5,073 research outputs found

    A Path to Implement Precision Child Health Cardiovascular Medicine.

    Get PDF
    Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene-environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine

    Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders

    Get PDF
    The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being 'pathogenic' or 'benign' is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as 'pathogenic' or 'likely pathogenic'; one in five of these cases could lead to new or refined diagnoses

    Split Inteins: From Mechanistic Studies to Novel Protein Engineering Technologies

    Get PDF
    Inteins are auto-processing protein domains that carry out a post-translational process known as protein splicing. This process is characterized by excision of the intein (intervening protein) domain from within a larger polypeptide sequence with concomitant ligation of the flanking extein ( external protein) regions through a native peptide bond. Remarkably, a small subset of all inteins are naturally transcribed and translated as two fragments that efficiently associate and carry out the same biochemical process in trans, and these split inteins are potentially powerful tools for protein engineering. Recently, a split intein from the cyanobacterium Nostoc punctiforme (Npu) was discovered that can carry out protein splicing with a half-life of one minute, as opposed to hours as seen for previously characterized split and contiguous inteins. Inspired by the apparent uniqueness of this “ultrafast” splicing activity and its practical implications, we characterized several orthologous split inteins from the same family as Npu. Surprisingly, many of these inteins splice as quickly as Npu, and biochemical characterization of this family divulged sequence-activity correlations that provided insights into the molecular determinants for fast protein trans-splicing. Importantly, several of these inteins are extraordinarily efficient in their first auto-processing step, peptide bond cleavage coupled to thioester formation. Harnessing this property, along with efficient fragment association, a streamlined iteration of Expressed Protein Ligation (EPL), the most prevalent protein semi-synthesis technique, was developed. Further insights into protein splicing were obtained by the development of a novel kinetic assay that allowed for quantitative observation of a crucial intermediate in the protein splicing pathway, the branched intermediate (BI). Using this assay, BI resolution was unambiguously identified as the rate limiting step for Npu splicing. Furthermore, the roles of extein residues in individual steps along the splicing pathway were teased apart. Using protein semi-synthesis, kinetic measurements, and structural techniques, C-extein composition was found to be intimately linked to active-site dynamics and BI resolution kinetics. In addition to chemical reactivity, the fragment assembly of Npu was also characterized. Mutation of charged residues at the binding interface demonstrated that split intein binding affinity was dominated by intermolecular electrostatic interactions. By swapping charged residues between the intein fragments, a new split intein was engineered with orthogonal binding and reactivity to the wild-type Npu split intein. The wild-type and charges wapped inteins could be used in protein semi-synthesis endeavors requiring parallel selective splicing reactions in one pot. Finally, using a combination of biophysical techniques, the mechanism of split intein assembly was elucidated. Our analyses indicated that the assembly follows a unique trajectory comprised of coupled binding and folding of disordered regions of each fragment followed by a collapse of the structure into a stable functional domain. Collectively, these structural and functional studies not only provide insights into the inner workings of inteins but will also continue to aid in the development of important protein engineering technologies

    Quantitative genome-wide studies of RNA metabolism in yeast

    Get PDF
    Gene expression and its regulation are fundamental processes in every living cell and organism. RNA molecules hereby play a central role by translating the genetic information into proteins, by regulating gene activity and by forming structural components. The kinetics of RNA metabolism differ widely between genes and conditions and play an important role for cellular processes, but how this is achieved remains poorly understood. Here, we used a novel experimental protocol that allows profiling of newly transcribed RNAs in conjunction with an advanced computational modeling pipeline to explore the kinetics of RNA metabolism and the underlying genetic determinants.In the first study, we investigated cell cycle regulated gene expression and the contributions of synthesis and degradation to mRNA levels in S.cerevisiae. During the cell cycle, the levels of hundreds of mRNAs change in a periodic manner, but how this is carried out by alterations in the rates of mRNA synthesis and degradation has not been studied systematically. We were able to derive mRNA synthesis and degradation rates every 5 minutes during the cell cycle, and thus provide for the first time a high-resolution time series of RNA metabolism during the cell cycle. A novel statistical model identified 479 genes that show periodic changes in mRNA synthesis and generally also periodic changes in their mRNA degradation rates. Peaks of mRNA degradation follow peaks of mRNA synthesis, resulting in sharp and high peaks of mRNA levels at defined times during the cell cycle. Whereas the timing of mRNA synthesis is set by upstream DNA motifs and their associated transcription factors (TFs), the synthesis rate of a periodically expressed gene is apparently set by its core promoter. In the second study, we developed metabolic labeling with RNA-Seq (4tU-Seq) and novel computational methods to gain further insights into the kinetics of RNA metabolism and its regulation. To decrypt the regulatory code of the genome, sequence elements must be defined that determine RNA turnover and thus gene expression. Here we attempt such decryption in an eukaryotic model organism, the fission yeast S. pombe. We first derived an improved genome annotation that redefines borders of 36% of expressed mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combined RNA labeling in-vivo with mathematical modeling to obtain rates of RNA synthesis and degradation for 5,484 expressed RNAs and splicing rates for 4,958 introns. We identified functional sequence elements in DNA and RNA that control RNA metabolic rates, and quantified the contributions of individual nucleotides to RNA synthesis, splicing, and degradation. Our approach reveals distinct kinetics of mRNA and ncRNA metabolism, separates antisense regulation by transcription interference from RNA interference, and provides a general tool for studying the regulatory code of genomes

    Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.

    Get PDF
    Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia

    New Splice Site Acceptor Mutation in AIRE Gene in Autoimmune Polyendocrine Syndrome Type 1

    Get PDF
    Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison's disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases

    Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis

    Get PDF
    Mutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON Delta 165. Importantly, the effects correlate with RON alternative splicing in cancer patients bearing the same mutations. Moreover, we highlight heterogeneous nuclear ribonucleoprotein H (HNRNPH) as a key regulator of RON splicing in healthy tissues and cancer. Using iCLIP and synergy analysis, we pinpoint the functionally most relevant HNRNPH binding sites and demonstrate how cooperative HNRNPH binding facilitates a splicing switch of RON exon 11. Our results thereby offer insights into splicing regulation and the impact of mutations on alternative splicing in cancer.Institute of Molecular Biology Core Facilities; DFG [ZA 881/2-1, KO 4566/4-1, LE 3473/2-1]; LOEWE program Ubiquitin Networks (Ub-Net) of the State of Hesse (Germany); Deutsche Forschungsgemeinschaft [SFB902 B13]; EMBO [3057]; Fundacao para a Ciencia e a Tecnologia, Portugal (FCT Investigator Starting Grant) [IF/00595/2014]; German Federal Ministry of Research (BMBF; e:bio junior group program) [FKZ: 0316196]; Boehringer Ingelheim Foundation; [INST 47/870-1 FUGG
    corecore