been used for the training of Seg-

Net for rebar detection and localization. For each encoder module (e.g. VanillaCNN,

VGG16, VGG19, ResNet-50, and ResNet-Xception modules), the results obtained

for the validation for different bridges have been classified in terms of the minimum,

maximum and average values. Training time is another quantitative metric used in

table 3.10.

Figure 3.11 outlines the average, minimum and maximum values for the training time

for the different Architecture-Encoder pairs. Out of the different encoder modules,

SegNet framework utilizing ResNet-Xception module is able to provide the highest

performance in terms of mIoU. However, the slight increase in the maximum value for

mIOU is followed with an exponential increase in the overall average training time.
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Figure 3.11: Comparison between the training time for the different Encoder
Modules

Apart from that, there is varying difference in the maximum and minimum values

of mIOU for the different encoder modules. For majority cases, the lower values of

the mIOU remain between 60%-70%. The values of mIOU greater than 50% are

considered as reliable results. There are also various issues in the dataset, which have

been adequately discussed in [234]. These issues provide challenges towards effective

detection and localization of rebar profiles by increasing the number of false positives

and addition of noise artefact.

The comparison between the training time of the different encoder modules can be
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better appreciated in figure 3 3.11. It can be seen in figure 3 that the SegNet with

Vanilla CNN provides the lowest amount of training time as compared to other en-

coder modules with average training time slightly above 12,000 s. The highest training

time has been obtained by Xception encoder module with an average training time

around 60,000 s.

3.4.2.2 Qualitative Results

For the qualitative performance of the proposed system, the quality of the rebar

signatures obtained from system validation will be discussed. Figure 3.12 outlines

a comparison between bridge 4 and 5 with results from different Encoder modules

within the SegNet architecture. It can be seen in figure 3.12 that out of the differ-

ent results obtained using different encoder modules within the SegNet framework,

ResNet-Xception module has shown the most promising results. The data from

bridges 4 is challenging, as the distance between individual rebar profiles is small,

which can lead to merger between adjacent rebar profiles. Figure 3.12 shows that

in comparison with bridge 4, the data from bridge 5 contains separated rebar sig-

natures. Out of the different encoder modules, Vanilla-CNN, VGG-16 and VGG-19

modules demonstrate considerable degradations. The results obtained from ResNet-

50 and ResNet-Xception have a higher quality of rebar profiles obtained from noisy

and challenging dataset.
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Figure 3.12: Comparison between the results for the different Encoder Modules
for data from bridges 4 and 5
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3.5 Study 5

3.5.1 System Methodology

The proposed model of the Deep Encoder-Decoder Network has been inspired by

studies related to Deep Encoder-Decoder Networks developed in the recent past (some

of which have been covered in the prior section). Before highlighting the individual

elements of the proposed model in sufficient detail, it is imperative to examine some

of the underlying assumptions that have not been explicitly given in figure 3.13. The

different pre-processing functions that have been used require manual operations by

the researcher. Some of these functions include cropping, resizing, and modification

of image brightness, contrast, and color balance to ensure that the rebar signatures

can be effectively highlighted within the diverse bridge data in a uniform manner

irrespective of the bridge data being analyzed. Another assumption in this section

that needs to be emphasized is that the terms ’block’ and ’modules’ will be used

interchangeably in order to refer to the essential building elements that have been

highlighted in figure 3.13.

Figure 3.13 highlights the basic overview of the proposed model. The proposed net-

work has two main parts, namely the Rebar Layer Identification Framework (RLIF)

and the Rebar Signature Localization Framework (RSLF). These two stages have

been explicitly defined, as they highlight the novelty of the proposed approach in

comparison with recent studies [39, 40, 123, 124, 234]. The details regarding each
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Figure 3.13: Overview of the Proposed Model of the Novel Multi-Stage Deep
Encoder-Decoder Network for Rebar Detection and Localization. The input image
of the B-scan after undergoing pre-processing operations is put through the First

and Second Stages of the Deep Encoder Decoder Network

part of the proposed network will be discussed in sufficient detail in the proceeding

sub-section.

3.5.1.1 Rebar Layer Identification Framework

As the name suggests, the Rebar Layer Identification Framework (RLIF) primarily

deals with the visual differentiation between pixels belonging to image regions con-

taining the rebar signatures and background pixels. These regions or collections of

pixels can also be termed the ’rebar layer.’ The Encoder Block A and B constitute

the RLIF. Similarly, the Encoder Blocks C and D constitute the RSLF, which will be

discussed in the following sub-section. Although images can contain reflection signals

similar to parabolic rebar signatures, most B-scan images contain a single rebar layer

to specify the underground depth at which the rebar is visually present within the
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Figure 3.14: Architectural Framework for SegNet [11] with one Encoder and one
Decoder module, which has gained considerable attention in the recent past. The
RLIF will make use of different widely-deployed Deep Encoder Decoder Networks,

which are similar in construction to the SegNet [11]

B-scan images. For this reason, the RLIF focuses on highlighting a single layer, where

most of the rebar parabolic signatures are present. This will be possible by providing

a pixel-level annotation of the pre-processed GPR image data into either rebar layer

or background pixels, making it a binary classification problem. The architecture

of the proposed RLIF will be similar to SegNet, which is shown in figure 3.14, such

that the Encoder-Decoder model used in RLIF will consist of a single Encoder and

Decoder modules. Several different architectures (e.g., UNet [13] and PSPNet [254],

and MobileNet [12] encoder used as part of the overall SegNet architecture) will be

tested and evaluated for the construction of RLIF. The details regarding the results

will be discussed in the next section.
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3.5.1.2 Rebar Signature Localization Framework

The Encoder Block C and the Decoder Block D, which are given in figure 3.13,

constitute the Rebar Signature Localization framework (RSLF). The architecture of

the proposed RSLF is also similar to SegNet, which is shown in figure 3.14, such

that the Encoder-Decoder model used in RSLF will consist of a single Encoder and

Decoder modules. However, the type of Encoder-Decoder architectures used in RSLF

and RLIF are different in terms of their internal network-level characteristics. At

the same time, the type of pixel-level annotation performed for the two framework

is also different. As, the first stage of the proposed framework (i.e. RLIF) seeks to

highlight the rebar layer and the second stage (i.e. RSLF) attempts to identify the

individual rebar parabolic signatures, preferably present within the rebar layer. It can

be seen in figure 3.14 that the initial stages of the SegNet architecture constitute the

Encoder block and the final stages belong to the Decoder block. Two main types of

blocks have been used in this study, including the Deep Encoder block with different

network layers connected and pooling layers. The Deep Decoder block is similar in

construction to the Deep Encoder block. The only difference is that instead of the

pooling layers, the up-sampling layers are used to ensure that the output from the

encoder can be resized to the actual image size provided at the input of the proposed

model.
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3.5.2 Results and Discussion

This section will discuss the salient features of the proposed network and its per-

formance, along with their various implications for future research. The proposed

method has two main parts, namely the Rebar Layer Identification framework (RLIF)

and Rebar Signature Localization Framework (RSLF). For the first stage of the pro-

posed network (i.e., RLIF), three major Deep Encoder-Decoder Networks have been

used, namely the UNet [13], PSPNet [254] with two variants (e.g. PSP-50 and PSP-

101), and SegNet with MobileNet encoder module [12]. For the case of the second

stage of the proposed network (i.e., RSLF), three main Encoder-Decoder networks

(e.g., UNet [13], PSPNet [254], and SegNet [11]) have been used, along with variations

in the Encoder modules to find the most suitable Architecture-Encoder pair in terms

of different qualitative and quantitative performance metrics. Some of the different

Encoder modules leveraged within the context of the different Architectures include

VGG-16, VGG-19, ResNet-50, and ResNet-Xception.

