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Abstract
The last decade has seen substantial progress on designing Byzantine agreement algorithms which
do not require all-to-all communication. However, these protocols do require each node to play a
particular role determined by its ID. Motivated by the rise of permissionless systems such as Bitcoin,
where nodes can join and leave at will, we extend this research to a more practical model where
initially, each node does not know the identity of its neighbors. In particular, a node can send
to new destinations only by sending to random (or arbitrary) nodes, or responding to messages
received from those destinations. We assume a synchronous and fully-connected network, with a
full-information, but static Byzantine adversary. A major drawback of existing Byzantine protocols
in this setting is that they have at least Ω(n2) message complexity, where n is the total number of
nodes. In particular, the communication cost incurred by the honest nodes is Ω(n2), even when
Byzantine node send no messages. In this paper, we design protocols for fundamental problems
which are message-competitive, i.e., the total number of bits sent by honest nodes is not significantly
more than the total sent by Byzantine nodes.

We describe a message-competitive algorithm to solve Byzantine agreement, leader election,
and committee election. Our algorithm sends an expected O((T + n) logn) bits and has latency
O(polylog(n)) (even in the CONGEST model), where T = O(n2) is the number of bits sent by
Byzantine nodes.1 The algorithm is resilient to ( 1

4 − ε)n Byzantine nodes for any fixed ε > 0, and
succeeds with high probability.2 Our message bounds are essentially optimal up to polylagarithmic
factors, for algorithms that run in polylogarithmic rounds in the CONGEST model.

We also show lower bounds for message-competitive Byzantine agreement regardless of rounds.
We prove that, in general, one cannot hope to design Byzantine protocols that have communication
cost that is significantly smaller than the cost of the Byzantine adversary.
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1 Introduction

What happens when you don’t know your neighbors? Permissionless systems, such as
cryptocurrency [12, 23], anonymous communication [27, 63], and wireless [44, 48, 64, 61],
allow nodes to join and leave with little or no admission control. In such systems, nodes are
generally known only by self-generated identifiers3; and communication primitives may be
limited to: sending a message to all nodes, sending a message to a random (or arbitrary) node,
and responding to a message sent directly. Unfortunately, all algorithms to coordinate such
networks in the presence of malicious faults seem either to require all-to-all communication,
or make cryptographic assumptions.

A major challenge in permissionless systems is dealing with malicious, or Byzantine nodes,
which can try to foil the protocols executed by honest, or good nodes. Byzantine-resistant
protocols are at the heart of secure systems. Consider the example of Bitcoin – a decentralized,
digital currency [12]. A crucial problem faced by Bitcoin is fault-tolerant agreement on a set
of ordered transactions.

The problem of achieving agreement under Byzantine faults, Byzantine agreement, is a
fundamental and long-studied problem in distributed computing [56, 7, 50]. In this problem,
all good nodes start with an input bit, and we must ensure: (1) All good nodes output the
same input bit (consensus condition); and (2) this common bit is the input bit of some good
node (validity condition). This must be done despite the presence of a constant fraction
of Byzantine nodes that can deviate arbitrarily from the protocol executed by the good
nodes. Byzantine agreement is a “keystone” problem in distributed computing, in that it
provides a critical building block for creating attack-resistant distributed systems. It has
been used in many domains including: sensor networks [60], grid computing [6], peer-to-peer
networks [59] and cloud computing [65]. However, despite intensive research, there is still
no practical solution to Byzantine agreement for large networks. A main reason for this
is the large message complexity of currently known protocols, as has been suggested by

3 Such as the public key for a digital signature.
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many systems papers [3, 5, 17, 51, 66]. The best known Byzantine protocols have (at least)
quadratic message complexity, i.e., Θ(n2), where n is the number of nodes in the network
(e.g., [32, 9, 26, 46]). This is especially true of protocols that run fast, i.e., in O(polylogn)
rounds (e.g.,[32, 9]). As noted in many papers [1, 38, 34] the message complexity plays an
important role in performance.

King and Saia [40] described the first Byzantine agreement algorithm for synchronous,
complete networks that breaks the quadratic message barrier under the assumption that
nodes a priori know the identities of all their neighbors. This assumption is called the KT1
model [57]. A more challenging model is KT0 (also called the clean network model [57]),
where nodes do not know the identity of their neighbors a priori, but do learn a node’s
identity upon receiving a message from it. In the KT1 model, [40] presented an algorithm
where each good node sends only Õ(

√
n) messages, and thus total message complexity is

Õ(n1.5). Braud-Santoni et al. [14] improved this to O(n polylog(n)) total message complexity,
however, their protocol might require some node to send O(n) messages.

The KT0 model is more applicable to permissionless networks, where nodes enter and
leave at will, and hence it is not reasonable to assume that nodes a priori know the identities
of all other nodes in the system. We can convert algorithms for KT1 to KT0 by including an
initial step where each node communicates with all its neighbors to obtain their identities,
but this incurs a Θ(n2) message cost. It is better to avoid such costly, potentially all-to-all,
communication cost. Hence a fundamental question is:

Can we design Byzantine protocols that require sub-quadratic messages in KT0?

In this paper, we address the above question. Our focus is on the fundamental problems of
Byzantine agreement, leader election and committee election. Our main result (Theorem 1) is
an algorithm to solve these problems while sending a number of bits that is O((T + n) logn),
where T is the number of bits sent by Byzantine nodes, and n is the network size.4 We
show (Theorem 2) that this is essentially the best possible bound if one desires fast (i.e.,
polylogarithmic rounds) algorithms.

To the best of our knowledge, our result introduces message-competitive analysis to the
study of Byzantine protocols. In particular, our algorithm is message-competitive in the sense
that the number of messages sent by good nodes competes well with the number sent by
Byzantine nodes; if Byzantine nodes send fewer messages then our algorithm also sends fewer.
An alternate way to interpret our result is that Byzantine nodes have to incur significant
message complexity (up to quadratic in n) in order to make the good nodes to have large
message complexity. This kind of result where algorithmic cost is measured with respect to
adversarial cost, is an example of resource-competitive analysis [11, 30].

