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Pairwise likelihood estimation for multivariate mixed Poisson
models generated by Gamma intensities

Florent Chatelain · Sophie Lambert-Lacroix ·
Jean-Yves Tourneret

Abstract Estimating the parameters of multivariate mixed
Poisson models is an important problem in image process-
ing applications, especially for active imaging or astronomy.
The classical maximum likelihood approach cannot be used
for these models since the corresponding masses cannot be
expressed in a simple closed form. This paper studies a max-
imum pairwise likelihood approach to estimate the parame-
ters of multivariate mixed Poisson models when the mix-
ing distribution is a multivariate Gamma distribution. The
consistency and asymptotic normality of this estimator are
derived. Simulations conducted on synthetic data illustrate
these results and show that the proposed estimator outper-
forms classical estimators based on the method of moments.
An application to change detection in low-flux images is
also investigated.
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1 Introduction

Univariate mixed Poisson distributions have received much
attention in statistics and image processing applications (see
for instance Grandell 1997; Goodman 1985, and the refer-
ences therein). These applications include active imaging,
where the image is obtained from a scene illuminated with
laser light (Goudail et al. 2003), or astronomy, where low-
flux images are recorded by using photocounting cameras
(Goodman 1985). A univariate mixed Poisson distribution
is the distribution of a random variable N such that the con-
ditional distribution of N |λ is a Poisson distribution with pa-
rameter λ (denoted as N |λ ∼P(λ)). The parameter λ is also
a random variable (called intensity) whose distribution is re-
ferred to as structure distribution (Grandell 1997) or mix-
ing distribution. When λ has an absolutely continuous dis-
tribution defined on R

+ (whose probability density function
(pdf) is denoted as f1(λ)), the probability masses of N can
be written:

P(N = n) =
∫ ∞

0
P(N = n|λ)f1(λ)dλ

=
∫ ∞

0

λn

n! exp (−λ)f1(λ)dλ. (1)

Multivariate extensions of mixed Poisson distributions are
naturally constructed from a joint intensity pdf fd(λ) de-
fined on R

d+. The corresponding masses of the d-multi-
variate variable N = (N1, . . . ,Nd), can be computed as fol-
lows:

P(N = n) =
∫

R
d+

· · ·
∫ d∏

�=1

(λ�)
n�

n�! exp (−λ�)fd(λ)dλ, (2)

where n = (n1, . . . , nd) and λ = (λ1, . . . , λd). Some prop-
erties of multivariate mixed Poisson distributions (MMPDs)
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have been recently reported in Karlis and Xekalaki (2005)
and Ferrari et al. (2007). For instance, conditions ensuring
that MMPDs belong to an exponential family have been de-
rived. These conditions ensure that the parameters of MM-
PDs can be estimated easily using the maximum likelihood
(ML) principle. Unfortunately, they are not satisfied in prac-
tical image processing applications. As a consequence, esti-
mating the parameters of MMPDs is still a challenging prob-
lem.

Chatelain et al. (2006) recently studied methods of mo-
ments to estimate the parameters of MMPDs. However, like-
lihood based methods are often preferred since they usually
provide estimates with lower variances. Additional reasons
for preferring likelihood-type inference to the method of
moments include the invariance to reparameterization and
the better performance of likelihood ratio test statistics with
respect to Wald-type statistics. This paper studies a maxi-
mum composite likelihood (MCL) approach to estimate the
parameters of MMPDs when the mixing distribution is a
multivariate Gamma distribution. A composite likelihood
(CL) is a weighted sum of likelihoods associated to mar-
ginal or conditional events. The concept of CL has been
widely studied in the literature (see Cox and Reid 2004;
Zhao and Joe 2005; Varin 2008, and the references therein)
since the seminal paper of Lindsay (1988). Usual CLs in-
clude the composite marginal likelihood, the pairwise likeli-
hood (Lindsay 1988) and the Besag’s pseudolikelihood (Be-
sag 1974). The maximum composite likelihood estimator
(MCLE) is obtained by maximizing the corresponding CL.
The advantage of using a CL instead of a standard likelihood
is to reduce the computational complexity of the optimiza-
tion procedure. As a consequence, it allows one to handle
very complex models, even if the full likelihood cannot be
expressed in a closed form. This is the case when multivari-
ate mixed Poisson distributions are studied since the corre-
sponding joint masses cannot be generally computed easily
by using (2).

This paper is organized as follows: Section 2 presents
some important results on MMPDs. Section 3 introduces the
maximum pairwise likelihood estimator (MPLE) which will
be considered in this paper. The consistency and asymptoti-
cal normality of the proposed MPLE are also demonstrated.
Simulation results on synthetic data are provided in Sect. 4.
These simulations clearly show the advantage of the MPLE
with respect to moment estimators. Section 5 addresses the
important problem of detecting changes in synthetic aper-
ture radar (SAR) images. The correlation coefficient of pix-
els belonging to images affected by a natural disaster is esti-
mated by the maximum pairwise likelihood (MPL) method.
A comparison of this estimate with an appropriate threshold
(depending on the level of significance of the test) allows
one to detect whether a given pixel has been affected by the
disaster. The proofs of theorems are reported in Appendices.

2 MMPDs with multivariate Gamma mixing
distributions

An MMPD with multivariate Gamma mixing distribution is
defined by the masses (2), where fd(λ) is the pdf associated
to a multivariate gamma distribution. For any L ≥ 0 and for
any affine polynomial P(z),1 a multivariate Gamma distri-
bution on R

d+ with shape parameter L and scale parameter
P(z), denoted as λ ∼ γL,P , is defined through its Laplace
transform (see Bernardoff 2006):

LγL,P
(z) = E

(
e−zT λ

)
= [P(z)]−L, (3)

on an appropriate domain of existence, with the obvious
condition P(0) = 1. The main properties of multivariate
gamma distributions have been reported in several recent
studies including Bernardoff (2006), Chatelain et al. (2007),
Ferrari et al. (2007). In particular, all marginal distributions
of λ are multivariate gamma distributions. The moment gen-
erating function of an MMPD N expresses as (Ferrari et al.
2007):

GN (z) = E

(
d∏

k=1

z
Nk

k

)
= E

(
d∏

k=1

E(z
Nk

k |λk)

)

= E

(
d∏

k=1

exp [−λk(1 − zk)]

)
(4)

= LγL,P
(1 − z1, . . . ,1 − zd) (5)

= [P(1 − z1, . . . ,1 − zd)]−L, (6)

where LγL,P
(z) is the Laplace transform of the intensity dis-

tribution defined in (3) (note that the generating function of
a Poisson distribution has been used to obtain (4)). Since
P(1 − z1, . . . ,1 − zd) is an affine polynomial, the results
of Bernardoff (2003) allow one to conclude that the dis-
tribution of N is a negative multinomial distribution. This
multinomial distribution is fully characterized by the affine
polynomial P(z) and by the shape parameter L. This re-
sult is an extension of the following well known property:
a mixed Poisson distribution generated by a gamma intensity
is a negative binomial distribution (see, for instance, John-
son et al. 1993, Chap. 8, p. 328).

Bivariate mixed Poisson distributions correspond to the
particular case d = 2 and will be used intensively in this pa-
per. When d = 2, the affine polynomial defining the Laplace
transform of (λ1, λ2) can be written as P(z1, z2) = 1 +
p1z1 +p2z2 +p12z1z2. Straightforward computations allow

1A polynomial P (z) with respect to z = (z1, . . . , zd ) is said to be affine
if the one variable polynomial zj �→ P (z) can be written as A(−j)zj +
B(−j) (for any j = 1, . . . , d), where A(−j) and B(−j) are polynomials
of zi ’s with i �= j .



one to express the generating function of N = (N1,N2) as
follows:

GN (z1, z2) =
[

(1 − a)(1 − b) − c

1 − az1 − bz2 + (ab − c)z1z2

]L

, (7)

where

a = p1 + p12

1 + p1 + p2 + p12
,

b = p2 + p12

1 + p1 + p2 + p12
, (8)

c = p1p2 − p12

(1 + p1 + p2 + p12)2
.

In the bivariate case, there are necessary and sufficient con-
ditions regarding p1,p2,p12 ensuring that [P(z)]−L is the
Laplace transform of a probability distribution defined on
[0,∞[2:

p1 > 0, p2 > 0, p12 > 0, p1p2 − p12 ≥ 0.

(9)

Moreover, the set of triplets (a, b, c) defined above belongs
to the following set:

Δ = {(a, b, c) ∈ [0,1[3, (1 − a)(1 − b) − c > 0}. (10)

It is important to note that the set Δ defined above corre-
sponds to the necessary and sufficient conditions for which
the expression (7) is the generating function of a bivariate
negative multinomial distribution (see Appendix A). In the
bivariate case, the distribution of N = (N1,N2) is character-
ized by the affine polynomial coefficients (p1,p2,p12) and
the shape parameter L, or equivalently by (a, b, c,L). The
appropriate parameterization depends on the application and
will be discussed in Sects. 4 and 5.

