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Abstract 
 
The identification of pathogenic variants in Mendelian disease patients underpins disease 

management, genetic counselling and potentially treatment. Despite recent advances in next-

generation sequencing (NGS), over half of Mendelian disease patients are unable to receive a 

molecular diagnosis for their disorders. 

 

A growing body of evidence suggests that disruption of pre-mRNA splicing is an under-

analysed cause of pathogenesis in Mendelian disease. Variants affecting conserved splicing 

motifs in mRNA transcripts can lead to pathogenic mis-splicing, whereby stretches of sequence 

are erroneously inserted or omitted from the canonical mRNA transcript. Recent years have 

seen a surge in the number of bioinformatics tools available to begin to predict the effect of 

these variants, and to analyse their effect in empirical functional assays. 

 

However, much remains to be learned about the efficacy of these predictive tools, and the 

identification of mis-splicing events in empirical datasets, such as those derived from RNA 

sequencing (RNA-seq), remains in its infancy. Through deepening our understanding of these 

areas, there is promise to improve diagnostic yield for numerous cohorts of patients. 

 

Here, I apply novel bioinformatics analyses at multiple stages along the process from variant 

identification to functional corroboration, with the aim of improving diagnostic yield and the 

quality of variant reporting. I identify an optimal strategy for predictive analysis of splicing 

impact in variants identified through upstream diagnostic testing, which reveals that the 

predictive tool SpliceAI provides the best accuracy in analysis of clinical variants impacting 

splicing. I further develop a bespoke approach for the investigation of a subset of splice-

impacting variants impacting the intronic branchpoint sequence, resulting in the identification of 

a causative pathogenic variant in the BBS1 gene. Finally, I develop a novel metric to guide the 

clinical integration of RNA-seq as a tool for investigating splice impact, which reveals disease- 

and tissue-specific use cases for RNA-seq in the investigation of mis-splicing.  
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1. Introduction 

1.1.  Principles of human inherited disease 

Human disease can result from a wide range of environmental and genetic factors. While the onset 

of some diseases may theoretically be entirely environmentally driven, such as a heatstroke from 

prolonged exposure to the sun, or cirrhosis of the liver from chronic excessive alcohol consumption, 

many aspects of the response to and recovery from such diseases is governed by our genetics. 

One of the major agents of the inherited component of disease is the body of genomic variants 

harboured in the DNA of an individual. Large numbers of alterations, each with varying effect size 

and frequency in the human population, interact in a complex way with our environment to 

determine disease onset and severity. In reality, therefore, most forms of human disease can be 

seen as existing on an aetiological spectrum, where complex interplay between our genetics and 

environment govern the onset and progression of the condition (Figure 1). 

 

 

Towards one extreme of this spectrum, however, exists a class of disease where widespread 

genetic variation of small effect size is superseded by small numbers of highly impactful variants, 

generally affecting one or two genes. These disorders – named Mendelian disorders – are not 

Figure 1. The spectrum of human disease aetiology. Many human diseases result from the complex interaction of 

environmental and genetic factors. On the genetic end of the spectrum, small, impactful changes lead to disease 

presentation independently of environment, although environmental factors may play a role in disease severity and 

progression. Conditions may also be predominantly caused by environmental factors, such as nutritional deficiencies; in 

some cases, such as in microbial infection, genetics may confer susceptibility or resistance to, and influence the 

recovery from, the condition, despite environmental acquisition. Adapted from (Turnpenny et al., 2017). Created using 

BioRender.com 
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governed by the environment to the same extent as other diseases. Such conditions result from the 

inheritance of one or two pathogenic variants from parents, or the creation of de novo variants 

during fertilisation or embryonic development. While some Mendelian disorders may be effectively 

treated with dietary changes or pharmacological intervention, as in the case of the metabolic 

disorder phenylketonuria, which can be effectively managed with a low-protein diet (Al Hafid and 

Christodoulou, 2015), the variants underlying a Mendelian disease remain throughout the lifetime of 

the individual, and may still be passed down to their children. 

 

So-called rare diseases may be loosely defined as any disease affecting fewer than one in 2,000 

people in the general population. Rare Mendelian diseases, therefore, individually affect a fairly 

small number of people; however, the number of genetic diseases is large, with 7,897 phenotypes 

currently listed in the Online Mendelian Inheritance in Man (OMIM) database (https://omim.org/). It 

is therefore estimated that around 9.1% of individuals in the US will suffer from rare disease at 

some point in their lives (Haendel et al., 2020). These conditions are often associated with 

considerable physical distress and expensive cost of treatment, and many have a substantial 

impact on patient lifespan. There is therefore a moral and economic imperative to provide the best 

possible support for Mendelian disease patients and their families. 

 

One of the primary goals in genetic medicine is the identification of the aforementioned genomic 

variants that underpin patient phenotype, which facilitates genetic counselling for family members 

and tailoring of treatment plans, and provides peace of mind for patients and their relatives. The 

journey to this molecular diagnosis is of variable length and ease; one factor contributing to this 

variability is disease subtype. In one study, for example, the screening of 105 genes associated with 

inherited retinal diseases provided a molecular diagnosis for approximately 51% (271/537) of 

Mendelian retinal disorder patients (Ellingford et al., 2016a), while another study demonstrated a 

lower diagnostic rate of 30% (665/2249) when screening a panel of 464 known disease-associated 

genes in patients with inherited neuromuscular disorders (Beecroft et al., 2020). The number of 

Mendelian patients lacking molecular diagnoses across all disease subtypes, however, remains 

significant. 
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There is thus an urgent unmet need for improvement in our ability to correctly identify the 

pathogenic variants underpinning patient phenotypes. To achieve this, it is useful to understand the 

diversity of the mutational landscape in the human genome. 

 

1.1.1. Inheritance patterns 

A key factor in evaluating the pathogenicity of a variant is the inheritance pattern of the disorder 

associated with the gene in which it is located. Mendelian disorders are broadly described as 

dominant if a single variant in a gene is sufficient for pathogenesis, or recessive if the presence of a 

pathogenic variant on both alleles of a gene is necessary for disease phenotype to occur. 

 

Another consideration in the analysis of inheritance patterns is whether a condition is autosomal or 

X-linked: autosomally inherited disorders are caused by pathogenic variants in genes located on 

one of the 22 non-sex chromosomal pairs. Conversely, X-linked disorders are, as the name 

suggests, the result of pathogenic variation on genes located on the X chromosome. Autosomal 

disorders exhibit characteristic inheritance patterns, whereby dominant disorders are inherited by 

50% of the offspring of an affected individual and do not skip generations, while autosomal 

recessive disorders affect, on average, 25% of offspring, with 50% being carriers of a pathogenic 

allele. In autosomal disorders, offspring of both sexes equally likely to inherit the pathogenic variant. 

 

X-linked disorders are also inherited in a characteristic fashion, with male individuals being many 

times more likely to display an X-linked phenotype than females. A variant in a gene on the sole X 

chromosome of a male individual are described as being in a hemizygous state. The vast majority 

of X-linked diseases are recessive (Mehta et al., 2006), and so females require the inheritance of a 

pathogenic allele from both the mother and an affected father. The lower reproductive fitness of 

affected individuals largely accounts for the low rate of transmission of pathogenic X-linked alleles 

from fathers to daughters. 

 

Although the majority of the human genome is located on chromosomes in the nucleus, the 

mitochondria of human cells also carry small circular chromosomes of around 16,569 bp in length 
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(Anderson et al., 1981). This so-called mitochondrial DNA (mtDNA) encodes a set of genes, 

including mitochondrial-specific ribosomal RNA (rRNA) and transfer RNA (tRNA) genes, as well as 

a set of 14 protein-coding genes, primarily encoding components of the mitochondrial electron 

transport chain (Taanman, 1999). Each mitochondrion carries between approximately 1 and 15 

copies of the mitochondrial chromosome (Satoh and Kuroiwa, 1991), and, as such, mutations can 

accumulate independently on different copies of the mtDNA. This gives rise to the phenomenon of 

heteroplasmy, in which a single individual can harbour large numbers of different mtDNA variants at 

varying frequencies. The degree of heteroplasmy, i.e. the prevalence of a particular variant within 

the mtDNA population, can sometimes determine the severity of patient phenotype (Stewart and 

Chinnery, 2015). Due to the function of mitochondria in energy, disorders associated with variants in 

mtDNA, such as mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes 

(MELAS, (Goto et al., 1992)) and myoclonic epilepsy with ragged red fibres (MERRF, (Shoffner et 

al., 1990)), often affect tissues with high energy consumption, such as muscle and neural cells. 

Crucially, an embryo’s mitochondria are derived solely from those in the original maternal oocyte. 

As a result, disorders resulting from variants in mtDNA display a characteristic pattern of matrilineal 

inheritance, in which the disorder is passed from affected female sufferers to all of their offspring, 

while male sufferers are unable to pass the trait down (Stewart and Chinnery, 2015). 

 

1.1.2. Origins and consequences of genetic variation 

Genomic variation typically results from errors that occur during the replication of DNA (Pray, 2008, 

Tippin et al., 2004). Variants can be broadly divided at the structural level into three categories: 

single nucleotide variants, or SNVs, result when the identity of a single base is changed. SNVs can 

be further sub-divided into transitions, in which the substituted base is of the same biochemical 

class (i.e. a purine is substituted for a purine, or a pyrimidine is substituted for a pyrimidine), and 

transversions, in which a purine is replaced with a pyrimidine, or vice versa. The second category, 

insertions-deletions, or indels, result from the addition or removal of small stretches of nucleotides 

at a genomic site. The final category, structural variants, constitutes a wide variety of large-scale 

structural changes. These include, but are not limited to, translocation of genomic sequences within 

or between chromosomes (Figure 2a) and inversions of genomic sequence (Figure 2b). One 
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subset of structural variant is the copy number variant, which results from the duplication (Figure 

2c) or deletion (Figure 2d) of genomic regions, typically whole exons or genes, thus leading to the 

namesake change in the number of copies of that region. 

 

One less clinically studied source of genetic variation is that of transposable element insertion. 

Transposable elements are short sequences of DNA that can be excised from their site in the 

genome via the action of transposase enzymes, or copied at the RNA stage by reverse 

Figure 2. Illustration of exemplar structural and coding variant  types and their consequences in 

Mendelian disease. At the macromolecular scale (top), structural variation can lead to gross 

inter-chromosomal events such as (a) translocations, while other structural variants may result in 

(b) inversions, or copy-number variants such as (c) duplications or (d) deletions. At the 

nucleotide level (e), the introduction of many different non-structural variant types (red) can lead 

to the perturbation of transcripts. In-frame indels lead to the omission or inclusion of whole 

numbers of amino acids (AAs), while out-of-frame events cause wide disruption affecting all AAs 

downstream of the variant, often resulting in the introduction of premature termination codons. 

Nonsense variants and out-of-frame indels are also liable to trigger the nonsense-mediated 

decay (NMD) cellular surveillance pathway and be degraded. Created with BioRender.com. 

a b 

c 

d 
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transcriptase, and inserted elsewhere in the genome (Pray, 2008). Disruptive insertion of 

transposons within exonic or regulatory regions has been observed as a rare cause of Mendelian 

disease (Holmes et al., 1994, Yoshida et al., 1998). 

 

In extremely rare cases, catastrophic chromosomal shattering and its subsequent repair may result 

in numerous gross changes to chromosome structure. This phenomenon, chromothripsis, 

generates a chromosome that appears to harbour large numbers (sometimes in the order of 

hundreds to thousands) of concurrent structural rearrangements. Chromothripsis is emerging as a 

common feature in up to 50% of cancer types (Cortés-Ciriano et al., 2020, Forment et al., 2012). 

 

1.1.3. From genotype to phenotype: mechanisms of pathogenic genetic variation 

The impact of a variant on human cellular and organismal function is dependent on a number of 

factors, including the type of variant and its location within the genome. Variants may be defined in 

relation to their effect on the function of the respective gene product: variants that reduce the ability 

of the gene product to carry out its role are considered loss-of-function, and can be subdivided into 

null variants, where the function of the gene product is entirely or almost entirely compromised, and 

hypomorphic variants, where there is still residual gene product function despite some reduction in 

gene product function. Gain of function variants, conversely, result in the gene product acquiring 

some novel function, e.g. a novel binding partner or enzymatic activity, such that disease 

presentation results. 

 

Variants can also broadly be divided into two groups dependent on their genomic region and 

consequence: coding and non-coding, both of which have the potential to be pathogenic. Some of 

the key characteristics of both are summarised below and illustrated in Figure 2e. 

 

1.1.3.1. Coding variation as a cause of human disease 

Variants are considered coding variants if they directly alter the protein sequence encoded by a 

gene; such variants are necessarily exonic. Variants that lead to a direct change in the identity of 

the amino acid encoded by their respective codon are termed missense variants. Missense variants 
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may act to destabilise protein structure or impair key residues required for the function of the 

protein, such as enzymatic active sites. Changes to amino acid sequence are often the result of 

SNVs, but may also be caused by indels, which can lead to the merging of distinct codon 

boundaries, as well as the insertion or deletion of a number of amino acids. Missense variants may 

be loss-of-function or gain-of-function, dependent on whether the amino acid change impairs protein 

function or leads to novel functionalities, respectively.  

 

Coding variants may also impair protein function through the introduction of premature termination 

codons (PTCs); such variants are termed nonsense variants. Nonsense variants are frequently null, 

as they result in the truncation of the resulting protein; truncated proteins are often non-functional 

due to the exclusion of critical domains from the final protein product. PTCs are often detected by a 

cellular surveillance mechanism called nonsense-mediated decay, or NMD, which targets 

transcripts with stop codons outside the final exon for degradation. Thus, nonsense variants can 

doubly abrogate protein function and reduce the number of transcripts available for translation. 

 

Nonsense variants may be generated through SNVs via the direct mutation of an amino acid-

encoding codon into a stop codon. However, indels are also a cause of PTCs: when the number of 

inserted or deleted bases is not a multiple of three, the boundaries between codons are shifted by 

one or two positions (termed a frameshift), resulting in gross changes to amino acid sequence at 

and downstream of the indel. This generally results in the introduction of a PTC (that was formerly 

out-of-frame) at some distance from the indel. Frameshifts and resultant PTCs are also a common 

consequence of splicing variants (see 1.2.5.). 

 

Two other rare coding variant types are start-loss and stop-loss variants. In start-loss, variants 

impact the first codon of the transcript, universally encoding a methionine residue in humans. In the 

absence of a functional initial codon, translation initiation is perturbed; resulting proteins may make 

use of alternative nearby start sites, or remain untranslated (Binder et al., 2003, Sargiannidou et al., 

2015). Accurate interpretation of start-loss variants requires the careful analysis of which of these 

two consequences predominates for a given variant. Conversely, stop-loss variants instead disrupt 
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the function of the final codon of the transcript, leading to extension of the protein at the 3’ terminus. 

This may lead to the use of a downstream compensatory stop codon (Riedhammer et al., 2021), but 

may also result in activation of a surveillance pathway known as non-stop decay, which targets 

transcripts lacking stop codons for degradation. A common stop-loss variant in the human 

DEF126B gene, for example, leads to nonstop decay of the respective transcript and is associated 

with impaired fertility (Tollner et al., 2011). 

 

1.1.3.2. Non-coding variation in protein-coding genes as a cause of Mendelian disease 

Protein-coding regions account for just 1.5-2% of the human genome (Litwack, 2018, Mattick, 

2001). The remainder of genomic space is described as non-coding, and pathogenic variation in 

non-coding regions of the genome is becoming increasingly appreciated as a cause of Mendelian 

disease. Here, we provide a non-exhaustive list of some of the most common pathogenic 

mechanisms of non-coding variation. 

Upstream of the transcription start site (TSS) of all protein-coding genes is a promoter sequence, a 

region of genomic sequence which serves as a binding site for transcription initiation complexes. 

One of the most common core promoter elements is the TATA box, a short sequence located 

around 24-30 bp upstream of many metazoan TSSs (Andersson and Sandelin, 2020). As promoters 

are indispensable for transcription initiation, significant perturbation of promoter function results in 

large decreases in, or absence of, transcript expression (Figure 3a). This disruption may be caused 

by SNVs, as in the case of the promoter of the TERT gene in inherited telomerase deficiency and 

some cancers (Gutierrez-Rodrigues et al., 2019). However, promoter disruption is also often the 

result of larger deletions that encompass a significant amount of their length, and has been 

observed as a pathogenic mechanism in diverse disease subtypes, such as in the developmental 

disorder Liebenberg syndrome (Kragesteen et al., 2019), the tumorigenic disorder Cowden 

syndrome (Zhou et al., 2003), and sickle cell anaemia (Chaouch et al., 2020). 
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A related non-coding element with roles in transcription initiation is the enhancer, a regulatory 

sequence that typically interacts with the promoter through changes in chromosomal conformation. 

Unlike promoters, enhancers can act at great distances from their target genes, with some lying 

hundreds of kilobases upstream or downstream of the TSS (Karnuta and Scacheri, 2018). While 

some genes are associated with no enhancer elements, others are served by multiple, and a single 

enhancer may be associated with numerous genes, thus creating an intricate regulatory network of 

gene expression. Pathogenic variation affecting enhancer elements may be difficult to identify, 

owing to the large distance between many enhancers and their target genes. Additionally, our 

incomplete knowledge of enhancer distribution and targets in the human genome limits our ability to 

accurately annotate variants as overlapping enhancer loci. Similarly to promoters, SNVs and 

structural variants are both liable to disrupt enhancer function (Figure 3b), resulting in decreased or 

abrogated transcription of the target transcript, and have been identified across a broad spectrum of 

phenotypes: pathogenic SNVs in enhancer elements have been identified in such disease subtypes 

as pancreatic agenesis (Gabbay et al., 2017) and aniridia (Bhatia et al., 2013), while structural 

variants such as deletions and duplications at enhancer loci have been identified in, for example, 

inherited deafness (Naranjo et al., 2010) and disorders of sex development (Erickson et al., 2011, 

Hyon et al., 2015), respectively.  

 

One non-coding region increasingly recognised as a source of pathogenic variation is the 5’ 

untranslated region, or 5’ UTR. The 5’ UTR lies immediately upstream of the TSS in human genes, 

occasionally overlapping with promoter regions (Alexandrova et al., 2012), and is the site of 

ribosomal entry during translation. An emerging source of pathogenicity in 5’ UTR regions is the 

creation of upstream open reading frames, or uORFs (Whiffin et al., 2020; Figure 3c): these are 

Figure 3. Illustration of the pathogenic mechanisms of exemplar non-coding variant types. Non-coding variants 

do not directly disrupt protein structure, but rather influence other aspects of transcript dynamics. Loss-of-

function variants at (a) promoter and (b) enhancer sites result in attenuation of the transcription of their target 

genes. (c) Variants creating novel transcription start sites in the 5’ UTR of human transcripts are liable to 

generate upstream open reading frames (uORFs) that outcompete canonical transcription start sites and lead 

to a reduction in the levels of functional gene product. (d) Loss-of-function variants in the 3’ UTR, such as 

deletions, may also impair the ability of proteins involved in RNA processing and stability to bind, thus leading 

to dysregulation of transcript dynamics, often resulting in an overall reduction in transcript levels. Created using 

BioRender.com 
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created by the aberrant generation of initiation codons upstream of the canonical TSS, and may be 

recognised by the ribosomal machinery as genuine reading frames, leading to the production of 

proteins encoding by canonically non-coding residues. This, in turns, leads to reduction in the 

production of the encoded wild-type protein by up to 80% (Calvo et al., 2009). Pathogenic uORFs 

may lie entirely upstream of the TSS (if an in-frame stop codon is present in the 5’ UTR sequence 

downstream of the novel initiation codon), or may overlap it. In the latter case, novel initiation 

codons that are out-of-frame in relation to the canonical TSS will likely result in PTCs due to 

frameshift, and will generally be degraded through NMD. In-frame uORFs will lead to an effective 

extension of the coding sequence of the transcript, and may impair protein structure and function 

(Whiffin et al., 2020). Interpreting the pathogenicity of suspect uORF-creating requires functional 

investigation to identify the nature and extent of the disruption. Pathogenic uORF-creating variants 

have been identified in cases of disorders such as van der Woude syndrome (de Lima et al., 2009) 

and neurofibromatosis type 1 (Evans et al., 2016, Whiffin et al., 2020). 