The detailed specifications of the computer system used for the training and validation

of the proposed rebar detection and localization system are given as follows: Ubuntu

18.04 LTS, 32 GB memory, 350 GB hard disk, Intel ® Core i7–8700 CPU with 3.2

GHz clock speed and NVIDIA® GeForce® GTX 1080 TI Graphical Processing Unit

(GPU). For the purpose of training and validation of the proposed system for rebar

detection and localization, Tensorflow, PyTorch and Keras libraries have been used

within Python programming language framework. Table 3.11 highlights the network
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Network
Parameters Dataset 1

Network Name SegNet/PSPNet/UNet
with multiple Encoder
modules
and default Decoder mod-
ule

Number of bridges 8 bridges

Number of Encoder
Layers

16/19/50/71

Number of Epochs 100

Batch Size 8

Learning Rate 0.001

Total Number of
Images

920

Train/Validation
Split

7:1

Image Size 768 x 768

Table 3.11: Network Specifications and dataset information in relation to the
training and validation of the proposed system

parameter specifications as well as dataset information. The data is divided between

training and validation sets based on “leave-one-out” approach, such that out of the

total data from eight bridges, training of SegNet [253] is conducted on seven bridges

and validation is performed on data from one bridge. This process is used to perform

validation on all of the bridges to assess the performance of the proposed system for

rebar detection and localization. Using this approach allows the researchers to assess

the ability of the proposed system to provide reliable performance on unseen data.
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3.5.2.1 Quantitative Analysis

In this section, the primary emphasis will be on examining the statistical evaluation of

the different aspects of the proposed method for rebar detection and localization. Ta-

ble 3.12 highlights the overall quantitative performance of the different Architectures

and Encoder modules for the two stages of the proposed system for rebar detection

and localization. Several different performance evaluation metrics have been used

for assessing the performance of the Deep Encoder-Decoder networks in the different

applications in the recent past [11–13, 254]. The different metrics used in this study

include Dice Loss, mean-Intersection-over-Union (mIoU), Precision, and Recall. The

lower values for Dice Loss are more suitable as they correspond to the level of loss

incurred for the different combinations of network frameworks used in the proposed

system for rebar detection and localization. For all the other performance metrics (e.g.

mIoU, Precision, and Recall), the higher values correspond to improved performance

of the proposed rebar detection and localization system.

For the case of stage 1 of the proposed framework, four different types of base networks

have been used, namely UNet, PSPNet-50, PSPNet-101, and SegNet framework.

Out of the different Deep Encoder-Decoder networks utilized in the first stage, the

most promising results have been outlined by the SegNet with MobileNet Encoder.

Many of the original Deep Encoder-Decoder architectures (e.g. UNet, PSPNet-50

and PSPNet-101) used in stage 1 utilize default encoder modules in order to limit the

level of complexity and variables being used in this study. The MobileNet framework
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S1 S1 S2 S2 Dice mIoU Precision Recall
Model Encoder Model Encoder Loss

UNet Default SegNet VGG16 25.15 85.73 88.43 82.26

” ” ” VGG19 22.19 87.24 88.55 86.72

” ” ” ResNet 16.68 90.65 90.53 90.06

” ” ” Xception 15.45 92.48 93.06 92.50

” ” UNet VGG16 20.14 89.50 85.29 86.63

” ” ” VGG19 19.24 90.57 88.33 88,21

” ” ” ResNet 18.91 91.74 89.66 88.37

” ” PSP N/A 32.17 86.63 85.75 84.28

PSP-50 ” SegNet VGG16 23.53 84.58 81.77 80.08

” ” ” VGG19 20.06 86.64 84.17 82.21

” ” ” ResNet 19.21 89.83 84.45 86.33

” ” ” Xception 18.75 90.48 91.06 90.50

” ” UNet VGG16 23.16 83.25 81.76 81.24

” ” ” VGG19 21.77 85.36 83.62 80.14

” ” ” ResNet 19.15 87.51 82.50 80.19

” ” PSP N/A 32,27 82.25 80.37 79.92

PSP-101 ” SegNet VGG16 29.38 81.55 76.23 77.56

” ” ” VGG19 26.15 85.40 82.61 82.57

” ” ” ResNet 20.26 88.72 82.63 83.45

” ” ” Xception 18.41 90.55 91.26 90.59

” ” UNet VGG16 21.88 85.65 83.32 85.22

” ” ” VGG19 24.42 88.58 80.26 80.17

” ” ” ResNet 20.69 90.75 84.13 83.38

” ” PSP N/A 30.16 82.69 82.15 78.86

SegNet MNet SegNet VGG16 21.46 91.12 92.50 93.36

” ” ” VGG19 22.18 91.50 90.07 91.23

” ” ” ResNet 17.37 92.21 95.24 94.45

” ” ” Xception 12.20 93.57 97.43 96.62

” ” UNet VGG16 20.15 90.11 89.83 86.58

” ” ” VGG19 14.31 92.42 90.50 92.21

” ” PSP N/A 27.25 87.55 82.94 80.88

Table 3.12: Results are shown for the dataset from three different bridges with
different base architectures and encoder pairs. The best results are given in bold
fonts. S1 is Stage-1. S2 is Stage-2. ResNet is ResNet-50. Xception is ResNet-
Xception. PSP-50 is PSPNet-50. PSP-101 is PSPNet-101. MNet is MobileNet-v2

utilized as an encoder within the SegNet framework provides a lightweight Deep

Encoder-Decoder network from the different models utilized in stage 1 of the pro-

posed rebar detection and localization system. For the different encoder modules
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and base architectures used in the second stage of the proposed network, the high-

est performance has been highlighted by combining the SegNet framework with the

ResNet-Xception encoder module. When comparing the performance of PSPNet with

50 and 101 layers in the first stage of the proposed system, increasing the complexity

and number of layers has an overall negative effect on the performance of the rebar

detection and localization system. Compared to these two frameworks, the complex-

ity and number of layers for UNet and MobilNet are limited. However, as it can

be seen in table 3.12 these two networks (e.g., MobileNet and UNet) can provide a

higher level of performance with the different combinations of Architecture-Encoder

pairs leveraged at the second layer of the proposed framework for rebar detection and

localization system.

A different combination of base architecture and encoder modules was used for stage

2 of the proposed rebar detection and localization system. It is important to un-

derstand that PSPNet with different number of layers does not support the usage of

different encoder modules. The different base architectures used in the second stage

of the proposed system include SegNet, UNet, and PSPNet. The different encoder

modules utilized include VGG-16, VGG-19, ResNet-50, and ResNet-Xception. In

terms of the number of layers, the different encoder modules can be ranked from the

lowest to the highest number of layers can be ranked as follows: VGG-16, VGG-19,

ResNet-Xception, and ResNet-50. In terms of improved performance, the most cru-

cial combination of Architecture-Encoder pairs at the second stage of the proposed
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framework is SegNet-ResNet-Xception (where SegNet is the base architectural frame-

work and ResNet-Xception is the encoder module). Of the different encoder modules

used, the most effective one can be classified as ResNet-Xception, which has shown

improved performance when leveraged within different base architectural frameworks.

ResNet-Xception encoder module with the SegNet framework at the second stage and

SegNet framework with MobileNet encoder module at the first stage have the highest

values for the different metrics (e.g., Dice Loss, mIoU, Precision, and Recall) are 12.20

%, 93.57 %, 97.43 %, and 96.62 %. All other values for the different frameworks at

the first and second stage have comparatively lower values of mIoU, Precision, and

Recall, as well as higher values for Dice Loss, as can be seen in table 3.12.