Of course, closed form expressions for the masses de-
fined in (2) are generally difficult to obtain. However, in
the bivariate case, a tractable expression of these probability
masses is given by the following theorem:

Theorem 1 The probability masses of a bivariate negative
multinomial distribution N = (N1,N2) are

P(N1 = m,N2 = n)

= ambn [(1 − a)(1 − b) − c]L
min(m,n)∑

k=0

C
m,n
L,k

(
c

ab

)k

,

for (m,n) ∈ N
2, where

C
m,n
L,k = (L)k

k!
(L + k)m−k

(m − k)!
(L + k)n−k

(n − k)! ,

and (p)k is the Pochhammer symbol such that (p)0 = 1 and
(p)k+1 = (p + k)(p)k for any positive integer k.

The proof of this theorem is given in Appendix B. Note
that this result allows one to obtain tractable expressions for
the joint probabilities of the pair (Nk,Nl), 1 ≤ k < l ≤ d as-
sociated to an MMPD N . This property will be used for es-
timating the parameters of MMPDs using an MPL method.
It is also interesting to note that similar derivations could
be used to derive higher order marginal distributions of N .
However, the masses of Nk1, . . . ,Nkl

with (k1, . . . , kl) ∈ N
l ,

l > 2, are expressed as functions of (l − 1)-dimensional
summations whose computational complexity is an increas-
ing function of l.

3 Maximum pairwise likelihood method

Let N i = (Ni
1, . . . ,N

i
d), i = 1, . . . , n, be an independent

sample of the d-multivariate random vector N distrib-
uted according to an MMPD generated with a multivari-
ate Gamma mixing distribution γL,P . We assume that the
affine polynomial P is parameterized by an unknown pa-
rameter vector θ0. The definition of θ0 is very problem de-
pendent and will be explained carefully in Sect. 4. We de-
note by p(n, θ0), n ∈ N

d , the joint probability of N , and by
pk,l(nk, nl, θ0), (nk, nl) ∈ N

2, 1 ≤ k < l ≤ d, the joint prob-
ability of the pair (Nk,Nl). This section studies an MPLE
of θ0 based on the n-sample (N1, . . . ,Nn). After recalling
the principle of MCL methods, we establish the asymptotic
properties of the resulting estimator.

3.1 MCL methods

MCL methods are interesting estimation methods which can
be used when the standard maximum likelihood estimator
(MLE) is difficult to implement. To construct a CL, one
starts with a set of conditional or marginal events for which
the likelihood is tractable. The choice of these events is mo-
tivated by the following two points: (1) the CL method must
identify all the parameters, and (2) the loss of efficiency of
the MCL estimators should be acceptable and balanced by
the computational ease.

Since it is difficult here to have a tractable expression
of the joint masses p(n, θ) in terms of θ for n ∈ N

d , we
propose to estimate θ by using the probabilities of the
pairs (Nk,Nl), for 1 ≤ k < l ≤ d . These probabilities have
tractable expressions provided by Theorem 1. We define the
pairwise log-likelihood (PL) of the random vector N as

l(n, θ) =
∑

1≤k<l≤d

logpk,l(nk, nl, θ). (11)



The MPLE θ̂n is the value of θ which minimizes

Un(θ) = −1

n

n∑
i=1

l(N i , θ). (12)

Applications of MPL methods are numerous in multivariate
statistics. These applications include the analysis of corre-
lated binary data (Le Cessie and Van Houwelingen 1994;
Kuk and Nott 2000), binary spatial data (Heagerty and Lele
1998) and random set models for binary images (Nott and
Rydén 1999). More recent applications include serially cor-
related count data (Henderson and Shimakura 2003), esti-
mation of recombination rates from pairs of loci in gene se-
quences (Fearnhead 2003), stochastic geometry for a variety
of spatial point process (Guan 2006) and analysis of ordinal
categorical time series (Varin and Vidoni 2006). Cox and
Reid (2004) also considered the case of a fixed sample size
n and provided conditions for the consistency of the MPL
estimators when the dimension d of the vectors, and thus the
number of pairs, increases. Note that these conditions are not
satisfied in our application where the vector size is fixed (to
the number of images) and where the sample size increases
(when the size of the estimation window increases).

Many other CL functions have been considered in the
statistical literature (Lindsay 1988; Cox and Reid 2004;
Varin 2008). These CL include the composite marginal log-
likelihood and the pseudo log-likelihood whose main prop-
erties are recalled below.

− The composite marginal log-likelihood

lmarg(n; θ) =
∑

1≤j≤n

log Pr(Nj = nj )

is the sum of the log-likelihoods associated to the univari-
ate marginal distributions. The composite marginal log-
likelihood is generally easy to compute. It corresponds
to the full likelihood when the different components of
N are independent. Consequently, this CL does not con-
tain any information regarding the dependence structure
between the marginal distributions of N . The composite
marginal log-likelihood is not appropriate to the change
detection problem since we are precisely trying to esti-
mate correlations between the pixels of different images.
An hybrid method based on both univariate composite
marginal and pairwise log-likelihoods was recently pro-
posed in Kuk (2007). A two-stage iterative procedure
was proposed for estimating jointly the parameters of the
marginal distributions, and the parameters associated to
the correlation structure between the pairs. This method
improved the performance of the marginal parameter es-
timators with respect to the corresponding pairwise like-
lihood estimators. However, no significant improvement
was observed for the correlation parameters. This hybrid

approach was not considered in this paper since we are
precisely trying to estimate the correlation coefficients
for image change detection.

− The pseudo log-likelihood: Besag (1974) introduced an-
other famous variety of composite log-likelihood, of-
ten referred to as Besag’s pseudo log-likelihood or just
pseudo log-likelihood, defined by:

lBesag(n; θ) =
∑

1≤j≤n

log P(Nj = nj |N [j ]),

where N [j ] denote all the components of N except the
j th one. The probability P(Nj = nj |N [j ]) provides the
distribution of the j th component of N conditioned
upon the other components of N . This composite log-
likelihood has been introduced for the analysis of lattice
data and has received much attention for Markov ran-
dom fields (see for instance Huang and Ogata 2002). In
the case of Markov random fields, the pseudo-likelihood
has a tractable closed-form expression, up to a normal-
izing constant. The original pseudo-likelihood has been
extended to spatial point processes in Besag (1977) and
Besag et al. (1982). Pseudo-likelihood estimators for spa-
tial point processes have then been studied from both a
theoretical (Jensen and Moller 1991; Jensen and Kun-
sch 1994) and a practical (Baddeley and Turner 2000;
Mateu and Montes 2001) point of view. However there is
no simple tractable expression for the pseudo-likelihood
of MMPDs (contrary to the pairwise log-likelihood),
which precludes its use for our image change detection
problem.

Based on the above discussion, the rest of this paper focuses
on the MPLE for the parameters of MMPDs.

3.2 Asymptotic properties

This section studies the consistency and asymptotical nor-
mality of the MPLE θ̂n for the model introduced above, i.e.
for an MMPD with multivariate Gamma mixing distribution
parameterized by L and θ0. These asymptotic properties are
derived in the particular case where L is known. This as-
sumption is in agreement with the image processing appli-
cation considered in Sect. 5.

Assumptions

1. The space parameter Θ is a compact subset of R
p . The

point θ0 belongs to the interior of the space Θ .
2. Let Fk,l be functions from Θ to Δ = {(a, b, c) ∈ [0,1[3;

(1 − a)(1 − b) > c} that give the relation between θ

and (ak,l, bk,l, ck,l), 1 ≤ k < l ≤ d. The function F(θ) =
(F1,2(θ)T , . . . ,Fd−1,d (θ)T )T is an injective map from Θ

to Δd(d−1)/2.
3. The functions Fk,l are twice continuously differentiable.



Theorem 2 The maximum pairwise log-likelihood esti-
mator θ̂n converges almost surely to θ0. Furthermore√

n(̂θn − θ0) converges in distribution to a centered normal
distribution with covariance matrix equal to IU (θ0)

−1 ×
ΓU(θ0)IU (θ0)

−1, where

IU (θ0)u,v=1,...,p

= −
∑

1≤k<l≤d

Eθ0

(
∂

∂θu

logpk,l(Nk,Nl, θ0)

× ∂

∂θv

logpk,l(Nk,Nl, θ0)

)
,

and

ΓU(θ0)u,v=1,...,p

= Eθ0

( ∑
1≤k<l≤d

∂

∂θu

logpk,l(Nk,Nl, θ0)

×
∑

1≤r<s≤d

∂

∂θv

logpr,s(Nr,Ns, θ0)

)
,

and where the subscript U means that the corresponding
matrices depend on the negative pairwise log-likelihood de-
fined in (12).