 

At the opposite end of the transcript, immediately downstream of the termination codon, lies the 3’ 

UTR. The 3’ UTR is a crucial regulatory sequence that serves primarily as a binding site for mRNA 

processing proteins and microRNAs (miRNAs), and plays a role in the alternative polyadenylation of 

transcripts. Following transcription, a host of RNA-binding proteins (RBPs) may bind to stabilise the 

transcript or regulate its translation; thus, variants that binding sites within the 3’ UTR are liable to 

lead to dysregulation of transcripts (Figure 3d), often resulting in their decay (Pamuła-Piłat et al., 

2020). Few pathogenic 3’ UTR variants have thus far been identified in Mendelian disorders; 

however, recent research by Griesemer et al. (2021) implemented a massively parallel assay to 

highlight a common SNP in the PILRB gene as a contributor to age-related macular degeneration.  
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Non-coding variants are also liable to disrupt splicing, the process in which non-coding intronic 

regions are removed, generally co-transcriptionally, from nascent pre-mRNA transcripts. Unlike the 

above variant types, splice-impacting variants can arise almost anywhere within a gene, including 

intronic regions. A more detailed description of splicing mechanisms, and the role of their 

dysregulation in pathogenesis, is given below. 

 

1.1.3.3. Splice variants: an under-analysed mechanism of pathogenicity? 

Recent years have seen a gradual shift in the focus of genetic diagnostics from the analysis 

primarily of coding variants to the non-coding variants. While our understanding of many non-coding 

variant types (and how to interpret them) is limited, research into unsolved Mendelian disease 

cases has begun to shed light on some of the sources of pathogenic variation that are currently 

under-represented in clinical diagnostics. One of the most promising such sources is those variants 

that impact pre-mRNA splicing: with several studies demonstrating that between 7.5-35% of 

unsolved Mendelian disease cases may be attributable to pathogenic splice-impacting variants 

(Cummings et al., 2017, Frésard et al., 2019, Kremer et al., 2017). There remain, however, many 

barriers to effective identification and interpretation of such variants. To overcome these obstacles, 

it is necessary to appreciate the mechanistic origins of splicing 

 

1.2. pre-mRNA splicing 

The excision of introns from pre-mRNA transcripts, termed splicing, is a tightly regulated process 

involving the co-ordinated activity of numerous cis- and trans-acting factors. The dysregulation of 

any number of these factors can result in the disruption of transcript isoform structure, and so lead 

to defects at the protein level that can underpin Mendelian disease. Below are described some of 

the key factors involved in splicing, their role in splicing biochemistry, and how disruption of these 

factors may play a role in pathogenesis. 
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1.2.1. Cis-acting sequence elements in the regulation of splicing 

The boundary between introns and exons is demarcated by a host of nucleotide sequence elements 

that serve to guide trans-acting protein complexes to the correct regions of the transcript for the 

initiation and progression of splicing. As will be discussed below, these elements are subject to 

pathogenic disruption that results in gross changes to transcript structure. Major cis-acting 

sequences involved in splicing are illustrated in Figure 4. 

 

Some of the best-understood sequence features in intron-exon definition are the so-called splice 

donors and splice acceptors, a pair of dinucleotides that constitute the 5’- and 3’-most dinucleotides 

of the intron, respectively. The majority – approximately 99.0% – of human introns are flanked by a 

GT splice donor and an AG acceptor (Sheth et al., 2006). Although these GT-AG introns are the 

most abundant in the human genome, alternative donor-acceptor dinucleotide pairs are also 

present, with GC-AG being the next-most common, accounting for 0.86% of introns (Sheth et al., 

2006). The remaining introns are flanked by various rarer dinucleotide pairs, including AT-AC, GT-

AT and GT-TG. 

 

These dinucleotides are essential for exon definition, and so are often described as core splicing 

dinucleotides; however, other positions close to these dinucleotides can also be highly constrained. 

The final base of an exon, for example, often described as the donor -1 position, is often 

constrained to be a guanine, as is the fifth base of the intron (the donor +5 position; Lord et al., 

2019). Such measurements of constraint can be calculated using mutability-adjusted probability of 

singletons, or MAPS, scores, a measure of the selection acting at a particular nucleotide position 

(Lek et al., 2016). Positions in the vicinity of the splice acceptor site tend to be less constrained than 

those adjacent to the donor. This constraint has emerged under significant selective pressure to 

allow splice sites to be recognised by trans-acting splicing complexes, and so variation at these 

constrained positions may be more likely to impact splicing than those at other positions (Lee et al., 

1991). 
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Despite the lower constraint in the immediate vicinity of most splice acceptors, there is an extended 

region of shared structure common to the 3’ end of human introns. Most notably, the region 

upstream of the splice acceptor is termed the poly-pyrimidine tract, or PPT, and is characterised by 

a stretch of cytidine- and uridine-rich sequence that serves as the binding site for the splicing 

protein U2AF65 (Will and Lührmann, 2011; see 1.2.2.) Most PPTs are around 10-20 bp in length, 

and the precise composition of the PPT has been demonstrated to influence splicing efficiency: in 

vitro assays have shown that a poly-uridine tract of around 13 bases produces the most efficient 

progression through the early stages of splicing (Coolidge et al., 1997). 

 

Upstream of the PPT lies a short consensus sequence named the branchpoint sequence, or BPS. 

The BPS plays a key role in the splicing reaction by providing a nucleophilic residue that attacks the 

donor site and facilitates the adjoining of the two ends of the flanking exons (see 1.2.2.). As with 

splice donors and acceptors, there exists a canonical central BPS, which consists of a TNA motif 

(where N is any nucleotide). Recent computational work has suggested a putative extended BPS 

motif of TRYTRAY (Taggart et al., 2017). Growing evidence has also suggested that branchpoint 

Figure 4. Cis-acting splice elements are diverse and bind numerous consensus motifs. Human introns are 

flanked by two highly conserved nucleotide pairs consisting usually of a 5’ GT and 3’ AG. Upstream of the splice 

acceptor is a polypyrimidine-rich region known as the polypyrimidine tract (PPT). Exonic and intronic splicing  

silencers (ESSs and ISSs) are often bound by members of the hnRNP family, such as hnRNP A1, depicted here, 

while exonic and intronic splicing enhancers (ESEs and ISEs) are often bound by SR protein family members, as 

exemplified here by SRSF1. The position weight matrices (PWMs) of enhancer and silencer elements show 

marked consistency across their length, while donor, branchpoint and acceptor positions exhibit greater 

redundancy outside of critical residues. 5’ splice donor, branchpoint and PPT/3’ splice acceptor PWMs were 

adapted from Desmet et al., (2009); PWMs for hnRNP A1 and SRSF1 were identified through the CISBP-RNA 

motif repository (Ray et al., 2013). Py, pyrimidine. Created using BioRender.com 
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selection is an important characteristic of tissue-specific splicing diversity (Pineda and Bradley, 

2018). Thus, pathogenic variation at the BPS may require wider consideration of the tissue(s) 

affected according to the patient phenotype, and functional assays of the impact of these variants 

may require use of the relevant cell type, where possible. 

 

Another diverse set of sequence elements also serve to modulate the efficiency of the splicing 

reaction. These are termed splicing enhancers and silencers, depending on whether they facilitate 

or attenuate the splicing reaction, respectively, and may be either exonic or intronic. These 

elements constitute a diverse set of binding sites for RNA-binding proteins (RBPs), which serve as 

regulators of splicing at nearby junctions (Fredericks et al., 2015; see 1.2.2.). Key splice enhancer-

binding proteins include many members of the SR protein family (Cavaloc et al., 1999, Liu et al., 

2000), while silencers are often bound by members of the hnRNP family (Rothrock et al., 2005, Zhu 

et al., 2001). However, more recent research has shown that the effect of these splice element-

binding RBPs is at least partially dependent on where the element is located (Erkelenz et al., 2013). 

Unlike the above ubiquitous sequence features, not all introns are necessarily associated with 

splicing enhancers and/or silencers. 

 

1.2.2. The major spliceosome: the primary trans-acting engine of intron excision 

The reaction central to pre-mRNA splicing is a transesterification reaction that adjoins the two exon 

ends, resulting in the excision of the central intron. This two-step reaction is primarily carried out in 

human cells by a massive macromolecular complex named the major spliceosome, sometimes 

called the U2-dependent spliceosome. The spliceosome consists of a set of core machinery that is 

directly responsible for the biochemical progression of the splicing reaction; this comprises a set of 

five small nuclear ribonucleoproteins (snRNPs), named U1, U2, U4, U5 and U6, that are formed 

from the binding of a protein factor to a corresponding small nuclear RNA (snRNA). These snRNPs 

dynamically bind and unbind across the course of the splicing process. However, over 200 

accessory proteins interact with the core spliceosomal machinery over the course of the splicing 

reaction, making the spliceosome one of the largest macromolecular complexes in human cells 

(Cvitkovic and Jurica, 2013, Schneider et al., 2002). The spliceosome shows remarkable 
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conservation across distant eukaryotic lineages: of ~90 proteins identified as major components of 

the yeast spliceosome, approximately 85% had homologues in the human genome, and the 

process of spliceosomal assembly is almost identical in S. cerevisiae and humans (Fabrizio et al., 

2009). 

 

In the earliest stages of spliceosomal assembly, the 5’ splice site is recognised by the U1 complex 

to form the so-called early complex, or complex E. The 3’ splice site is also bound by subunits of the 

U2 snRNP (Figure 5a). An ATP-dependent remodelling of the complex then facilitates both 

recognition of the branchpoint by the U2 snRNP, as well as an interaction between U2 and the E 

complex in an ATP-dependent manner to form the so-called pre-spliceosome, or complex A (Figure 

5b). Crucially, the base pairing between the U2 snRNA and the branchpoint is imperfect, and leads 

to a bulging of the branchpoint adenosine that primes it to carry out the downstream 

transesterification reaction. 

 

Following this, complex A is bound by a so-called tri-snRNP, consisting of a complex of the U4, U5 

and U6 snRNPs to form complex B (Figure 5c), which is converted to the catalytically active 

complex B* following conformational changes that lead to disassociation of the U1 and U4 snRNPs 

(Figure 5d). In the first step of the central transesterification reaction, the bulged branchpoint 

adenosine, associated with complex B*, acts as a nucleophile and attacks the end of the first exon. 

This forms the catalytic complex C (Figure 5e), comprising the remaining snRNPs bound to both 

the exposed 5’ exon end, plus the 3’ exon end with the intron attached as a lariat structure. In the 

second step of the transesterification reaction, the exposed 5’ exon end attacks the 3’ end of the 

intron to form a covalent bond between the ends of both exons, releasing the intron as a lariat that 

is quickly degraded (Figure 5f; Moore et al., 2002). 
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Each stage of spliceosomal assembly is facilitated by the involvement of accessory proteins with 

diverse roles. Key auxiliary proteins include members of the aforementioned SR family, which 

stabilise interactions between U1 and the 5’ splice site (5’ss), as well as between U2 and the 3’ss 

(Cho et al., 2011, Staknis and Reed, 1994). The activity of helicases is also abundant at various 

points in spliceosomal remodelling: the helicase Prp28, for example, has been shown in yeast to 

facilitate dissociation of the U1 snRNP and recruitment of the U4/U6.U5 tri-snRNP (Yeh et al., 

2021), while the helicase Prp5 is believed to be involved in proofreading of the U2 snRNA-BPS 

Figure 5. The stepwise assembly of the spliceosome excises introns from pre-mRNA transcripts. (a). In the 

earliest stages of spliceosomal assembly, the 5’ and 3’ splice sites of the intron are bound by the U1 and U2 

small nuclear ribonucleoproteins (snRNPs), respectively to form the so-called early complex, or complex E. (b) 

ATP-dependent remodelling of complex E brings the U1 and U2 snRNPs into contact, forming the pre-

spliceosome, or complex A. (c) Binding of the U4/U6.U5 tri-snRNP to complex A generates the pre-catalytic 

spliceosome, complex B. (d) Conformational changes then form the catalytically active complex B*, 

accompanied by the release of U1 and U4. (e) The transesterification reaction then takes place, resulting in 

complex C, consisting of the U2, U5 and U6 complexes bound to the new-free first exon and an intron-exon 2 

lariat intermediate. (f) The splicing reaction concludes with a second transesterification reaction, which results 

in the joining of the exon ends and subsequent release of the U2, U5 and U6 snRNPs and the intronic lariat, 

which is rapidly degraded. Adapted from Matera and Wang (2014). 
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interaction (Zhang et al., 2021). Other auxiliary proteins, such as the U2 auxiliary proteins U2AF35 

and U2AF65, are also vital in spliceosome assembly and function (Matera and Wang, 2014). 

 

1.2.3. The minor spliceosome: an alternative biochemistry for pre-mRNA splicing 

Although approximately 99.6% of introns are excised by the major spliceosome (Sheth et al., 2006), 

a secondary machinery, termed the minor, or U12-dependent spliceosome, is responsible for the 

correct splicing of the remainder of human introns, numbering approximately 700 across the human 

genome (Alioto, 2007, Levine and Durbin, 2001, Sheth et al., 2006). The core components vary 

significantly between the major and minor spliceosomes, with the major U1, U2, U4 and U6 snRNPs 

being replaced by snRNPs named U11, U12, U4atac and U6atac, respectively, in the minor 

complex. The U5 snRNA, however, is shared between both spliceosomes. U12-dependent introns 

(i.e. those spliced by the minor spliceosome) are characterised by distinct splice site and 

branchpoint motifs. Similarly, the majority of auxiliary splicing regulatory proteins are shared 

between both spliceosomes, suggesting the cognate minor spliceosome snRNPs function similarly 

to their major counterparts. While the major spliceosome primarily excises GT-AG introns, the minor 

spliceosome also processes a significant proportion of AT-AC introns, which account for 25.2% of 

U12-dependent introns (Sheth et al., 2006).  

 

1.2.4. Sources of transcript diversity in pre-mRNA splicing 

One of the primary functions of pre-mRNA splicing is to provide a source of transcript diversity such 

that a single gene may produce multiple isoforms of the final gene product: by providing a 

dynamically processed RNA template, as opposed to a single, fixed transcript for each gene, 

organisms can adapt the structure of the final transcript, and thus the gene product, in response to 

external factors. Such factors may include developmental stage: recent research in mice, for 

instance, has demonstrated the existence of thousands of previously unannotated transcript 

isoforms unique to embryonic stages (Qiao et al., 2020), while age-related changes to transcript 

isoforms are becoming increasingly well-characterised in humans (Ham and Lee, 2020, Wang et al., 

2018). Cell signalling cascades may also result in preferential generation of specific transcript 
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isoforms, as in the case of the preferential selection of an alternative fifth exon in transcripts of the 

glycoprotein CD44 in response to Ras signalling (Cheng et al., 2006). 

 

This alternative splicing (AS) can take many forms: in one form, the deliberate skipping of exons 

can result in functionally distinct gene products, as seen in the FMR1 gene, where selective 

exclusion of exon 14 diverts the localisation of the FMR1 protein from the cytoplasm to the nucleus 

(Sittler et al., 1996), while regulated skipping of exon 6 in one isoform of the FAS cell surface death 

receptor excludes a transmembrane domain, producing a soluble isoform that can inhibit FAS 

signalling (Cascino et al., 1995). 

 

Relatedly, pre-mRNA transcripts may contain mutually exclusive exon pairs, in which only one of 

two or more exons may be present in a given transcript. This is the case in fibroblast growth factor 

receptor 2 (FGFR2), for instance, in which the guided inclusion of an alternative eighth exon by the 

splicing regulatory protein ESRP1 directs the epithelial-mesenchymal transition in embryonic 

development (Ranieri et al., 2016). 

 

Transcripts may make use of multiple donor or acceptor sites for the same exon, resulting in the 

exclusion or inclusion of small numbers of bases. In a study that mapped proteomics data back to 

the transcriptome, Rodriguez et al. (2020) demonstrated that a small handful of alternative 5’ and 3’ 

splice site events constituted a total of ~10% of the tissue-specific splicing events across ten 

tissues, and were demonstrated to have evolved up to 400 million years ago, demonstrating their 

crucial role in their respective tissues. 

 

In one mode of AS, introns can escape excision from the mature mRNA transcript, a phenomenon 

named intron retention. Although well-studied in organisms like the model plant Arabidopsis 

thaliana, in which it is a pervasive AS mechanism (Filichkin et al., 2010), the study of intron 

retention in humans has somewhat trailed that of many other AS types. In recent years, however, 

research has begun to identify regulated regimes of intron retention as key players across a wide 

variety of human biological processes, including haematopoiesis (Edwards et al., 2016, Wong et al., 
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2013) and the differentiation of germ cells (Naro et al., 2017). These discoveries have been aided 

by a recent surge in the bioinformatics tools available to identify them, such as IRFinder (Middleton 

et al., 2017) and rMATS (Shen et al., 2014). 

 

In an ostensibly rare AS phenomenon, named exitron splicing, internal stretches of long exonic 

sequences may be alternatively spliced out of transcripts. While still quite poorly understood, some 

research has suggested that exitron splicing has a role in proteome plasticity in response to factors 

such as stress and carcinogenesis, even in genes typically considered to be single-exon (Marquez 

et al., 2015). 

 

1.2.5. The role of pathogenic mis-splicing in human disease 

Given the intricacy of the splicing process, it is perhaps unsurprising that disruption to a number of 

the cis- and trans-acting splicing components is liable to have a substantial impact on the final 

transcript. 

 

The blanket term of splicing quantitative trait loci (sQTLs) refers to the cohort of genomic variants 

that are known to have an impact on splicing in their respective transcripts. sQTLs comprise a 

diverse set of loci in terms of both effect size and location: while some sQTLs possess a high effect 

size, such as those at the canonical dinucleotides, many lines of recent research have 

demonstrated that the majority of splice-impacting variants only subtly modulate the splicing 

process (Garrido-Martín et al., 2021; GTEx Consortium, 2020). This small individual effect size 

means that many sQTLs are only identified through large-scale analyses of transcriptomic datasets 

(Garrido-Martín et al., 2021, GTEx Consortium, 2020, Takata et al., 2017). Due to the impact of 

altered transcript structure on gene expression levels (for example, through NMD), many sQTLs are 

also identified as expression quantitative trait loci (eQTLs), sites at which variants lead to changes 

in expression of the respective transcript; recent work has shown that 52% of sQTLs identified in 

the study overlapped with previously annotated eQTLs (Garrido-Martín et al., 2021). 
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As in wild-type splicing, pathogenic mis-splicing events can take a number of forms, including exon 

skipping, alternative splice sites, and intron retention. Both abrogation of normal splice site activity 

and the activation of so-called cryptic splice sites can lead to disruption of transcript structure. 

Deeply intronic variants may also lead to the formation of pseudoexons, extended regions of 

intronic sequence that become recognised as exons due to the presence of a variant and so are 

retained in the final transcript. Conversely, a small number of cases of pathogenic exitrons have 

been identified, in which pathogenic variants in long exons lead to exclusion of an internal region of 

exonic sequence (Wai et al., 2020).  

 

To evaluate the potential pathogenicity of an sQTL, a number of features need to be considered: 

splicing defects result in the inclusion or exclusion of nucleotide sequence, and so, similarly to 

indels, frameshifts and resultant PTCs are a common consequence. In these cases, significant 

disruption to protein structure and/or transcript levels (e.g. through NMD) may be expected. Where 

the inserted or deleted region is in-frame, the size of the excluded region is of greater importance; 

however, although the addition of a small number of bases is theoretically less likely to be disruptive 

to protein function, recent bioinformatics analysis has shown that a significant number of in-frame 

single amino acid insertions and deletions are predicted to be pathogenic (Pagel et al., 2019). 

Another key consideration is the effect size of the variant: in theory, the greater the proportion of 

transcripts exhibiting a mis-splicing event, the more likely it is to cause disease. Due to the tissue-

specific nature of gene expression, it is also important to consider where the variant lies within 

tissue-relevant transcripts. 

 

1.2.5.1. Pathogenic variation in spliceosomal components 

Pathogenic variants in genes encoding major spliceosomal components may themselves cause 

Mendelian disease through global disruption of splicing. Such disorders are associated with variants 

in many spliceosomal components, and may affect many tissues. Loss-of-function variants in one 

U5 snRNP component, PRPF8, for instance, lead to the onset of an autosomal dominant form of 

retinitis pigmentosa (RP; McKie et al., 2001, Vithana et al., 2001), while loss-of-function variants in 
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another, EFTUD2, lead to the disorder mandibulofacial dysostosis, Guion-Almeida type, a multi-

system disorder with characteristic facial dysmorphology (Lines et al., 2012). 

 

Despite the low frequency of introns excised by the minor spliceosome, variants in minor 

spliceosomal components still have the capacity to cause Mendelian disorders. Homozygous or 

compound heterozygous loss-of-of-function variants in the minor spliceosomal U4 snRNA 

RNU4ATAC, for instance, are associated with a distinct trio of Mendelian disorders: microcephalic 

osteodysplastic primordial dwarfism type 1, or MOPD1 (He et al., 2011), Roifman syndrome (Merico 

et al., 2015), and Lowry-Wood syndrome (Farach et al., 2018). 

