517 research outputs found

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    Broadcasting in highly connected graphs

    Get PDF
    Throughout history, spreading information has been an important task. With computer networks expanding, fast and reliable dissemination of messages became a problem of interest for computer scientists. Broadcasting is one category of information dissemination that transmits a message from a single originator to all members of the network. In the past five decades the problem has been studied by many researchers and all have come to demonstrate that despite its easy definition, the problem of broadcasting does not have trivial properties and symmetries. For general graphs, and even for some very restricted classes of graphs, the question of finding the broadcast time and scheme remains NP-hard. This work uses graph theoretical concepts to explore mathematical bounds on how fast information can be broadcast in a network. The connectivity of a graph is a measure to assess how separable the graph is, or in other words how many machines in a network will have to fail to disrupt communication between all machines in the network. We initiate the study of finding upper bounds on broadcast time b(G) in highly connected graphs. In particular, we give upper bounds on b(G) for k-connected graphs and graphs with a large minimum degree. We explore 2-connected (biconnected) graphs and broadcasting in them. Using Whitney's open ear decomposition in an inductive proof we propose broadcast schemes that achieve an upper bound of ceil(n/2) for classical broadcasting as well as similar bounds for multiple originators. Exploring further, we use a matching-based approach to prove an upper bound of ceil(log(k)) + ceil(n/k) - 1 for all k-connected graphs. For many infinite families of graphs, these bounds are tight. Discussion of broadcasting in highly connected graphs leads to an exploration of dependence between the minimum degree in the graph and the broadcast time of the latter. By using similar techniques and arguments we show that if all vertices of the graph are neighboring linear numbers of vertices, then information dissemination in the graph can be achieved in ceil(log(n)) + C time. To the best of our knowledge, the bounds presented in our work are a novelty. Methods and questions proposed in this thesis open new pathways for research in broadcasting

    Scalable and Secure Computation Among Strangers: Message-Competitive Byzantine Protocols

    Get PDF

    Gossip in a Smartphone Peer-to-Peer Network

    Full text link
    In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 00 bits to their neighbors in each round, and the case where nodes can advertise 11 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system.Comment: Extended Abstract to Appear in the Proceedings of the ACM Conference on the Principles of Distributed Computing (PODC 2017

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    GOSSIPKIT: A Unified Component Framework for Gossip

    Get PDF
    International audienceAlthough the principles of gossip protocols are relatively easy to grasp, their variety can make their design and evaluation highly time consuming. This problem is compounded by the lack of a unified programming framework for gossip, which means developers cannot easily reuse, compose, or adapt existing solutions to fit their needs, and have limited opportunities to share knowledge and ideas. In this paper, we consider how component frameworks, which have been widely applied to implement middleware solutions, can facilitate the development of gossip-based systems in a way that is both generic and simple. We show how such an approach can maximise code reuse, simplify the implementation of gossip protocols, and facilitate dynamic evolution and re-deployment
    • 

    corecore