Note that the matrix −IU (θ0) is the sum of Fisher in-
formation matrices associated to the pairs (Nk,Nl). For the
MLE of θ0, the matrix ΓU(θ0) reduces to IU (θ0). However,
this is not the case for the proposed MPLE. Theorem 2 has
been proved by showing that the first and second order mo-
ments of a bivariate negative multinomial distribution exist
and are finite, and by using the results of Dacunha-Castelle
and Duflo (1984) (see Appendix C). An alternative to prove
Theorem 2 would be to use the results of van der Vaart
(1998) and Molenberghs and Verbeke (2006) for negative
multinomial distributions.

4 Effectiveness of the proposed MPL method

Many simulations have been conducted to validate the previ-
ous theoretical results. This section studies the performance
of the MPLE of θ0 for synthetic data.

4.1 Generation of MMPDs

We first consider MMPDs which have been used to model
longitudinal count data on patient-controlled analgesia in
Henderson and Shimakura (2003). However, it is important
to note that the asymptotic properties of the resulting MPLE
were not provided in Henderson and Shimakura (2003). The
generation of random vectors distributed according to MM-
PDs has been performed as follows:

− Simulate 2L independent multivariate centered Gaussian
vectors of R

d denoted as X1, . . . ,X2L with the following
d × d covariance matrix:

C = (
ci,j

)
1≤i,j≤d

= σ

2

(
ρ

|i−j |
2

)
1≤i,j≤d

,

where σ/2 is the variance of each component of
Xi (σ > 0) and ρ is the correlation coefficient between
any pair of components extracted from Xi .

− Compute the kth component of the intensity vector as
λk = ∑

1≤i≤2L(Xi
k)

2, where Xi
k is the kth component

of Xi .

The random vector λ = (λ1, . . . , λd) generated above is
distributed according to a multivariate Gamma distribution
whose margins are univariate Gamma distributions γL,σ .
Moreover the pair (λk, λl) is distributed according to a bi-
variate gamma distribution with shape parameter L and the
following scale parameter:

P C
k,l(zk, zl) = 1 + σzk + σzl + σ 2(1 − ρl−k)zkzl,

1 ≤ k < l ≤ d. (13)

Indeed, since the vectors Xi ∼ N (0,C) are mutually inde-
pendent for all 1 ≤ i ≤ 2L, a classical result (see for instance
Muirhead 1982) states that the matrix

A =
2L∑
i=1

Xi
(
Xi

)T

is distributed according to a Wishart distribution with
Laplace transform

LA(S) = E
(
e−tr(SA)

)= det (I d + 2SC)−L , (14)

for all symmetric matrix S such that I d + 2SC is definite
positive, where I d is the identity matrix of size d × d and
tr (·) is the matrix trace. By noting that the vector λ is the
diagonal of the Wishart matrix A and by using the relation:

tr (SzA) =
d∑

i=1

ziAii = zT λ,

where Sz denotes the following d × d diagonal matrix:

Sz =
⎛
⎜⎝

z1

0
. . . 0

zd

⎞
⎟⎠ ,

the Laplace transform of λ can be finally expressed as:

E
[
e−zT λ

]= [
det (I d + 2CSz)

]−L
.



The multilinearity property of the determinant ensures that
the function z �→ det(I d+ 2CSz) defines an affine poly-
nomial with respect to z, denoted as P C(z). Consequently,
thanks to the definition (3), the vector λ is distributed ac-
cording to a multivariate gamma distribution with shape pa-
rameter L and scale parameter P C . Furthermore, the distrib-
ution of (λk, λl) is a bivariate gamma distribution with shape
parameter L. The corresponding affine polynomial denoted
as P C

k,l is obtained by setting to zero all the zi ’s such that

i �= k, l in P C(z). By expanding the determinant all along
its columns i �= k, l, the following result is obtained:

P C
k,l(zk, zl) =

∣∣∣∣ 1 + σzk σρ(l−k)/2zl

σρ(l−k)/2zk 1 + σzl

∣∣∣∣
= 1 + σzk + σzl + σ 2(1 − ρl−k)zkzl, (15)

for all 1 ≤ k < l ≤ d . Note that the first moments of
(X1,X2) ∼ γL,P can be obtained as follows:

E(Xi) = Lpi, Var (Xi) = Lp2
i , for i ∈ {1,2},

Cov (X1,X2) = L(p1p2 − p12) .
(16)

These last properties and (15) can be used to show that the
covariance between λk and λl is cov(λk, λl) = Lσ 2ρl−k for
all 1 ≤ k < l ≤ d . It is then possible to generate the MMPD
vector N conditionally upon λ, since N |λ ∼P(λ).

4.2 Estimation (known shape parameter L)

The MMPDs introduced in the previous section are para-
meterized by the shape parameter L and by θ = (σ 2, ρ)T .
This section assumes that the shape parameter L is known.
This is a classical assumption in synthetic aperture radar
(SAR) imagery since L corresponds to the so-called num-
ber of looks which is known by the radar (see for instance
Oliver and Quegan 1998, p. 93). When L is known, the con-
vergence and asymptotic normality of the maximum pair-
wise log-likelihood estimator of θ = (σ 2, ρ)T are guar-
antied by Theorem 2. Indeed, there is a functional rela-
tion between θ = (σ 2, ρ)T and (ak,l, bk,l, ck,l) denoted as
Fk,l(θ) = (ak,l, bk,l, ck,l)

T , where

ak,l = bk,l = σ + σ 2(1 − ρl−k)

1 + 2σ + σ 2(1 − ρl−k)
,

ck,l = σ 2ρl−k

(1 + 2σ + σ 2(1 − ρl−k))2
.

(17)

For all θ = (σ 2, ρ) ∈ Ξ = ]0,+∞[ × [0,1[ ⊂ R
p , the func-

tion Fk,l(θ) = (ak,l, bk,l, ck,l)
T takes its values in Δ defined

in (10). Moreover from (17), it is easy to show that Fk,l is
a twice continuously differentiable injective map from Ξ to
Δ for all 1 ≤ k < l ≤ d .

Note that the MPLE defined by (12) and (11) (which
will be used in our simulations) corresponds to a uniform
weighting between the different pairwise log-likelihoods.
However, it would be possible to introduce a set of weights
(ωk,l)1≤k<l≤d modifying the pairwise log-likelihood as fol-
lows:

l(n, θ) =
∑

1≤k<l≤d

ωk,l logpk,l(nk, nl, θ).

Such weighting can be recommended to mitigate the influ-
ence of pairs between non-neighboring observations (which
should be less informative on the correlation structure in
the framework of spatial data). This strategy might also re-
duce the optimization complexity in particular applications.
Nott and Rydén (1999) have proposed an optimal weight-
ing strategy for the MPL method. These weights depend on
the theoretical values of the parameters and thus have to be
estimated. This estimation is achieved by a bootstrap based
algorithm due to Hall and Jing (1996), namely the window
subsampling method. However such method appears com-
putationally prohibitive in our image processing applica-
tions, since it has to be applied to each pixel of the image
(whose size is 200 × 100 in our simulations). As a conse-
quence, only simple weighting strategies are investigated in
this section. Moreover, we will show that weighting does not
provide significant performance improvement in our simula-
tions, especially for the change detection problem. The opti-
mization procedure used to minimize the negative pairwise
log-likelihood is the direct geometrical Nelder Mead Sim-
plex method (MATLAB function fminsearch.m).

In order to appreciate the interest of the proposed MPL
method, the unknown parameters σ 2 and ρ have also been
estimated by the classical method of moments. This method
is based on the following equations, derived from the ex-
pression of MMPD moments as function of the intensity
moments (Ferrari et al. 2004) and equations (15, 16):

E [Ni] = Lσ, ∀1 ≤ i ≤ d,

Cov(Ni,Nj ) = Lσρ|i−j |, ∀1 ≤ i �= j ≤ d.

The first equation allows us to estimate σ whereas the para-
meter ρ can be estimated from the covariances Cov(Ni,Nj ).
Note that several methods of moments have been imple-
mented to estimate ρ. Methods of moments based on all
the pairs (Ni,Nj )1≤i<j≤d do not yield better estimation
than estimates constructed only from the lag-one pairs
(Ni,Ni+1)1≤i≤d−1. This can be explained by the fact that
non-neighboring observations are less informative in our
model. As a result, giving too much importance to non-
neighboring pairwise leads to bad estimations. An alterna-
tive is to compute a weighted least squares estimator, whose
weights are defined from the inverse covariance matrix of