Our work can be considered as an improvement in a long line of work that focuses on
designing message-optimal Byzantine protocols, see e.g., [38] and the references therein and
the recent work of [1]. We note that prior work on Byzantine protocols all incurred at least
quadratic message complexity (in KT0), regardless of the behavior of the Byzantine nodes.
One exception is the result of Hadzilacos and Halpern [38] (see also [22]) that gives a message
bound of O(nt) (deterministically) when there are t Byzantine nodes; however this protocol
takes O(n) rounds. This protocol’s message complexity is proportional to the number of
Byzantine nodes, but not to the total number of messages sent by them. Our protocol is
more general and (essentially) subsumes5 the protocol of [38], while being significantly faster.
It is significantly more message-efficient when t is large and T is small.

4 Our algorithm sends at most O(n2 logn) bits if T ≥ n2.
5 Note that if there are t Byzantine nodes our protocol has a message complexity of O(nt logn) with high
probability, which is a logarithmic factor larger than the O(nt) bound of [38].
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The lower bound results of Hadzilacos and Halpern [38] imply that our protocol is the
best possible if one wants fast algorithms (i.e., finishing in polylogarithmic rounds) in the
CONGEST model, where good nodes send only small-sized messages, i.e., O(logn) bits per
edge per round. Our protocol is also lightweight and fast (has low latency) and can be used
as a building block for designing secure and scalable (where communication and latency
scales efficiently with network size) systems.

1.1 Model
We consider a network of n nodes. There are t ≤ ( 1

4 − ε0)n bad nodes which are controlled
by the adversary, for fixed ε0 > 0. The remaining nodes are good and follow our algorithm.

We consider a synchronous, fully-connected network in the KT0 model [55, 57]. In
particular, each node has ports to every other node in the network, but learns the identity of
each node reachable through a port only by receiving a communication from that node. Thus
a node sends to a new destination only by selecting a port, or by responding to messages
received. We note that our algorithm technically only requires two primitives to send to
unknown nodes: the ability to write to (1) a random unknown ID; and (2) all unknown IDs.
Thus, it may be useful for models beyond KT0, such as a gossiping-based communication
model [47].

The n nodes are assumed to have distinct ID’s which lie in [1, nk] for k is a (large)
constant.6 Our adversary is full-information in that it knows the states of all nodes at any
time, is assumed to be computationally unbounded, and is also rushing in the sense that
it can read messages sent by good nodes before sending out its own messages. However,
the adversary is static, so that it must decide which nodes are bad prior to the start of the
algorithm. A Byzantine node can choose its identity initially, but once chosen, that identity
is presented to all nodes which receive messages from the Byzantine node. We expect this
last requirement to useful in conjunction with algorithms in [35, 36, 37] that require some
effort, such as solving a computational puzzle, in order to create a new identity.

We seek to design algorithms with low latency, i.e., the number of rounds until termination,
and low message complexity, i.e., the total number of messages sent by good nodes.

1.2 Our Contributions
We solve three classic problems in this model. In Byzantine agreement, all good nodes must
output the same bit, which is the input bit of some good node. In leader election, all good
nodes must agree on a leader, and this leader must be good with constant probability. In
committee election, all nodes must agree on a subset of O(logn) nodes where the fraction of
bad nodes in the subset is within a small ε fraction of the overall fraction of bad nodes.

Our main result is as follows.

I Theorem 1. There exists a randomized algorithm that solves Byzantine agreement, leader
election and committee election in the above model. This algorithm sends an expected
O((T + n) logn) messages, and has latency O(polylog(n)), where T is the minimum of n2

and the total number of bits sent by the bad nodes to good nodes. (If T ≥ n2, then the
algorithm sends O(n2 logn) bits.) It is resilient to t ≤ ( 1

4 − ε0)n Byzantine faults for any
fixed ε0 > 0, and succeeds with probability 1− 1/nc for any constant c.

6 This means that an ID can be represented using O(logn) bits, which can be sent in a message.
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We note that our O(polylog(n)) latency bound holds even in the CONGEST model,
where each message is O(logn) bits. The algorithm KT0-ByzantineAgreement described
in Section 3 achieves the result in Theorem 1, and the proof of this theorem is in Section 4.

The interesting regime for T is subquadratic, where our algorithm sends only subquadratic
messages (actually proportional to T ), unlike prior works (cf. Section 1) that incurred
quadratic message complexity in general. Our algorithm is resilient up to a constant fraction
of nodes – up to essentially n/4 – being bad. It is a open question whether one can improve
this tolerance further up to n/3 bad nodes, which is the best possible[56].

As mentioned in Section 1, the work of Hadzilacos and Halpern [38] shows a tight bound
of Θ(nt) for message complexity7 of Byzantine agreement with t ≤ n Byzantine nodes (t is
unknown). It gives a deterministic algorithm and a lower bound proof that holds for Monte
Carlo randomized algorithms that succeed with high probability as well. If one desires fast,
i.e., polylog(n) rounds algorithms (as is the case with our randomized algorithm), then the
above Θ(nt) bound shows that our message complexity is essentially the best possible in
general. This is because, since in each round at most Õ(n) bits can be sent by a Byzantine
node to good nodes in the CONGEST model8, and since the number of rounds is bounded
by O(polylogn), the number of Byzantine nodes t is Ω̃(T/n), where T is the total number of
bits sent by Byzantine nodes to good nodes.9 By the Ω(nt) lower bound of [38], we have the
following lower bound theorem.

I Theorem 2 (follows from [38]). Let T ∈ [Θ(n),Θ(n2)] be the total number of bits sent by
the Byzantine nodes to good nodes. Then any Byzantine agreement algorithm (including
randomized Monte Carlo algorithms that succeed with high probability) that finishes in
polylog(n) rounds in the CONGEST model needs, in general, at least Ω̃(T ) messages in
expectation.