The performance of the proposed system cannot be directly compared with the ma-

jority of the existing studies in the field of rebar detection and localization conducted

with an emphasis on bridge inspection in particular. The primary reason for this

fact is that earlier studies utilize block-based techniques, which make use of different

metrics, such as accuracy and loss [122–124, 234]. These metrics cannot be used

for the current study since it leverages pixel-based methods for classification, such

as individual pixels are classified as either belonging to rebar or non-rebar classes.

The performance evaluated using these metrics (e.g., mIoU, Dice Loss, Precision,

and Recall) can be considered a more reliable and accurate reflection of the actual

performance of the proposed rebar detection and localization system.
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3.5.2.2 Qualitative Analysis: Rebar Layer Identification Framework

In this sub-section, the discussion will deal with the visual results obtained for the

first stage of the proposed framework for rebar detection and localization, namely the

Rebar Layer Identification Framework (RLIF). In figure 3.15, a number of different

results have been highlighted from stage 1 of the proposed framework for rebar detec-

tion and localization. The top two images are actual GPR images and ground truth

annotated images respectively. The annotation classified between the foreground (i.e.

rebar layer) and background (i.e. anything in the image that is not part of the rebar

layer). This part highlights a different perspective as compared to quantitative anal-

yses, as there are different visual elements of the results that cannot be adequately

be discussed in statistical terms.

Out of the different Encoder-Decoder architectures leveraged for the development of

the RLIF, some of the Architectures include SegNet, UNet, smaller-version of UNet

(i.e., UNet-mini), and PSPNet. The reason UNet-mini results are not highlighted in

table 3.12 is because they do not provide adequate performance in terms of the differ-

ent statistical measures (e.g. mIoU, Dice Loss, Precision and Recall). The qualitative

results for UNet-mini are shown in figure 3.15 in order to gain a better understanding

of the reason for reduced performance. For the case of SegNet architecture in stage

1, MobileNet-v2 was used as the encoder module in order to attempt to reduce the

overall size of the two stage framework. The individual encoder-decoder architectures
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Figure 3.15: Results shown for the dataset from three different bridges. The
results are shown for different set of base architectures and encoder pairs used in

the first stage of the proposed framework

(e.g. SegNet, PSPNet, UNet) are deep networks with considerable complexities and

computational overheads.

In order to reduce these overheads, the goal was to introduce a smaller version of

Encoder-Decoder network at the first stage for rebar layer identification with the

second stage for the rebar signature localization. Another benefit of using a smaller

framework for the first stage was that the original version of MobileNet-v2 could not
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process the image data with dimensions 768 x 768 x 3. In order to work with SegNet

architecture with MobileNet-v2 encoder module at the first stage of the framework,

the data has to be resized to 256 x 256 x 3, which improves the computational cost

of using multiple stages of Deep Encoder-Decoder networks. At the same time, it

also increases the performance of the first stage framework leveraging MobileNet-

v2 to compare with other Deeper frameworks, (e.g., SegNet, PSPNet and UNet).

After passing through the first stage, the results obtained are re-sized back to their

original size, so that the results from different Architectures in the first stages can be

effectively compared, as shown in figure 3.15. It can be seen in figure 3.15 that SegNet

framework with MobileNet-v2 Encoder module is able to provide the most promising

results at the stage 1 of the proposed framework. For data from all three bridges, it

can be seen that the results are closer to the ground truth in comparison with other

frameworks developed for stage 1. Furthermore, the results from SegNet-MobileNet

shows the effects of resizing on the output in the form of block-based effects visible

at the lower and upper edges of the layer results that were magnified after resizing

the images from 256 x 256 x 3 to 768 x 768 x 3 (i.e. the noise and other artefacts

that were smaller in the original result images were magnified many times after the

images were resized).

For the case of PSPNet-50 and PSPNet-101, the results are more smooth in terms of

visual texture. However, there are some issues in terms of patches missing from the

different data results shown in figure 3.15. For example, the results from PSPNet-101

bridge 8 data shows some missing portion in the middle of the rebar layer region.
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Similarly, for PSPNet-101, some minor regions of the rebar layer are missing for the

results given for bridge 4 and 6. For the case of PSPNet-50, the results from bridge

4, there are some slight defects at the bottom of the rebar layer region. Similarly,

the results from bridge 6 show some minor issues from the top and bottom of the

identified rebar layer region. For the results obtained from PSPNet-50, there are

some minor missing regions from the middle of the rebar layer region, along with

minor issues at the top and bottom of the identified rebar region. The results from

PSPNet-101 are more smooth in comparison with PSPNet-50. This shows that the

increase in number of layers of the Deep Networks might have some positive impact

towards effectively highlighting the rebar layer. At the same time, there is a need to

better understand how the first layer networks can better distinguish between features

for the foreground (i.e. features belonging to the rebar layer) and background (i.e.

features belonging to all other regions of the B-scan images) regions.

For the case of UNet, visually, the output results are much less smooth in comparison

to results from the two PSPNet frameworks highlighted. For UNet, the results show

some false positive regions, when the output results are compared with the ground

truth. The effect of noise and other artefacts are also more pronounced for the case

of UNet frameworks. For the case of UNet-mini, which is a smaller, more compact

version of the original framework, it can be seen that the output results are much

more sensitive towards inaccurately classifying noise and other reflective artefacts as

part of the rebar layer region. This phenomenon is much more visible for the case

of UNet-mini with data from bridge 8. However, since rebar profiles belong to the
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upper portion of the rebar layer, which is covered for the majority of the output

images from UNet and UNet-mini, the regions of the rebar layer containing the rebar

profile signatures are still covered within the output regions.

The overall qualitative analyses of the results from the first stage of the proposed

framework for rebar detection and localization has been provided in this sub-section.

The main issue highlighted is concerning the false positive regions and the addition

of noise and other reflective artefacts below the rebar layer that can be incorrectly

classified as actual rebar signatures in the further stages of the framework. This

particular issue is not present in results from many frameworks (e.g. SegNet with

MobileNet framework, PSPNet-50, PSPNet-101 and UNet). However, one of the ex-

amined frameworks (e.g. UNet-mini) has this particular issue much more pronounced

in some of the results. This particular issue will be left for future research to further

examine these issues and try to work towards ensuring that the first stage of the

framework for rebar detection and localization is able to provide better performance

in terms of accurately highlighting the rebar layer region. Since, this particular type

of exploration and approach has not been previously used in any of the relevant lit-

erature, it is difficult to ascertain the different factors that can affect the accurate

detection of rebar layer region. Furthermore, there will also be a need to examine

the different network-level characteristics (e.g. number of network layers, type of net-

work layers (pooling, convolution and concatenation layers) and their combination,

and network layer dimensions for each layer in the network) that can prevent the

inaccurate classification of rebar layer region.
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3.5.2.3 Qualitative Analysis: Rebar Signature Localization Framework

In this sub-section, the discussion will deal with the visual results obtained for the sec-

ond stage of the proposed framework for rebar detection and localization, namely the

Rebar Signature Localization Framework (RSLF). Figure 3.16 highlights the overall

qualitative performance of the different Architectures and Encoder modules for the

two stages of the proposed system for rebar detection and localization. The results

highlight the qualitative aspects of rebar detection and localization. The information

provided on the left-hand side of the images is based on the corresponding archi-

tecture’s base architecture and encoder modules for the second stage of the rebar

detection and localization system.