 

1.2.5.2. The role of mis-splicing in variable expressivity and incomplete penetrance 

Two confounding phenomena in variant interpretation are variable expressivity and incomplete 

penetrance. In the former, individuals harbouring pathogenic variant(s) in the same gene exhibit a 

wide spectrum of symptoms. In the case of pathogenic variants in the neurofibromin 1 (NF1) gene, 

for example, some patients may develop numerous tumours named neurofibromas, while others 

may have only lightly pigmented café-au-lait spots on their skin (Easton et al., 1993). In incomplete 

penetrance, the inheritance of a pathogenic allele(s) does not necessarily lead to the onset of 

disease, and is a feature of many disorders, including retinoblastoma (Harbour, 2001) and some 

forms of spastic paraplegia (Varga et al., 2013). As such, dominant traits can appear to skip 

generations, and incomplete penetrance can also greatly hinder segregation analysis (see 1.3.5.).  

 

Splice-impacting variants may provide a model to account for these phenomena to some degree. 

sQTLs vary widely in their predicted effect size (Garrido-Martín et al., 2021, GTEx Consortium, 

2020, Takata et al., 2017). Variants with the most penetrant effects on local splicing efficiency, such 

as those at canonical splice sites, may be speculated to impact the majority of transcripts for the 

affected gene. At the opposite end of the spectrum of effect size, low-impact sQTLs are perhaps 

unlikely to individually cause Mendelian disorders; rather, it is more likely that sQTLs may contribute 

en masse to more complex disorders. In a study of transcripts in the human brain, for example, it 
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was shown that schizophrenia-associated genes were significantly enriched for sQTLs, which may 

account for individual susceptibilities to onset of the condition (Takata et al., 2017). 

 

However, an intriguing possibility is that weaker sQTLs and eQTLs may act in tandem to either 

attenuate or potentiate the splicing impacts of pathogenic variants that would otherwise cause, or 

not cause, Mendelian disease, either in cis or in trans with the causative gene. If an asymptomatic 

individual harbouring a pathogenic splice-impacting variant also harbours a compensatory sQTL(s), 

or eQTL(s), elsewhere in their genome, it may account for an absence of disease phenotype. 

Conversely, a variant that is non-splice-impacting against a particular genetic background may 

significantly disrupt splicing against another. This provides a potential framework to account for 

variable expressivity and incomplete penetrance of splice variants. In such cases, most current 

interpretation methodologies, which evaluate individual variants (see 1.3.5), would prove 

insufficient, and holistic consideration of all variants would be necessary. 

 

The impact of variants on splicing can vary widely in penetrance and magnitude. As such, splice 

variants can prove challenging to interpret. To better understand the complexities of splice variant 

interpretation, it is helpful to gain a broader understanding of how variants are identified and 

interpreted in a clinical context. 

 

1.3. Identification and interpretation of clinical variants 

In the case of SNVs and indels, four main steps are required for the identification of pathogenic 

variants from raw genomic material: in an optional first step, patient DNA must be enriched for the 

genomic region(s) of interest. Following this, a sequencing workflow must be selected. After 

sequencing, the resulting genomic data must be processed bioinformatically to generate a list of 

high-confidence variants. Finally, it is then necessary to use all information about the patient, variant 

and corresponding gene to interpret the variant; that is, to evaluate the likelihood that it is 

pathogenic or benign. 
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1.3.1. Target enrichment strategies for next-generation sequencing 

After biosample preparation and DNA extraction, it is often (but not always) desirable to enrich the 

samples for particular regions of interest (see 1.3.4.). Two enrichment workflows are particularly 

commonplace. 

 

In the first, amplicon-based enrichment, target genomic regions are amplified through a multiplex 

PCR reaction. In essence, this entails the design of sets of primers that bind to regions of interest 

and promote their amplification through a standard multiplex PCR protocol. There is an upper limit 

on the number of amplicons that can be concurrently generated during a single reaction, 

somewhere in the realm of 5,000-10,000, which may be sufficient when there are relatively small 

cohorts of genes of interest. The bespoke primers used to conduct the PCR reaction mean that the 

enrichment protocol has a low rate of off-target enrichments, and the workflow is fairly quick. 

 

The second method is capture hybridisation, in which nucleotide probes complementary to the 

region(s) of interest are held in solution and the genomic material added. Following binding of the 

targeted regions of the patient DNA to the probes, unbound DNA is washed off and the enriched 

regions retained for downstream sequencing. Capture hybridisation does not suffer from the same 

limit on scale as amplicon-based enrichment, and so can be used for larger sets of genomic 

regions, but has a more involved and expensive experimental protocol. 

 

In the Oxford Nanopore long-read workflow (see 1.5.1.), an alternative enrichment strategy is 

sometimes used, in which the bacterial endonuclease Cas9 is used to excise a region of interest 

from the surrounding genomic sequence and adapters ligated solely to the excised fragments 

before the downstream sequencing reaction itself (McDonald et al., 2021). 

 

1.3.2. Sequencing technologies in the identification of SNPs and indels 

Many diverse platforms exist for the sequencing of DNA; many are based on the use of modified 

nucleotides bound to fluorophores, which each produce a characteristic emission spectrum to 

identify the precise base or bases that are present at each site within the DNA fragment. The 
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majority of fluorophore-based sequencing platforms are described as either sequencing-by-ligation 

(SBL) or sequencing-by-synthesis (SBS).  

 

Prior to sequencing, most workflows incorporate an amplification step, which allows spatial 

concentration of large numbers of copies of the same fragment to boost the fluorescent signal. 

These amplification steps are themselves diverse: in Illumina sequencing, a bridge amplification is 

used, whereby adapters ligated to the end of target fragments bind to oligonucleotide sequences 

bound to a flow cell. These adapters can then act as primers to facilitate polymerase binding and 

subsequent synthesis of identical daughter strands. In other methodologies, such as 454, SOLiD 

and GeneReader, target fragments bind to adapter sequences present on micelles or beads, and 

are amplified through emulsion PCR. 

 

In SBS (Figure 6a), the sequencing reaction is conducted in a solution containing modified versions 

of the four nucleotides, with each nucleotide bound to a fluorophore that fluoresces with a 

characteristic emission spectrum upon incorporation by polymerase into the fragment of interest. 

The fluorophore is then cleaved from the newly incorporated nucleotide to allow the next round of 

sequencing. This process is repeated n times, to produce a read of length n. The collated 

fluorescence signals are then analysed to infer the order of nucleotide incorporation, and thus the 

sequence of the fragment. 
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Most SBL sequencing workflows begin with the binding of an anchor sequence to adapters ligated 

to the end of fragments of interest (Figure 6b). The reaction proceeds in the presence of probes 

consisting of a mononucleotide (e.g. in Complete Genomics sequencing) or dinucleotide (e.g. in 

SOLiD sequencing) downstream of a degenerate sequence of predetermined length, and bound to 

a fluorophore dye. At each round of the sequencing protocol, a probe carrying the complementary 

a 

b 

Figure 6. Comparison of two major exemplar next-generation sequencing chemistries: sequencing by 

synthesis (SBS) and sequencing by ligation (SBL). (a). In sequencing by synthesis, the successive addition of 

fluorophore-bound nucleotides is associated with characteristic emission spectra, followed by cleavage of the 

fluorophore dye to allow the next sequencing cycle. (b) In sequencing by ligation, probes consisting of 

dinucleotides bound to a fluorophore and degenerate nucleotide sequence bind to a target, which is itself 

bonded to an anchor. Ligation of the backbone results in fluorescence of the dye, which is subsequently 

cleaved. This process is repeated until the desired number of bases have been added, then a new cycle 

begins with an offset anchor to ensure sequencing of all bases. Adapted from Goodwin et al. (2016). 
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(di)nucleotide binds the target sequence, and its ligation produces a characteristic fluorescence. A 

fixed number of bases are then cleaved from the end of the probe and the next probe is ligated and 

fluoresces, and so on. Subsequent steps of the reaction involve removal of the bound anchors and 

probes and replacement of an anchor with an n + 2 offset to ensure coverage of all bases. The 

resulting read is constructed by deconvoluting the fluorescence signals from the multiple 

sequencing cycles. 

 

Broadly speaking, SBL methodologies display a greater degree of accuracy than do SBS 

methodologies, with accuracy reported as high as 99.9% (Drmanac et al., 2010, Liu et al., 2012). 

This is largely due to the repeated sequencing of the same bases at different anchor offsets. 

Despite this, llumina SBS workflows remain the dominant sequencing technology employed by 

diagnostic centres, at least partly owing to their long-standing presence in the market and wide 

variety of platforms. 

 

A promising emerging sequencing technology is that of long-read sequencing. As suggested by the 

name, long-read technologies differ from short-read in the length of nucleotide sequence that can 

be analysed in a single read, with one study showing reconstruction of a 4 Mb locus using reads of 

up to 882 kb in length (Jain et al., 2018). Through long-read sequencing, complex structural variants 

can be ascertained through observation of all breakpoints at once; this has been conducted across 

the scale of thousands of individuals to unpick the contribution of structural variation to disease and 

other traits (Beyter et al., 2021). Two main platforms currently predominate in the long-read market: 

Oxford Nanopore and PacBio. The Oxford Nanopore platform calls bases by detecting changes in 

electrical signals as a nucleotide strand is passed through a membrane-bound pore. Sequential 

combinations of nucleotides generate a characteristic signal, or “squiggle”, which is deconvoluted to 

identify the nucleotide sequence. The PacBio Single Molecule, Real-Time (SMRT) long-read 

workflow involves the circularisation of long nucleotide fragments through the ligation of single-

strand nucleotides to its ends. Primers and polymerase bind to these adapters and the nucleotide is 

then immobilised at the bottom of wells named zero-mode waveguides. As fluorescently labelled 

nucleotides are added, the emission spectra are captured and converted to nucleotide sequence. 
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Both PacBio and Nanopore are error-prone methodologies, with erroneous base-calling and falsely 

called indels pervading the generated reads (Dohm et al., 2020; Fu et al., 2019). However, unlike 

most short-read approaches, both of these Nanopore and PacBio workflows are able to sequence 

the same fragment multiple times: in Nanopore, the fragment can be re-threaded back through the 

pore and analysed again, while the circularisation of fragments in PacBio means they can be 

repeatedly cycled around the polymerase. Thus, through the generation of multiple reads per 

fragment, the consensus over all reads can be returned, to some extent averaging out the error rate 

(Dohm et al., 2020; Fu et al., 2019). 

 

1.3.3. Bioinformatics processing and analysis of sequencing data 

The end product of a sequencing reaction is a file consisting of the sequencing reads generated 

during the run. Processing from this point onwards is purely bioinformatic, and may vary from centre 

to centre, but three primary steps are necessary and consistently applied across centres. 

 

The first necessary bioinformatics step is to align the reads to the human genome. A host of 

alignment software is currently available, with popular examples including the Burrows-Wheeler 

algorithm, or BWA (Li and Durbin, 2009), TopHat (Kim et al., 2013) and its successor HISAT2 (Kim 

et al., 2019), and STAR (Dobin et al., 2013). The performance of alignment tools is often gauged by 

alignment rate and gene coverage, in which regard a recent study has demonstrated BWA to be the 

most effective algorithm for short-read alignment of genomic reads, while HISAT2 was found to be 

significantly quicker than all other analysed tools (Musich et al., 2021). 

 

The next processing step is the calling of variants from among the aligned reads. Effective variant 

callers will successfully identify SNVs and indels from artefactual noise generated during the 

sequencing process. Variant calling tools in widespread use include GATK (Poplin et al., 2018), the 

VarScan method of the samtools software package (Li et al., 2009) and Strelka2 (Kim et al., 2018). 

A recent comparison of the performance of these three packages identified Strelka2 as being the 

optimal choice of variant caller in terms of both accuracy (being slightly more accurate than GATK) 

and processing speed, regardless of the upstream sequencing platform (Chen et al., 2019). 



 

 45 

Finally, the list of variants must be annotated. Such annotations generally include a prediction of 

variant consequence, but may also include predictive metrics and population frequency estimates. 

As with aligners and variant callers, a number of annotation tools exist: Ensembl’s Variant Effect 

Predictor, or VEP (McLaren et al., 2016), has entered widespread usage, while alternatives include 

Annovar (Wang et al., 2010, Yang and Wang, 2015) and SnpEff (Cingolani et al., 2012). There is 

perhaps a surprising discordance in the predicted consequences of variants between annotators, 

with one study demonstrating that annotations were consistent between Annovar and VEP for only 

65% of loss-of-function variants (McCarthy et al., 2014). These results suggest that annotation of 

variants by multiple tools may provide more diagnostic insight for clinical staff. 

 

1.3.4. Diagnostic sequencing options in the identification of genomic variants 

The choice of enrichment and sequencing platform is largely informed by the nature of the 

downstream analysis. The various approaches available for clinical variant analysis are primarily 

defined by the size of the genomic region surveyed. 

 

Diagnostic methodologies can be designed to target only those genes associated with a particular 

disease phenotype, an approach termed a gene panel. By limiting the genomic space surveyed, a 

greater depth of sequencing can be achieved for finer resolution of individual variants. Gene panels 

employ custom capture protocols: the Custom Target DNA Enrichment workflow by Agilent, for 

instance, generates probes for capture hybridisation of up to 100s of genes. As genes covered by 

panel-based approaches must by necessity be decided in advance, coverage of as-yet-unknown 

causes of disease is not accommodated by panel approaches. Additionally, gene panels generally 

amplify only the exonic regions of a gene; as such, deeply intronic variation is not identified using 

panel-based approaches. 

 

Exome sequencing further broadens analysis to larger groups of genes. This may include all 

protein-coding genes (whole exome sequencing), or all disease-associated genes (focused exome 

sequencing). Due to the wider scope of analysis, exome sequencing is most often capture 

hybridisation-based. Similarly to gene panels, exomes target only exonic regions. Unlike gene 
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panels, exomes offer the potential for novel gene discovery, making them a popular diagnostic 

approach for research purposes, particularly when prior gene panel testing has been negative. 

Research into exome efficacy has shown that they return a confirmed molecular diagnosis for 

around 25% of the assessed patients, many of whom have already undergone extensive 

upstreaming testing (Atwal et al., 2014, Yang et al., 2013).  

 

At the broadest level, whole genome sequencing (WGS) aims to capture almost the entirety of the 

genome. Most commonly, WGS is conducted through shotgun sequencing, in which whole genomic 

DNA is fragmented through sonication or enzymatic activity, bound by adapters and then 

sequenced using a conventional approach. The wide genomic space covered by WGS does entail 

some caveats: files generated during processing of WGS data may be around ~100 GB in size 

(Narayanasamy et al., 2020), requiring substantial storage (particularly if kept long-term), and may 

return tens of millions of variants (McCarthy et al., 2014). The interpretation of WGS data, therefore, 

is much more difficult than WES or panel data. However, nationwide efforts, such as the 100,000 

Genomes Project (Turnbull et al., 2018), have allowed collaborative input on patient data to 

accelerate interpretation of these large datasets. 

 

Repetitive regions of the genome are difficult to sequence due to ambiguities they introduce in the 

alignment (Treangen and Salzberg, 2011), and so the above sequencing workflows are often 

unable to accurately call variants located in repetitive sequences. Where such regions are linked 

within disease-associated genes, such as ORF15 of the RPGR gene (Chiang et al., 2015), one of 

the most common causes of X-linked retinitis pigmentosa (Shu et al., 2007), may require bespoke 

analyses, such as Sanger sequencing, when upstream diagnostic approaches return do not return a 

molecular diagnosis. 

 

The choice of diagnostic approach is particularly important when investigating non-coding variation, 

including splice-impacting variants. As mentioned above (see 1.3.4.), while panel and exome 

sequencing are capable of identifying pathogenic variation at the canonical splice sites, deeply 

intronic variants are omitted from the scope of sequencing; some short lengths of intronic coverage 
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may achieve sequencing coverage, but this may be filtered from clinical analysis in favour of exonic 

regions. Identification of novel non-coding variants in intergenic elements, such as enhancers, are 

also beyond the scope of WES or panel testing, and so require a whole genome approach. 

 

1.3.5. The American College of Medical Genetics and Genomics pathogenicity 

framework for variant interpretation 

Following the identification and annotation of a variant, it next must be interpreted. To develop a 

consistent approach for international use in interpretation of variants, a set of guidelines has been 

developed by the American College of Medical Genetics and Genomics (ACMG; Richards et al., 

2015). These guidelines employ a tiered approach in which different lines of evidence can be used 

to assess the pathogenicity of a variant (Figure 7). Variants are assigned one of five classifications: 

pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign or benign, 

dependent on the combination of assessment criteria observed for the variant. A classification of 

VUS is given if conflicting benign and pathogenic criteria are identified for a single variant. The 

ACMG guidelines have become widely used, and the framework forms the basis of variant 

interpretation annotations in repositories such as ClinVar (Landrum et al., 2018) and the Leiden 

Open Variation Database (LOVD; Fokkema et al., 2011). Further, in 2016, the Association for 

Clinical Genetic Science issued an official statement recommending the adoption of the ACMG 

guidelines across all UK diagnostic centres (McMullan, 2016). 

 

These guidelines incorporate consideration of a wide variety of variant- and gene-level features in 

the interpretation of variants. The highest level of support for pathogenicity, termed PVS1, is 

assigned only for the following variants: 

“[A] null variant (nonsense, frameshift, canonical ± 1 or 2 splice sites, initiation codon, single or 

multiexon deletion) in a gene where LOF is a known mechanism of disease” 

 Richards et al. (2015) 
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Other characteristics considered strong evidence of pathogenicity include: variants causing the 

same amino acid change as an existing, known pathogenic variant; a variant arising de novo in a 

patient in a gene known to cause the phenotype; increased prevalence of the variant in affected 

individuals compared to controls; and the existence of in vitro or in vivo functional studies 

corroborating the deleterious impact of a variant. 

 

Population-level information may also highlight potential pathogenicity: as Mendelian diseases are 

generally very rare, we would expect the variants underpinning them to exist at a very low level in 

the general population (with recessive disorders potentially existing at a slightly higher level due to 

the presence of carriers in the general population). Historically, the use of publicly available 

population frequency databases such as dbSNP (Sherry et al., 2001) and ExAC (Lek et al., 2016) 

have facilitated interpretation of this criterion. Recent years have seen the widespread adoption of 

the gnomAD database (Karczewski et al., 2020), which encompasses a larger cohort of individuals 

across a wider range of ethnic backgrounds, and includes variant counts from whole genome 

sequencing data, allowing evaluation of frequency for intronic variants. This is particularly beneficial 

in the analysis of putatively splice-impacting variants, which may lie deep in the intron regions. 

 

Multiple lines of evidence may also be used to support a benign classification: for example, variants 

present at a higher frequency in the population than expected given the inheritance pattern, 

prevalence and penetrance of the disease are assigned the strongest level support for a benign 

classification. Nonsegregation of a variant with the disease phenotype – that is, the inconsistent 

presentation of disease phenotype in related individuals known to harbour the variant – also results 

in the assignment of this level of support. 

 

ACMG guidelines permit the use of 16 missense prediction tools as weakly supporting evidence for 

pathogenicity, including the tools CADD (Rentzsch et al., 2019), PolyPhen2 (Adzhubei et al., 2010) 

and SIFT (Ng and Henikoff, 2003). Six splice prediction tools are also listed for use in this regard, 

namely GeneSplicer (Pertea et al., 2001), Human Splicing Finder (Desmet et al., 2009), 

MaxEntScan (Yeo and Burge, 2004), NetGene2 (Hebsgaard et al., 1996), NNSplice (Reese et al., 
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1997) and FSPLICE (http://www.softberry.com). As results from different tools may be discordant, 

evidence from predictive analysis can only be considered if supported by multiple tools. 

 

1.3.5.1. Transcript choice in variant interpretation 

An important factor in the investigation of variant pathogenicity is the transcript, or transcripts, in 

relation to which the variant is being interpreted. As a result of alternative splicing (see 1.2.4.), the 

transcription of a single genetic locus can result in many different transcripts. Thus, a variant with a 

particular impact in one transcript may have a different impact in another, and variants that are 

exonic in one transcript may be intronic in another (and vice versa). 

 

Figure 7. ACMG criteria for classification of pathogenic variants. According to ACMG guidelines, the 

pathogenicity of a variant is assessed by the overall body of supporting criteria shown here. Bioinformatics 

predictions of splicing impact are considered only a supporting criterion for pathogenicity (criterion PP3). 