The above theorem implies that our randomized algorithm with message complexity of
O((T + n) logn) and O(polylogn) latency is essentially optimal in CONGEST.

To the best of our knowledge, our protocol is the first that is message-competitive.
As discussed above, all prior protocols (excepting [38] and [22]) require at least quadratic
messages, regardless of the behavior of Byzantine nodes. This is especially true for protocols
that take small number of rounds (e.g., [9, 32]). Algorithms sending O(nt) messages [22, 38]
have linear latency. One can view these upper bounds that depend on t as a special case of
our result. Our message-competitive bound is more general, in the sense, it is proportional
to the total number of messages sent by Byzantine nodes. The case when a large number of
Byzantine nodes send a small number of messages is not captured in the prior bounds.

We also show lower bounds for message-competitive Byzantine agreement that hold
regardless of rounds (see Section 6). We prove that, in general, one cannot hope to design
Byzantine protocols that have communication cost that is significantly smaller than the
communication cost of the Byzantine adversary. We first show a lower bound for deterministic
BA protocols which is essentially tight with respect to our randomized algorithm (see Section
6.1). We show that if T = O(n2) is the budget on the message bits of the Byzantine nodes,
then for any deterministic protocol, the total number of messages sent by the good nodes is
Ω(T ) (see Theorem 12). The deterministic lower bound holds even in the KT1 model. We

7 This bound holds even for messages of size one bit.
8 We only consider algorithms where Byzantine nodes follow the CONGEST bound. Otherwise, if a
Byzantine node sends ω(logn) bits to a good node, it will be ignored.

9 The Õ notation hides a polylog(n) factor and Ω̃ notation hides a 1/polylog(n) factor.
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then show a somewhat weaker lower bound on the message competitiveness of randomized
Las Vegas (that always succeed) BA protocols (see Section 6.2) where we assume Byzantine
nodes can fake their IDs. The argument for the randomized case is more involved compared
to the deterministic case, as the algorithm’s (future) random choices are unknown to the
Byzantine adversary. We show that if T = n1+α for some α ∈ (0, 1] is the budget of the
Byzantine nodes, then for any (randomized) BA algorithm in the KT0 setting, the expected
number of messages sent by good nodes, is at least Ω(n1+α

2 ) (see Theorem 14).
All omitted proofs and additional details will be given in the full paper [8].

1.3 Related Work

Message-Competitive Analysis. This paper introduces message-competitive analysis which
can be considered as a special case of the more general resource-competitive analysis [11, 30]
to the study of Byzantine agreement. In resource-competitive analysis, the computational
cost of the attacker, T , is incorporated as a parameter in performance analysis. That is, the
cost of executing an algorithm over a network of n nodes is measured not only as a function
of n, but also as a function of T . Messages are an important resources and as mentioned in
[38], “the number of messages used by a protocol is important, possibly the most important,
factor that determines its performance.”

Resource competitive analysis has been applied to designing algorithms for: jamming-
resistant wireless communication [29, 31, 43]; attack-resistance on multiple access chan-
nels [10], tolerating adversarial channel noise [4, 20, 21], and efficiently distributing bridges
for anonymity networks such as TOR [67]. See [11, 30] for detailed surveys.

Communication Efficient Byzantine Agreement and Leader Election. Byzantine agree-
ment enables participants in a distributed network to reach agreement on a decision,
even in the presence of a malicious minority. Thus, it is a fundamental building block
for many applications including: cryptocurrencies [13, 24, 28, 33]; trustworthy comput-
ing [15, 16, 17, 18, 19, 45, 62]; peer-to-peer networks [2, 54]; and databases [53, 58, 68].

In 2006, King, Saia, Sanwalani, and Vee [41] gave a (randomized) algorithm to solve
Byzantine agreement, leader election and committee election problems in a model differing
from the one in this paper only in the assumption of KT1 communication. This was the first
algorithm to use only Õ(1) bits of communication per node, and Õ(1) time to bring almost
all processors to agreement. This result can also be achieved in a particular sparse network
[42]. This initial work produced agreement among all but o(n) nodes. Further work extended
this result to achieve everywhere agreement, while using a number of bits that is Õ(n3/2)
(load-balanced) [39]; and Õ(n) (not load-balanced) [14]. All of these algorithms required each
node to play a particular role as determined by its unique ID in [1, n], and to send to specific
neighbors. In other words, these algorithms critically rely on the KT1 model. These bounds
hold even if the bad nodes send any number of bits. Establishing Byzantine agreement via
the use of committees is a common approach; for examples, see [28, 41, 49]. Recent work
by Abraham et al. [1] revisits the problem of communication efficient Byzantine agreement
in the KT1 model. They show that achieving sub-quadratic message cost with an adaptive
adversary in this model requires that the adversary not have the ability to erase messages
already sent by the nodes it adaptively takes over. More related work is given in full paper.
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2 High-level Overview of Algorithms and Techniques

We focus first on Byzantine agreement, our solutions to leader and committee election use
similar techniques. Our algorithm depends on solutions to two new problems: Implicit
Agreement and Promise Agreement. In the Implicit Agreement problem, success means that
strictly greater than a t/n fraction of good nodes decide on the same (correct) bit and the
remaining good nodes do not decide; and failure means that no good nodes decide. Next, the
Promise Agreement problem assumes there has first been either success or failure in Implicit
Agreement. In the case of success, Promise Agreement ensures all nodes decide on the same
value and terminate; in the case of failure, no nodes decide.

KT0-ByzantineAgreement runs in epochs. In each epoch, we (1) run an algorithm
for Implicit Agreement; (2) run an algorithm for Promise Agreement; and (3) terminate in
the case of success, or increase the number of messages sent in the case of failure.

