23,205 research outputs found

    Bivariate Beta-LSTM

    Full text link
    Long Short-Term Memory (LSTM) infers the long term dependency through a cell state maintained by the input and the forget gate structures, which models a gate output as a value in [0,1] through a sigmoid function. However, due to the graduality of the sigmoid function, the sigmoid gate is not flexible in representing multi-modality or skewness. Besides, the previous models lack modeling on the correlation between the gates, which would be a new method to adopt inductive bias for a relationship between previous and current input. This paper proposes a new gate structure with the bivariate Beta distribution. The proposed gate structure enables probabilistic modeling on the gates within the LSTM cell so that the modelers can customize the cell state flow with priors and distributions. Moreover, we theoretically show the higher upper bound of the gradient compared to the sigmoid function, and we empirically observed that the bivariate Beta distribution gate structure provides higher gradient values in training. We demonstrate the effectiveness of bivariate Beta gate structure on the sentence classification, image classification, polyphonic music modeling, and image caption generation.Comment: AAAI 202

    Improving PSF modelling for weak gravitational lensing using new methods in model selection

    Full text link
    A simple theoretical framework for the description and interpretation of spatially correlated modelling residuals is presented, and the resulting tools are found to provide a useful aid to model selection in the context of weak gravitational lensing. The description is focused upon the specific problem of modelling the spatial variation of a telescope point spread function (PSF) across the instrument field of view, a crucial stage in lensing data analysis, but the technique may be used to rank competing models wherever data are described empirically. As such it may, with further development, provide useful extra information when used in combination with existing model selection techniques such as the Akaike and Bayesian Information Criteria, or the Bayesian evidence. Two independent diagnostic correlation functions are described and the interpretation of these functions demonstrated using a simulated PSF anisotropy field. The efficacy of these diagnostic functions as an aid to the correct choice of empirical model is then demonstrated by analyzing results for a suite of Monte Carlo simulations of random PSF fields with varying degrees of spatial structure, and it is shown how the diagnostic functions can be related to requirements for precision cosmic shear measurement. The limitations of the technique, and opportunities for improvements and applications to fields other than weak gravitational lensing, are discussed.Comment: 18 pages, 12 figures. Modified to match version accepted for publication in MNRA

    Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities

    Get PDF
    Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated

    The Hellinger Correlation

    Full text link
    In this paper, the defining properties of a valid measure of the dependence between two random variables are reviewed and complemented with two original ones, shown to be more fundamental than other usual postulates. While other popular choices are proved to violate some of these requirements, a class of dependence measures satisfying all of them is identified. One particular measure, that we call the Hellinger correlation, appears as a natural choice within that class due to both its theoretical and intuitive appeal. A simple and efficient nonparametric estimator for that quantity is proposed. Synthetic and real-data examples finally illustrate the descriptive ability of the measure, which can also be used as test statistic for exact independence testing

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Network meta-analysis of diagnostic test accuracy studies identifies and ranks the optimal diagnostic tests and thresholds for healthcare policy and decision making

    Get PDF
    Objective: Network meta-analyses have extensively been used to compare the effectiveness of multiple interventions for healthcare policy and decision-making. However, methods for evaluating the performance of multiple diagnostic tests are less established. In a decision-making context, we are often interested in comparing and ranking the performance of multiple diagnostic tests, at varying levels of test thresholds, in one simultaneous analysis. Study design and setting: Motivated by an example of cognitive impairment diagnosis following stroke, we synthesized data from 13 studies assessing the efficiency of two diagnostic tests: Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA), at two test thresholds: MMSE <25/30 and <27/30, and MoCA <22/30 and <26/30. Using Markov Chain Monte Carlo (MCMC) methods, we fitted a bivariate network meta-analysis model incorporating constraints on increasing test threshold, and accounting for the correlations between multiple test accuracy measures from the same study. Results: We developed and successfully fitted a model comparing multiple tests/threshold combinations while imposing threshold constraints. Using this model, we found that MoCA at threshold <26/30 appeared to have the best true positive rate, whilst MMSE at threshold <25/30 appeared to have the best true negative rate. Conclusion: The combined analysis of multiple tests at multiple thresholds allowed for more rigorous comparisons between competing diagnostics tests for decision making

    Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.

    Get PDF
    BackgroundIndividuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence.MethodsFifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride.ResultsMA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5).ConclusionsThese results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed
    corecore