Criteria range across a spectrum of classes, with the strongest support being assigned for null variants in loss-

of-function genes. Taken from Richards et al. (2015) 
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Alternative splicing is highly tissue-specific, and so transcript selection should reflect the isoform(s) 

present in the most disease-relevant tissue. The importance of correct transcript selection in variant 

interpretation has been highlighted in recent research: one study demonstrated mis-reporting of 

variant pathogenicity in three different genes (CKDL5, KMT2C and OFD1) due to either lack of 

coverage of tissue-specific isoforms in the sequencing protocol or interpretation of variants against 

a non-tissue-relevant transcript (Schoch et al., 2020). This resulted in the missed reporting of 

pathogenicity for two variants, and the false reporting of pathogenicity for the third. Another such 

misannotation was recently described in the DYNC2H1 gene (Vig et al., 2020), in which three 

patients with retinal degeneration harboured an ostensibly intronic variant in a homozygous state. 

Analysis of retinal organoids derived from patient cells revealed that this variant in fact affected a 

retinal microexon present in a non-canonical transcript that would not have been conventionally 

surveyed in a clinical context. These findings also led to a new genotype-phenotype association for 

DYNC2H1, which is conventionally associated with a form of short-rib thoracic dysplasia with only 

occasional ocular involvement (Dagoneau et al., 2009). Both examples highlight that blanket use of 

canonical transcripts may hinder accurate variant interpretation. 

 

Guidance for accurate transcript selection is given in the ACMG guidelines, which state the 

following: 

 

“A reference transcript for each gene should be used and provided in the report when describing 

coding variants. The transcript should represent either the longest known transcript and/or the most 

clinically relevant transcript.” (Richards et al., 2015) 

 

Fulfilling this provision, however, is dependent on an accurate understanding of tissue-specific 

isoform structure. Transcriptomic analysis of a diverse range of cell and/or tissue types will be of 

great benefit to ensuring variants can be interpreted in a context relevant to the biological system(s) 

being studied. 
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The MANE project is a collaborative project aiming to produce high-quality transcript models for all 

human genes, through cross-referencing of features – such as 5’ and 3’ UTR co-ordinates – 

between transcripts listed in the Ensembl (Howe et al., 2021) and RefSeq (O'Leary et al., 2016) 

repositories. While such efforts will indeed provide a valuable set of gold-standard known 

transcripts, caution should be taken in interpreting variants blindly against these them. Rather, there 

is a major unmet need to construct tissue-specific maps of alternative splicing, and evaluate 

variants in relation to tissue- and disease-relevant transcripts. 

 

1.3.5.2. Interpretation of splice variants against ACMG criteria 

Explicit guidelines for the interpretation of splice-impacting variants are scarce in the ACMG 

guidelines; however, canonical splice site variants at the ± 1 or 2 position are deemed null. 

Selection of the correct transcript is important in this regard, as a variant that occupies a canonical 

splice site in one transcript may be annotated otherwise against a different transcript model. Indeed, 

splice-impacting variants may be annotated by standard annotation pipelines as a number of 

different variant types, including synonymous (Pagani et al., 2005, Zeng and Bromberg, 2019) or 

missense (Dionnet et al., 2020, Uddin et al., 2020) variants. It is thus important to consider mis-

splicing as an alternative pathogenic mechanism when interpreting variants of these types. 

 

Variants at residues in the extended splice site are not currently incorporated into the ACMG 

guidelines, due to the high inconsistency in their splicing impact. Thus, assigning pathogenicity to 

these variants is largely reliant on the conduction of functional studies (ACMG criterion PS3). The 

results of these assays may themselves be difficult to interpret when variants affect a smaller 

proportion of transcripts, or lead to the in-frame inclusion of small numbers of amino acids. 

Conflicting interpretations of splicing impact may also be given dependent on the nature of the 

assay(s) conducted, and variants annotated as being splice-impacting have been shown to be at a 

higher risk of reclassification than most other variant types (Esterling et al., 2020). 

 

Despite the provision for in silico analysis of splicing impact in the ACMG guidelines, recent years 

have seen a surge in the number of bioinformatics tools predicting impact of variants on splicing, 
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many of which are based on modern machine learning models (of the six tools listed above, only 

NetGene2 and NNSplice are based on such models). Their newness means such tools are absent 

from the existing guidelines. The accuracy of the wide variety of newly-available machine learning 

tools is only just beginning to be assessed, and these tools may offer an improved ability to identify 

variant impact on splicing than that of existing tools. To determine the likely benefit of integration of 

these tools into clinical practice, there is thus a need to empirically evaluate their accuracy on a 

cohort of functionally evaluated variants. The performance of these splicing prediction models may 

depend on the machine learning paradigm on which they are based. 
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1.4. Machine learning approaches for the prioritization of genomic 

variants impacting pre-mRNA splicing 
 

Machine learning is already being applied to great effect in diverse biological fields, such as the 

modelling of social networks in animal behaviour studies (Valletta et al., 2017; Psorakis et al., 2012) 

and protein secondary structure prediction (Wang et al., 2016). The application of machine learning 

to the prediction of variant impact on splicing has been accelerated by the recent availability of 

large-scale transcriptomic datasets, such as the GTEx project (GTEx Consortium, 2013), which 

allow researchers to link genomic diversity with transcriptomic variation across large numbers of 

individuals and tissue types (Castel et al., 2019, GTEx Consortium, 2020, Ferraro et al., 2019). 

 

Depending on sequencing strategies, clinical scientists will be expected to interpret and triage 

hundreds to millions of genomic variants per individual, although many variants can be immediately 

excluded due to their frequency in the general population (Richards et al., 2015). The development 

of effective machine learning tools for the prediction of splicing impact will allow prioritization of 

likely pathogenic variants among the mass of genomic variants returned by standard diagnostic 

pipelines. Ultimately, these tools may prove a valuable asset in improving diagnostic yield globally. 

 

Here, I provide a summary of some of the major machine learning-based splice analysis tools 

released to date. While the focus here is largely on the functionality of these tools, some basics of 

machine learning are introduced to allow easier understanding of their underlying logic. 

 

1.4.1. Early computational methodologies for the prediction of splicing 

Despite the relatively recent advent of machine learning-based splicing models, many other 

computational approaches to the prediction of splice disruption have been described over the last 

two decades. 

 

Many early tools for the prediction of splicing regulatory element (SRE) binding sites were based on 

position weight matrices (PWMs)—log-scaled representations of the frequency of particular 
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nucleotides within sequences predicted to bind splicing factors. Experimental derivation of such 

PWMs formed the basis of tools such as ESEFinder (Desmet et al., 2009) and Human Splicing 

Finder (Cartegni et al., 2003), and decreased fitting of mutant sequences to the PWM model was 

seen as evidence for impairment of splice factor binding. 

 

Many computational and experimental approaches to splice prediction have involved the 

investigation of nucleotide hexamers (i.e., sequences of 6 bases length). The method RESCUE-

ESE, for example, computationally identified 10 splice-enhancing hexanucleotides in the vicinities of 

weak splice sites (Fairbrother et al., 2002). An approach named ESRseq (Ke et al., 2011) made use 

of a saturation technique in which all 4096 possible nucleotide hexamers were scored for splicing 

impact based on in vitro minigene splicing assays. The tabulated results of these experiments, 

published online, could then be used to speculate on the splicing potential of a mutant sequence 

versus its wild-type counterpart. 

 

One early tool that remains widely used in splice site prediction is MaxEntScan (Yeo and Burge, 

2004). Based on the principles of maximum entropy modelling (MEM) from the field of information 

theory, MaxEntScan generates two models based on a set of real and decoy splice sites. It then 

compares the probability that a nucleotide sequence belongs to each of the two distributions and 

returns how much more likely it is that the sequence is a real, rather than decoy, site. 

 

1.4.2. Basics of machine learning methodologies 

All machine learning models require both training and testing—to do this, a relevant data set is 

divided into both a training set and a test set. Importantly, no entry in one set is present in the other; 

were there to be overlap, the model would be over-trained to recognize those items in the test set 

that it had already seen, and measurement of model efficacy would overestimate its accuracy and 

efficacy. The variables or characteristics in each dataset that are input to a model are termed 

features. In the earliest stages of training, some model-specific algorithm is applied (usually 

iteratively) to this training set to develop an initial model. The model is then applied to the test set 
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and its efficacy quantified. Measurement across different versions of the model then allows the 

model to be fine-tuned to maximize its efficacy. 

 

The efficacy of a machine learning model is generally measured as some kind of loss function – in 

essence, a measurement of how far a model’s predictions deviate from the expected outcome, and 

machine learning algorithms strive to minimize this value over the course of the generation of the 

model. In other words, these models are gradually tweaked so that their ability to accurately classify 

data improves over the training process. 

 

1.4.2.1. Features 

A key element of machine learning is the use of features: these are the underlying characteristics or 

variables that are input to the models and from which inferences are ultimately made. It is these 

features by which data are classified or separated. In the context of genomic and transcriptomic 

analysis, many of these features are often sequence-based, representing the frequency or position 

of particular nucleotide sequences over a given region. Biochemical features, such as GC content 

and thermodynamic properties, are often also employed. Moreover, some tools adopt a meta-

analytical approach through the incorporation of output from other tools as features, such as the use 

of SPANR (Xiong et al., 2015) and CADD (Rentzsch et al., 2019) scores in S-CAP (Jagadeesh et 

al., 2019; see 1.4.5.6.). Differences in choice of features may often underlie the various strengths 

and caveats of particular tools. 
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Table 1. Glossary of machine learning terms. SVM, support vector machine 

 

Term Definition 
Backpropagation The computational process by which a neural network adjusts the weights and biases of 

the network in such a way as to reduce the loss of the model. 

Bagging 
Abbreviation for bootstrap aggregation. The training of a model on random subsets of 

data entries and features to improve generalizability of a model (usually a decision tree-
based model). 

Bias A (usually negative) value that represents a neuron’s inherent tendency towards 
inactivity. Usually randomized for each neuron before the training of a network. 

Classification A type of machine learning system in which the output is assignment of a data point to a 
discrete group. Usually contrasted with regression. 

Feature One of a set of variables in a dataset that are input to a machine learning model. 
Machine learning models classify data according to the values of features in the dataset. 

Hidden layer One of any number of layers of neurons lying between the input and output layers of a 
deep neural network. 

Hyperplane 

A surface with one fewer dimensions than the space it occupies. SVMs separate 
datasets with n features using a hyperplane of n–1 dimensions. For example, if there are 
6 features, an SVM attempts to create a 5-dimensional hyperplane that best separates 

data. 
Kernel trick The use of a mathematical function allowing inference of relational qualities of data 

without explicitly carrying out computationally expensive mathematical calculations. 

Loss function A mathematical function measuring the degree to which a model’s predictions deviate 
from the true classifications of data. 

Machine 
learning 

The use of computer systems to detect patterns in and make inferences from data 
without explicit instruction. 

Multiclass SVM A subtype of SVM used when data may be classified into more than two classes. 
Neuron The basic unit of a neural network, taking in input from previous neurons and 

propagating a weighted response to subsequent ones. 
Regression A type of machine learning system in which the output is the prediction of a continuous 

or ordered value. Usually contrasted with classification. 
Support vectors Data points that lie along the margins between classifications in an SVM model. 

Training set A dataset containing the data that is presented to a machine learning system and then 
used to make inferences and learn patterns present within the data. 

Test set The dataset used to evaluate performance of the model. The test set is generally taken 
from the same source as the training set, but may come from elsewhere. 

 

1.4.2.2. Training and test sets 

One major contributing factor to the rapid surge in the number of machine learning-based splice 

prediction tools is the increased availability of publicly-available datasets. Particularly valuable are 

experimentally-derived RNA-seq datasets, which allow effective linking of genome- and 

transcriptome-level features. Several tools also incorporate measurements of pathogenicity in the 

form of variant classifications from ClinVar (Landrum et al., 2014). Many tools use raw sequence 

data as input; in such cases, these sequences are taken from a reputed transcript model, most 

often GENCODE (Harrow et al., 2012), as in the cases of MMSplice (Cheng et al., 2019) and 

SpliceAI (Jaganathan et al., 2019). 
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1.4.2.3. Outputs of machine learning methodologies 

Machine learning models broadly fall into the categories of regression and classification models. 

Classification models identify the class (of a set of classes) to which an unseen data entry is most 

likely to belong. On the other hand, regression models use input data to predict a quantitative value. 

Thus, the output of a model depends on its design, the types of features which are utilized as input 

and the objectives of the prediction tool. Most splice prediction tools utilize regression models, and 

generate predictive scores corresponding to, for example, the strengthening or weakening of a 

novel or existing splice site (SpliceAI), the magnitude of an exon skipping event (SPIDEX), or 

variant pathogenicity (S-CAP). How scores from these tools are utilized and interpreted is thus 

highly dependent on the tool being used. 

 

1.4.2.4. Evaluating the performance of a machine learning model 

As described above (see 1.4.2.), many machine learning models refine themselves over training 

iterations by minimizing some kind of loss function. However, comparative analysis of the relative 

performance of different models usually relies on the construction of an unseen test dataset that 

can be applied to both/all models. Model performance metrics, such as the area under curve (AUC) 

of both receiver-operating characteristic (ROC) and precision-recall (PR) curves, can then be used 

to more directly compare model performance, although this may be confounded by many factors 

(see Discussion). 

 

1.4.3. Common machine learning models in splice prediction 

1.4.3.1. Support vector machines (SVMs) 

SVM models aim to use a hyperplane (a surface with one fewer dimension than the space around 

it) to separate data belonging to different classes. This is done such that the distance between the 

hyperplane and data that lie closest to the overlap between two classes—the so-called support 

vectors—is maximized (Figure 8a). Data presented to an SVM are then classified according to 

which side of the hyperplane they lie on. Multiclass SVM approaches can also be used where there 

are more than two outcome classes to which data may be assigned. Finally, data which cannot be 

separated by a single continuous hyperplane (Figure 8b) are able to be transformed using the 
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kernel trick. This approach makes use of kernel functions—mathematical operations that allow 

inference of relational qualities between data points in a computationally inexpensive manner. 

Common kernels used in machine learning are the polynomial and radial basis function (RBF) 

kernels, although a multitude of others exist. 

Importantly, standard SVMs are only able to classify data as belonging to one group or another; to 

provide probabilistic measures of confidence or effect size, models need to be adapted and 

extended. 

 

1.4.3.2. Decision Trees 

Decision trees are a simple but powerful form of machine learning model in which a series of binary 

choices is designed that produces the most effective classification or prediction of a dependent 

variable (Figure 8c)—this is done through selecting whichever choice allows most accurate 

separation of data at each stage in the tree-building process. The single decision tree that is 

generated for a given training set, however, is prone to overfitting and bias for the input data. To 

remedy this, random forest models are often used (Figure 8d). Here, iterative bagging (bootstrap 

aggregating) of the training data, as well as of the variables considered at each stage of the tree-

building process, allows the model to be more generalizable to unseen data. Gradient tree boosting 

(Figure 8e) adopts a different approach to bypass overfitting by using the generation of successive 

trees, each of small contribution to the final model, until decreases in the model loss are negligible. 
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1.4.3.3. Deep Neural Networks (DNNs)  

DNNs are computational networks modelled on the activity of biological neurons (Figure 8f). These 

neurons are arranged in layers (Figure 8g): the first is an input layer, where each neuron is 

assigned a value corresponding to a feature of the model for that data entry. The final layer contains 

neurons corresponding to the possible outcomes of the model. Between these are a number of 

hidden layers. Hidden layer neurons receive weighted input from all the neurons in the previous 

layer, and subsequently distribute the sum of these inputs to all neurons in the next layer by another 

series of weighted connections. These weightings are assigned at random before the training of the 

model. 

 

 

 

Figure 8. Basic machine learning models. (a) Support vector machines (SVMs) classify linearly separable data 

using a single hyperplane (solid line), with points classified according to the side of the hyperplane on which they lie. 

Construction of the hyperplane is done using support vectors (indicated by arrows), data points that mark 

boundaries (dotted) within which the hyperplane must lie. (b) Where data are not linearly separable, they may be 

transformed using kernel functions (radial basis function, or RBF, kernel shown here) which infer relational qualities 

of data in a computationally inexpensive manner. (c) Decision trees use a series of binary choices (orange) to most 

effectively separate data into different categories (red and blue). (d) Random forest models consist of large numbers 

(often hundreds or thousands) of trees each derived from bootstrap aggregating (bagging) of both input features and 

data entries in the original training set. (e) To mitigate overfitting problems common to decision trees, gradient tree 

boosting generates successive trees of fixed structure that each contribute a small amount to the final classification, 

with each tree scaled by a learning rate between 0–1. (f) In a neural network, a single neuron receives quantitative 

input (xi) from neurons in the preceding layer and scales them according to the weights of its connection to them 

(wi). Each neuron also has a “bias” (b), representing a tendency for inactivity. The output (or activation) of a neuron 

is the sum of each input neuron multiplied by its respective weight, plus this bias value. (g) A deep neural network 

has an initial layer of input neurons (orange), which are coded representations of data features. These are 

connected to 1 or more layers of “hidden neurons” (green), which are, in turn, connected to an output layer of 

neurons (red and blue) corresponding to the possible classifications of the data. Predictions may be categorical or 

continuous and are based on the relative activation of the output neurons. Biases for each neuron and weights for 

each connection are randomized before the network is trained. After a set of training data is presented, the loss 

function of the model is calculated (i.e., how accurately or inaccurately the model has classified the known data) and 

an approach termed backpropagation is used to modulate each weight and bias so as to reduce this loss. More data 

is then presented and this process repeated iteratively to refine the model. 
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Training data are presented sequentially to a DNN and the resulting output in the final layer 

recorded and averaged over many training iterations. The efficacy of the model is then compared in 

relation to expected results. Through a process termed backpropagation, the weightings of the 

connections between neurons are proportionally adjusted so as to minimize the loss function of the 

model. This is repeated over multiple presentations of training data, or epochs, gradually refining 

the model. Particularly popular in the analysis of nucleotide sequences is a variation termed the 

convolutional neural network, or CNN, in which input data are ordered in the form of an n-

dimensional array—that is, nucleotides are input to the model in windows. 

 

1.4.4. Machine learning-based tools for splicing prediction 

Here, I describe 7 tools incorporating different aspects of splicing prediction. Below is a tabulated 

summary of key characteristics of each model for reference (Table 2). For ease of visualisation, 

there are also tabulated and schematic representations of the transcript regions amenable to 

analysis by each tool, using the pre-mRNA transcript of the APO3 gene as an exemplar (Table 3, 

Figure 9).



                     

 

Table 2. Summary of splice prediction bioinformatics tools. “Citation” denotes references to articles describing tools themselves. SVM, support vector machine; RBF, radial 
basis function; MPRA, massively parallel reporter assay; HGMD, Human Gene Mutation Database; PSSM, position-specific scoring matrix; pLI, probability of loss-of-
function intolerant; RVIS, residual variation intolerance score; AUC, area under receiver-operator characteristic (ROC) curve; PR-AUC, area under precision-recall curve. 