In figure 3.16, several promising results for the Architecture-Encoder pair have been

highlighted, along with some examples of average and low performance results for

the other networks leveraged in the second stage of the proposed framework for re-

bar detection and localization. The primary framework used for the second stage of

the proposed framework include UNet [13], PSPNet [254], and SegNet [11]. With

these base networks, the different encoders were used to examine the effect of dif-

ferent encoders on the overall performance of the rebar detection and localization

system. When comparing results for SegNet and UNet, it can be seen that the over-

all thickness of the rebar signatures is smaller for SegNet results. The results from the

UNet framework are closer to the actual ground truth results. ResNet-50, ResNet-

Xception, and Inception encoders are not shown here since the increasing number of
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layers in the encoder does not significantly improve the quality of rebar signatures seg-

mented from the original B-scan images. For the case of Architecture-Encoder pairs

with SegNet, the most promising results are revealed for the SegNet framework with

ResNet-50 and ResNet-Xception encoder modules. For the case of the UNet frame-

work, both VGG-16 and VGG-19 encoder results are similar in terms of qualitative

aspects. However, it is interesting to note that both results are unable to accurately

segment some of the rebar signatures for data from bridge 6. However, rebar signa-

tures’ overall thickness and quality are closer to the ground truth. For the case of

PSPNet [254], only the results for PSPNet-101 layers have been shown as a reference

of relatively inaccurate results with the segmentation of rebar signatures appearing

not as parabolic signatures. Instead, the rebars appear as regional blobs with pixel

regions for individual rebars intersecting neighboring rebars. Although, this network

(i.e. PSPNet-101) can be used for the localization of the rebars. However, the pri-

mary issue relates to the instances when the localization results for two neighboring

rebars appears as a single region. This particular issue becomes problematic when

the distance between two neighboring rebar signatures is reduced, as it can be seen

for the output results from bridge 8 for PSPNet-101. Due to the inherent limitation

of the PSPNet architecture, it cannot provide flexibility in utilizing multiple different

encoder pairs, as is the case with other Deep Encoder-Decoder pairs, e.g., SegNet

and UNet. The results for PSPNet with 50 layers architecture were not included, as

the results were not very accurate, and it was not accessible to qualitatively separate

individual rebar parabolic signatures. Another set of sub-optimal results is given for
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Figure 3.16: Results shown for the dataset from three different bridges. The
results are shown for different set of base architectures and encoder pairs for the
second stage of the proposed framework. The first stage framework is assumed to

be MobileNet [12]
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the case of SegNet architecture with the Inception-v3 encoder module—both these

results are given in fig. 3.16 suffer from the same issue, such that the final results

are unable to separate the results for individual rebar profiles from the neighboring

rebar signatures. In conclusion, it can be seen in figure 3.16 that the most promising

results in terms of qualitative aspects include MobileNet-v2 for the first stage of the

framework. SegNet with ResNet-50 encoder module or UNet with VGG-16 encoder

module gives the best result for the second stage of the proposed framework for rebar

detection and localization.

There are a few primary issues that have been highlighted from the qualitative analy-

ses of the results from the second stage of the proposed framework for rebar detection

and localization. The first issue is related to the reduced thickness of the output rebar

signatures for some output results (e.g. SegNet-ResNet-Xception, SegNet-VGG19 and

SegNet-VGG16 Architecture-Encoder pairs). This can be beneficial in cases where

the distance between the neighboring rebar signatures is very less. However, it can

be a cause for concern, especially in the presence of noise in the images, i.e. if the

intensity of noise increases in the image, it can potentially affect the ability of the

proposed framework to accurately localize individual rebar signatures. This partic-

ular issue needs to be further investigated in future studies in the relevant research

area. The second issue is the merger of neighboring rebar signatures for some output

result highlighted (e.g. PSPNet-101). This potential issue can seriously affect the

output for bridge data with minimal distance between neighboring rebar signatures.
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This issue needs to be further explored in future works to fully examine the opti-

mal network characteristics that can cater to the diverse types of data with different

physical bridge characteristics (e.g. depth of rebar layer, number of rebars used in

construction of the bridge, distance between neighboring rebars, type of material used

within bridge deck). The third issue highlighted in this section is the disappearance of

individual rebar signatures or failure to accurately classify individual rebar signature

by some of the Architecture-Encoder pairs (e.g.UNet-VGG16 and UNet-VGG19) used

in the second stage of the proposed framework for rebar detection and localization.

Future research should try to explore ways to prevent this issue from affecting the

performance of the rebar detection and localization frameworks.

3.6 Conclusion

This chapter discusses the timely progression and development of different solutions

for rebar detection and localization. A total of four studies have already been pub-

lished in different renowned conferences and journals. There is another publications

that has been submitted, which has been added as the fifth study in this chapter.

In the first study [123], a novel rebar detection method has been presented with

data from two bridges to provide a proof-of-concept that was later expanded in other

studies that followed. In the second study, the proposed system in first study was ex-

panded to propose a novel rebar detection and localization system [124]. In the third
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study, a novel framework for rebar detection and localization was developed leverag-

ing supervised (e.g. multiple Deep Residual Networks were analyzed and compared)

and unsupervised (e.g. K-means clustering algorithm with sliding-window-based ap-

proach) [234]. All of the prior studies [123, 124, 234] were developed with block-based

annotation approach for data labelling. In order to improve the quality of the de-

veloped systems for rebar detection and localization in terms of the final output, a

pixel-based annotation approach with Deep Encoder-Decoder networks was discussed

in the next studies [240, 241].
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Chapter 4

Defect Detection System for Steel

Bridge Inspection using

Multi-Directional Bicycle Robot

4.1 Defining ”Defect” in the context of Steel De-

fect Detection System for Bridges

Bridges are large-scale, complex structures composed of multiple parts made up of

different materials. In this for this reason, there is a need to specify the scope and

context in which the proposed systems for defect detection system will operate in.

The terms ”damage” and ”defect” in the context of steel parts of bridges has diverse
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meanings given in different technical and professional civil inspection reports by the

different global and regional authorities around the world. According to New Zealand

Instructional Manual [255], defects in steel are primarily a by-product of environmen-

tal wear-and-tear and construction-related errors and issues, which can be classified

into protective coating failure, corrosion, loose or defective fastening, cracks, impact

damage, deformation, distortion, manufacturing defects, and detailing faults. Con-

versely, main types of defects provide by another report from European Union [256],

the major types of defects can be classified into contamination, deformation, deterio-

ration, discontinuity, displacement and loss of material. Another study [257] reported

the steel defect classification into strains, curvature, nicks, gouges, and cracks.

Due to diverging classification of cracks, it is challenging to include all types of defects

mentioned or include some type and exclude others. Since, the research on defect

detection system developed and discussed in this dissertation is still in its early stages,

a basic and simple definition of defect will be utilized in this dissertation. The terms

”damage”, ”corrosion”, ”rust” and other terminologies that are related to steel defects

will not be used. In the context of steel defect detection system, the term ”defect”

will only be used to relate to surface-level corrosion and rust appearing on the steel

regions of the bridge infrastructure. In order to include all types of steel defects that

have been mentioned in the different official documentations [255–257], there is a need

to collect data from this perspective and develop a multi-class classification system

that is able to not only highlight defects, but also provide further details regarding

the type of defect that has been detected. This will be included as one of the next
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steps in the evolution of the proposed approaches for steel defect detection in bridges.

Consequently, emphasis on development of steel defect classification system will be

put on future studies to extend the state-of-the-art in this regard.

4.2 Climbing Robots for Steel Defect Detection

used in Study 1 and 2

Going into the brief details of the proposed mechanical design of the proposed novel

multi-directional bicycle robot, the following requirements should be addressed and

fulfilled by the proposed mechanical design of the bicycle robot: (1) The robot can

climb surfaces with a wide range of outer diameters (greater than or equal to 150mm),

which are normally encountered on circular tubes or cylindrical surfaces; (2) The

robot can pass convex, or concave obstacles at structural transition joints on truss

structures; (3) The robot can travel on steel structures with complex arrangements of

obstacles such as bolts, nuts, and gaps; and (4) The locomotion system can maneuver

through narrow areas (greater than or equal to 100mm wide) and can move sideways

with considerable flexibility.