The number of messages sent for Implicit Agreement is tuned by increasing the number
of active nodes. In particular, during a run of Implicit Agreement, the active nodes first
attempt to solve Byzantine agreement among themselves, and then to communicate the
output to all other nodes in the network. Our Implicit Agreement algorithm ensures that,
unless the bad nodes send a number of messages that is n times the number of active nodes,
then Implicit Agreement will succeed. Next, we solve Promise Agreement. This ensures that
if Implicit Agreement succeeded, then all nodes will decide on the same value and terminate;
and if Implicit Agreement failed, then no nodes decide. In the latter case, all nodes proceed
to the next epoch, where the number of active nodes doubles in expectation.

When there is partial knowledge of participants. We say that a node x has a view of node
y if x knows y’s ID and the port to y. With a fair amount of technical work, we show that it
is possible to modify an algorithm by King et al. [41] to ensure agreement even among nodes
whose views only “mostly” overlap, provided that the range of all IDs is only polynomially
large. We call this modified algorithm LargeCoreBA, and summarize its properties in
Lemma 3 below; we believe the result may be of independent interest.

I Lemma 3. Let G be a set of good nodes which wish to come to agreement. For each x ∈ G,
let Sx be the set of nodes in the view of x. Let B be the set of bad nodes in

⋃
x∈G Sx. Assume

G ⊆
⋂
x Sx; |B| ≤ (1− ε)|G|/2 for some fixed constant ε > 0; and all nodes have distinct ID’s

in [1, nk]. Then there is an algorithm LargeCoreBA which computes almost everywhere
agreement (i.e., computes agreement among (1− 1/ logn) fraction of nodes in G) with high
probability in time and communication per node which is polylogarithmic in |G|+ |B|. In one
more round, if each good node broadcasts to all other nodes, and then each node takes the
majority, all nodes will come to agreement using |G|(|G|+ |B|) total messages, and latency
polylogarithmic in |G|+ |B|.

Implicit Agreement. Our solution to Implicit Agreement is given in Steps 1 to 6 of our
main algorithm in Section 3.1. There are two key technical problems that must be addressed.

First, how do we ensure that each active node x maintains a set Sx so that the conditions
of Lemma 3 are matched? Also, in order to achieve a good competitive ratio, we need the
conditions of Lemma 3 to hold unless the adversary sends Ω(nA) messages, where A is the
number of active nodes. If each active node x naively adds to Sx all nodes y that it receives
an initial message from, then the adversary can add A Byzantine nodes to each Sx while
sending only A2 messages. Thus, we must enlist the aid of non-active nodes to establish the
Sx sets. Initially, each active node sends its ID to all nodes. Call a good node light if it has

DISC 2020
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received a number of IDs approximately equal to A. Then the light nodes convey information
about their Sx sets to the nodes in Sx. They cannot send out all the IDs in Sx, since that
would be too many bits. Instead, they just send out a single random ID, and a node y adds
an ID to Sy if it was received from at least enough (β) nodes that claim to be light.

Unfortunately, an adversary can still cause problems by making the size of the union of
the bad nodes in each Sx large, so that |B| is large in Lemma 3, even when the adversary
does not send out too many messages. To solve this problem, we use a “validation” step,
whereby each active node, for each ID in Sx, queries Θ(logn) random nodes about whether
they have the ID in their Sx sets, and filters out the ID unless enough of these queries are
answered affirmatively. Based on information obtained during this process (Step 1 through
Step 3c in Section 3.1), the active nodes determine if the number of light nodes is sufficient
for favorable success in this epoch.

This brings us to the second problem. How can the active nodes agree on one of two
options for this epoch: (1) conditions are favorable for agreement; or (2) conditions are
not favorable? We can make use of LargeCoreBA in coming to agreement on an option.
However, this is still challenging given that, under certain conditions, some active nodes
may run LargeCoreBA, while other active nodes may not even have a small enough Sx
set to run it. To address this issue requires careful decisions about whether a node will run
LargeCoreBA, what its input will be, and whether or not it will trust the output, all based
on the node’s estimate of the number of light nodes (See Step 4, Section 3.1 for details). In
particular, nodes will sometimes run LargeCoreBA, because other nodes are relying on
them to do so, even when they plan to ignore the output. If active nodes decide conditions
are favorable via the first call to LargeCoreBA (Step 4), they will all run it again (Step 5)
to decide on a bit. Lemma 7 in Section 4 shows that no matter what the number of light
nodes, these two steps ensure all active nodes come to agreement on the same decision.

Finally, in Step 6, active nodes send their decision to all other nodes. Nodes that have
small Sx sets take the majority of the messages received in this step, whereas other nodes
default to a decision to wait for the next epoch. We can thereby guarantee the post-condition
for Implicit Agreement: either (1) a strictly greater than t/n fraction of good nodes decide,
or (2) no good nodes decide. We obtain this result even when the adversary floods some
good nodes but not others.

Promise Agreement. A final technical challenge is to determine whether or not we need to
run another epoch. After solving Implicit Agreement, either (1) strictly greater than a t/n
fraction of the good nodes have decided on the same correct bit; or (2) no good nodes have
decided. We must then ensure that all good nodes decide either to terminate or to run another
epoch. To do this, we run an algorithm, PromiseAgreement that solves the Promise
Agreement problem (see Section 5.2). The solution simply has each node sample a logarithmic
number of other nodes, and take a majority vote. It does not increase the overall asymptotic
number of messages sent, but some non-active nodes can be forced by the adversary to
respond to O(n) requests. If the outcome of PromiseAgreement is not agreement then all
nodes proceed to the next epoch, where the number of active nodes doubles in expectation.
In this way, we can guarantee that that KT0-ByzantineAgreement succeeds within log(n)
expected epochs.
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3 KT0-ByzantineAgreement

The overview and intuition for the steps of the main algorithm KT0-ByzantineAgreement
are described in Section 2. Here, we give its pseudocode and define the problem Promise Agree-
ment. KT0-ByzantineAgreement calls LargeCoreBA and an algorithm PromiseA-
greement that solves Promise Agreement. A node x calls LargeCoreBA with a set of
possible participants Sx, which may include nodes which do not themselves participate.