Table 1 Simulation results for the estimation of θ = (σ 2, ρ) obtained from 1000 Monte Carlo runs (σ 2 = 2, ρ = 0.8 and L = 4)

n σ 2 ρ

bias std MSE bias std MSE

50 MPLE −1.80e−03 2.22e−01 4.93e−02 −7.72e−03 4.47e−02 2.06e−03

Mom −1.63e−03 2.23e−01 4.96e−02 −2.21e−02 1.49e−01 2.27e−02

100 MPLE 1.91e−03 1.44e−01 2.08e−02 −3.99e−03 3.15e−02 1.01e−03

Mom 1.94e−03 1.45e−01 2.10e−02 −1.10e−02 1.08e−01 1.17e−02

300 MPLE 1.95e−03 8.59e−02 7.37e−03 −1.33e−03 1.83e−02 3.35e−04

Mom 1.97e−03 8.61e−02 7.41e−03 −3.97e−03 6.10e−02 3.73e−03

500 MPLE 1.98e−03 6.45e−02 4.17e−03 −1.24e−04 1.37e−02 1.88e−04

Mom 1.95e−03 6.47e−02 4.19e−03 2.87e−04 4.64e−02 2.15e−03

1000 MPLE 3.00e−03 4.66e−02 2.18e−03 −4.71e−04 9.47e−03 8.98e−05

Mom 3.07e−03 4.67e−02 2.19e−03 3.60e−04 3.27e−02 1.07e−03

5000 MPLE 1.09e−03 2.06e−02 4.23e−04 −1.08e−04 4.30e−03 1.85e−05

Mom 1.09e−03 2.06e−02 4.26e−04 −1.28e−05 1.49e−02 2.21e−04

Fig. 1 log MSEs for parameter σ 2 (“MPLE”: Maximum Pairwise
likelihood estimator, “Moment”: Moment estimator)

first and second order moments (the reader is invited to con-
sult Chatelain et al. 2006, for more details). However, no
significant improvement has been observed with this strat-
egy. As a consequence, this paper will focus on the moment
estimator based on lag-one pairs (Ni,Ni+1)1≤i≤d−1.

The empirical bias, standard deviations (“std”) and mean
square errors (MSEs) of the estimated parameters σ 2 and
ρ are reported in Table 1 for a correlation structure ρ = 0.8
and for different sample sizes n. The number of Monte Carlo
runs is 1000. The other parameters for this example are
σ 2 = 2, L = 4 (shape parameter) and d = 12 (dimension of
the observations). Figures 1 and 2 also show the log MSEs
of the estimated parameters σ 2 and ρ as a function of the
logarithm of the sample size n (logarithmic scales are pre-

Fig. 2 log MSEs for parameter ρ (“MPLE”: Maximum Pairwise like-
lihood estimator, “Moment”: Moment estimator)

ferred since the log MSEs are classically linear functions
of log(n)). The circle curve corresponds to the estimator
of moments whereas the triangle curve corresponds to the
MPLE. Figure 1 shows that the performances obtained with
both methods are similar for the estimation of σ 2. However
the MPL approach is much more efficient for the estima-
tion of ρ as illustrated in Fig. 2. The theoretical asymptotic
log variances of the MPLE provided by Theorem 2 are also
displayed in Figs. 1 and 2. Note that all mathematical ex-
pectations appearing in this theorem have been computed by
Monte Carlo averages for the true values of the parameters.
These theoretical asymptotic variances are clearly in good
agreement with the empirical MSEs, computed from 1000
Monte Carlo runs, for large values of n.



Fig. 3 Frequency polygon and theoretical asymptotic frequency dis-
tribution (denoted respectively as “Estimate” and “Theory”) of σ̂ 2 with
95% confidence intervals

Fig. 4 Frequency polygon and theoretical asymptotic frequency dis-
tribution (denoted respectively as “Estimate” and “Theory”) of ρ̂ with
95% confidence intervals

The frequency polygon of the estimates ρ̂ and σ̂ 2 are dis-
played in Figs. 3 and 4, as well as the theoretical asymptotic
distribution (dashed line) and 95% confidence intervals. The
frequency polygon is based on the histogram estimates ob-
tained from 1000 Monte Carlo runs with 50 bins (the other
parameters are n = 5000 and ρ = 0.8). This polygon con-
nects the midpoints at the top of the bars of the histogram
with line segments. Confidence intervals are obtained by
noting that the number of estimates belonging to each bin
of the histogram is distributed according to a binomial dis-
tribution B(N,p), where N is the total number of estimates
(i.e. the number of Monte Carlo runs in this simulation) and
p is the theoretical probability that an estimate belongs to
the considered bin. By using the theoretical asymptotic nor-
mality of the MPLE (see Theorem 2), confidence bounds are
then obtained for each bin thanks to the Clopper-Pearson ex-

Fig. 5 Logarithm of the asymptotic variance for the weighted MPLE
of ρ vs. the maximal lag τ between the considered pairs

pression for calculating exact binomial confidence intervals
(Leemis and Trivedi 1996). These figures show that the as-
ymptotic Gaussian distribution derived in Theorem 2 is very
close to its estimation for this sample size.

The last experiments study the performance of the MPLE
as a function of the number of neighbors considered in the
PL. Figure 5 shows the logarithm of the MPLE asymptotic
theoretical variance versus the maximal lag τ when the like-
lihoods of the following neighboring pairs (Ni,Nj )|i−j |≤τ

are considered in the PL. Considering these lags is equiva-
lent to introduce dummy weights: these weights are zero for
the non-neighboring pairs, and 1 for the neighboring pairs.
As expected, the MPLE performance for ρ first increases
when the number of considered pairs increases. However,
the performance slightly decreases after an extremum (ob-
tained for τ = 5 in this simulation). This simulation em-
phasizes that non-neighboring observations are less infor-
mative in our model and can deteriorate the estimation per-
formance. Moreover the gain obtained in using only neigh-
boring observations is not very important and should be bal-
anced with the computational cost to estimate the optimal
set of weights, as proposed for example in Nott and Rydén
(1999).

4.3 Estimation (unknown shape parameter L)

This section presents some simulation results obtained for
the joint estimation of θ = (L,σ 2, ρ)T . Note that Theo-
rem 2 does not apply here since the shape parameter L is
unknown. As previously, to appreciate the interest of the
proposed MPL method, the unknown parameters σ 2, ρ and
L have also been estimated by the classical method of mo-
ments. This method is based on the following equations,
derived from the expression of MMPD moments as func-
tion of the intensity moments (Ferrari et al. 2004) and equa-
tions (15, 16):

E [Ni] = Lσ, ∀1 ≤ i ≤ d,



Fig. 6 log MSEs for parameter σ 2 (“MPLE”: Maximum Pairwise
likelihood estimator, “Moment”: moment estimator)

Fig. 7 log MSEs for parameter ρ (“MPLE”: Maximum pairwise like-
lihood estimator, “Moment”: Moment estimator)

Var [Ni] = Lσ(1 + σ), ∀1 ≤ i ≤ d,

Cov(Ni,Nj ) = Lσ 2ρ|i−j |, ∀1 ≤ i �= j ≤ d.

The first and second equations allow us to estimate L and
σ whereas the parameter ρ can be estimated from the co-
variances Cov(Ni,Nj ). This section focuses on the lag-one
pairs (Ni,Ni+1)1≤i≤d−1 as previously.

Figures 6, 7 and 8 show the MSEs of the estimated pa-
rameters σ 2, ρ and L, for a correlation structure ρ = 0.8,
as a function of the sample size n. The number of Monte
Carlo runs is 1000. The other parameters for this example
are L = 4, σ 2 = 2 and d = 12. The circle curve corresponds
to the estimator of moments whereas the triangle curve cor-
responds to the MPLE. The empirical bias, standard devia-
tions (“std”) and MSEs are also reported in Table 2. These
results illustrate the interest of the MPL approach, which
is much more efficient for this problem than the method of
moments for the three parameters σ 2, ρ and L.

Fig. 8 log MSEs for parameter L (“MPLE”: Maximum Pairwise like-
lihood estimator, “Moment”: Moment estimator)

Note that the optimization procedure used for the maxi-
mization of the PL does not yield necessarily integer values
for L. However, it has been observed that non integer values
of L can be appropriate when the averaged images (looks)
are correlated. This remark has even motivated the defini-
tion of an equivalent number of looks (see Oliver and Que-
gan 1998, p. 95). The proposed estimation strategy (which
allows one to estimate the parameter L) can be useful in this
context.