The high mobility of the two steering actuators allow the robot to operate in two

different modes. Mode 1 figure 4.1 (a-e) that supports only one steering unit and

the robot works like a bicycle, which facilitate the robot to travel on structures with

limited contacting areas figure 4.1 (a) and ability to change direction simultaneously
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Figure 4.1: (a) Mode 1 (bicycle-like): The robot can handle cylindrical structures
with limited contacting areas. (b) Mode 1: The robot changes the direction by first
stopping the back wheel. Then, the front steering servo turns 90 degrees, and finally
the front wheel moves to help the robot change direction. (c) Mode 1: With a free
joint, the robot can travel on two intersecting surfaces. (d) Mode 1: The robot can
traverse on edges that are thicker than the space between its two wheels (4cm).
(e) Mode 1: The robot is flexible enough travel on the internal surface of a tube.
(f) Mode 2: Two steering servos turn the wheels at the same angle. The robot
moves spirally around a circular tube. In this mode, the robot can also perform
well on tube shapes such as rectangles or hexagons. (g) Mode 2: The robot can
rotate around its body center or move sideways (left, right) at steering angles that

are close to 90 degrees.

figure 4.1 (b). The free joint in the middle allows the robot to traverse two intersecting

surfaces figure 4.1 (c). Robot can also pass edges thicker than space between its two

wheels figure 4.1 (d) and traverse the internal surface of hollow cylindrical tube-like

structures (figure 4.1 (e). Mode 2 figure 4.1 (f-g) allows both steering units to remain

active with independent and parallel control, facilitating the robot to move spirally

(around a cylinder), sideways (left or right) or rotate around its center.

Fig. 4.2 shows the overall mechanical design of the bicycle robot. The robot’s weight

is 1 kg (without sensors), while it can carry 600g of load (sensors, on-board PC, etc.).

To ensure that the frame is light-weight in nature, plastic is used as the primary

material. The robot is powered by a 3000mAh LiPo battery that allows 1 hour of
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Figure 4.2: The 3D mechanical design of our proposed robot

operation. The robot’s physical dimensions are 150mm × 80mm × 70mm. The ring

magnets are placed at the cores of the wheels, which are covered by silicone tires. The

wheels are driven by two high-torque gear DC motors (100kg·cm torque each), and

the steering actuators are controlled by two servo motors (32kg·cm torque each). The

front and back of the frame are linked by a bearing acting as a free joint. The design

concept of our robot is inspired by a bicycle, which involve the use of two revolute

joints equipping the robot with two independent steering actuators, which increases

its mobility considerably. An additional free joint in the middle of the robot’s body

allows its two wheels to make full contact with surfaces of different shapes and sizes.

The moving wheels are designed with permanent ring-shaped magnets to generate

large adhesive forces.
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Figure 4.3: Multi-directional Bicycle Robot is controlled remotely from a Ground
Control Station (GCS) using a joystick via a radio channel. The robot carries a
depth camera D435i and a pose tracking camera T265 (both from Intel RealSense).
An Alpha Latte computer onboard saves raw data from the sensors and contin-
uously transfers the data back to GCS via a WiFi router. The GCS performs
localization, object detection, and visualizes the received data online on its two

screens. We use an Intel NUC i7 as the computer for the GCS.

The whole system is depicted in Fig. 4.3. On the robot side, we utilize an Intel

RealSense D435i camera, which provides both color and depth images. However, for

the development of Steel Defect Detection System, only the RGB color image data

was used in this study. A LattePanda Alpha 864 is selected as an on-board computer,

which connects the ground control station (GCS) computer (Intel NUC i7) via a WiFi

router to the robot for enabling manual steering operation of the robot using the GCS.

The two computers form a Robot Operating System (ROS) network, in which the

GCS acts as the master. This novel multi-directional robot was used in study 1 and 2

to collect validation data from real bridge to test the proposed steel defect detection

systems discussed in study 1 and 2. The details regarding proposed methods for steel

defect detection systems are given below:
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Figure 4.4: The proposed model being utilized in this study for the steel defect
detection system with UNet [13] Deep Encoder-Decoder framework as the primary
central learning-based module to train and validate bridge images with steel regions

containing varying levels of defects

4.3 Study 1

4.3.1 System Methodology

The complete block diagram of the proposed system for steel defect detection has been

given in figure 4.4. As it can be seen in figure 4.4, there are five steps of the proposed

system. Starting from the input video frames, which are individually pre-processed

using a number of steps, e.g. the Region-of-Interest (ROI) selection. The original size

of the high-resolution image frame is very large, due to which, a selected region is

separated out. This ensures that the background regions are separated and majority
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of the steel region close to the robot can be cropped, resized and saved separately.

The image ROI is resized to 572 × 572 × 3, which is the input size permitted for the

validation of the input video frames using Deep Encoder Decoder Networks. These

networks are pre-trained on Vietnam bridge dataset.

A state-of-the-art Deep Encoder-Decoder Network architecture has been used in this

study, namely U-Net [13], which has found considerable application in the field of

medical imaging and other research fields in the recent past. A number of different

Encoders modules are leveraged to examine and compare the performance of the

different Architecture-Encoder pairs. Some of the Encoders used in this study include

the ResNet-18 [249], ResNet-34 [249], EfficientNet-B0 [258], EfficientNet-B2 [258], and

RegNet-X2 [259]. The output image from this stage in the video processing pipeline

contains pixel-level masks highlighting steel defect locations. This output is modified

to ensure that the predicted defect locations are highlighted using red pixels and green

color bounding box surrounding each of these pixel regions.

System
Specifications System 1 System 2

Processor Intel® NUC10i7FNH1
Core i1 with 1.1 GHz
clock speed

Intel® Core i7-8700 CPU
with 3.2 GHz clock speed

RAM 16 BG SDRAM 32 GB SDRAM

ROM 256 GB SSD N/A

Hard Disk 1 TB HDD 250 GB HDD

Operating System Ubuntu 20.04 Ubuntu 18.04

GPU Intel® Integrated UHD
Graphics

NVIDIA® GeForce®
GTX 1080 TI

Table 4.1: The proposed system outlined in prior figure is trained and the results
are validated on two different types of systems with varying computational capa-

bilities
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Two different types of systems were used to examine the performance of the proposed

model for Steel Defect Detection. The training process was conducted offline on

System 2, which is equipped with on-board GPU with details given in table 4.1. The

different Deep Learning models trained for varying Architecture-Encoder pairs were

saved and the validation process was performed on two separate systems to examine

whether the validation process could be performed in real-time for the two different

PCs with varying system configurations.

Table 4.1 highlights the different aspects of the two different types of PCs that have

been used to examine the performance of pre-trained models in terms of providing

real-time steel defect detection. It can be seen from table 4.1 that system 1 has Intel

® Integrated UHD Graphics Card, which is not supported by Nvidia ® CUDA ®

libraries leading to slower validation time. In comparison, the onboard GPU within

system 2 had full support from the Nvidia ® CUDA ® libraries, which allowed a

faster training and validation processing time, which will be elaborated in the next

section. For the purpose of training and validation of the proposed system for rebar

detection and localization, Tensorflow, PyTorch and Keras libraries have been used

within Python programming language framework. Table 4.2 highlights the network

parameter specifications as well as dataset information.
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Network
Parameters Dataset 1

Network Name UNet with multiple
Encoder modules

Number of bridges Multiple bridges from
Vietnam and USA

Number of Encoder
Layers

18-342

Number of Epochs 100

Batch Size 16

Learning Rate 0.001

Total Number of
Images

6,500

Train/Validation
Split

5,000:1,500

Image Size 572 x 572

Table 4.2: Network Specifications and dataset information in relation to the
training and validation of the proposed system