The algorithm below runs correctly with probability 1− 1/nc for any constant c, when
constant C below is chosen to be sufficiently large, depending on c. We let ε be a small
constant such that 0 < ε < ε20. We set maxa = (1 + ε)p(n− t) and mina = (1− ε)p(n− t) so
that w.h.p. the number of active nodes lies in this range.

We call a good node active if it sets its state to active in Step 2. We call a good node
light if the number of IDs received by it from alleged active nodes in Step 2 is less than
maxa + εpn. We use bounds Low = n− 2t− εn and High = Low+ t to describe the number
of light and purported light nodes. For p > 1/(C logn), if there are at least Low − t light
nodes and each sends a random ID from their list of nodes that reported being active in
Step 2, then w.h.p., at least β = (1−ε)(Low−t)

maxa+εpn copies of all their common IDs, in particular,
the IDs of all active nodes, will be received by every active node. Finally, an element in
an active node x’s set Sx is validated when x queries a random set of C logn nodes and
δC logn nodes respond yes. δ = (1−ε)(Low−t)

n is chosen so that w.h.p., every ID in active will
be validated but not many ID’s of nodes which are bad.

3.1 Pseudocode for KT0-ByzantineAgreement
1. Initialize: Every node x sets p ← (C logn)/n. Each node x sets ready-outx ←

0, ready-inx ← 0, and sets its state to ¬active and ¬light.
2. Nodes become active and notify others: With probability p, x sets its state to

active and sends its ID to all nodes. Every node x sets Sx to the set of IDs received. A
node sets its state to light if |Sx| ≤ maxa + εpn.

3. Active nodes learn of other active nodes:10
a. Every light node x randomly selects an ID in Sx and sends it to the nodes in Sx.
b. Every active node x sets nx to be the number of nodes which sent to x in Step 3a. If

nx ≥ Low − t then x resets Sx to be the set of IDs which were received from at least
β nodes in step 3a. For each ID in Sx, x sends the query < ID? > to a random set of
C logn nodes.

c. Every light node x answers a query < ID? > if ID is in Sx and the query is sent
by a node in Sx. An ID in Sx is considered validated if x received at least δC logn
responses to the query for ID. Each active node x that sent queries removes from Sx
all IDs which are not validated.

4. Can we proceed? Each active node x with nx ≥ Low − t runs LargeCoreBA with
the other nodes in Sx. The input bit to LargeCoreBA, ready-inx ← 1 iff nx ≥ High.
If nx ≥ Low then ready-outx ← output of LargeCoreBA.

5. Compute Byzantine Agreement Each active node x with ready-outx = 1 runs
LargeCoreBA with nodes in Sx, with input bit, valuex, set to the node’s initial
input bit.
Node x then sets valuex to the output of this LargeCoreBA.

10Note: The Sx for inactive nodes x are unaffected by this step
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6. Take Majority: Each active node, x, sends (ready-outx, valuex) to all nodes. Then,
each node x with nx ≥ Low − t sets ready-outx to the majority ready-out bit received
from nodes in Sx. If this bit is 1, then valuex is set to the majority value bit received
from nodes in Sx.

7. Promise Agreement: Each node x runs PromiseAgreement with the tuple
(ready-outx, valuex), and resets the tuple based on the outcome.
a. If ready-outx = 1, then node x terminates and outputs value valuex;
b. Else if p < 1/(C logn), then p doubles and x repeats from Step 2.
c. Else (i.e., when pn ≥ n/(C logn)), every node sends to all other nodes to determine

their IDs, and then the protocol resorts to running LargeCoreBA.

3.2 Promise Agreement
Here we define a variant of the almost-everywhere to everywhere Byzantine agreement
problem, which we call Promise Agreement. In Section 5.2, we describe an algorithm,
PromiseAgreement, to solve this problem.

I Definition 4. An algorithm is said to solve the Promise Agreement problem if it has the
following properties.
1. If (i) there is at least a t/n+2ε fraction of good nodes with tuple (ready-out, value) = (1, v),

for the same bit v; and (ii) all remaining good nodes have ready-out value of 0, then all
nodes terminate with tuple (ready-out, value) = (1, v).

2. If all good nodes have ready-out = 0, then all nodes terminate with ready-out = 0.

4 Analysis of KT0-ByzantineAgreement

4.1 Correctness
We call one run of all the steps in the KT0-ByzantineAgreement algorithm an epoch.
We assume t ≤ ( 1

4 − ε0)n for a fixed ε0 > 0. We note that p < 1/(C logn) except in Step 7c.

I Lemma 5. The following events occur w.h.p. in n.
1. The number of active nodes is between mina and maxa.
2. If there are at least Low − t light nodes, then all active nodes receive at least β copies of

the ID of every active node in Step 3a.
3. If there are at least Low − t light nodes, then all active nodes will consider all IDs of

active nodes validated after Step 3c.
4. If an ID is contained in the Sx sets of at most (1− ε)(δ − t/n)n light nodes in Step 3b,

then that ID will not be validated.

Proof. For each of these items there is a random variable X which is the number of successful
independent trials. In each case, we will show that E[X] ≥ C ′ logn for some constant C ′.
Then, Chernoff bounds imply that Pr(|X −E[X]| ≥ λE[X]) ≤ n−c, for any fixed λ < 1, and
any fixed c, for C ′ sufficiently large [52]. The details are deferred to the full paper [8]. J

For a fixed epoch, let CORE be the set of active nodes that run LargeCoreBA in
Step 4. We show that the nodes participating in LargeCoreBA have the desired properties
to successfully complete it when there are at least Low − t light nodes. (See Lemma 3.)