5 Application to change detection in real radar images

5.1 Change detection problem

This section considers a fundamental problem in image
processing referred to as change detection problem. Con-
sider several coregistered images acquired at different dates
before and after a change, here a natural disaster. The ob-
jective of change detection is to produce a map representing
the changes affecting the scene due to this natural disaster.
This paper considers three one look (i.e. L = 1) 200 × 100
low-flux images displayed in Fig. 9: a reference image I of
the Nyiragongo volcano in Congo before an eruption and
two secondary images J and K of the same scene acquired
after the eruption. Figure 9(d) indicates the pixels of the im-
age which have been affected by the eruption (white pixels).
These images have been obtained from real power radar im-
ages corresponding to low-flux scenarios. Low-flux scenar-
ios correspond to very short exposure times or images with
low intensity objects (to be detected). In this case, the image
intensities cannot be measured directly. Thus, the observed
data are the numbers of photons collected at each pixel of the
image (Goudail et al. 2003). The distribution of these num-
bers of photons is classically a mixed Poisson distribution.
In the case of power radar images, it is well known that the



Table 2 Simulation results for the estimation of θ = (σ 2, ρ,L) ob-
tained from 1000 Monte Carlo runs (σ 2 = 2, ρ = 0.8 and L = 4)

n σ 2

bias std MSE

50 MPLE −1.35e−02 3.33e−01 1.11e−01

Mom −8.55e−02 6.37e−01 4.12e−01

100 MPLE −3.60e−03 2.33e−01 5.43e−02

Mom −4.98e−02 4.48e−01 2.03e−01

300 MPLE 6.20e−03 1.34e−01 1.81e−02

Mom −1.60e−02 2.58e−01 6.66e−02

500 MPLE 9.81e−03 1.01e−01 1.04e−02

Mom −4.87e−03 2.02e−01 4.09e−02

1000 MPLE 9.53e−03 7.66e−02 5.95e−03

Mom 2.03e−03 1.46e−01 2.12e−02

5000 MPLE 3.34e−03 3.37e−02 1.15e−03

Mom 1.43e−03 6.33e−02 4.01e−03

n ρ

bias std MSE

50 MPLE −4.28e−03 4.41e−02 1.96e−03

Mom 5.61e−02 1.49e−01 2.53e−02

100 MPLE −2.58e−03 3.01e−02 9.10e−04

Mom 3.30e−02 1.01e−01 1.14e−02

300 MPLE −3.03e−04 1.63e−02 2.65e−04

Mom 9.27e−03 5.44e−02 3.04e−03

500 MPLE 5.50e−04 1.30e−02 1.69e−04

Mom 5.15e−03 4.08e−02 1.69e−03

1000 MPLE 1.02e−03 9.66e−03 9.43e−05

Mom 1.98e−03 3.02e−02 9.16e−04

5000 MPLE 4.67e−04 4.24e−03 1.82e−05

Mom 5.98e−04 1.29e−02 1.66e−04

n L

bias std MSE

50 MPLE 5.59e−02 4.06e−01 1.68e−01

Mom 2.44e−01 6.66e−01 5.02e−01

100 MPLE 3.25e−02 2.81e−01 7.98e−02

Mom 1.34e−01 4.57e−01 2.27e−01

300 MPLE 4.12e−03 1.51e−01 2.27e−02

Mom 4.19e−02 2.46e−01 6.23e−02

500 MPLE −3.05e−03 1.16e−01 1.35e−02

Mom 2.04e−02 1.90e−01 3.64e−02

1000 MPLE −5.56e−03 8.48e−02 7.22e−03

Mom 5.85e−03 1.37e−01 1.87e−02

5000 MPLE −8.95e−04 3.56e−02 1.27e−03

Mom 1.60e−03 6.01e−02 3.61e−03

intensities are marginally distributed according to gamma
distributions (Oliver and Quegan 1998, p. 95). Therefore,
multivariate gamma distributions seem good candidates to
model the distribution of intensities collected at a given lo-
cation in the three images (see Chatelain et al. 2007, 2008).
By using this multivariate gamma distribution as mixing dis-
tribution in (2), the joint distribution of the numbers of pho-
tons received in the three images at a given location is an
MMPD whose margins are negative multinomial distribu-
tions according to Sect. 2.

Change detection algorithms produce an indicator of
change for each pixel location. For each pixel location, we
observe three numbers of photons denoted as (NI ,NJ ,NK),
where NI is the number of photons corresponding to the ref-
erence image I , and (NJ ,NK) are the numbers of photons
corresponding to the secondary images J and K potentially
affected by the disaster. The detection of a change at a given
pixel location is classically achieved by the following binary
hypothesis test (Radke et al. 2005):

H0 (absence of change),

H1 (presence of change),
(18)

where H0 is the null hypothesis and H1 the alternative hy-
pothesis. The images J and K have been both registered
after the volcano eruption. Thus, it is natural to assume that
the correlation coefficients between the reference image I

and the secondary images J and K , denoted as rIJ and rIK ,
are equal, i.e. rIJ = rIK = r . The presence of a change (hy-
pothesis H1) at a given pixel location can then be detected
by comparing the estimated correlation coefficient r to an
appropriate threshold t . More precisely, the change detec-
tion strategy for a given pixel location can be written

H0 rejected if r̂ < t, (19)

where r̂ denotes the estimated correlation coefficient and
t is a threshold depending of the significance level of the
test (also referred to as probability of false alarm in im-
age processing). As a consequence, the change detection
problem mainly consists of estimating the correlation coef-
ficient locally for each pixel position. Since only one pixel
is available for each image at a given location, the images
are supposed to be locally stationary and ergodic, allowing
us to make estimates using several neighboring pixels. This
neighborhood is the so-called estimation window. A clas-
sical assumption is that the neighbors of a given pixel are
independent and have the same statistical properties. If we
denote as N i = (Ni

I ,N
i
J ,Ni

K) the numbers of photons of
the three images corresponding to the location i, we want
to estimate the correlation coefficient r from n independent
triplets N i , i = 1, . . . , n belonging to the estimation win-
dow. The stationarity and ergodicity assumptions are valid



Fig. 9 Low-flux 200 × 100
radarsat images of the
Nyiragongo volcano before and
after an eruption

for small estimation windows. On the other hand, robust sta-
tistical estimates require a high number of samples. There-
fore, the key point of the estimation of the correlation co-
efficient r is to perform high quality estimates with a small
number of samples n belonging to the estimation window.
This section proposes to estimate r from pixels belonging to
the estimation window using the MPLE strategy studied in
this paper.

5.2 Statistical model for N = (NI ,NJ ,NK)

The intensity vector λ = (λI , λJ , λK)T is supposed to be
distributed according to a multivariate gamma distribution
whose Laplace transform can be written:

Lλ(zI , zJ , zK) = (1 + pI zI + pJ zJ + pKzK + pIJ zI zJ

+ pIJ zI zK + pJKzJ zK

+ pIJKzI zJ zK)−L (20)

(here L = 1). Straightforward computations allow one to ex-
press the correlation coefficient between the images l and m

(denoted as rlm) as functions of pl , pm and plm

rlm = 1 − plm

plpm

, (21)

where (l,m) ∈ {(I, J ), (I,K), (J,K)}. Thus the correlation
between the images l and m is controlled by the parameter
plm = plpm(1−rlm). As explained previously, the images J

and K have been both registered after the volcano eruption.
Thus, it is natural to assume that the correlation coefficients
between the reference image I and the secondary images J

and K are equal, i.e. rIJ = rIK = r . Moreover the Laplace
transform of the pair (NJ ,NK) can be obtained by setting
zI = 0 in the joint Laplace transform (20). It shows that the
distribution of the pair (NJ ,NK) only depends on the para-
meters pJ ,pK and rJK . Since this distribution does not de-
pend on r , which is the parameter of interest for our change

detection problem, this pair is not taken into account in the
PL. Therefore, the studied PL is formed by the likelihood of
the two pairs (NI ,NJ ) and (NI ,NK). This is equivalent to
introducing a dummy weight wJK = 0 in the PL. The ad-
vantage of this strategy is to reduce the computational cost
of the PL evaluation.

The previous statistical model implies that the pairwise
distributions of the intensity vector λ are characterized by
θ = (pI ,pJ ,pK, r)T . It is important to note here that the
correlation structure between the different components of λ

are not proportional to that of an autoregressive process of
order one as in Henderson and Shimakura (2003) since the
pairwise correlation coefficient are identical (rIJ = rIK =
r). Moreover, this remark emphasizes that the two pairs
(NI ,NJ ) and (NI ,NK) have the same importance in or-
der to estimate the parameter r . Therefore a weighting strat-
egy controlling the contributions of each pair in the pairwise
likelihood should not improve the estimation performance.

According to Sect. 2, the joint probabilities of the two
pairs (NI ,NJ ) and (NI ,NK) associated to the MMPD
vector N = (NI ,NJ ,NK)T (whose multivariate mixing
Gamma distribution has been described above) are distrib-
uted according to bivariate negative multinomial distribu-
tions having the same shape parameter L. The parameters of
the affine polynomial corresponding to the pairs (Nl,Nm),
with (l,m) ∈ {(I, J ), (I,K)} can be expressed as follows:

(
al,m, bl,m, cl,m

)T = Flm(θ), (22)

where

al,m = pl + plpm(1 − rl,m)

1 + pl + pm + plpm(1 − rlm)
,

bl,m = pm + plpm(1 − rl,m)

1 + pl + pm + plpm(1 − rlm)
,

cl,m = rlm

(1 + pl + pm + plpm(1 − rlm))2
,

(23)



and where θ = (pI ,pJ ,pK, r)T is the parameter vector to
be estimated. Note that for all θ ∈ Ξ = ]0,+∞[3 × [0,1[,
the function F(θ) = (FIJ (θ)T ,FIK(θ)T ,FJK(θ)T )T takes
its values in Δ2, where Δ is defined in (10). Then from (23),
it is easy to show that F is a twice continuously differen-
tiable injective map from Ξ to Δ3. The convergence and
asymptotic normality of the MPLE of θ are then guaranteed
by Theorem 2.