4.3.2 Results and Discussion

Table 4.3 outline statistical evaluation for the different Architecture-Encoder pairs in

terms of the different metrics, such as Dice Loss, mIoU, Precision, and Recall. For

the metrics such as mIoU, Precision and Recall, higher values reflect better perfor-

mance. Each metric and encoder module has the highest, lowest and average values

specified, as it allows the exploration of level of variance as well as upper and lower

bounds on the different metrics. For Dice Loss, the opposite rule has to be applied;

the smaller values reflect better performance of the system. The bold values in tables

4.3 specify the highest value for a particular Architecture. The bold values with an

underline specify the highest value in comparison to all the different Architecture-

Encoder pairs. For performance regarding UNet [13] Architecture, EfficientNet-B0

[258] outperforms other Encoder modules with best performance for two out of four
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Model Encoder Dice
Loss

mIoU Precision Recall

UNet ResNet-18 Max. 31.80 91.86 99.92 91.59

” ” Min. 4.37 54.87 99.54 54.86

” ” Avg. 12.59 80.88 99.73 81.02

” ResNet-34 Max. 28.11 96.40 99.83 96.57

” ” Min. 1.96 59.40 99.56 59.43

” ” Avg. 11.11 83.47 99.72 82.13

” RegNet-X2 Max. 18.81 97.13 99.78 99.35

” ” Min. 1.59 71.56 99.55 71.71

” ” Avg. 7.26 88.01 99.65 87.06

” EfficientNet-b0 Max. 32.17 97.33 99.80 97.53

” ” Min. 1.41 55.85 99.53 55.92

” ” Avg. 11.44 83.26 99.61 83.46

” EfficientNet-b2 Max. 47.25 96.06 99.75 96.36

” ” Min. 2.16 43.56 99.56 96.36

” ” Avg. 14.39 69.84 99.65 81.87

Table 4.3: Performance analysis of the UNet framework with different encoder
modules. The best results for each metric has been highlighted in bold font. All

values are given in percentages

metrics, namely Dice Loss (a.k.a. F1-score) and mIoU. For the case of Precision,

the best results are highlighted by ResNet-18 encoder module [249] with UNet archi-

tecture. Whereas, the encoder module RegNet-X2 [259] is able provide the highest

performance in terms of Recall. Since, most of the studies pertaining to the deploy-

ment of Deep Encoder-Decoder networks for different applications leverage F1-score

and mIoU as the most reliable metrics, the most optimal performance can be obtained

by using UNet architecture with EfficientNet-B0 encoder module.

There are some relevant studies, which have presented their own approach towards

steel corrosion detection. For example, study by [208] make use of roughness analysis

and color comparison on image patches to separate corrosion patches for steel images.

The recall and precision levels computed by the study range between 5% and 100%
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and 25% and 30% respectively, which is much lower than results obtained in this study.

Another study [209] made use of texture analysis with variables such as contrast,

correlation and energy. Since, these variables do not correlate with the metrics used

in this study, no comparison can be possible. Study by [210] is used for crack and

corrosion detection, which made use of a supervised classification method with code-

word dictionary consisting of stacked RGB histograms for image patches symmetric

gray-level co-occurrence matrix for each patch. The metrics used by this study [210]

are also different from our study. The study [210] reports that the false positive

rate ranges from 1 pixel (0.2 percent of image patches), 25% (0.1 percent of image

patches) and 100% (very low percent) When comparing the results in the other studies

[208–210] in terms of depth of evaluation and the metrics used within this study,

the performance of the proposed system far surpasses other study highlighted with

demonstrable high-performance using quantitative and qualitative analysis.

Figure 4.5 highlights a side-by-side comparison between the validation time between

System 1 and System 2 with values for each Architecture-Encoder Pair highlighted on

top of each bar plot. For system 1, lowest value for validation time is outlined by UNet

architecture [13] with RegNet-X2 encoder module [259]. For system 2, the lowest

values for validation time have been reported by UNet [13] architecture with ResNet-

18 encoder module [249]. The EfficientNet-B0 encoder module [258], which provided

the optimal performance has significantly higher validation time in comparison to

other encoder modules selected. It can be seen here that there is always a trade-off

between the best validation time and best performance, as improving one variable
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Figure 4.5: Comparison of time taken for validating the UNet architecture with
different encoder modules on the two different systems.

leads to decrease in another and vice versa. For obvious reasons, the validation

time values for GPU are considerably lower than their counterparts leveraging CPU

computational capabilities alone. The difference in validation time between system 1

and 2 is significant, where the system 2 is able to provide real-time performance if it

is implemented on an actual robot with GPU resources to compute defect detection

algorithm for bridge inspection.
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Figure 4.6: Details regarding the Video Processing Pipeline for Steel Defect De-
tection System starting from Input Video Frames, which are put through a number
of image pre-processing steps. As, the system is based on offline training and
validation processes, some of the pre-and post-processing steps involve manual in-
tervention from human researcher. Only a portion of high-resolution input frame
is selected to be validated in later stages of the video processing pipeline. The
different pre-processing steps ensure that the quality of the input video frames is
enhanced. The output image frame from the Deep Encoder-Decoder Network is
put through different post-processing operations. Finally, the output of the system
is highlighted using red colored pixel-level defects on the steel surface, along with

green colored bounding boxes.

4.4 Study 2

4.4.1 System Methodology

In this section, a detailed evaluation of the video processing pipeline for Steel Defect

Detection System will be discussed. The complete block diagram of the video pro-

cessing pipeline has been given in figure 4.6. As it can be seen in figure 4.6, there

are five steps of the video processing pipeline. Starting from the input video frames,

which are individually pre-processed using a number of steps, e.g. the Region-of-

Interest (ROI) selection. The original size of the high-resolution image frame is very
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large, due to which, a selected region is separated out. This ensures that the back-

ground regions are separated and majority of the steel region close to the robot can

be cropped, resized and saved separately. The image ROI is resized to 512 × 512 ×

3, which is the input size permitted for the validation of the input video frames using

Deep Encoder Decoder Networks.

These networks are pre-trained on Vietnam bridge dataset. A variety of state-of-

the-art Deep Encoder-Decoder Networks architectures have been used in this study,

namely the U-Net [13], LinkNet [260] and DeepLab [250]. For each of these architec-

tures, a number of different Encoders modules are leveraged to examine and compare

the performance of the different Architecture-Encoder pairs. Some of the Encoders

used in this study include the ResNet-18 [249], ResNet-34 [249], EfficientNet-b0 [258],

EfficientNet-b2 [258], and RegNet-X2 [259]. One of the prime focus was towards se-

lecting Encoder modules that are not very large in terms of number of layers and

parameters. The output image from this stage in the video processing pipeline con-

tains pixel-level masks highlighting steel defect locations. This output is modified to

ensure that the predicted defect locations are highlighted using red pixels and green

color bounding box surrounding each of these pixel regions.