 

Tool 
Name Function ML Model Training/Testing Data Features Efficacy Citation 

CADD General purpose 
pathogenicity scoring 

v1.0: linear SVM 
Later releases: L2-
regularized logistic 

regression 

Benign training: evolutionarily neutral 
variants; pathogenic training: 

simulated de novo pathogenic variants 
Benign testing: common benign 

variants; pathogenic testing: 
pathogenic ClinVar variants, somatic 

cancer mutation frequencies 

60, covering conversation scores, 
epigenetic modifications, functional 

analyses, and genetic context 

AUC = 0.916, across all 
variant types 

Rentzsch et 
al., 2019; 

Kircher et al., 
2014 

TraP Quantification of variant 
impact on transcripts 

Random forest of 
1000 individual 
decision trees 

Benign: De novo mutations in healthy 
individuals 

Pathogenic: Curated pathogenic 
synonymous variants 

20, including several PSSM-based 
splice site scores, GERP++ 

conservation scores, and models of 
feature interactions 

AUC = 0.88, all ClinVar 
variants 

AUC = 0.83, ClinVar 
intronic variants only 

Gelfman et 
al., 2017 

SPANR Cassette exon skipping 
prediction 

Group of neural 
networks modeled 

on Bayesian 
framework 

ψ values for all human exons across 
16 tissues, based on the Illumina 

Human Body Map project 

1393, including exon/intron lengths, 
distances to nearest alternative 

splice sites, conservation and RNA 
secondary structure 

AUC = 0.955, when 
distinguishing between 
high (≥67%) and low 

(≤33%) ψ values 

Xiong et al., 
2015 

CryptSplice 

Effect of variants on 
existing splice sites and 

cryptic splice site 
prediction 

SVM with RBF 
kernel 

True and false splice sites from 
GenBank-derived datasets 

3 types, all sequence-based, relating 
to the probability of finding given 
nucleotide sequences at certain 

points in splice region 

Sensitivity = 97.8% and 
88.9% in correctly labeling 

canonical donors and 
acceptors, respectively 

Lee et al., 
2017 

MMSplice 

Prediction of exon 
skipping, competitive 

interactions, changes in 
splicing efficiency and 

pathogenicity 

Modular neural 
networks, and linear 

and logistic 
regression 

Donor/acceptor modules: GENCODE 
v24 true and false splice sites 

Exon/intron modules: MPRA data from 
Rosenberg et al. (2015) 

Downstream models: various 

Direct encoding of the sequence 

R = 0.87 and 0.81, 
correlation between 

predicted and actual Dψ 
values for acceptor and 

donor mutations, 
respectively 

PR-AUC = 0.41, exon 
skipping prediction 

Cheng et al., 
2019 

S-CAP 

Variant pathogenicity 
scoring with the 

compartmentalization of 
genomic space 

Gradient boosting 
tree 

Pathogenic variants curated from 
HGMD and ClinVar; benign variants 

curated from gnomAD 

Features across chromosomal, 
gene, exon and variant levels, e.g., 

pLI, RVIS, CADD and SPIDEX 
scores, exon length, splice site 

strengths 

AUC: 0.828–0.959, across 
6 regions 

Jagadeesh et 
al., 2019 

SpliceAI 
Prediction of variant 

impact on acceptor/donor 
loss or gain 

32-layer deep neural 
network 

GENCODE v24 pre-mRNA transcript 
sequence for human protein-coding 

genes 
Direct encoding of the sequence 

PR-AUC = 0.98 in correct 
prediction of splice site 

location from raw 
sequence 

Jaganathan 
et al., 2019 
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1.4.4.1. CADD (Combined annotation-dependent depletion) 
CADD (Rentzsch et al., 2019; Kircher et al., 2014) was among the earliest machine learning-based 

variant scoring systems; it generates a score that is approximately interpretable as a measure of 

pathogenicity. 

 

To train the CADD model, both benign and pathogenic variant sets were derived. For the former, 

variants with high mean allele frequency (≥95%) in the 1000 Genomes dataset (Auton et al., 2015) 

were chosen that had arisen since the split between humans and chimpanzees, based on the 

assumption that such variants had been fixed under natural selection, and so are, at worst, weakly 

pathogenic. De novo pathogenic variants—both indels and SNVs—were simulated genome-wide 

using a model informed by local mutation rates and CpG dinucleotide mutation asymmetry. 

 

A wide range of features were incorporated into the CADD model. Such features included: 

conservation metrics, such as phyloP (Pollard et al., 2010), GERP (Cooper et al., 2005), and 

phastCons (Siepel et al., 2005); regulatory information, such as transcription factor binding (Johnson 

et al., 2007) and DNAse I hypersensitivity regions (Boyle et al., 2008); and protein-level predictions, 

for example Grantham (Grantham et al., 1974), SIFT (Ng et al., 2003), and PolyPhen (Adzhubei et al., 

2010) scores. Transcript-level features, such as gene expression levels, were also derived, along with 

some consideration of splicing in the inclusion of variant distance to the nearest canonical splice site. 

The initial releases of CADD adopted an SVM-based approach (Figure 8a-b) with a linear kernel. 

However, with later releases, L2-regularized logistic regression—a form of regression model allowing 

the modelling and prediction of a binary dependent variable—was shown to lead to improved 

sensitivity and specificity, and so became the model of choice (Rentzsch et al., 2019). 

CADD has been rapidly and widely adopted since its creation, with uses in pathogenicity prediction for 

many disease subtypes, both Mendelian and complex. In a study of autism spectrum disorder (ASD) 

in 85 quartet families, for example, CADD scoring was used to filter genomic variants of interest, 

resulting in the identification of ASD-relevant mutations in 69.4% of affected siblings (Yuen et al., 

2015). 

 

The use of CADD scoring has become a gold standard for the prediction of protein-coding variant 

impact. This ubiquity has led to CADD becoming a benchmark against which many predictive tools 

are measured. However, its efficacy in terms of splicing prediction is undermined by certain features: 

the use of conservation scores, for example, may not be informative at the poorly-conserved bases of 

introns, where cryptic splice sites and pseudoexonisation events are liable to occur. Thus, while a 

highly effective tool for protein-coding impact prediction, CADD lacks the splice-specific 

considerations to accurately predict variant effect at the transcript level. 
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1.4.4.2. TraP (Transcript-inferred pathogenicity) scores 
TraP (Gelfman et al., 2017) is a random forest-based tool (Figure 8d) for the analysis of non-coding 

variant impact at the transcript level, providing a score between 0–1 to reflect the scale of this impact. 

This score corresponds to the proportion of decision trees in the model that predict a variant as 

pathogenic, and may thus be used as a proxy for the degree of impact a variant is likely to have on a 

transcript. 

 

TraP was trained on 75 pathogenic and 402 benign variants. To source the former, the authors 

curated a list of solely synonymous variants associated with rare disease to avoid any incorporation of 

protein-coding consideration in the model. Synonymous de novo variants in healthy individuals were 

selected as the benign dataset. These rare variants were selected over common variants in the 

population to avoid training the model to distinguish solely between rare and common variants. 

The TraP model consists of 20 features, primarily splicing-related, including whether or not the variant 

lies within the splice site region (as pre-defined by the authors); the score of new splice sites where 

cryptic GT-AG dinucleotides are introduced, according to a position-specific scoring matrix (PSSM); 

and a bespoke “variant regulatory score”, which incorporates several other features that do not 

directly affect existing splice sites. The model further incorporates the GERP++ conservation metric 

(Davydov et al., 2010). The random forest model underlying TraP consists of 1000 decision trees 

harbouring various combinations of these 20 features. 

 

Table 3. List of loci pre-mRNA transcript loci amenable to predictive analysis by each of 7 splice 
prediction tools. 

 
Tool Loci Covered 

SPANR Any internal exon, plus 300 bp flanking intronic sequence 
CryptSplice Within 60 bp of a canonical splice junction; >100 bp into intron if novel donor/acceptor is created 
MMSplice Any exon, plus 50 bp upstream or 13 bp downstream 

S-CAP Any exon, plus 50 bp flanking intronic sequence 
CADD All loci 
TraP All loci 

SpliceAI All loci 
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The authors suggest a 3-tier threshold system for TraP scoring: variants with a TraP score below 

0.495 are considered likely benign. Variants scoring ≥0.495 but below 0.93 are in an intermediate 

range, representing variants that may possibly have an impact at the transcript level. Variants scoring 

≥0.93 are likely pathogenic. When considering intronic variants, the authors suggest a threshold of 

0.75 to avoid inclusion of large numbers of false positives. 

 

The authors compared the performance of TraP compared to CADD in distinguishing pathogenic and 

benign variants, both intronic and synonymous. They demonstrated that matching the specificity of 

TraP at a 0.495 threshold would give CADD a sensitivity of just 6% or 18.8%, for synonymous and 

intronic variants, respectively. Thus, it is evident that TraP scoring offers a marked improvement on 

the CADD model for the prioritization of variants impacting splicing. 

 

In addition, TraP considers the potential impact of variants across multiple transcripts, a feature not 

considered by many splicing prediction tools. The efficacy of the model is also impressive, particularly 

given the relatively small size of the training and test sets. While the model works well in identifying 

pathogenic intronic variants, retraining a second model using such pathogenic intronic variants, rather 

than synonymous ones, may improve the performance of TraP yet further. 

 

 

Figure 9. Location of variants amenable to analysis by splice prediction software. With diverse underlying 
training sets and purposes, different splice prediction tools are only able to analyze variants at particular sites 
in a pre-mRNA transcript. To-scale representation of the loci amenable to analysis by each of 7 tools for the 
pre-mRNA transcript of the human APOC3 gene (RefSeq accession NM_000040.3). Dotted lines signify 
canonical exon-intron boundaries. Hashed bars represent loci where the variant effect can be modeled only 
if a novel splice donor or acceptor is created. Italicized numbers show exon/intron length in nucleotides. UTR, 
untranslated region. 
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1.4.4.3. SPANR (Splicing-based analysis of variants) 
SPANR (Xiong et al., 2015) seeks to model variants impacting cassette exon splicing—the inclusion 

or skipping of a given internal exon—across a number of human tissues. It achieves this using a 

Bayesian deep learning model based on the percentage spliced in (PSI, or Ψ) metric, a measure of 

the percentage of mature mRNA transcripts containing, rather than excluding, a particular exon. This 

model seeks to maximize a “code quality” metric that is a measure of the improvement of the model to 

predict Ψ values over a random guesser. SPANR works on a variation of a two-layer neural network, 

where the hidden layers of the model are common to all tissues, but each tissue has a distinct output 

layer. 

 

Transcripts from RefSeq (Pruitt et al., 2007) were mined, and Human UniGene data from NCBI 

analysed, to identify instances of cassette and constitutive exon splicing in the normal human 

transcriptome, leading to the identification of 10,689 cassette and 33,159 constitutive exons (all 

flanked by an exon on either side). The Ψ metrics for each of these central exons was then computed 

genome-wide using RNA-seq data from the Illumina BodyMap 2.0 project (NCBI GSE30611) and 

used as input for training an ensemble of DNN models. Dψ values representing the predicted change 

in exon inclusion were then able to be generated, with the paper using |Dψ ≥ 5%| as a general 

threshold over which a variant is considered to impact cassette exon splicing. 

 

In the original paper, the authors demonstrated the utility of SPANR in the analysis of specific variant 

cohorts in patients with spinal muscular atrophy (SMA) and Lynch syndrome, implicating common 

causative variants in these disorders as splice-impacting. They also showed that predicted effects of 

simulated variants in intron 7 of the SMN2 gene are recapitulated with RT-PCR. They conducted a 

wider analysis of SNVs in genome data from 5 patients with autistic spectrum disorder and observed 

an enrichment of splice-impacting variants in genes associated with neurodevelopmental roles, thus 

demonstrating a wide range of potential uses for the tool in the study of both Mendelian and complex 

disease. 

 

The model is somewhat limited by the scope of the cassette exon model—a variant must lie within 

300 bp of an exon that itself lies between two other exons, meaning variants in first or terminal exons 

are not analysable. This also renders the model obsolete for analysis of pathogenic variant types such 

as cryptic splice sites and deep intronic mutations. However, a webserver is provided, allowing easy 

analysis of small batches of variants, while a tabulated version of the SPANR dataset called SPIDEX, 

comprising pre-computed scores for all eligible variants in the genome, can be downloaded by the 

user and used during variant annotation with the ANNOVAR package for larger variant sets (Wang, Li 

and Hakonarson, 2010). SPANR may thus be a powerful component of a predictive pipeline, but is 

likely too limited in scope to be considered proof of pathogenicity in isolation. 
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1.4.4.4. CryptSplice 
CryptSplice (Lee et al., 2017) aims to predict the effects of the generation of cryptic splice sites. 

Namely, it considers three scenarios: the weakening of a canonical site by the introduction of a new 

splice site nearby, the outcompeting of a canonical site by a novel site, and the introduction of a 

functional deep intronic splice site. 

 

An SVM forms the basis of CryptSplice, with input data being transformed with an RBF kernel, which 

was shown to yield the greatest accuracy. To provide probabilistic estimates to accompany 

classifications, the model was trained using 10-fold cross validation; that is, the training set was 

randomly divided into 10 equal parts and each part successively used to generate a new model. The 

distribution of accuracies across different models then formed the basis of probability metrics. 

 

For training, CryptSplice was trained on a series of “true” splice sites derived from the NN269 (Reese 

et al., 1997) and HS3D (Pollastro et al., 2002) datasets, repositories of splice junctions curated from 

GenBank annotations following various quality control and cleaning processes. An equal number of 

“false” sites were derived, consisting of sequences with GT or AG dinucleotides at least 60 bp from a 

canonical splice site. All features for the model were sequence-based and fell into one of three 

categories (Table 2). 

 

If a cryptic donor or acceptor is created, CryptSplice is able to cover regions >100 bp into the intron 

(Figure 9), lending it some strength over some tools that lack applicability far from splice junctions. 

However, some weaknesses in the model are apparent—the training junctions, for example, are 

derived from transcript annotations over 20 years old. Thus, the model may be underpowered to 

detect weaker splice sites that may not have become part of standard transcript models until more 

recently, and other tools are likely more effective for analysis of variants lying outside deeply intronic 

regions. 

 

1.4.4.5. MMSplice (Modular modelling of splicing) 
The tool MMSplice (Cheng et al., 2019) aims to model the competitive interaction between splice sites 

in close proximity, supplementing this with predictions of exon skipping, splicing efficiency (i.e., the 

proportion of transcripts undergoing, rather than bypassing, splicing at a particular junction) and 

pathogenicity. 

 

MMSplice has a complex underlying modular architecture containing 6 basic models of the transcript 

space (Figure 10a), covering donor and acceptor sites, plus 3′ and 5′ intronic and exonic sequences. 

Each was generated by a neural network with 2–4 layers, and all but the donor model had at least 

one convolutional layer. To generate the donor and acceptor models, all splice donor and acceptor 

sites present in the GENCODE v24 annotation (Harrow et al., 2012) were derived as examples of 

positive sites. Random sequences from within the same genes were then used as negative 

sequences, provided they did not overlap the position of the positive splice sites. The output of these 
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models is a positive or negative score, corresponding approximately to the strength of the presented 

variant sequence as a donor/acceptor. 

 

To generate the 5′ and 3′ exonic and intronic models, the authors leveraged a massively parallel 

reporter assay (MPRA) generated by Rosenberg et al. (2015), in which the relative splicing 

efficiencies of pairs of random 25-mer oligonucleotides were evaluated on both the exonic and 

intronic sides of an intronic splice junction. These models derive either Dψ5 or Dψ3 metrics, 

corresponding to the relative usage of a variant sequence as a splice acceptor or donor, respectively, 

compared to the canonical site. 

 

A series of regression models were then designed based on the output of these models in order to 

predict variant impact on splicing. Four linear regression models were constructed: one analysed 

variant impact on exon skipping through analysis of data from the splice analysis pipeline Vex-seq 

(Adamson et al., 2018); two were designed to predict Dψ5 or Dψ3 values based on cross-referencing of 

genome and RNA-seq data from the GTEx study (GTEx Consortium, 2013); the fourth leveraged a 

massively parallel splicing assay, or MaPSy (Soemedi et al., 2017; see 1.5.3.), to predict splicing 

efficiency. In addition to this, a logistic regression model to predict pathogenicity was derived based 

on known pathogenic and benign variants in the splice region, as listed on ClinVar (Landrum et al., 

2014). Thus, MMSplice provides a powerful combination of both biological and clinical predictions. 

 

MMSplice is highly intricate and versatile, and is also easily clinically applicable, being able to take 

variant call format (VCF) files as input, and incorporating both SNV and indel predictions (unlike many 

tools) to predict a wide range of variant impacts on splicing. However, the training set of all splice 

junctions in the GENCODE v24 annotation may also contain substantial numbers of false positives 

where particular transcripts have been computationally predicted and remain experimentally 

unverified. Furthermore, modelling of competitive splice site interactions using GTEx data was based 

solely on samples from brain and skin tissue, which may underpower the model for predicting 

competitive interactions that predominate in other tissue types. 
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1.4.4.6. S-CAP (Splicing clinically applicable pathogenicity prediction) 
S-CAP (Jagadeesh et al., 2019) is a splice prediction tool designed to directly predict the 

pathogenicity of splice-impacting variants. Much like MMSplice, S-CAP compartmentalizes the 

splicing landscape. In S-CAP, this compartmentalization comprises 6 distinct regions: 3′ intronic, 3′ 

core, exonic, 5′ core, 5′ extended, and 5′ intronic (Figure 10b), all lying within 50 bases of the 

canonical exon-intron junction. This approach aims to counter the tendency for prioritization of core 

splice site mutations in most machine learning models, which may understate the pathogenicity of 

more intronic variants. 

 

The creators of S-CAP took both the Human Gene Mutation Database (HGMD; Stenson et al., 2014) 

and ClinVar (Landrum et al., 2014) as sources for pathogenic variation, while benign variants were 

sourced from gnomAD (minor allele frequency ≥1%). The model is trained on 29 different features, 

classified as chromosome, gene, exon or variant level features. These features include highly tailored 

analyses, such as the number of rare variants found in the given exonic locus, or the SPANR and 

CADD scores for the variant. Intolerance of the gene as a whole to mutation is incorporated into the 

model through the use of pLI (probability of being loss-of-function intolerant; Lek et al., 2016) and 

RVIS (residual variation intolerance; Petrovski et al., 2013) scores. 

 

In cases of 5′ and 3′ core mutations, the downstream consequence is almost universally impairment 

of splicing, removing the requirement of evaluating splice impact. This leaves only the question of 

whether this impairment of splicing is likely pathogenic. This is highly dependent on whether the 

variant is present in a heterozygous or hemi/homozygous state. To this end, core splice variants are 

run through two models, one based on a recessive and the other on a dominant inheritance model, 

and a score returned for each possibility. 

Figure 10. Compartmentalization of the splice region by S-CAP and MMSplice. Both MMSplice and S-CAP 
divide the splice region into six sub-regions, although the length and location of these divisions are different 
between the two tools. MMSplice (a) consists of 6 initial deep neural network modules corresponding to each 
region, with exonic and intronic modules both trained on the results of a massively parallel reporter assay 
(MPRA) experiment (Rosenberg et al., 2015) and the acceptor and donor modules trained to predict functional 
acceptors and donors based on the real and decoy sites in the GENCODE v24 annotation. The scores from all 
modules are then passed to linear and logistic regression models to predict downstream effects, such as exon 
skipping, alteration of splicing efficiency, and competitive splice site interactions. S-CAP (b) consists of six 
separate models trained on pathogenic and benign variants curated for each region. The most significant 
consequence is returned for a given variant. Length of bars not to scale. 
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Pre-computed scores are available for all variants lying within 1 of the 6 regions considered by the 

model, and individual thresholds are predefined for analysis of each of these regions. These 

thresholds, however, are designed for 95% sensitivity, coming somewhat at the expense of specificity 

and leading to the generation of large numbers of false positives also being identified. There is also 

substantial variety in the efficacy of the 6 models: exonic and 5′ intronic mutations are particularly 

difficult to characterize. This is most likely accounted for by the method of generation of these two 

models, for which variants had to be co-opted from other compartments prior to training, in order to 

boost an otherwise small pool of pathogenic variants. While S-CAP is underpowered to detect these 

variant types compared other types, it regardless outperformed SPIDEX, CADD and TraP in both 

sensitivity and specificity. 

 

Although it doubtless plays a huge part in the efficacy of the tool, the division of the genomic 

landscape also comes at the expense of universal applicability: variants lying more than 50 bp into the 

intron are not covered by the model. Despite this, for the cohort of variants lying within these 

predefined regions, S-CAP has the potential to be a highly effective predictive tool. 

 

1.4.4.7. SpliceAI 
The deep learning tool SpliceAI (Jaganathan et al., 2019) analyses each position in a pre-mRNA 

transcript and evaluates whether it is likely to be a splice donor, acceptor, or neither. The model 

considers all bases within 50 bp of a presented variant and returns the one with the most substantial 

gain or loss of acceptor or donor potential as a result of the mutation. The model analyses the impact 

of a variant on the splicing potential of residues in the surrounding genomic space. 

 

SpliceAI consists of a 32-layer deep residual neural network, a subtype of neural network in which the 

network is arranged into so-called “residual blocks”—sub-networks containing “skip connections” that 

output directly to deeper layers in the model. This helps bypass common pitfalls for particularly deep 

neural networks, such as vanishing/exploding gradients, and also improves the speed with which the 

network learns (He et al., 2016). 

 

To train the model, the authors selected over 20,287 principal protein-coding transcripts from the 

GENCODE v24 annotation, and used those from a selection of particular chromosomes (all except 

chr1, chr3, chr5, chr7, and chr9) as a training set, with the remainder acting as the test set, following 

removal of paralogs within the set. Each base within these transcripts was designated either a splice 

donor, acceptor or non-splice site. Four architectures were specifically designed: SpliceAI-80nt, 

SpliceAI-400nt, SpliceAI-2k, and SpliceAI-10k, where the suffix denotes the total number of bases 

flanking the variant that are input to the model. 