5.3 Performance of change detection algorithms

In order to appreciate the performance of the detector based
on the MPLE of r , denoted as r̂MPLE, estimators based on the
method of moments are also investigated. More precisely,
we consider the following classical estimator based on em-
pirical averages:

r̂MOM = 1

2

( ∑n
i=1 Ni

IN
i
J − NINJ√∑n

i=1(N
i
I )

2 − N
2
I

√∑n
i=1(N

i
J )2 − N

2
J

+
∑n

i=1 Ni
IN

i
K − NINK√∑n

i=1(N
i
I )

2 − N
2
I

√∑n
i=1(N

i
K)2 − N

2
K

)
,

where n is the size of the estimation window and Nk =
1
n

∑n
i=1 Ni

k is the sample mean, for k = I, J,K .
The MLE of the correlation coefficient based on only two

images, I and J , is also studied in order to appreciate the
gain obtained by using 3 images instead of 2. In the case of
two images, the likelihood reduces to the product of the bi-
variate masses associated with the pairs (Ni

I ,N
i
J )1≤i≤n. The

MLE of r based on two images can be easily computed by
a numerical optimization since a tractable expression of the
bivariate masses is available. It is important to note that the
log-likelihood based on the two images I and J is the term
associated with the pair (NI ,NJ ) in the PL based on the
three images I , J and K . As a consequence, this bivariate

log-likelihood can be seen as a special case of the PL when
the weights associated to the pairs (NI ,NK) and (NJ ,NK)

are zeros.
The detection performance obtained for the three esti-

mators of r analyzed here is studied in terms of their re-
ceiver operating characteristics (ROCs). The ROCs express
the power of the test (also referred to as probability of detec-
tion) π as a function of the significance level α (Van Trees
1968, p. 38) where:

π = P
[
rejecting H0 | H1 is true

]
,

α = P
[
rejecting H0 | H0 is true

]
.

(24)

The ROCs obtained for the MPLE (continuous line), the es-
timator based on the method of moments (dashed line) and
the MLE based on two images (dots) are depicted on Fig. 10
for several estimation window sizes (n = 3 × 3, n = 5 × 5
and n = 7×7). It is important to mention here that the power
of the test π and the level of significance α have been es-
timated for each value of the threshold t by counting the
number of estimates r̂ below t for all pixels of the image
associated to hypotheses H1 and H0 respectively. Note also
that the pixels of the image have been associated to hypothe-
ses H1 and H0 by using the ground truth given by the mask
shown in Fig. 9(d). The performances of the correlation co-
efficient estimators r̂ are reported in Table 3 for the two
classes “Presence of Change” and “Absence of Change”. As
expected, the detector based on the MPLE provides the best
performance. It is interesting to note that the gain in detec-
tion performance when using three images with respect to
two images is less significant for large estimation window
sizes. On the other hand, the MPLE and MLE outperform
the estimators of moments in all cases. In conclusion, one
reviewer mentioned that it would be interesting to extend the
proposed algorithm to more sophisticated models that would
account for spatial correlations among adjacent pixels of the

Table 3 Means and standard
deviations of the estimated
correlation coefficients for the
two classes “Pixels affected by a
change” (white pixels in the
mask shown in Fig. 9(d)) and
“Pixels not affected by a
change” (black pixels in the
mask)

n Pixels affected by a change Pixels not affected by a change

mean std mean std

3 × 3 MPLE 0.355 0.260 0.669 0.181

ML 0.355 0.276 0.661 0.212

Mom 0.286 0.337 0.621 0.242

5 × 5 MPLE 0.332 0.184 0.663 0.108

ML 0.324 0.191 0.658 0.123

Mom 0.314 0.215 0.647 0.147

7 × 7 MPLE 0.338 0.146 0.658 0.084

ML 0.332 0.144 0.654 0.091

Mom 0.327 0.164 0.653 0.113



Fig. 10 ROCs for Nyiragongo
volcano images for different
window sizes

image. The resulting algorithms might improve the change
detection performance.
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Appendix A: Proof of conditions (9)

The necessary conditions (9) are obtained by noting that the
probability masses pm,n = P(N1 = m,N2 = n) expressed in
(1) satisfy 0 ≤ pm,n ≤ 1 for all positive integers m,n.

1. p0,0 = [(1−a)(1−b)−c]L yields (1−a)(1−b)−c > 0.

2. p1,0 = La[(1 − a)(1 − b) − c]L yields a ≥ 0 and b ≥ 0
by symmetry.

3. p1,n = [(1 − a)(1 − b) − c]L (L)n
n! bn−1(Lab + nc) leads

to c ≥ 0. Indeed, for c < 0, Lab + nc would be < 0 for
large values of n.

4. Since pm,0 = ((1 − a)(1 − b) − c)Lam (L)m
m! , we have for

a given value of L > 0, pm,0 > ((1 − a)(1 − b)− c)L am

m
.

This lower bound goes to infinity as m goes to infinity
if a > 1. Moreover the case a = 1 is not possible since
c ≥ 0 and (1 − a)(1 − b) − c > 0. Thus, we have a < 1.
Note that this last constraint implies that b < 1.

Proving that the conditions above are sufficient requires to
show that (1) the coefficients of all the monomials zm

1 zn
2 in

the Taylor series (26), denoted as cm,n, are positive and (2)
their sum is equal to one. Thanks to the conditions (9), it is
obvious that all the coefficients cm,n are positive. Moreover
these conditions ensure that | cz1z2

(1−az1)(1−bz2)
| < 1, |az1| < 1

and |bz2| < 1 for all −1 ≤ z1, z2 ≤ 1. Consequently,
the Taylor series expansion (26) is valid for all (z1, z2)



in [−1,1]2. In particular, we obtain that
∑

m,n≥0 cm,n =
GN (1,1) = 1.

Appendix B: Proof of Theorem 1

From the definition of the generating function, the following
Taylor series expansion with respect to the two variables z1

and z2 is obtained:

GN (z1, z2) =
∑

n1,n2≥0

P(N1 = n1,N2 = n2) z
n1
1 z

n2
2 , (25)

for all −1 ≤ z1, z2 ≤ 1. Thus the probability masses
P(N1 = n1,N2 = n2) can be identified from the Taylor se-
ries expansion of the bivariate negative multinomial gener-
ating function (7). As g(z1, z2) = cz1z2

(1−az1)(1−bz2)
is a con-

tinuous function such that g(0,0) = 0, there exists a non
empty neighborhood of (0,0) denoted by U1 such that
|g(z1, z2)| < 1 for all (z1, z2) in U1. Therefore, for all
(z1, z2) in U1, (7) yields:

[
(1 − a)(1 − b) − c

1 − az1 − bz2 + (ab − c)z1z2

]L

=
[

(1 − a)(1 − b) − c

(1 − az1)(1 − bz2)(1 − cz1z2
(1−az1)(1−bz2)

]L

=
[

(1 − a)(1 − b) − c

(1 − az1)(1 − bz2)

]L ∞∑
k=0

(L)k

k!
ckzk

1z
k
2

(1 − az1)k(1 − bz2)k

= ((1 − a)(1 − b) − c)L

×
∞∑

k=0

(L)k

k!
ckzk

1z
k
2

(1 − az1)(L+k)(1 − bz2)(L+k)

Similarly, there exists a non empty neighborhood of (0,0),
denoted as U2, such that for all (z1, z2) in U2, |az1| < 1
and |bz2| < 1. Therefore for all (z1, z2) in U2, the following
series expansions are obtained:

1

(1 − az1)L+k
=

∞∑
r=0

(L + k)r

r! arzr
1,

1

(1 − bz2)L+k
=

∞∑
s=0

(L + k)s

s! bszs
2.

As U1 and U2 are non empty neighborhoods of (0,0), U =
U1 ∩U2 is also non empty. For all (z1, z2) in U the following
expression is finally obtained:

GN(z1, z2)

= ((1 − a)(1 − b) − c)L

×
∞∑

k,r,s=0

(L)k

k!
(L + k)r

r!
(L + k)s

s! arbsckzr+k
1 zs+k

2

= ((1 − a)(1 − b) − c)L

×
∞∑

m,n=0

ambn

(min(m,n)∑
k=0

C
m,n
L,k

(
c

ab

)k
)

zm
1 zn

2 . (26)

The Taylor series (26) is defined on the non empty set U .
Therefore by unicity of the Taylor series expansion, the co-
efficients of the monomials zm

1 zn
2 in (26) are the masses

P(N1 = m,N2 = n).