Two different types of systems were used to examine the performance of the proposed

model for Steel Defect Detection. The training process was conducted offline on Sys-

tem 2, which is equipped with on-board GPU with details given in table 4.4. The

different Deep Learning models trained for varying Architecture-Encoder pairs were
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System
Specifications System 1 System 2

Processor Intel® NUC10i7FNH1
Core i7 with 1.1 GHz
clock speed

Intel® Core i7-8700 CPU
with 3.2 GHz clock speed

RAM 16 GB SDRAM 32 GB SDRAM

ROM 256 GB SSD N/A

Hard Disk 1 TB HDD 250 GB HDD

Operating System Ubuntu 20.04 Ubuntu 18.04

GPU Intel® Integrated UHD
Graphics

NVIDIA® GeForce®
GTX 1080 TI

Table 4.4: The proposed system outlined in prior figure is trained and the results
are validated on two different types of systems with varying computational capa-

bilities

saved and the validation process was performed on two separate systems to examine

whether the validation process could be performed in real-time for the two different

PCs with varying system configurations. Table 4.4 highlights the different aspects

of the two different types of PCs that have been used to examine the performance

of pre-trained models in terms of providing real-time steel defect detection. It can

be seen from table 4.4 that system 1 has Intel ® Integrated UHD Graphics Card,

which is not supported by Nvidia ® CUDA ® libraries leading to slower valida-

tion time. In comparison, the onboard GPU within system 2 had full support from

the Nvidia ® CUDA ® libraries, which allowed a faster training and validation

processing time, which will be elaborated in the next section. For the purpose of

training and validation of the proposed system for rebar detection and localization,

Tensorflow, PyTorch and Keras libraries have been used within Python programming

language framework. Table 4.5 highlights the network parameter specifications as

well as dataset information.
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Network
Parameters Dataset 1

Network Name Multiple Deep Encoder
Decoder frameworks with
multiple Encoder modules

Number of bridges Multiple bridges from Viet-
nam and USA

Number of Encoder
Layers

18-342

Number of Epochs 100

Batch Size 16

Learning Rate 0.001

Total Number of
Images

6,500

Train/Validation
Split

5,000:1,500

Image Size 512 x 512

Table 4.5: Network Specifications and dataset information in relation to the
training and validation of the proposed system

4.4.2 Results and Discussion

In this section, the overall performance of the different Architecture-Encoder pairs

will be outlined. The different Architecture-Encoder pairs were trained on Viet-

nam dataset. After offline training of the different Architecture-Encoder pairs, the

validation was performed on six separate video frame data (1,500 images) obtained

using Bicycle Robot taken from the actual bridge on Highway-80 located in Love-

lock, NV, USA. There are variations in the level of defect and lightning conditions

on the different parts of the bridge, which reflect on the performance of the different

Architecture-Encoder pairs. In order to capture this variation in performance, three

separate rows for each Architecture-Encoder pair outline the minimum, maximum

and average values have been given in tables 4.6 and 4.7. Table 4.6 outline statistical
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evaluation for the different Architecture-Encoder pairs in terms of the different met-

rics, such as Dice Loss, mIoU, Precision, and Recall. For the metrics such as mIoU,

Precision and Recall, higher values reflect better performance. For Dice Loss, the

opposite rule has to be applied; the smaller values reflect better performance of the

system.

The bold values in tables 4.6 and 4.7 specify the highest value for a particular Archi-

tecture. The bold values with an underline specify the highest value in comparison

to all the different Architecture-Encoder pairs. It can be seen in table 4.6 that for

LinkNet [260] Deep Encoder-Decoder architecture, the most optimal performance has

been shown by the RegNet-X2 [259] Encoder module for four out of total of five per-

formance metrics. For performance regarding UNet [13] Architecture, EfficientNet-B0

[258] outperforms other Encoder modules with best performance for two out of four

metrics. For table 4.7 with details regarding DeepLab Architecture [250], RegNet-X2

[259] encoder performs the most optimal for three out of four performance metrics.

There are some relevant studies, which have presented their own approach towards

steel corrosion detection. For example, study by [208] make use of roughness analy-

sis and color comparison on image patches to separate corrosion patches UNet [13]

Architecture for steel images. The recall and precision levels computed by the study

range between 5% and 100% and 25% and 30% respectively, which is much lower than

results obtained in this study. Another study [261] made use of texture analysis with

variables such as contrast, correlation correlation and energy. Since, these variables

do not correlate with the metrics used in this study, no comparison can be possible.
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Model Encoder Dice
Loss

mIoU Precision Recall

UNet ResNet-18 Max. 31.80 91.86 99.92 91.59

” ” Min. 4.37 54.87 99.54 54.86

” ” Avg. 12.59 80.88 99.73 81.02

” ResNet-34 Max. 28.11 96.40 99.83 96.57

” ” Min. 1.96 59.40 99.56 59.43

” ” Avg. 11.11 83.47 99.72 82.13

” RegNet-X2 Max. 18.81 97.13 99.78 99.35

” ” Min. 1.59 71.56 99.55 71.71

” ” Avg. 7.26 88.01 99.65 87.06

” EfficientNet-b0 Max. 32.17 97.33 99.80 97.53

” ” Min. 1.41 55.85 99.53 55.92

” ” Avg. 11.44 83.26 99.61 83.46

” EfficientNet-b2 Max. 47.25 96.06 99.75 96.36

” ” Min. 2.16 43.56 99.56 96.36

” ” Avg. 14.39 69.84 99.65 81.87

LinkNet ResNet-18 Max. 16.80 97.33 99.74 97.68

” ” Min. 1.41 73.65 99.56 73.69

” ” Avg. 6.11 89.89 99.65 90.07

” ResNet-34 Max. 32.96 94.55 99.93 94.91

” ” Min. 4.23 53.44 99.56 53.14

” ” Avg. 12.20 82.25 99.75 82.31

” RegNet-X2 Max. 19.91 98.52 99.77 99.80

” ” Min. 0.08 69.32 99.56 69.47

” ” Avg. 6.81 89.11 99.67 90.37

” EfficientNet-b0 Max. 31.20 94.17 99.78 94.45

” ” Min. 3.28 57,56 99.53 57.39

” ” Avg. 11.51 82.89 99.66 82.99

” EfficientNet-b2 Max. 16.83 99.36 99.73 99.78

” ” Min. 0.32 73.30 99.58 73.44

” ” Avg. 4.93 91.95 99.64 92.24

Table 4.6: Table Outlining the Performance of Different Architecture-Encoder
Pairs in Terms of Different Quantitative Metrics for the LinkNet and UNet Archi-

tectures. All values are given in percentages

Study by [262] is used for crack and corrosion detection, which made use of a super-

vised classification method with code-word dictionary consisting of stacked RGB his-

tograms for image patches symmetric gray-level co-occurrence matrix for each patch.

The metrics used by this study [262] are also different from our study. The study [262]
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Model Encoder Dice
Loss

mIoU Precision Recall

DeepLab ResNet-18 Max. 31.80 91.86 99.92 91.59

” ” Min. 4.37 54.87 99.54 54.86

” ” Avg. 12.59 80.88 99.73 81.02

” ResNet-34 Max. 28.11 96.40 99.83 96.57

” ” Min. 1.96 59.40 99.56 59.43

” ” Avg. 11.11 83.47 99.72 82.13

” RegNet-X2 Max. 18.81 97.13 99.78 99.35

” ” Min. 1.59 71.56 99.55 71.71

” ” Avg. 7.26 88.01 99.65 87.06

” EfficientNet-b0 Max. 32.17 97.33 99.80 97.53

” ” Min. 1.41 55.85 99.53 55.92

” ” Avg. 11.44 83.26 99.61 83.46

” EfficientNet-b2 Max. 47.25 96.06 99.75 96.36

” ” Min. 2.18 43.56 99.56 43.60

” ” Avg. 14.39 69.84 99.65 81.87

Table 4.7: Table Outlining the Performance of Different Architecture-Encoder
Pairs in Terms of Different Quantitative Metrics for the DeepLab Architectures.

All values are given in percentages

reports that the false positive rate ranges from 1 pixel (0.2 percent of image patches),

25% (0.1 percent of image patches) and 100% (very low percent) When comparing the

results in the other studies [208] [261] [262] in terms of depth of evaluation and the

metrics used within this study, the performance of the proposed system far surpasses

other study highlighted with demonstrable high-performance using quantitative and

qualitative analysis.