 

SpliceAI is designed to infer features from the transcript sequence itself; as such, the only input to the 

model is a coded representation of the variant of interest and the flanking sequence of variable length, 

dependent on the above choice of model. Scores of gain or loss of acceptor or donor potential are 
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generated for all residues lying within 50 bp of the variant on the pre-mRNA transcript. The residue 

within this flanking region that experiences the most significant change is then returned for each of 

these 4 consequences. 

 

The authors demonstrated the ability of SpliceAI to faithfully identity true splice sites from nucleotide 

sequence alone, allowing recreation of entire gene transcripts; SpliceAI-10k exhibits 95% top-k 

accuracy and a PR-AUC (area under precision recall curve) of 0.98, both markedly high figures. While 

the authors demonstrate very favourable model performance in comparison to earlier tools, e.g., 

MaxEntScan (Yeo and Burge, 2004), GeneSplicer (Pertea et al., 2001) and NNSplice (Reese et al., 

1997), they did not analyse performance against any more recent tools. Such comparisons will prove 

very valuable in ascertaining the utility of SpliceAI in clinical practice. 

 

In using a near-agnostic approach to model training, SpliceAI is able to identify features that may not 

be apparent to most humans. Because of this, it is quite possible that many features of the above 

tools, such as the modelling of competitive interactions between neighbouring and novel splice sites, 

are already encompassed within the model. As acknowledged by the authors, however, this 

agnosticism may mean that certain features incorporated into the model do not truly reflect 

phenomena with biological meaning. Despite this, the power of the model, as well as the public 

availability of precomputed scores for all possible single nucleotide substitutions in the genome, 

suggest that SpliceAI may prove the gold standard for clinical interpretation of splice-impacting 

variants. 

 

1.4.5. Future prospects for machine learning-based splice prediction tools 
The ever-growing range of splice prediction tools complicates variant interpretation by providing a 

surplus of choices for bioinformatics analysis. Identifying the optimal choice through direct, head-to-

head comparisons of these tools is not a simple task. The genomic loci analysable by different tools 

vary considerably, thus making construction of a universal test variant set difficult without the 

introduction of missing data points for at least one of the tools. The diverse functions of these tools 

also complicate comparative analysis. Comparing the performance of a tool predicting competitive 

splice site interactions with one predicting exon skipping, for example, may not ultimately prove 

informative. 

 

Despite this, many of the papers describing the above tools do attempt such comparisons. SpliceAI, 

for instance, significantly outperforms the splice prediction tools GeneSplicer (Pertea et al., 2001), 

MaxEntScan (Yeo and Burge et al., 2004), and NNSplice (Reese et al., 1997) in both top-k accuracy 

and precision-recall. However, these latter tools were created over a decade ago, when sizeable 

training datasets were not so readily available, and so may be underpowered in splice prediction. 

MMSplice (Cheng et al., 2019), meanwhile, shows favourable performance over the similar tool 

COSSMO (Bretschneider et al., 2018), and S-CAP (Jagadeesh et al., 2019) outperforms SPANR 
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(Xiong et al., 2015), CADD (Kircher et al., 2014), TraP (Gelfman et al., 2017), and others across all 

six of its considered regions. 

 

The different approaches adopted by these models offers clinical geneticists the opportunity to 

consider variant impact from many perspectives, both in terms of the specific splicing consequences 

predicted by the given model and the value it outputs. Broadly, tools may predict either pathogenicity 

or splicing impact. Care may need to be taken with the former, as training of a pathogenicity score is 

reliant on human annotations of pathogenicity, such as through ClinVar (Landrum et al., 2014). These 

annotations may be inaccurate, and may also suffer from ascertainment bias, whereby the main body 

of pathogenic variants in the database reflect the current state of our understanding of splice-

impacting variants, thus underpowering models in the analysis of less apparent splice variant types. 

The ACMG have produced detailed guidelines for the scoring of variant pathogenicity (Richards et al., 

2015); consideration of splicing impact first and then following these guidelines on a variant-by-variant 

basis may prove a more robust and sensitive way to characterize pathogenic variants. 

 

Machine learning models are often seen as “black boxes”, in that the inner workings of the model are 

not discernible to the user, and it is thus difficult for meaningful biological inferences to be made. 

However, variants flagged by these tools may prove a valuable jumping-off point for research into the 

mechanisms underlying the inability of earlier tools to correctly predict certain variants. 

 

One such mechanism is the existence of long-distance splicing interactions: SpliceAI has 

demonstrated that consideration of wider genomic context significantly improves model performance. 

Such an improvement likely reflects the interactions between trans-acting splicing complexes bound 

across the often substantial lengths of introns, as well as their respective cis-acting binding sites (De 

Conti et al., 2013; Ke et al., 2010). Thus, SpliceAI may provide a useful resource in the investigation 

of long-range determinants of splicing, and ultimately improve our understanding of splicing in both a 

healthy and pathogenic context. 

 

Many of these tools share common caveats. Few tools, for example, are able to predict the splice 

impact of indels, with the exceptions of CADD, MMSplice, and SpliceAI. Future tools will certainly 

benefit from more thorough consideration of such variants, which may have a significant impact on 

ultimate transcript structure. Indels affecting the poly-pyrimidine tract (PPT), for example, are known 

to have significant effects on splicing that may be more marked than the effect of many PPT SNVs, as 

spacing between the branchpoint and 3′ splice site is crucial for correct assembly of the spliceosome 

(Coolidge, Seely and Patton, 1997; Bryen et al., 2019). 

 

It should also be noted that atypical splice sites (i.e., those not consisting of GT-AG dinucleotide 

pairs) comprise just 1% of the body of human introns (Burset et al., 2000), and so do not feature 

prevalently in training sets. Some tools, such as CryptSplice, actively exclude such introns from model 

training. Thus, many models may be underpowered to predict changes affecting these low-frequency 
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sites. The effect of variants in AT-AC introns (also known as U12 introns), which are instead 

processed by the biochemically distinct “minor spliceosome” (Turunen et al., 2013), may be 

particularly difficult to predict. While the relative occurrence of such introns is low, they nonetheless 

represent a possible source of pathogenic variants (Verna et al., 2018), with mutations affecting the 

U12 5′-splice sites of introns in the STK11 (Hastings et al., 2005) and TRAPPC2 (Shaw et al., 2003) 

genes being shown to cause Peutz–Jeghers syndrome and spondyloepiphyseal dysplasia tarda, 

respectively. Special care may need to be taken, therefore, when considering variants in the vicinity of 

splice sites for such introns. 

 

A final valuable consideration for models is the inclusion of more personalized and patient-specific 

prediction of splicing. The single-variant functionality of most of the above tools, for example, neglects 

to consider the interactions between multiple variants in close (or even distant) genomic space. 

Studies in mice suggest such interactions between common SNPs (i.e., an individual’s genetic 

background) and rare variants may underlie phenomena such as incomplete penetrance and variable 

expressivity (Bourgeois et al., 1998; Doetschman, 2009) in Mendelian disorders. Consideration of 

these common genomic variants in tandem with variants of interest may allow further clarification of 

variants of uncertain significance. 
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1.5. Functional analysis of variant impact on mis-splicing 
As described above (see 1.3.5.), computational predictions cannot be taken as concrete evidence of 

the splicing impact of a variant. In accordance with ACMG guidelines, variants outside the canonical ± 

1 or 2 splice site cannot be presumed to be a null variant. This stipulation may be a reasonable one, 

given the weaker levels of constraint found at sites distal to canonical splice acceptors/donors (see 

1.2.1). Thus, functional investigation is necessary to provide evidence that a variant causes, or does 

not cause, loss of function through generation of aberrant splicing. A handful of tools are available to 

functionally assess splicing impact, and, as with sequencing methodologies, these functional splicing 

assays vary in scope, ranging from analysis of individual transcripts to the surveying of entire 

transcriptomes. 

 

1.5.1. RT-PCR: targeted amplification and sequencing of transcripts of interest 
One of the most direct ways to scrutinise splicing impact is to look directly at the isoform structure of 

RNA extracted from patient biosamples. A commonly used technique in this regard is reverse 

transcription-PCR, or RT-PCR (Figure 11a). In RT-PCR, reverse transcriptase is used to convert the 

RNA in a patient sample into cDNA; typically, this targets poly-adenylated RNA, which is bound by an 

oligo-dT primer prior to addition of reverse transcriptase. The generation of double-stranded DNA 

then acts as the starting material for a conventional PCR reaction: using primers specific to the 

transcript of interest, the transcript sequence is amplified and can then be sequenced. 

 

1.5.2. Minigenes and midigenes: cell-based assays of mis-splicing 
As described above, the splicing process shows remarkable conservation across most eukaryotic 

lineages (see 1.2.2.). This conservation is leveraged in two targeted, vector-based methodologies: 

minigenes and midigenes (Figure 11b). In both techniques, DNA sequences harbouring exons of 

interest are cloned into a plasmid vector that is subsequently transformed into a model eukaryote of 

choice, most commonly the brewer’s yeast Saccharomyces cerevisiae (Gaildrat et al., 2010, Smith 

and Lynch, 2014). RNA can then be harvested from cells and RT-PCR carried out to assay potential 

changes in transcript structure. Mini- and midigenes offer an alternative targeted approach to RT-PCR 

alone when expression of the transcript of interest is expected to be poor in the patient biosample. 

 

Minigenes and midigenes differ in the size of the investigated genomic region, with minigenes 

generally encompassing only one or two exons (Gaildrat et al., 2010), and midigenes being 

associated with longer, multi-exon loci, or exons flanked by particularly long introns (Sangermano et 

al., 2019, Verbakel et al., 2019). Notably, minigenes and midigenes may produce conflicting results: in 

one study of VUSs in patients with the inherited retinopathy Stargardt disease, variants previously 

observed to have no effect on splicing when investigated with minigenes did exhibit significant and 

pathogenic mis-splicing of the ABCA4 gene when the experiment was repeated with the insertion of a 

wider genomic region in the plasmid construct (Sangermano et al., 2019). 
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1.5.3. High-throughput workflows for functional investigation of splice-impacting 
variants 
While RT-PCR and mini-/midigenes are able to validate the splicing impact of variants, they are 

generally only able to do so for one variant at a time. Soemedi et al. (2017) devised a novel workflow 

named a Massively Parallel Splicing Assay (or MaPSy), using which they analysed the splicing impact 

of a total of 4,964 published disease-causing exonic variants.  

 

The MaPSy study analysed the effect of the exonic variants both in vivo and in vitro. Exons of interest 

and their flanking intronic sequence (at least 55 bp upstream and 15 bp downstream) were recreated 

using oligonucleotide synthesis and inserted into a reporter; in the in vitro assay, this consisted of an 

upstream adenoviral exon, while the in vivo assay comprised the same upstream adenoviral exon 

Figure 11. Common functional approaches in 
assessing the splicing impact of variants. (a) In 
RT-PCR, reverse transcriptase converts all 
poly-adenylated RNA species in a sample into 
cDNA via an oligo-dT primer. PCR can then be 
used with primers specific to the transcript of 
interest to amplify the DNA. Simplified 
illustration of (b, top) minigenes and (b, 
bottom) midigenes: plasmid vectors containing 
exons of interest (red) flanked by a pair of 
constitutive exons (blue). Exonic sequences 
are usually downstream of a constitutive 
promoter (green) to initiate transcription. (c) 
RNA-seq workflows vary according to the type 
of RNA-seq being conducted. Ligation of 
adapters and sequencing are the only shared 
steps between all three major types, although 
long- and short-read share much of the sample 
preparation stages. (c) adapted from Stark et 
al. (2019). Created using BioRender.com 

a b 

c 
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downstream of an enhancer and promoter, and a downstream intron and exon derived from the 

ACTN1 gene. In vivo constructs were transfected into human tissue cells, and in vitro constructs 

added to a solution consisting of HeLa cell nuclear extract, which contained the splicing machinery 

required for assessment of mis-splicing events. 

 

The group did also note that the most common splicing outcome in vivo was exon skipping, while the 

in vitro assay more commonly showed an absence of splicing (resembling retention of the upstream 

intron) due to the absence of a downstream exon. Further, there was imperfect concordance between 

both approaches, with approximately 80% of in vivo findings being recapitulated in vitro. 

 

A similar approach named Vex-seq was designed by Adamson et al. (2018). Unlike MaPSy, in which 

linear RNA was directly transfected into cells or added to nuclear extract, Vex-seq involved insertion 

of sequences of interest into barcoded plasmids, which were subsequently transfected into cells to 

assess the impact on splicing of 2,059 human variants. 

 

High-throughput techniques hold promise as a tool to investigate clinical variants of interest, but as 

yet remain unused by most genomic centres due to their complexity and the infrastructure required to 

conduct them. The maintenance of a cell line for the MaPSy in vivo test, for example, requires 

personnel and has cost implications. Further, limits to the length of the test exon and flanking intronic 

sequences mean that both MaPSy and Vex-seq are likely unsuitable in their current forms for 

investigation of deeply intronic variation, or mis-splicing of long exons. 

 

1.5.4. RNA-seq: transcriptome-wide snapshots of isoform structure 
RT-PCR, mini/midigenes, MaPSy and Vex-seq are effective approaches for targeted analysis of 

splice variant impact, but all by their nature require prior knowledge of the transcript or variant of 

interest. They are unsuitable, therefore, for discovery of unidentified mis-splicing events, as may be 

the case with the large proportion of unsolved Mendelian disease cases. RNA sequencing (RNA-seq) 

overcomes this limitation to some extent by aiming to capture and sequence all or the majority of RNA 

transcripts present in a given sample. 

 

As with DNA sequencing, RNA-seq approaches can be broadly categorised as long-read or short-

read. 95% of published RNA-seq datasets on the Short Read Archive (SRA) were generated using 

the Illumina short-read sequencing workflow (Leinonen et al., 2011), which involves the generation of 

short reads through fragmentation of the initial RNA sample. Long-read RNA-seq approaches, such 

as those employed by Oxford Nanopore and PacBio have already been used to resolve structural 

variants (Dutta et al., 2019; Merker et al., 2018) and to sequence over tandem repeats (De Roeck et 

al., 2017; Ishiura et al., 2018). In both short-read and long-read sequencing, conversion of RNA to 

cDNA is required to stabilise the target transcripts and facilitate the downstream sequencing reaction. 

Recent work in Arabidopsis thaliana and the viral pathogen HSV-1 has also shown the capacity of the 

Oxford Nanopore platform to conduct direct RNA-seq (Depledge et al., 2019, Parker et al., 2021). In 
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this approach, RNA molecules are fed through the Nanopore without prior conversion to cDNA. This 

allows the identification of epigenetically modified RNA bases, such as N6-methyladenine (m6A), a 

methylated version of adenine with wide-ranging roles, including modulation of gene expression 

(Roignant and Soller, 2017), alternative splicing (Liu et al., 2015, Liu et al., 2017) and transcript 

stability (Wang et al., 2014). Such bases are usually replaced with their unmodified counterparts 

during the RNA-to-cDNA conversion. The variation in experimental protocol according to RNA-seq 

methodology is depicted in Figure 11c. 

 

Most RNA-seq workflows begin with the enrichment of desirable RNA species. In the absence of an 

enrichment step, up to 95% of sequenced reads may map to ribosomal RNAs, which are the most 

abundant RNA species in human cells (Morlan et al., 2012), thus obscuring analysis of other RNA 

species. Two of the most common methodologies to prevent the predominance of rRNA in samples 

are oligo-dT-enrichment, in which poly-T probes are used to capture and enrichment the poly-A tails 

found on many RNA species (not including rRNA), and ribodepletion, in which oligonucleotide probes 

complementary to the major rRNA subtypes enable immobilisation of rRNAs in a column and elution 

of remaining rRNA species.  

 

While oligo-dT-enriched RNA-seq datasets are able to capture the majority of mature RNA transcripts 

in the cell (provided sequencing depth is sufficient), they do result in the exclusion of some other RNA 

species which lack poly-A tails, such as miRNAs and enhancer RNAs (eRNAs). Ribodepletion, 

conversely, is often considered a whole-transcriptome methodology, as it aims to solely exclude 

rRNAs from the resulting library, while retaining most other RNA species. By capturing transcripts 

independently of their poly-A tails, ribodepletion RNA-seq datasets are also able to capture immature 

mRNA transcripts that may be un-spliced or partially spliced. This may complicate analysis of mis-

splicing, as sequencing reads may map across unspliced junctions and within introns (Zhang et al., 

2018). It may be difficult, for instance, to delineate genuine intron retention events from background 

levels of intronic coverage. 

 

1.5.4.1. Bioinformatics steps in the processing of RNA-seq datasets 
As with DNA sequencing methodologies, RNA-seq requires the alignment of reads back to the 

genome. Unlike DNA sequencing, however, reads derived from RNA can be expected to contain large 

numbers of discontinuities relative to the DNA sequence when aligned back to the genome. Such 

reads are called split reads, and represent the apparent jump in mapping co-ordinates that is 

observed when looking across the genomic boundaries of a splice junction. A host of split-read 

aligners have been developed to assist in the alignment of RNA-seq data. Many of the genomic 

aligners described above are also capable of handling split reads, although they may not originally 

have been designed to do so. Popular short split-read aligners include STAR (Dobin et al., 2013), 

HISAT2 (Kim et al., 2019) and TopHat2 (Kim et al., 2013). 
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Aligned RNA-seq datasets are powerful tools for investigating many aspects of transcript dynamics, 

becoming more so with the presence of large control datasets. Transcript abundance can be 

measured using tools like edgeR (Robinson et al., 2010), RNA-SeQC (DeLuca et al., 2012) and 

RSEM (Li and Dewey, 2011). Application of statistical models to this quantification data can allow 

identification of genes exhibiting differential expression between test conditions, or, in the context of 

disease, between healthy and affected individuals. Calculation of allelic imbalance, too, can shed light 

on the dynamics of transcript degradation, and both can signpost potentially pathogenic events (see 

1.5.4.2). 

 

1.5.4.2. Identifying pathogenic variants from RNA-seq data 
A major challenge in the clinical integration of RNA-seq is the identification of individual, or small 

numbers of, pathogenic mis-splicing events from among the hundreds of thousands of splicing events 

observed in a single sample. Recent years have seen a surge in the number of bioinformatics tools 

aiming to identify splicing outliers that may constitute pathogenic mis-splicing events (Cummings et 

al., 2017; Jenkinson et al., 2020; Mertes et al., 2021). Many of these approaches attempt to fit a 

statistical distribution to the read counts observed spanning canonical and non-canonical junctions, 

and identify outliers along that distribution. These may constitute rare events, but this does not strictly 

imply pathogenicity. 

 

As discussed above (see 1.3.5.2.), while explicit provision for splice-impacting variants is largely not 

covered by ACMG guidelines, there are many characteristics of mis-splicing events that can shed 

light on the likelihood of their pathogenicity. The impact of a change in splicing is dependent on the 

penetrance of the event: a mis-splicing event affecting only a small proportion of transcripts is less 

likely to cause disease. Conversely, high penetrance may support, but does not necessarily imply, 

pathogenicity. The examination of mis-splicing event penetrance can be undermined by NMD by 

leading to ostensibly sub-pathogenic levels of aberrant isoform structure. However, two signatures of 

NMD can be used to identify transcripts in which aberrant transcripts are being degraded: firstly, NMD 

naturally leads to a reduction in transcript levels. Using quantification methodologies like those 

described above, genes with significantly decreased total transcript level can be identified and flagged 

as potential NMD targets and investigated further. A downstream consequence of allele-specific 

decay is the presence of allelic imbalance, which can be detected by the relative read counts 

supporting the existence of nearby SNPs, or the variants in question if they are in an exonic region. 

 

There are thus a host of signals that may facilitate the interpretation of pathogenic mis-splicing 

events. However, our current understanding of what signals characterise pathogenic mis-splicing is 

incomplete, and more work is needed on analysing known pathogenic events to delineate these 

characteristics.  
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1.5.4.3. Tissue selection in the clinical application of RNA-seq 

RNA-seq holds particular promise as a diagnostic strategy in simultaneously facilitating both 

corroboration of the splicing impact of previously identified variants, and identification of the splicing 

impact of variants that may have been missed by upstream sequencing approaches. The sequencing 

of patient peripheral blood samples is commonplace in the clinic; sample preparation workflows such 

as the PaxGene DNA and RNA extraction kits (Harrington et al., 2020) allow quick and simple 

isolation of transcriptomic material from the most easily available biosample, human blood. While 

blood is the most convenient source of RNA, it also has a major caveat. Whole blood samples have a 

highly specific transcriptomic profile; that is, their repertoire of expressed transcripts largely does not 

overlap lap with other tissues. Its value in clinical diagnostics, therefore, is limited in certain disease 

contexts. There is thus a need to develop a method of readily identifying the optimum tissue of choice 

for RNA-seq-led investigations. 