Appendix C: Proof of Theorem 2

To show consistency and asymptotical normality of the com-
posite log-likelihood estimator, we can use more general
results over minimum contrast estimators (see Dacunha-
Castelle and Duflo 1984; van der Vaart 1998). Let us recall
that θ̂n is the θ value for which Un(θ) given by (12) is min-
imum. By the weak law of large numbers, as n goes to ∞,
Un(θ) converges in Pθ0 -probability to

K(θ0, θ)

= −
∑

1≤k<l≤d

∫
log(pk,l(nk, nl, θ))pk,l(nk, nl, θ0)dμ(nk,nl),

where μ is the counting measure. When the function θ →
K(θ0, θ) (from Θ to R

+) has a strict minimum at θ = θ0, Un

defines a contrast relative to θ0 and K . Consequently, θ̂n is
called a minimum contrast estimator (see Dacunha-Castelle
and Duflo 1984, p. 92). Note that minimizing K(·, θ) is
equivalent to minimize

∑
1≤k<l≤d

∫
log

(
pk,l(nk, nl, θ0)

pk,l(nk, nl, θ)

)
pk,l(nk, nl, θ0)dμ(nk, nl).

By the properties of Kullback-Leibler distance, K(θ0, θ) is
minimum for θ = θ0. Moreover, this minimum is unique if
and only if

A0 : ∀k < l; pk,l(·, ·, θ) = pk,l(·, ·, θ0)

almost everywhere (a.e) ⇒ θ = θ0.

C.1 Consistency for minimum contrast estimator

To obtain the consistency of the minimum contrast estima-
tor, we need the following two assumptions (see Dacunha-
Castelle and Duflo 1984, p. 93).

A1: Θ is a compact subset of R
p . The functions Un(θ)

and K(θ0, θ) are continuous for θ ∈ Θ .



A2: For η > 0, let w(n,η) = sup{|Un(α) − Un(β)|;
‖α − β‖ ≤ η}, where ‖ · ‖ is the Euclidean norm. There ex-
ists one sequence (εK)K∈N, decreasing to zero such that for
any K :

lim
n→∞ Pθ0

(
w

(
n,

1

K

)
≥ εK

)
= 0.

C.2 Asymptotical normality for the minimum contrast
estimator

The following additional assumptions are required for the
asymptotic normality:

A3: The point θ0 belongs to the interior of the space Θ .
The function Un(θ) is twice continuously differentiable on
a neighborhood V of θ0.

A4:
√

n∇Un(θ0) converges in distribution to a centered
normal distribution whose covariance matrix is ΓU(θ0).

A5: For r > 0 and 1 ≤ u,v ≤ p,

1|θ̂n−θ0|≤r

[∫ 1

0

∂2

∂θu∂θv

Un(θ0 + s(θ̂n − θ0))ds

− ∂2

∂θu∂θv

Un(θ0)

]

converges in Pθ0 -probability to zero.
A6: There exists an invertible matrix IU (θ0) such that

( ∂2

∂θu∂θv
Un(θ0))u,v=1,...,p converges in Pθ0 -probability to

IU (θ0).
Under A3:6 and if the minimum contrast estimator is con-

sistent, it can be shown that
√

n(θ̂n − θ0) converges in dis-
tribution to a zero mean Gaussian distribution with covari-
ance matrix IU (θ0)

−1ΓU(θ0)IU (θ0)
−1 (Dacunha-Castelle

and Duflo 1984, p. 104).
For contrasts of the form (12) and as for MLEs, we can

replace A4 and A5 by,
Ã4: Derivation and integration relating to μ can be per-

muted for pk,l . The covariance matrix of the random vector∑
1≤k<l≤d ∇ logpk,l(Nk,Nl, θ0) exist.

Ã5: There exist some functions hkl in L1(Pθ0) such that
for all θ ∈ V and u,v = 1, . . . , p,

∣∣∣∣ ∂2

∂θu∂θv

logpk,l(nk, nl, θ)

∣∣∣∣≤ hk,l(nk, nl), ∀(nk, nl) ∈ N
2.

C.3 Properties of the proposed estimator

In order to prove Theorem 2, we must show that the assump-
tions A0, A1, A2, A3, Ã4 , Ã5 and A6 are satisfied for the
proposed model under the Assumptions 1–3. Let us recall

that for this model, we have (see Theorem 1)

pk,l(nk, nl, θ) = ak,l(θ)nk bk,l(θ)nl

× (
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)L

×
min(nk,nl )∑

j=0

C
nk,nl

L,j

(
ck,l(θ))

ak,l(θ)bk,l(θ)

)j

.

For all k < l, Fk,l(θ) = (ak,l(θ), bk,l(θ), ck,l(θ))T where
Fk,l are functions from Θ to Δ = {(ak,l, bk,l, ck,l) ∈ [0,1[3;
(1 − ak,l)(1 − bk,l) > ck,l}, and F(θ) = (F1,2(θ)T , . . . ,

Fd−1,d (θ)T )T is an injective map from Θ to Δp(p−1)/2 (As-
sumption 2). Furthermore, the functions Fk,l are twice con-
tinuously differentiable (Assumption 3).

A0: Since for all k < l, pk,l(·, ·, θ) = pk,l(·, ·, θ0) almost
everywhere, in particular we have for (nk, nl) = (0,0),

(
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)L
= (

(1 − ak,l(θ0))(1 − bk,l(θ0)) − ck,l(θ0)
)L

,

for (nk, nl) = (1,0),

ak,l(θ)
(
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)L
= ak,l(θ0)

(
(1 − ak,l(θ0))(1 − bk,l(θ0)) − ck,l(θ0)

)L
,

and for (nk, nl) = (0,1),

bk,l(θ)
(
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)L
= bk,l(θ0)

(
(1 − ak,l(θ0))(1 − bk,l(θ0)) − ck,l(θ0)

)L
.

So ak,l(θ) = ak,l(θ0), bk,l(θ) = bk,l(θ0) and ck,l(θ) =
ck,l(θ0), i.e. Fk,l(θ) = Fk,l(θ0) for all 1 ≤ k < l ≤ d . Thus
F(θ) = F(θ0), which involves θ = θ0 since F is an injective
map.

A1: From Assumption 1, Θ is a compact subset of R
p .

Clearly the function Un(θ) (as sum of continuous functions)
is continuous for θ ∈ Θ . For K(θ0, θ), we can apply the con-
tinuity theorem for integrals defined by a parameter (corol-
lary of Lebesgue’s dominated convergence theorem). Denot-
ing as

A = ak,l(θ)nk bk,l(θ)nl ((1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ))L

(1 + nk)(1 + nl)
,

B = (1 + nk)(1 + nl)

min(nk,nl)∑
j=0

C
nk,nl

L,j

(
ck,l(θ))

ak,l(θ)bk,l(θ)

)j

,

we obtain pk,l(nk, nl, θ) = AB that leads to 0 ≤ AB ≤ 1.
Due to the constraints over (ak,l, bk,l, ck,l) (Assumption 2)

and (1+nk)(1+nl)C
nk,nl

L,0 = (1+nk)
(L)nk

nk ! (1+nl)
(L)nl

nl ! > 1
for all L > 0, we have A < 1 and B > 1. As a consequence,



log(A) ≤ log(AB) ≤ 0, | log(AB)| ≤ | log(A)|, which im-
plies

∣∣log(pk,l(nk, nl, θ))
∣∣

≤ nk

∣∣log(ak,l(θ))
∣∣+ nl

∣∣log(bk,l(θ))
∣∣

+ L
∣∣log

(
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)∣∣
+ log (1 + nk) + log (1 + nl)

≤ nk

(
1 + ∣∣log(ak,l(θ))

∣∣)+ nl

(
1 + ∣∣log(bk,l(θ))

∣∣)
+ L

∣∣log
(
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)∣∣ .
Since the functions Fk,l are uniformly continuous (as con-
tinuous functions over a compact set), we have

∣∣log(pk,l(nk, nl, θ))
∣∣≤ C1nk + C2nl + C3,

where C1, C2 and C3 are positive constants. The dominated
function is Pθ0 -integrable since all order moments of vari-
ables Nk, k = 1, . . . , d, exist. Using the continuity of the
function pk,l(nk, nl, θ) for θ ∈ Θ , we can conclude that
K(θ0, θ) is continuous for θ ∈ Θ .

A2: Denoting as pk,l(nk, nl, θ) = gk,l(θ)p̃k,l(nk, nl, θ),

where

gk,l(θ) = (
(1 − ak,l(θ))(1 − bk,l(θ)) − ck,l(θ)

)L
,

p̃k,l(nk, nl, θ)

=
min(nk,nl)∑

j=0

C
nk,nl

L,j ak,l(θ)nk−j bk,l(θ)nl−j ck,l(θ)j ,

we obtain

|Un(α) − Un(β)|

≤
∑

1≤k<l≤d

∣∣∣∣log

(
gk,l(α)

gk,l(β)

)∣∣∣∣
︸ ︷︷ ︸

P1

+ 1

n

n∑
i=1

∑
1≤k<l≤d

∣∣∣∣∣log

(
p̃k,l(N

i
k,N

i
l , α)

p̃k,l(N
i
k,N

i
l , β)

)∣∣∣∣∣
︸ ︷︷ ︸

P2

.