From Lemma 5, we can observe the following.
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I Lemma 6. If there are at least Low − t light nodes then w.h.p., we have the following
1. Every active node is in the CORE, and therefore |CORE| ≥ mina.
2. For all x ∈ CORE, CORE ⊆ Sx after Step 3c.
3. Let B be the bad nodes in

⋃
x∈CORE Sx. At the conclusion of Step 3, if there are at least

Low − t light nodes, |B| ≤ ε′pn for any ε′ > 0, and |B|
|CORE| ≤ 1/2− ε′′ for any ε′′ > 0.

The proof of this lemma is deferred to the full paper [8]. Lemma 6 and Lemma 3 imply that
LargeCoreBA can be successfully run when there are at least Low − t light nodes.

I Lemma 7. Let L be the number of light nodes in an epoch of KT0-ByzantineAgreement.
Then w.h.p.,
1. If High ≤ L,

1) All active nodes have ready-in = 1, they run LargeCoreBA and decide on ready-out =
1 when run in Step 4; and
2) All active nodes y run LargeCoreBA in Step 5 and set their value bit to the input
bit valuex of some active node x.

2. If Low ≤ L < High,
1) All active nodes successfully run LargeCoreBA but they may start with differing
values for ready-out in Step 4.
2) If the output is a 1, all active nodes y set ready-out = 1 and they will successfully run
LargeCoreBA in Step 5 and set valuey to the input valuex for some active node x.
3) If the output is a 0, all active nodes set ready-out = 0.

3. If Low − t ≤ L < Low, all active nodes will successfully run LargeCoreBA in Step 4,
though some nodes will disregard the output. All active nodes will start with ready-in = 0
and all active nodes will have ready-out = 0.

4. If L < Low − t, some active nodes may run a possibly flawed LargeCoreBA in
Step 4, though all active nodes will disregard the output. All active nodes will start with
ready-in = 0 and end with ready-out = 0.

Proof. If L < Low − t, then nx < Low for all nodes x, thus in Step 4, all active nodes have
ready-in = 0, disregard the output of LargeCoreBA, and set ready-out = 0.

If Low > L ≥ Low − t, by Lemmas 6 and 3, LargeCoreBA will run successfully. All
active nodes x have nx < High = Low+ t, so in Step 4, all active nodes x have ready-inx = 0.
Thus, by the consistency property of LargeCoreBA, all active nodes x have ready-outx = 0.

If Low ≤ L < High, then all active nodes running LargeCoreBA in Step 4 may start
with different ready-in values, but by the correctness of LargeCoreBA, they will all end
with the same ready-out value. If the ready-out vale is 1, in Step 5, LargeCoreBA will run
correctly and they will all set their value bit to the input bit, valuex of some active node x.

If L ≥ High, then any active node x has nx ≥ High, and so has ready-inx = 1. Thus,
after Step 4, by the validity of LargeCoreBA, all active nodes will have ready-out = 1.
Thus, they will all run LargeCoreBA in Step 5 and will all set their value bit to the input
value bit of some active node. J

I Lemma 8. At the end of each epoch, w.h.p., all nodes either terminate and output the
same value or they all go to the next epoch.

Proof. By Lemma 7, if any active node x sets ready-out = 1 after Step 5, all active nodes
will set their tuple (ready-out, value) to the value (1, v), and v will be the input bit of some
node in CORE. Moreover, there must be at least Low light nodes. Since every light node y
has at least mina IDs of active nodes in Sy, and |Sy| ≤ maxa + εn, in Step 6, the majority
of the messages received from nodes with IDs in Sy will be (1, v) and y will set ready-out = 1
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and valuey = v. Since Low = n− 2t+ ε ≥ t+ 2ε, all good nodes will come to agreement on
(1, v) in Step 7, when the Promise Agreement problem is solved correctly (by Lemma 11 in
Section 5.2).

On the other hand, if any active node x sets their value ready-outx to 0, then we must be
in Case 2, 3 or 4 of Lemma 7. In these cases, all active nodes have ready-out = 0, at the end
of Step 5. Thus, all light nodes set ready-out = 0 since it is the majority value received in
Step 6, and all nodes which are not light do not change their initial ready-out value from 0.
Therefore, all nodes agree on ready-out = 0. With ready-out = 0, all nodes execute Steps 7b
or 7c, depending on the value of p. J

4.2 Message Costs
I Lemma 9. In any epoch, w.h.p., the algorithm sends O((pn)2 logn+ pn2 + n logn+ Te)
messages, where Te is the minimum of n2 and the number of messages sent by bad nodes in
that epoch. Moreover, in any epoch, the algorithm takes time polylogarithmic in n.

Proof. There are O(pn) active nodes which send to all nodes and each light node sends one
message to O(pn) nodes, for a total of O(pn2) messages. When Sx is reset, it is reset to be
no larger than n/β = O(np). To validate its Sx, each active node sends O(logn) messages
for each element in Sx. There are O(pn) active nodes, each with |Sx| = O(n/β) = O(pn).
Hence, issuing queries requires O((pn)2 logn) messages by good nodes. There are at most Te
queries sent by bad nodes, so responding to queries requires O(Te + (pn)2 logn) messages.

Computing LargeCoreBA in Steps 4 and 5, requires O((pn)2) messages by Lemma 3.
Then in Step 6, all active nodes send to all nodes for O(pn2) messages. Finally, in Step 7,
all nodes send O(n logn) messages to solve PromiseAgreement, as shown in Lemma 11.
Thus, the total number of messages sent in the epoch is O((pn)2 logn+ pn2 + n logn+ Te).

The time to perform all steps in an epoch is dominated by the cost of performing
LargeCoreBA which is polylogarithmic. J

I Lemma 10. The algorithm terminates in a decision in a given epoch, unless the adversary
sends Ω(pn2) messages.