 

The presence of tissue-specific alternative splicing events and expression patterns has significant 

implications for the clinical implementation of RNA-seq. For the effect of a variant on splicing to be 

determined, a sample must (a) express transcripts that may be expected to predominate in the 

affected tissue, and (b) exhibit coverage of the specific junction that will likely be disrupted. As yet, 

few frameworks exist to quantitatively evaluate how well covered clinically relevant transcripts are in a 

tissue of interest. 
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1.6. Research aims 
Multiple factors between variant identification and interpretation impact our ability to assign 

pathogenicity to splice-impacting variants. Selected diagnostic methodologies that do not include 

intronic coverage risk omitting large sections of potentially pathogenic deeply intronic variation, while 

approaches that do cover introns (such as WGS) result in vast numbers of variants of uncertain 

significance, thus leading to difficulties in variant interpretation. 

 

The work described here aims to develop novel bioinformatics approaches to address issues often 

encountered at different stages of splice variant identification and interpretation. 

 

The first is the investigation of the efficacy of novel predictive tools. Given the older nature of the 

splice variant predictors encompassed by the ACMG guidelines (Richards et al., 2015), there is 

substantial scope for evaluation of the efficacy of more up-to-date predictive models. Considering the 

increased complexity of these machine learning paradigms, it is possible that modern predictive tools 

may significantly outperform existing tools in identifying splice variation. The integration of more 

accurate predictive approaches into a clinical setting may ultimately lead to an increase in the 

molecular diagnosis rate. 

 

The second aim is to identify subsets of variants for which these tools perform poorly, and generate 

bespoke analyses that can outperform them. 

 

The final aim is to develop a bioinformatics framework to guide diagnostic decision-making around 

RNA-seq. The goal is to develop a resource to inform clinicians of the likely benefits, or lack of 

benefits, in adopting a transcriptome-led approach in the diagnosis of a given patient. Through this, 

we hope to boost pathogenic variant identification, and allow the diagnosis of cohorts of previously 

undiagnosed patients. 
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2. Comparison of in silico strategies to prioritize rare 
genomic variants impacting RNA splicing 
 
2.1. Abstract 
The development of computational methods to assess pathogenicity of pre-messenger RNA splicing 

variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and 

a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent 

splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate 

splice site as being ‘pathogenic’ or ‘benign’ is likely to have substantial impact on diagnostic testing. 

We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using 

a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside 

diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants 

expected to impact splicing that were not initially identified as ‘pathogenic’ or ‘likely pathogenic’; 1 in 5 

of these cases could lead to new or refined diagnoses.  

 
2.2. Introduction 
Pinpointing disease-causing genomic variation informs diagnosis, treatment and management for a 

wide range of rare disorders, and helps bring an end to the “diagnostic odyssey” undergone by some 

Mendelian disease patients. Molecular testing, in a healthcare setting, now frequently includes 

genome and exome sequencing (Lee et al., 2015, Yang et al., 2014, Turnbull et al., 2018). Accurate 

interpretation and categorization of identified variants remains a key limiting factor despite the 

availability of guidelines for variant analysis (Richards et al., 2015, Tavtigian et al., 2018).  

The capability to interpret variation within the non-coding genome is particularly challenging. Variant 

interpretation is hindered by the vast number of rare/novel non-coding variants identified in each 

individual (Taylor et al., 2015, Ellingford et al., 2016b), the depleted levels of evolutionary 

conservation within non-coding regions (Short et al., 2018), and our current lack of understanding of 

the motifs and interactions that are required for appropriate control of gene expression and regulation 

(ENCODE, 2012, Kundaje et al., 2015).   

Intragenic genomic variants have the potential to impact splicing (Faustino and Cooper, 2003), the 

ubiquitous process in eukaryotic cells of converting nascent pre-messenger RNA (pre-mRNA) 

molecules into mature messenger RNA (mRNA) which can be transported out of the nucleus to 

provide a template for protein synthesis. Genomic variation in protein-coding, splice junction and 

intronic regions of genes can disrupt normal splicing mechanisms and underpin the onset of rare 

disease (Stenson et al., 2014). Known mechanisms of splicing disruption include the introduction of 

cryptic splice sites, disruption of canonical splice acceptor and donor sites, and the disruption of other 

motifs essential for splicing, e.g. branchpoints and the polypyrimidine tract (Stenson et al., 2014). The 

significant impact these events have on transcript and protein structure means such disruption is likely 

to be pathogenic when in transcripts of genes associated with loss-of-function disease mechanisms. 
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This has already been observed in many disease types, for example in autism and intellectual 

disability (Jagadeesh et al., 2019), and rare ophthalmic disorders (Weisschuh et al., 2021).  

A number of computational tools have been developed to assist in the interpretation of genomic 

variation impacting splicing, and these tools have been expanded recently to include an array of 

machine learning tools that have been trained to prioritize splice disrupting variation through diverse 

means (Cheng et al., 2019; Jagadeesh et al., 2019; Jaganathan et al., 2019; Lee et al., 2017; Xiong 

et al., 2015). Developing standards and recommendations for variants in non-coding regions is an 

important and emerging area for genome diagnostic services. However, in a similar manner to 

guidance for missense variants, in silico tools may be used as supporting evidence (PP3) to prioritize 

variants that impact splicing and can thereby assist in variant classification. While the initial reports of 

these in silico prioritization tools have shown promising results, there is yet to be a formal assessment 

of their integration, utilization and comparative performance in clinical environments.  

The aim of this study was to compare the performance of nine in silico strategies, including eight 

state-of-the-art algorithms and a consensus approach, to prioritize variants impacting splicing. By 

applying these findings to known cohorts of variants identified through clinical testing, we aimed to 

identify the likely diagnostic benefit of routine integration of bioinformatics splicing predictions into 

diagnostic pipelines. 

 
 
 
2.3. Materials and methods 
Patient recruitment and genomic variant dataset generation 

All individuals included in this study have provided informed written consent for the analysis of 

relevant disease-causing genes through tertiary healthcare centers within the UK. All genetic testing 

procedures have been approved by and are available through the UK National Health Service and 

were performed in a UK Accreditation Service Clinical Pathology Accredited Medical Laboratory 

(North West Genomic Laboratory Hub, Manchester, UK; ISO 15189:2012; UKAS Medical reference 

9865). All data collected is part of routine clinical care and all investigations were conducted in 

accordance with the tenets of the Declaration of Helsinki. Analyses to improve genomic services, as 

reported in this study, have been approved by the North West Research Ethics Committee 

(11/NW/0421 and 15/YH/0365). Patients reported in individual case reports have provided informed 

written consent for publication. All individuals with genome sequencing datasets have consented 

through the Genomics England 100,000 Genomes Project.  

 

Patients were identified with ‘variants of uncertain significance’ (VUSs) according to ACMG guidelines 

for variant interpretation (Richards et al., 2015). Variants were generated through genome sequencing 

or gene panel sequencing (see Whole genome sequencing and Gene panel sequencing, below). All 

variants investigated are reported in Supplementary Table S1 and their HGVS cDNA nomenclature 

and genomic co-ordinates (GRCh37 and GRCh38) were validated using VariantValidator (Freeman et 

al., 2018). 
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Whole genome sequencing 

Whole genome sequencing datasets were generated through the UK 100,000 Genomes Project 

(Turnbull et al., 2018), using Illumina X10 sequencing chemistry. Sequencing reads were aligned to 

build GRCh37 of the human reference genome utilizing Isaac (Raczy et al., 2013). Small variants 

were identified through Starline (SNVs and small indels ≤ 50 bp), and structural variants were 

identified utilizing Manta (Chen et al., 2016) and Canvas CNV caller (Roller et al., 2016). Variants 

were annotated and analyzed with the Ensembl Variant Effect Predictor (v75), bcftools and bespoke 

Perl scripts within the Genomics England secure research embassy.  

 

Gene panel sequencing 

Enrichments were performed on DNA extracted from peripheral blood using Agilent SureSelect 

Custom Design target-enrichment kits (Agilent, Santa Clara, CA, USA). Enrichment kits were 

designed to capture known pathogenic intronic variants and the protein-coding regions +/-50 

nucleotides of selected NCBI RefSeq transcripts; conditions tested included inherited retinal disease 

(105 genes or 176 genes), ophthalmic disorders (114 genes), cardiac disorders (72 genes comprised 

of 10 sub-panels) and severe learning difficulties (82 genes). All genes tested and relevant testing 

strategies are available through the UK Genetic Testing Network (https://ukgtn.nhs.uk/). All samples 

included in the large cohort analysis were generated through a previously described methodology, 

(Ellingford et al., 2016a) and had been completed prior to August 2017. Briefly, samples were pooled 

and paired-end sequencing was performed using the manufacturer protocols for the Illumina HiSeq 

2000/2500 platform (Illumina, Inc., San Diego, CA, USA). Sequencing reads were demultiplexed with 

CASAVA v.1.8.2. and aligned to the GRCh37 reference genome using Burrows-Wheeler Aligner short 

read (BWA-short v0.6.2; Li and Durbin, 2009, Li, 2013) software before duplicate reads were removed 

using samtools v0.1.18. The detection and clinical analysis of single nucleotide variants and small 

insertions/deletions was performed as described previously (Ellingford et al., 2016a, Gillespie et al., 

2014), and in accordance with ACMG guidelines for variant interpretation (Richards et al., 2015). 

During variant analysis, we considered inheritance modes associated with monogenic disorders 

available in OMIM (https://omim.org/) or PanelApp (https://panelapp.genomicsengland.co.uk/), the 

zygosity of identified variants, additional variants identified to impact the same gene, phenotype-

genotype correlations and scores determined by in silico splicing tools. We identified rare variants 

within our cohort for prioritization (<20 heterozygous variants and <10 homozygous variants) by each 

of the in silico splicing prediction tools, resulting in 18,013 unique variants and 43,744 total variants 

(42,281 het and 1,463 hom). The region of impact for each rare variant was extracted from S-CAP 

pre-computed files where available, (Jagadeesh et al., 2019) or determined through Ensembl Variant 

Predictor (v75) for specified transcripts where unavailable through S-CAP. 

 

In silico splicing prediction scores 

We utilized scores available from CADD (Kircher et al., 2014), SpliceAI (Jaganathan et al., 2019), 

SPIDEX (Xiong et al., 2015), S-CAP (Jagadeesh et al., 2019), MMSplice (Cheng et al., 2019), TraP 

(Gelfman et al., 2017), KipoiSplice (Avsec et al., 2019) and MaxEntScan (Yeo and Burge, 2004) to 
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prioritize the 249 variants (we noted on revision that one duplicate variant existed in our dataset). 

Where multiple scores were available for a variant from the in silico tool, we selected the highest for 

consideration. To enable comparisons of tool performance and correlation between scores, we 

converted negative values from SPIDEX, MaxEntScan and MMSplice to positive integers. Whilst 

these conversions removed directional impact information, i.e. reduced or increased splice site usage, 

they still reflected the absolute splicing impact of variants. Where scores were unavailable, we 

assigned the variant a score of 0, i.e. no impact could be predicted. Pre-defined thresholds were 

applied to determine whether a variant was ‘disruptive’ or ‘undisruptive’ to splicing, as suggested by 

the authors of the original papers (Xiong et al., 2015, Jaganathan et al., 2019), by recent refinements 

of thresholds (Jagadeesh et al., 2019), or through nationally recommended guidelines 

(Supplementary Table S4). A consensus score was generated by considering whether the variant 

exceeded the threshold of each in silico prediction tool. ROC curves were generated and compared 

using the pROC package in R. A comparison of accuracy of the tools was performed through 2,000 

iterations of sampling with replacement for the 249 samples. Statistical differences in accuracy were 

identified through the Kruskal-Wallis test in R. 

A novel scaled metric was generated for each variant: 

!"#$% = 	()* +,)*-
.

*/0
 

Where, n = a given combination of the nine prediction strategies, max = maximum score from 

prediction tool i, and x = variant score from prediction tool i. For example, for a variant with a SpliceAI 

score of 0.85 (the maximum SpliceAI score being 1) and above the threshold of 5/8 tools using the 

consensus approach: 

!"#$% = 	0.85 1- + 5 8- = 1.475 

 

RNA investigations 

Appropriate functional assays were selected after consideration of gene expression profiles in GTEx 

(https://gtexportal.org/home/), and the availability of relevant patient samples. We performed 

assessments on available patient samples or through cell-based minigene assays. 

 

RNA investigations from patient samples – LCLs and blood 

Lymphoblast cell cultures were established for control samples and probands. RNA was extracted 

using the RNeasy® Mini Kit (Qiagen, UK, Catalogue No. 74104) following the manufacturer's 

protocol. RNA was extracted from whole-cell blood using the PAXgene™ Blood RNA System Kit 

(Qiagen, UK. Catalogue No. 762174), following the manufacturer’s protocol for control samples and 

probands. Extracted RNA was reverse transcribed using the High Capacity RNA to cDNA Kit (Applied 

Biosystems, UK. Catalogue No. 4387406) following the manufacturer's protocol. Gene specific 

primers (available on request) amplified relevant regions of the genes being investigated. PCR 

products were visualized on an agarose gel using a BioRad Universal Hood II and the Agilent 2200 

Tapestation. Visualized bands were cut out and prepared for capillary sequencing on an ABI 3730xl 

DNA Analyzer. 
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RNA investigations using cell-based minigene assays 

Assays were designed to amplify appropriate genomic regions from patient DNA templates. For 

variants nearby to wild-type exons, we amplified regions containing one or multiple exons along with 

flanking ~200 intronic nucleotides. For deeply intronic variants we amplified regions containing at 

least 500bp of flanking intronic sequence. Primer sequences are available upon request. All regions 

were amplified from patient DNA templates. For homozygous variants, we also generated a minigene 

plasmid from a control DNA template. Amplified fragments were checked for size using gel 

electrophoresis, purified using the QIAquick Gel Extraction kit (Qiagen, UK, Catalogue No. 28706) 

and then cloned into a customized minigene plasmid (a derivative of the pSpliceExpress vector; 

Kishore et al., 2008) containing an RSV-promoter and two control exons (rat insulin exons 2 and 3) 

using the NEBuilderÒ HiFi DNA assembly (NEB, E2621). Amplified fragments were inserted between 

the two control exons. Plasmids were transformed into competent bacteria (XL-1 blue) and incubated 

overnight at 37oC on LB plates containing Carbenicillin. Individual colonies were cultured overnight 

before isolation of plasmid DNA using the GenElute™ miniprep kit (Sigma-Aldrich, Catalogue No. 

PLN350). Purified plasmids were Sanger sequenced to confirm successful cloning and identify 

plasmids containing the wild-type and variant sequence. Plasmids were transiently transfected into 

HEK-293 cells using Lipofectamine, and incubated for up to 48h in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum at 37°C and 5% CO2. 

RNA was isolated using TRI Reagent® and further purified using the RNeasy Mini Kit (Qiagen, UK, 

Catalogue No. 74106) which included a DNase digestion step. cDNA was synthesized from up to 4μg 

of purified RNA using SuperScriptÔ reverse transcriptase (ThermoFisher Scientific, Catalogue No. 

18091200) and subsequently amplified by Phusion high-fidelity polymerase (ThermoFisher Scientific, 

Catalogue No. F553) using primers designed to amplify all minigene transcripts.  PCR products were 

visualized by electrophoresis on a 1-2% agarose gel and purified using the QIAquick Gel Extraction 

kit. Purified PCR products were Sanger sequenced and aligned to the reference sequence for the 

minigene vector using the SnapGene software suite and assessed for differences in splicing between 

wild-type and variant minigene constructs. 

 

Comparison with GTEx datasets 

Variants identified in GTEx v7 datasets were cross-referenced with prioritized variants from our 

cohort. FASTQs were downloaded from the Database of Genotypes and Phenotypes (dbGaP) under 

the project accession phs000424.v8.p2 for GTEx control individuals carrying prioritized variants.  

RNA-seq datasets for samples carrying prioritized variants were identified, and the TPM value of the 

tissues available were considered. RNA-seq data from tissues with a TPM value > 5 were considered 

and FASTQ datasets were processed as described previously (Cummings et al., 2017). Read 

alignments were visualized in IGV and Normalized Read Count (NRC) and intron retention levels 

were quantified. NRC is calculated as the proportional usage of non-canonical splice junctions 

compared to canonical splice junctions for any given site. NRC and intron retention levels for 

individuals carrying prioritized variants were compared to 10 control individuals in the GTEx dataset. 
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2.4. Results and Discussion 
2.4.1. Functional assessment of variants of uncertain significance identified through 
clinical genetic testing strategies 
First, we ascertained and performed functional analyses for 249 VUSs to observe their impact on 

splicing (Supplementary Table S1). To the best of our knowledge, this is the largest set of VUSs that 

have been functionally interrogated for impact on splicing as part of diagnostic services for individuals 

with rare disease. All VUSs investigated are in genes where loss-of-function is an expected 

mechanism of disease causation. Variants had been identified in individuals undergoing genome 

sequencing and targeted gene panel analysis, with diverse phenotypic presentations including familial 

susceptibility to breast cancer (MIM #604370), syndromic disorders such as Marfan syndrome (MIM 

#154700) and isolated inherited retinal disorders such as retinitis pigmentosa (MIM #300029). The 

approaches for VUS functional analysis are described elsewhere (Wai et al., 2020) and in 

Supplementary Table S1. We observed that 80/249 (32%) of the VUSs significantly impacted 

splicing, and as a result may be reclassified as ‘likely pathogenic’ according to ACMG guidelines for 

variant interpretation (Richards et al., 2015). This formal reclassification is not conducted as part of 

this study which focused on the capability of in silico tools to distinguish variants which impact splicing 

(true positives) and variants which did not impact splicing (true negatives). All VUSs impacted regions 

outside of canonical splice acceptor and donor sites, and included examples of deeply intronic cryptic 

splice sites, exonic cryptic splice sites and branchpoint variants. In some cases, functional 

investigations demonstrated a range of consequences on mRNA splicing (Figure 12), reinforcing that 

the precise effect of splicing variants is an important piece of evidence for consideration during clinical 

variant interpretation that, in the future, may enable refinements in appropriate targeted treatments 

(Shen and Corey, 2018, Bauwens et al., 2019). 

 

2.4.2. Assessment of in silico prediction strategies to prioritize variants of uncertain 
significance 
We obtained in silico prediction scores for each of the 249 functionally assessed variants using eight 

in silico prioritization algorithms (Supplementary Table S2) and calculated sensitivity, specificity and 

receiver operating characteristic area under the curve (AUC), observing significantly variable 

performances (Figure 13). Pairwise statistical comparisons of AUC for the 249 functionally assessed 

VUSs, after Bonferroni correction for multiple testing, demonstrated that SpliceAI outperformed other 

single algorithm approaches (Figure 13; Supplementary Table S2). The AUC analysis for single 

algorithms calculated the optimal score (based on Youden’s J statistic, as calculated using the pROC 

software package) for each of the algorithms to distinguish between true positives (80 variants shown 

to impact splicing in our functional assays) and true negatives (169 variants shown functionally not to 

impact splicing) in this dataset. We acknowledge that splicing machinery may be influenced by cell- or 
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tissue-specific factors which are outside the scope of assays performed here (Aicher et al., 2020; Vig 

et al., 2020; Cummings et al., 2020), and variants may have pathogenic impacts on gene expression 

and/or regulation without any detrimental impact on splicing (Castel et al., 2018; Evans et al., 2018; 

Short et al., 2018; Zhang et al., 2020). Such factors will influence comparative metrics between 

algorithms, and future investigations may uncover pathogenic roles for variants reported here. 

However, the optimal thresholds calculated in light of these limitations for the 249 functionally 

assessed VUSs in this study are reported in Supplementary Table S3.  