The first quantity P1 is composed of continuous functions
over the compact set Θ and consequently is uniformly con-
tinuous. Thus, for ‖α − β‖ ≤ 1

K
, there exist ε1

K such that
P1 ≤ ε1

K, where ε1
K is a sequence of numbers decreasing to

zero as K goes to ∞. For the second term P2, we have

P2 ≤ 1

n

n∑
i=1

∑
1≤k<l≤d

sup
θ∈Θ

∥∥∥∇ log
(
p̃k,l(N

i
k,N

i
l , θ)

)∥∥∥‖α−β‖.

As

∂

∂ak,l

p̃k,l(N
i
k,N

i
l , θ) ≤ Ni

k

ak,l(θ)
p̃k,l(N

i
k,N

i
l , θ),

∂

∂bk,l

p̃k,l(N
i
k,N

i
l , θ) ≤ Ni

l

bk,l(θ)
p̃k,l(N

i
k,N

i
l , θ),

∂

∂ck,l

p̃k,l(N
i
k,N

i
l , θ) ≤ Ni

k + Ni
l

ck,l(θ)
p̃k,l(N

i
k,N

i
l , θ),

we have (Fk,l is continuously differentiable over a compact
set) for u = 1, . . . , p,

∣∣∣∣ ∂

∂θu

log
(
p̃k,l(N

i
k,N

i
l , θ)

)∣∣∣∣

≤ ∂ak,l

∂θu

(θ)
Ni

k

ak,l(θ)
+ ∂ bk,l

∂θu

(θ)
Ni

l

bk,l(θ)

+ ∂ ck,l

∂θu

(θ)
Ni

k + Ni
l

ck,l(θ)

≤ Ck,l(N
i
k + Ni

l ),

where Ck,l is a positive constant. By denoting as C the max-
imum constant Ck,l, 1 ≤ k < l ≤ d , the following result can
be obtained:

P2 ≤ √
pC‖α − β‖1

n

n∑
i=1

∑
1≤k<l≤d

(Ni
k + Ni

l )

≤
√

p

K

C

n

n∑
i=1

∑
1≤k<l≤d

(Ni
k + Ni

l )

= 1

K
Wn.

By the weak law of large numbers, as n goes to ∞, Wn con-
verges in Pθ0 -probability to lW = √

pC
∑

1≤k<l≤d E(Nk +
Nl) < ∞. Let denote εK = ε1

K + 2
K

lW , which goes to zero
when K goes to ∞. Finally, since w(n,1/K) ≤ P1 + P2 ≤
ε1
K + 1

K
Wn, we obtain

Pθ0

(
w

(
n,

1

K

)
≥ εK

)
≤ Pθ0 (Wn − lW > lW ) ,

which converges to zero as n goes to ∞ since lW > 0.
A3: Assumption 1 involves that the point θ0 belongs to

the interior of the space Θ . The function Un(θ) is twice con-
tinuously differentiable on Θ as sum of twice continuously
differentiable functions.

Ã4: To prove that derivation and integration relating to
μ can be permuted for pk,l , we can use the differentiability
properties of integrals defined by a parameter. Following the
same way as for A2, we use an upper bound for the partial



derivatives of pk,l ,

∣∣∣∣ ∂

∂θu

pk,l(nk, nl, θ)

∣∣∣∣
=
∣∣∣∣ ∂

∂θu

gk,l(θ)p̃k,l(nk, nl, θ)+gk,l(θ)
∂

∂θu

p̃k,l(nk, nl, θ)

∣∣∣∣
≤ (C1 + C2(nk + nl))p̃k,l(nk, nl, θ

�),

where u = 1, . . . , p, C1 and C2 are positive constants

and θ� is the maximum argument of the continuous func-

tion p̃k,l over the compact set Θ. So the dominated func-

tion is μ-integrable. Since pk,l is differentiable, derivation

and integration relating to μ can be permuted for pk,l .

In particular, that implies the random vector
∑

1≤k<l≤d ∇
logpk,l(Nk,Nl, θ0) is centered. To prove the existence of its

covariance matrix, we can show that for all u,v = 1, . . . , p

and for all k < l:

Eθ0

(∣∣∣∣ ∂

∂θu

logpk,l(Nk,Nl, θ0)
∂

∂θv

logpk,l(Nk,Nl, θ0)

∣∣∣∣
)

< ∞.

As above, there exist positive constants C1, C2 and C3 such

that,

∣∣∣∣ ∂

∂θu

logpk,l(Nk,Nl, θ0)
∂

∂θv

logpk,l(Nk,Nl, θ0)

∣∣∣∣
≤ C1 + C2(Nk + Nl) + C3(Nk + Nl)

2,

which is of finite expectation since all order moments of

variables Nk, k = 1, . . . , d, exist.

Ã5: We have

∣∣∣∣ ∂2

∂θu∂θv

logpk,l(nk, nl, θ)

∣∣∣∣

≤
∣∣∣∣

∂2

∂θu∂θv
pk,l(nk, nl, θ)

pk,l(nk, nl, θ)

∣∣∣∣

+
∣∣∣∣

∂
∂θu

pk,l(nk, nl, θ) ∂
∂θv

pk,l(nk, nl, θ)

pk,l(nk, nl, θ)2

∣∣∣∣.

As above (Fk,l is twice continuously differentiable), straight-

forward computations leads to the following results:

∣∣∣∣ ∂2

∂θu∂θv

logpk,l(nk, nl, θ)

∣∣∣∣
≤ C1 + C2(nk + nl) + C3(nk + nl)

2

= hk,l(nk, nl),

where C1, C2 and C3 are positive constants. For the same

reasons as previously, hk,l is Pθ0 -integrable.
A6: From Ã5, the random variables

∂2

∂θu∂θv
logpk,l(Nk,Nl, θ0) are of finite expectation and by

the weak law of large numbers, ( ∂2

∂θu∂θv
Un(θ0))u,v=1,...,p

converges in Pθ0 -probability to

IU (θ0)u,v=1,...,p

= Eθ0

( ∑
1≤k<l≤d

∂2

∂θu∂θv

logpk,l(Nk,Nl, θ0)

)
.

Furthermore, from Ã5 derivation and integration can be per-

muted twice and from Ã4 the random vector∑
1≤k<l≤d ∇ logpk,l(Nk,Nl, θ0) is centered; that leads to

IU (θ0)u,v=1,...,p

= −
∑

1≤k<l≤d

Eθ0

(
∂

∂θu

logpk,l(Nk,Nl, θ0)

× ∂

∂θv

logpk,l(Nk,Nl, θ0)

)

= −
∑

1≤k<l≤d

JFk,l
(θ0)

T

× Eθ0

[∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)

× ∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)
T
]
JFk,l

(θ0),

(27)

where JFk,l
(θ0) is the Jacobian matrix (of size 3 × p) at the

point θ0. Note that the matrix IU (θ0) is the opposite of a sum

of covariance matrices. Denoting

I
k,l
U (θ0) = Eθ0

[∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)

× ∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)
T
]
,

for all 1 ≤ k < l ≤ d , (27) leads to the following expression:

IU (θ0) = −JF (θ0)
T

⎛
⎜⎝

I
1,2
U (θ0)

0
. . . 0

I
d−1,d
U (θ0)

⎞
⎟⎠JF (θ0),

where JF (θ0) = (JF1,2(θ0)
T . . . JFd−1,d

(θ0)
T )T is the 3

2d ×
(d − 1) × p Jacobian matrix of F(θ0). As F is an injective

map on Θ (assumption 2), the matrix JF (θ0) has rank p.

Therefore IU (θ0) is invertible if the diagonal matrix com-

posed of the matrices I
k,l
U (θ0) is invertible. Thus, we must

only show that the matrices I
k,l
U (θ0) are invertible for all



1 ≤ k < l ≤ d . However the property

det
(
I

k,l
U (θ0)

)

= det
(
Eθ0

(∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)

× ∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0)
T
))= 0,

is equivalent to the existence of some constants α1, α2 and
α3 (not all zero) such that

(α1, α2, α3)∇{ak,l ,bk,l ,ck,l} logpk,l(Nk,Nl, θ0) = 0 (28)

almost surely. Equation (28) involves in particular when
(Nk,Nl) = (0,0),

α1(1 − bk,l(θ0)) + α2(1 − ak,l(θ0)) + α3 = 0,

when (Nk,Nl) = (1,0),

−α1
(1 − ak,l(θ0))(1 − bk,l(θ0)) − ck,l(θ0)

Lak,l(θ0)

+ α1(1 − bk,l(θ0)) + α2(1 − ak,l(θ0)) + α3 = 0,

and when (Nk,Nl) = (0,1),

−α2
(1 − ak,l(θ0))(1 − bk,l(θ0)) − ck,l(θ0)

Lbk,l(θ0)

+ α1(1 − bk,l(θ0)) + α2(1 − ak,l(θ0)) + α3 = 0.

Due to the constraints on ak,l(θ0), bk,l(θ0) and ck,l(θ0) (see
Assumption 2), that leads to α1 = α2 = α3 = 0, so I

k,l
U (θ0)

is invertible for all 1 ≤ k < l ≤ d . Consequently IU (θ0) is
invertible.
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