Proof. There are at least High light nodes unless the adversary causes bad nodes to send
more than pnε messages to nε nodes, for a total of Ω(pn2) messages. If there are at least
High light nodes in an epoch, then by Lemma 7 the algorithm terminates with a decision. J

Note that O((pn)2 logn + pn2) = O(pn2) except when p > 1/ logn, in which case our
algorithm runs LargeCoreBA on all the nodes, by messaging all n of their neighbors,
for a total cost of O(n2). This is the bottleneck in the algorithm which causes it to be
O(logn)-competitive instead of O(1)-competitive.

Let T be the minimum of n2 and the total number of messages sent by the adversary,
and n be the number of nodes in the network. We can now prove Theorem 1.

4.3 Proof of Theorem 1
Proof. By Lemma 10, the algorithm will terminate in an epoch, unless the adversary sends
cpn2 messages in that epoch, for some constant c. In epoch i, p = (2i−1 logn)/n. If we do
not terminate in epoch i, then T ≥ c2i−1n logn. In epoch i, by Lemma 9, the total number
of messages sent is O((pn)2 logn+ pn2 + n logn+ Te).
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We first consider the case where it’s always true that p ≤ 1/ logn, and note that
O((pn)2 logn+ pn2) = O(pn2). Thus, the message cost in epoch i is O(n2i logn+Ti), where
Ti is the number of messages sent by the adversary in epoch i. The Ti terms clearly sum to
O(T ). If ` is the last epoch, then O(

∑`
i=1 2in logn) = O(2`n logn) = O(T + n logn). Thus

the total number of messages sent in this case is O(T + n logn).
We next consider the case where p > 1/ logn. In this case, our algorithm runs

LargeCoreBA on all the nodes, by messaging all n of their neighbors, for a total cost of
O(n2). The value of T in this case is Ω(n2/ logn), so our total message cost is O(T logn).

Since epoch i has latency polylogarithmic in n (by Lemma 3), and there are at most logn
epochs, the total latency is O(polylog(n)). Additionally, we note that when the algorithm
terminates, by Lemma 10, all good nodes come to agreement on an input bit of some node
in CORE.

Finally we note that we can also solve the leader election and committee election problems.
To do this, the active nodes use Feige’s leader election algorithm [25] to elect a committee in
one step, or a leader in log∗ n steps among the COREx sets for every active node x. This is
done instead of selecting an agreement value as in the KSSV algorithm [41]. J

5 Additional Algorithms

5.1 LargeCoreBA

Here we prove Lemma 3. We do this by adapting the algorithm from [41]. In that paper, all
nodes have a view of all of other nodes and nodes are numbered [1, n].

The main idea of our adaptation is to show that for any s, log10 n ≤ s ≤ n, there exists a
deterministic assignment of IDs in [1, nk] to a set of s/ lnn committees, so that for every
subset of size s IDs, a 1− 1/ ln2 n fraction of committees are (1) “sufficiently large”; and (2)
contain a nearly representative fraction of both good and bad nodes.

The algorithm in [41] is built upon a family of bipartite graphs with expansion-like
properties. The existence of such graphs are proved using the probabilistic method (see
Section 3 of [41]). We need the same properties here, but for a possibly much smaller subset
of s ≤ n identities, which come from a much larger name space ([1, nk]). We show that we
can start with identities in the range [1, nk], of which s are active and generate a set of
committees which have the required properties with respect to the active nodes, as is needed
in each layer of the “election graph” in [41], Corollary 3.2. The details are deferred to the
full paper [8].

5.2 PromiseAgreement

We now present a simple algorithm to solve the Promise Agreement problem, defined in
Section 3.2.
PromiseAgreement
1. Each node y sends a request to a random set of c logn nodes.
2. Each node x, upon receiving a request from a node y, responds to the request by reporting

(ready-outx, valuex).
3. If greater than a t/n+ ε fraction of nodes sampled by x respond with ready-out = 1, then

x sets ready-out ← 1 and sets valuex to the majority of the value bits sent by sampled
nodes. Else ready-outx ← 0.
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I Lemma 11. PromiseAgreement solves the Promise Agreement problem (Definition 4),
with O(1) latency, and sending O(T ′ + n logn) bits, where T ′ is the minimum of n2 and the
number of messages sent by the adversary during this algorithm.

Proof. Assume there are at least a t/n+ 2ε fraction of good nodes with (ready-out, value) =
(1, v) for the same bit v, and all remaining good nodes have ready-out values of 0. By Chernoff
and union bounds, every good node then has greater than a t/n+ ε fraction of good nodes
with ready-out values of 1, and less than a t/n + ε fraction of bad nodes in their sample.
Hence, all good nodes will terminate with tuple values of (ready-out, value) = (1, v).

Assume that all good nodes have ready-out values of 0. Then by Chernoff and union
bounds, each sample has less than a t/n+ ε fraction of bad nodes. Hence, all good nodes
will terminate with ready-out values of 0.

The number of bits sent is just the number of queries sent which is O(T ′ + n logn). J

6 Lower Bounds for Message-Competitive Byzantine Agreement

We now study lower bounds for message-competitive Byzantine agreement (BA). We first
show a tight lower bound on the message competitiveness of deterministic BA protocols.
Then we show a lower bound on the message competitiveness of randomized BA protocols.

6.1 Deterministic Lower Bound
As per our model in Section 1.1 we assume a complete n-node network with ε̂n Byzantine
nodes and (1− ε̂)n good nodes (i.e., non-Byzantine) for some small constant ε̂. We assume
the KT0 model. The Byzantine nodes are controlled by a non-adaptive rushing adversary. It
is assumed that Byzantine nodes cannot fake their own identities.

In the above setting, the goal is to show a lower bound on the message bits spent by the
good nodes in any deterministic algorithm solving Byzantine everywhere agreement. The
lower bound also holds in the KT1 model, in which a node knows the ID of its neighbors.