Figure 4.7 highlights a side-by-side comparison between the validation time between

System 1 and System 2. The values for each Architecture-Encoder Pair have been

highlighted on top of each bar plot in figure 4.7. For system 1, lowest values for vali-

dation are outlined by LinkNet architecture [260]. For system 2, the lowest values for

validation time have been reported by UNet [13] architecture and associated Encoder
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Figure 4.7: A side-by-side comparison between the validation time for System
1 and System 2. There are wide variations between the validation times for each
image frame as the maximum value for System 1 is 2,007 ms and the maximum
value for System 2 is 65.95 ms, which clearly highlights the benefits of GPU for
real-time steel defect detection. When comparing the different Architectures for
System 1, the variations are more pronounced across architectures. For the case of
System 2, the variations are much less pronounced, with the highest values ranging

between 20 ms and 70 ms.

modules. One of the architecture, namely LinkNet [260] has demonstrated lowest val-

idation time results for system 1. However, for system 2, it has the highest values out

of all the other Architectures, which is an interesting contrast in the validation time

results. There are actual results obtained from the validation of the data obtained

from bridge located in Highway-80, Lovelock, NV, USA.
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4.5 Conclusion

This chapter highlighted the progression of the dissertation into examining and high-

lighting ways towards using existing Deep Learning algorithms for Steel Defect De-

tection system with the potential to be deployed on real-time robotic systems. In

the context of bridge inspection, the research pertaining to steel defect detection has

not received attention in the past. Many steel defect studies exist, but for detect-

ing defects in steel sheets during manufacturing processes. However, these studies

are not relevant, as there are considerable variations between the manufacturing and

bridge inspection contexts. There are two recent studies that have been discussed

in this chapter. The first study [246] utilized UNet with multiple encoder modules

to provide steel defect detection with data obtained from steel bridges in Vietnam.

The proposed approach in [246] highlighted the promise of this approach. In order to

extend this work utilizing a real robot, the next study [245] provided a novel real-time

video processing pipeline for multi-directional bicycle robot. The system training was

performed on dataset from bridges in Vietnam and validation was performed from

data obtained from vision sensor mounted on the multi-directional robot [245]. The

performance evaluation of the proposed approach in [245] highlighted that the steel

defect detection system is able to provide real-time evaluation.
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Chapter 5

Conclusion and Future Works

This is the final chapter of this dissertation, which will effectively concluded the

dissertation with some final concluding remarks and guidance for future researchers

to extend the presented work in the near-future. Since, this dissertation has been

covering two primary aspects of bridge inspection in relation to surface-level and sub-

surface-level analyses, the following two sub-sections will conclude the major aspects

of the studies implemented. In the final section of this chapter, some recommendations

will be discussed as guidance for future researchers in the relevant research area

towards extending this work in the near future. These recommendations will be

important insights gathered after examining the state-of-the-art and implementing

relevant studies in this field, facing challenges and limitations and potential solutions

that can aid in mitigating the specific issues.
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5.1 Rebar Detection and Localization for Bridge

Deck Inspection

This part of the dissertation discussed the timely progression and development of

different solutions for rebar detection and localization. A total of four studies have

already been published in different renowned conferences and journals. There is

another publications that has been submitted, which has been added as the fifth

study in this chapter. In the first study [123], a novel rebar detection method has

been presented with data from two bridges to provide a proof-of-concept that was later

expanded in other studies that followed. In the second study, the proposed system in

first study was expanded to propose a novel rebar detection and localization system

[124]. In the third study, a novel framework for rebar detection and localization was

developed leveraging supervised (e.g. multiple Deep Residual Networks were analyzed

and compared) and unsupervised (e.g. K-means clustering algorithm with sliding-

window-based approach) [234]. All of the prior studies [123, 124, 234] were developed

with block-based annotation approach for data labelling. In order to improve the

quality of the developed systems for rebar detection and localization in terms of the

final output, a pixel-based annotation approach with Deep Encoder-Decoder networks

was discussed in the next studies [240, 241].
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5.2 Defect Detection System for Steel Bridge In-

spection

This part of the dissertation examined and highlighted ways towards using existing

Deep Learning algorithms for Steel Defect Detection system with the potential to

be deployed on real-time robotic systems. In the context of bridge inspection, the

research pertaining to steel defect detection has not received attention in the past.

Many steel defect studies exist, but for detecting defects in steel sheets during manu-

facturing processes. However, these studies are not relevant, as there are considerable

variations between the manufacturing and bridge inspection contexts. There are two

recent studies that have been discussed in this chapter. The first study [246] utilized

UNet with multiple encoder modules to provide steel defect detection with data ob-

tained from steel bridges in Vietnam. The proposed approach in [246] highlighted the

promise of this approach. In order to extend this work utilizing a real robot, the next

study [245] provided a novel real-time video processing pipeline for multi-directional

bicycle robot. The system training was performed on dataset from bridges in Vietnam

and validation was performed from data obtained from vision sensor mounted on the

multi-directional robot [245]. The performance evaluation of the proposed approach

in [245] highlighted that the steel defect detection system is able to provide real-time

evaluation.
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5.3 Future Works

There are number of ways in which the current state-of-the-art can be further ex-

plored in the near-future. Survey of the state-of-the-art in bridge inspection [122] has

revealed that most existing automated systems for bridge inspection rely on single

robot utilizing single type of sensors. However, to provide a comprehensive examina-

tion of bridge inspection, future studies should rely on data acquired from multiple

sensors (e.g. GPR, multiple RGB cameras, thermal cameras, acoustic sensors, ER

sensors), which can be leveraged by civil experts to provide reliable assessment of

structural deficiencies of bridges. At the same time, the use of multiple, diverse robot

platforms will allow bridge inspection teams to easily and effectively acquire data

from dangerous and inaccessible regions of the bridges without putting themselves

in harms way. For example, using Unmanned Aerial Vehicles (UAVs) can allow the

bridge inspectors the versatility and mobility to provide a surface-level inspection of

the bridge surfaces in an efficient and timely manner. At the same time, relying on

multiple robots rather than single robots can enable the bridge inspection systems to

provide a wide range and coverage of different areas and parts of bridges. For exam-

ple, UGV can provide coverage of different surface and sub-surface-level analyses of

bridge decks, and multiple UAVs can cover the underside of bridge deck and upper

steel parts of the bridge.

In this regard, the future works can leverage the data from multitude of sensors

on different robotic platforms (e.g. ground robots, aerial robots). Data from each
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sensor can be analysed using suitable data analyses techniques to individually and

collectively examine the data in multi-sensor, multi-robot systems. In relation to the

utilization of learning-based approaches for surface-level and sub-surface-level analy-

sis of bridges, the future researchers can attempt to explore the utility of lightweight

Encoder-Decoder frameworks, which may provide a promising approach towards ef-

ficient on-board implementations. To provide a deeper evaluation of the inspection

of the bridges in the future, different 3D reconstruction techniques can be leveraged

to provide a 3D model of the bridge being inspection in an application, along with

individual sensor systems and robots enabling the identification of different defects

on the different surfaces of the bridge infrastructure. These types of future implemen-

tations on multiple real robot platforms equipped with multiple sensory modalities

will have practical implications for actual bridge inspection teams and Transportation

Departments in the different states in the US and across the world.

5.4 Research Contributions from this Dissertation

Throughout the duration of the doctoral research, as discussed in the prior chapters,

the effort has been towards extending the state-of-the-art with novel contributions

that can be published in peer-reviewed, credible avenues of international conferences

and journals relevant to the field of bridge inspection and automation of different

inspection methods. The list of different publications that have been either submitted,

accepted or published in different conferences and journals are given below:



146

[1]. H. Ahmed, H. M. La, and N. Gucunski. Review of Non-Destructive Civil In-
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Algorithms. Sensors, 20, 3954, pages 1-38. http://dx.doi.org/10.3390/s20143954,

July 2020. Impact Factor: 3.275.
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tion in Construction, Elsevier publisher, Vol. 120, December 2020. Impact Factor:

5.669.
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