Suppose there is a deterministic algorithm solving BA. The output of the algorithm, i.e.,
the agreed value depends on the ID, input distribution of the nodes and the information
exchanged among the nodes during the execution of the algorithm. More precisely, the output
of a node u (with id IDu) is a function fu(IDu, bu, Xu)→ {0, 1}, where the argument bu
is the input bit of u and Xu is the set of received message bits during the execution of the
algorithm. Let us call this information (IDu, bu, Xu) as the “transcript” of u. The algorithm
is deterministic and known to the adversary which controls the Byzantine nodes. Further, the
algorithm should work for any input distribution (i.e., the 0− 1 value distribution). Given an
input distribution over the nodes, the complete execution of the algorithm is known to the
adversary. Based on the execution, the adversary selects Byzantine nodes (in the beginning)
in such a way that the algorithm fails to achieve agreement everywhere unless it spends
enough messages. In fact, we prove the following result.

I Theorem 12. Suppose the budget of messages of the Byzantine nodes is T ≤ cn2 bits,
for some constant c. Then any deterministic algorithm, which solves Byzantine everywhere
agreement, incurs an expected Ω(min{T, n2}) bits of messages.

Proof. We give a proof-sketch here. The detailed proof can be found in the full version [8].
Let there be a deterministic algorithm A that solves the Byzantine agreement everywhere
and incurs only o(T ) messages. We show a contradiction, that the agreement is wrong in the
sense that there exists two nodes with two different output values for some input distribution.
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Consider an arbitrary input distribution I over n nodes. Since the total messages sent by the
good nodes is o(T ), there must exist a good node, say, u that exchanges (sends and receives)
less than δT/((1− ε̂)n) message bits in total for some small constant δ < 1 (the actual value
of δ to be fixed later); otherwise the sum of the messages of all the good nodes would be
Ω(T ).Let Su be the set of nodes which exchange messages with u throughout the execution
of A on the given input I. Note that, given A and I, u and Su are fixed and known to
the adversary in the beginning. (Further, for different input I, the pair (u, Su) might be
different.) The adversary then selects all the nodes in Su as Byzantine nodes before the
execution starts. Thus the transcript of u is fully controlled by the Byzantine nodes as Xu is
determined by the nodes in Su. The transcript of u is the total history of messages between
u and the rest of the nodes. Clearly, the decision of u depends on the choice of u’s input
value (0 or 1), u’s ID and its transcript (which might also include the IDs of the nodes that
it communicated with). Also, in a valid protocol, every node (with every distinct ID and
input value) will have a distinct transcript for deciding 0 or 1, respectively. Essentially, the
adversary can decide a transcript for u (depending on its input value and ID) such that the
output value of u would be different than the output value of all other good nodes (assuming
all other good nodes execute the algorithm without any influence from the Byzantine nodes).
This will give a contradiction to the everywhere agreement. J

6.2 Randomized Lower Bound
Let us first consider the anonymous KT0 setting, i.e., nodes do not have any identifiers.
Later, we extend this to the non-anonymous KT0 setting, where good nodes have unique
identities and Byzantine nodes can fake their identities (in full version). Each node u has
n− 1 ports through which it connects to the n− 1 other nodes. Thus, if a node u sends a
message through a port p ∈ [n− 1] to another node v, then any message u receives through
p is guaranteed to be from v. For our lower bound purpose, we assume that the ports for
each node u are assigned uniformly at random and independent of port assignments for other
nodes. As before, among the n nodes, a small fraction ε̂n (assumed to be integral) for a
fixed ε̂ > 0 are Byzantine and denoted V b; let V g = V \ V b. Nodes can individually generate
uniform and independent random bits, but availability of common coins is not assumed.

We assume that our Byzantine adversary is full-information (i.e., knows the states of
all nodes at all times), computationally unbounded, and is also rushing (i.e., it can read
messages sent by good nodes before sending out its own messages). The adversary is limited
to being static, so that it must decide which nodes are bad prior to the start of the algorithm.
We formally define message complexity as follows.

I Definition 13. For a given BA algorithm A, the message complexity MA (or just M when
clear from context) is defined as the maximum expected number of the sum of the bits sent by
good nodes. The maximum is taken over all possible adversarial strategies (i.e., choice of IDs,
port assignments, input bits, and the behaviour of the Byzantine nodes) and the expectation
is over the random bits used by the nodes.

Overview of Our Approach. We show that if bad nodes can send Ω(n1+α) messages, then
the good nodes must send at least Ω(n1+α/2) messages, for any α ∈ (0, 1]. If we assume not
(for the sake of contradiction), then, good nodes can reach agreement while only sending
o(nα/2) messages on average. Under this situation, when any good node u sends a message
to any other good node v, the bad nodes can bombard v with nα/2 messages intended for
denial of service (DoS). Node v will be unable to distinguish between the legitimate message
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from u and these DoS messages from bad nodes. As a result, v will have to respond, on
average, to Ω(nα/2) messages from bad nodes first. This is a greater number of messages
than what good nodes can afford on average. Thus, several good nodes will not be able to
establish two-way contact with any other good node, which we then exploit to show the
impossibility via an indistinguishability argument. The proof has been deferred to the full
version [8].

I Theorem 14. Consider any BA algorithm A that guarantees that good nodes reach a
valid agreement in the anonymous KT0 setting as long as the number of messages sent by
Byzantine nodes is at most B = n1+α for some α ∈ (0, 1]. Then, the message complexity MA
is at least Ω(n1+α

2 ).

7 Conclusion

We have described an efficient randomized message-competitive algorithm to solve Byzantine
agreement, Leader election and Committee election, in the synchronous communication
model, with a static and full-information adversary, where nodes don’t know the IDs of
other nodes a priori. Our algorithm is efficient in the sense that message cost and latency
grow slowly with the number of messages sent by the adversary. We also show lower bounds
on message-competitive Byzantine agreement algorithms. Our lower bounds show that in
general, it is not possible to do significantly better than our algorithm with respect to the
number of bits sent by Byzantine nodes. A key open problem is to close the gap between
upper and lower bounds for randomized protocols across all budget values as well improve
the fault-tolerance to 1/3-fraction of all nodes.
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