 

Global approaches to variant analysis, as assessed through the AUC, may fail to capture region-

specific intricacies in splicing disruption (Jagadeesh et al., 2019). For example, variants could be sub-

divided by their pathogenic mechanism, their effect on pre-mRNA splicing, their predicted molecular 

consequence or the location of the variant with respect to known splicing motifs, and each of these 

sub-groups may require different approaches or thresholds for accurate prioritization of pathogenic 

 
 
Figure 1. Results from in-vitro minigene assays demonstrating multiple 
consequences as a result of variants proximal to the canonical splice site. Left, 
gel electrophoresis snapshots of cDNA products amplified from primers designed for 
control exons within the minigene (exon 1 & exon 2). All prominent bands were cut out 
and Sanger sequenced. Right, solid red blocks illustrate alignment of sequenced 
cDNA transcripts to features within the minigene vector: control exons (grey boxes) 
and inserted exons (purple boxes). (a) SCN2A c.2919+3A>G, showing complete exon 
exclusion and exon truncation in minigene vectors containing the c.2919+3A>G 
variant (top two alignments) and normal splicing in minigene vectors containing the 
WT sequence (bottom alignment). The first resulted in a transcript with a truncated 
exon, NM_001040142.1:r.2563_2710del, and the second resulted in a complete exon 
skip, NM_001040142.1:r.2563_2919del. While we interpreted both events as ‘likely 
pathogenic’ it is noteworthy that these events were considered differently using ACMG 
criteria; the exon truncation event resulted in a frameshift and introduction of a 
premature stop codon (PVS1), whereas the complete exon skipping event resulted in 
the inframe removal of 119 amino acids from the transcript (PM4).  (b) MERTK 
c.2486+6T>A, showing a shifting of the exon included in the reading frame in minigene 
vectors containing the c.2486+6T>A variant (top alignment) and normal splicing in 
minigene vectors containing the WT sequence (bottom alignment). This novel variant 
is present in two individuals with severe rod-cone dystrophy, and resulted in the 
simultaneous usage of a cryptic exonic splice acceptor site and a cryptic intronic splice 
donor site creating a novel exon (chr2: 112,779,939-112,780,082, GRCh37), and a 
premature stop codon in the penultimate exon, p.(Trp784Valfs*10). 
 
 

(a) 

(b) 

Figure 12. Results from in vitro minigene assays demonstrating multiple consequences as a result of 
variants proximal to the canonical splice site. (Left) gel electrophoresis snapshots of cDNA products 
amplified from primers designed for control exons within the minigene (exon 1 & exon 2). All prominent 
bands were cut out and Sanger sequenced. Right, solid red blocks illustrate alignment of sequenced 
cDNA transcripts to features within the minigene vector: control exons (grey boxes) and inserted exons 
(purple boxes); (a) SCN2A c.2919+3A>G, showing complete exon exclusion and exon truncation in 
minigene vectors containing the c.2919+3A>G variant (top two alignments) and normal splicing in 
minigene vectors containing the WT sequence (bottom alignment). The first resulted in a transcript with a 
truncated exon, NM_001040142.1:r.2563_2710del, and the second resulted in a complete exon skip, 
NM_001040142.1:r.2563_2919del. It is noteworthy that if these events were also observed in vivo then 
they may be considered differently using ACMG criteria; the exon truncation event resulted in a frameshift 
and introduction of a premature stop codon (PVS1), whereas the complete exon skipping event resulted 
in the inframe removal of 119 amino acids from the transcript (PM4);  (b) MERTK c.2486+6T>A, showing 
a shifting of the exon included in the reading frame in minigene vectors containing the c.2486+6T>A 
variant (top alignment) and normal splicing in minigene vectors containing the WT sequence (bottom 
alignment). This novel variant is present in two individuals with severe rod-cone dystrophy, and resulted 
in the simultaneous usage of a cryptic exonic splice acceptor site and a cryptic intronic splice donor site 
creating a novel exon (chr2:112,779,939-112,780,082, GRCh37), and a premature stop codon in the 
penultimate exon, p.(Trp784Valfs*10). Original images for both SCN2A c.2919+3A>G and MERTK 
c.2486+6T>A are presented in Supplementary Figure S2. 
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variation. We therefore predicted variants to be ‘disruptive’ or ‘undisruptive’ according to thresholds 

pre-defined by the developers of the tools. This included region-specific thresholds for S-CAP and 

CADD, across six and five different regions, respectively, dependent on variant location in relation to 

its nearest exon (Supplementary Table S4, Figure 10b). These regions illustrate if a variant lies in 

the core splicing dinucleotides, the immediate vicinity of these sites, or at a greater distance. We 

utilized a single score threshold for tools where region-specific thresholds have not been previously 

identified (Supplementary Table S4). We compared accuracy of each of the prioritization strategies 

across 2,000 iterations of sampling with replacement. This analysis highlighted differences across the 

tools and significantly differentiated their ability to accurately predict pathogenicity (Kruskal-Wallis, df 

= 8, p < 0.0001; Figure 13c-d). Similar to the AUC analysis, SpliceAI (using a threshold of 0.2) was 

Novel weighted score 

(a) (b) 

(c) (d) 

Figure 13. Comparison of in silico strategies to prioritize 249 variants of uncertain significance with 
functional investigations performed. (a) Receiver operating characteristic area under the curve (AUC) 
comparisons for nine in silico prioritization strategies demonstrating that SpliceAI (AUC=0.95, 95%CI=0.92-
0.97) and a consensus approach (AUC = 0.94, 95% CI = 0.91-0.97) outperform other strategies for 
prioritization; (b) AUC comparisons between SpliceAI, a consensus approach and a novel metric, 
demonstrates that a weighted approach slightly increases accuracy of prioritization over single approaches 
alone (AUC = 0.96, 95% CI = 0.94-0.98); (c-d) Accuracy comparisons of each in silico prioritization 
approach across 2000 bootstraps utilizing region-specific pre-defined thresholds: (c) Violin plot 
demonstrating the calculated accuracy of each in silico prioritization approach; (d) Frequency that each 
strategy is the best or joint-best performing.  
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significantly the best performing strategy across all assessed single algorithms for our set of analyzed 

VUSs (Kruskal-Wallis, p < 0.0001 for all pairwise comparisons of accuracy between SpliceAI and 

other tools; Figure 13c-d).  

 

2.4.3. Combining in silico tools improves accuracy to identify variants of uncertain 
significance impacting splicing 
To determine if combining one or more of these metrics could achieve greater accuracy than 

prioritization scores in isolation, we developed a consensus score for each variant which considered 

the region-specific thresholds for each tool (Supplementary Table S4). The score ranged from 0-8 

and represented the number of tools for which a variant’s score exceeded the respective threshold. 

We observed that the consensus approach performed similarly to SpliceAI when assessed through 

the receiver operating characteristic AUC (Figure 13a; Supplementary Tables S2 & S3). The 

consensus approach (using a threshold of 4/8 algorithms supporting splicing disruption) also 

performed more similarly to SpliceAI than other strategies when measuring accuracy across sampling 

iterations (Figure 13c), but was less frequently the best performing approach (Figure 13d). Variability 

in model accuracy was consistently low across sampling iterations for all tools (Supplementary Table 
S5). To understand if the relative scores from each algorithm could assist interpretation we developed 

a novel metric which incorporates weighted scores from the prioritization strategies. This analysis 

considered the actual score of the variant relative to the maximum score possible from each 

prediction algorithm (see 2.3.). Of note, the weighted approach considering scores from SpliceAI and 

a consensus approach performed better than these two approaches in isolation (Figure 9b; 

Supplementary Table S3). Although not mutually exclusive and underpowered to detect significant 

statistical differences in the AUC from this combined analysis – due to marginal gains in accuracy and 

sample size – this demonstrates the potential utility of combined approaches utilizing combinations of 

scores to improve accuracy for the identification of variants impacting splicing. 

 

2.4.4. Integration of in silico strategies to prioritize variants impacting splicing for a 
large cohort of individuals with rare disease 
Next, we sought to examine the impact of these approaches on clinical variant analysis. Therefore, 

we integrated region-specific prioritization strategies (Supplementary Table S4) for intronic gene 

panel variants identified during routine diagnostic analyses for 2,783 individuals with rare diseases 

(Ellingford et al., 2016a). All individuals included in this analysis have received genetic testing for rare 

disease within the UK National Healthcare Service through a clinically accredited laboratory. We 

calculated in silico scores for 20,617 variants (of which 18,013 were rare) observed a total of 

1,346,744 times in the cohort. We observed substantial variability in the number of rare variants 

prioritized by each in silico tool (Figure 14a; Supplementary Table S6) and in the specific variants 

prioritized by the most correlated in silico splicing tools (Figure 14b). We observed that while variants 

which show the highest consensus between in silico splicing tools impact the canonical splice site 

(Figure 14c; Supplementary Table S7), 99% (n = 17,871) of variants analyzed impact exonic or 

intronic regions of genes outside of the canonical splice sites. 
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Splicing variants are often considered as a single class of variants and canonical splice site variants 

are therefore highly susceptible to over-prioritization by in silico tools, as such variants represent the 

majority (~70%) of known pathogenic splicing variants (Stenson et al., 2014, Xiong et al., 2015, 

Krawczak et al., 2007). Our data further underline the need to develop effective and unbiased 

strategies for prioritizing variants impacting splicing outside of the canonical splice sites, and this will 

be especially important for VUSs in known disease genes. Overall, these data demonstrate that 

 

 
 
Figure 3. Summary of the overlap and correlations observed between the scores from in 
silico splicing prediction algorithms for 18,013 unique rare variants identified in a large 
cohort of 2783 individuals with rare disease undergoing genetic testing, specifically for 
syndromic and non-syndromic inherited retinal disorders; (a) Bar chart showing overall 
count of unique variants prioritized using pre-defined thresholds for each in silico prediction 
algorithm; (b) Overlap between the unique variants prioritized by the five most correlated in 
silico prediction tools; (c) Grouped bar chart demonstrating the overlap of variants prioritized 
by each tool segregated by the region of the genome that the variant impacts, as defined by 
Jagadeesh et al.4 (d) Correlation between SpliceAI score and the number of additional tools 
also prioritizing the variant for the 528 unique rare variants prioritized by SpliceAI. 
 

(a) (b) 

(c) (d) 

Figure 14. Summary of the overlap and correlations observed between the scores from in silico splicing prediction 
algorithms for 18,013 unique rare variants identified in a large cohort of 2783 individuals with rare disease. (a) Bar 
chart showing overall count of unique variants prioritized using pre-defined thresholds for each in silico prediction 
algorithm. (b) Overlap between the unique variants prioritized by the five most correlated in silico prediction tools. (c) 
Grouped bar chart demonstrating the overlap of variants prioritized by each tool segregated by the region of the 
genome that the variant impacts, as defined by Jagadeesh et al. (2019), demonstrating that variants prioritized by 
many tools are highly likely to be close the canonical splice sites (5’core, 3’core and 5’extended). (d) Correlation 
between SpliceAI score and the number of additional tools also prioritizing the variant for the 528 unique rare variants 
prioritized by SpliceAI. 
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different in silico strategies for splicing variant prioritization will alter the burden of variant analysis for 

clinical scientists. This is an important consideration for the analytical specificity and throughput of 

diagnostic testing. 

 

To assess the clinical impact of such strategies, we integrated a single prioritization strategy, SpliceAI 

(using a threshold of 0.2, as above), in parallel to outcomes from routine diagnostic testing. This 

analysis involved extensive curation of genomic findings for the 2,783 referred individuals, all of which 

were classified in accordance with ACMG guidelines by clinically accredited scientists. We added 

SpliceAI predictions alongside these analyses and observed that this approach influenced analysis for 

420 (15%) individuals receiving genomic testing for rare disease, and prioritized variants that could 

result in new or refined molecular diagnoses in 81 (3%) cases. Overall, we prioritized 758 variants 

(528 unique variants) in 646 individuals (23% of cohort) with a range of predicted molecular 

consequences. Most (99.6%, 526/528) variants were prioritized by at least one other in silico tool 

(Supplementary Table S8). The strength of the score from SpliceAI correlated highly with 

prioritization from other in silico tools (Figure 14d) and differed between regions of genome that were 

impacted (Supplementary Table S9). We classified prioritized variants as being:  

- New: variant not previously highlighted or reported through diagnostic testing 

- Clarified: variant previously reported through diagnostic testing but pathogenicity or 

pathogenic mechanism was unclear 

- Reported: variant already described or established as ‘pathogenic’ or ‘likely pathogenic’ 

through diagnostic testing 

In this regard, we identified 379 new variants in 337 individuals, 87 clarified variants in 83 individuals 

and 292 reported variants in 274 individuals. We found most (91%, 697/758) variants to be in genes 

known as a recessive cause of genetic disease. To understand if these variants impacted normal 

splicing, we interrogated the GTEx datasets (GTEx Consortium, 2013) for individuals carrying these 

variants in a heterozygous state, identifying 40 carriers of variants prioritized by this analysis. Of 

these, 21 had suitable RNA-seq datasets available for evaluation, and we were able to clearly 

observe significant alterations to splicing in four cases (Table 4). Whilst most variants will require 

bespoke functional investigations to establish precise effects on splicing and protein synthesis, 

leveraging publicly available datasets for individuals carrying potentially pathogenic rare variants in 

the GTEx dataset can quickly increase certainty of variant impact and refine clinical variant analysis. 
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Table 4. Metrics obtained from the analysis of GTEx v7 datasets to observe the impact of variants prioritized as 
splice-impacting. Our analysis identified 4 variants in autosomal recessive genes that were present in a carrier 
state in individuals in GTEx v7 and had observable impacts on splicing in these individuals. Metrics were calculated 
from aligned RNA-seq datasets from tissues with a transcript per million value > 5 for the gene of interest. Cases, 
individuals within the GTEx dataset carrying prioritized variant. Controls, a group of 10 randomly selected 
individuals within the GTEx dataset that do not carry the prioritized variant. NRC, normalized read count (see Box 
1); * indicates a shift in the usage of two canonical exon junctions, corresponding to different transcript isoforms. 
  

 

2.5. Discussion 
The incorporation of the prioritization and functional strategies described in this study for variants 

impacting splicing significantly improved molecular diagnostic services. However, we expect that the 

true impact of such analysis strategies will be more profound. Targeted next generation sequencing 

approaches employed within this large cohort ignore deeply intronic regions of genes, which, as 

shown here and in other studies (den Hollander et al., 2006, Montalban et al., 2019, Sangermano et 

al., 2019), can harbor variants which result in aberrant splicing through the production of novel cryptic 

exons. The recent availability of genomic datasets within healthcare amplifies the current limitations in 

interpreting variation within the non-coding genome, particularly in large genome sequencing cohorts. 

Our findings demonstrate the opportunity to expand bioinformatics analysis to the pre-mRNA regions 

of known disease genes and provide immediate increases to diagnostic yield. Further, a wide variety 

of bioinformatics prediction tools continue to be developed, as seen with the recent release of CADD-

Splice, (Rentzsch et al., 2021) and SQUIRLS (Danis et al., 2021). As such tools continue to become 

available, careful analysis of their utility using a framework as described here will allow integration 

with maximum effect. Future approaches may expand on the consensus model described here 

through integration of probabilistic models, for example based on Bayesian statistics. Importantly, we 

demonstrate a requirement to functionally assess variant impact on pre-mRNA splicing as the 

delineation of the precise effects may be important in considerations for variant pathogenicity. The 

prioritization and identification of pathogenic variants impacting splicing is therefore an important 

consideration for diagnostic services and for the development of new targeted treatments.  

 

  

Variant Gene Tissue Metric Type  Controls 
Mean (95% CI) 

Cases 

20-3899342-G-A PANK2 Fibroblasts Intron Retention 0.12 (0.10-0.14) 0.32 

12-88448136-G-A CEP290 Thyroid NRC 0.15 (0.02-0.27) 0.91 

10-73567463-C-T  CDH23 Ovary NRC 0.003 (0-0.01) 0.11 

2-110922263-G-A NPHP1 Testis NRC* 0.51 (0.48-0.55) 0.7 



 

 
 

94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3 
 
 

Identification of a pathogenic BBS1 

branchpoint variant through bespoke 

bioinformatics analysis 
  



 

 
 

95 

3. Identification of a pathogenic BBS1 branchpoint variant 
through bespoke bioinformatics analysis 
3.1. Abstract 
Recent years have seen the development of a wide variety of computational strategies for the 

prediction of SNV impact on splicing. Previous work has shown SpliceAI to most often be the best-

performing individual strategy for splice variant prioritisation. However, it remains to be seen whether 

the efficacy of SpliceAI holds across different variant types and locations. One such subtype are 

variants impacting the intronic branchpoint (BP), which are ostensibly rare, numbering only the tens in 

the existing scientific literature. We thus sought to evaluate the ability of SpliceAI to prioritise BP 

variants, and develop a novel approach for their prioritisation from genomic datasets. 

 

 Collating 30 known pathogenic branchpoints from the literature, we demonstrate that SpliceAI (with a 

threshold of 0.2) is correctly able to prioritise only 50% of branchpoint variants. We thus developed a 

meta-analytical tool combining the output of two existing branchpoint predictor tools and an 

empirically derived branchpoint dataset. 

 

Applying this approach to a cohort of intronic variants in 2021 patients referred for retinal dystrophy 

gene panel testing, we show that putatively BP-impacting variants are present in 5.9% of surveyed 

patients. While many of these are unlikely to be pathogenic, we are able to identify a BP-impacting 

variant in intron 7 of the BBS1 gene, which is shown through downstream functional studies to be 

both splice-impacting and causative, in a compound heterozygous state, of the patient phenotype of 

retinitis pigmentosa. 

 

We thereby demonstrate the diagnostic value of evaluating the efficacy of predictive tools across 

different variant subtypes and the development of bespoke bioinformatics approaches where this 

efficacy is sub-optimal.  
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3.2. Introduction 
Variation at any of the essential cis-acting splicing sequence elements is liable to cause pathogenic 

mis-splicing of the respective transcript. Two such elements are the branchpoint sequence (BPS) and 

poly-pyrimidine tract (PPT), which demarcate the 3’ end of all human introns, serving as binding sites 

for spliceosomal proteins. Specifically, the BPS and PPT are believed to primarily recruit the U2 

snRNP auxiliary proteins U2AF65 and U2AF35, respectively (Zorio and Blumenthal, 1999, Merendino 

et al., 1999, Wu et al., 1999). The assembled U2 complex then interacts with local and distal splicing 

complexes, including the 5’SS-recognising U1 snRNP, to initiate the splicing reaction (Shao et al., 

2012). 

 

The spatial relationship between the BP and other sequence features facilitates this process of 

binding and interaction. Between the BP and 3’SS generally lies an AG-exclusion zone (AGEZ), in 

which no AG dinucleotides are present. Cryptic AGs introduced by variants into the AGEZ are liable to 

act as competing splice sites, as they lie downstream of required cis-acting sequence features, i.e. 

the BP and PPT themselves (Smith et al., 1993, Wimmer et al., 2020). The distance between the BP 

and 3’SS also has a significant on splicing patterns, with greater BP-3’SS distances being associated 

with alternatively spliced exons (Corvelo et al., 2010). 

 

The adenosine residue in the canonical branchpoint TNA motif is itself an active agent of the splicing 

reaction, serving as a nucleophile that attacks the 3’ splice acceptor in the first of the two steps of the 

central transesterification reaction. The splicing reaction results in the formation of a lariat, a lasso-like 

structure consisting of the intron, with the branchpoint adenosine acting as the “junction” of the lariat, 

being bonded to its neighbouring nucleotides, as well as the 3’ splice site that it has attacked. 

Identifying this distinctive point in the lariat can thus allow direct confirmation of the position and 

identity of the branchpoint residue. 

 

This experimental identification of the BPS is hindered by the rapid degradation of lariat sequences 

after completion of splicing. Empirical approaches to identify BP sequences have therefore relied on 

the mining of large RNA-seq datasets (Mercer et al., 2015, Taggart et al., 2012, Taggart et al., 2017) 

in an effort to detect low-level lariat sequences. Sequencing reads mapping to intronic lariats are 

easily discernible, as traversing the BP-5’SS junction results in a split and inverted read (Taggart et 

al., 2012, Mercer et al., 2015). By designing bespoke approaches that identify reads that map to 

known introns but with this, putative branchpoints can be empirically identified en masse. The 

traversal of the often also resulting in the incorporation of an incorrect nucleotide in place of the BP 

adenosine, providing another indicator of branchpoint identity (Taggart et al., 2017). 

 

The difficulty in direct observation of functional branchpoints has led to the development of 

bioinformatics tools based on theoretical models. Two such tools are SVM-BPfinder (Corvelo et al., 

2010) and Branchpoint Predictor, or BPP (Zhang et al., 2017). Both models take as input an intronic 

sequence, and scan the sequence in windows of 9 or 7 bp (for SVM-BPfinder and BPP, respectively). 
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The similarity to the canonical BPS is evaluated using either an SVM (for SVM-BPfinder) or mixture 

model (for BPP). Both tools also incorporate consideration of the length, composition and relative 

position of the PPT in evaluating the potential strength of a BPS. In the case of SVM-BPfinder, 

predictions are returned for every canonical TNA motif present in the supplied sequence, and can 

later be filtered to identify the “optimal” branchpoint, while, for BPP, every position in the sequence is 

evaluated, and only the position most likely to be the branchpoint is returned for a given intron. 

 

Pathogenic branchpoint variants are ostensibly rare in current literature, currently numbering in the 

order of only tens of reported variants (see Table 5, below). Whether such variants are truly rare, or 

whether they are simply under-analysed, remains to be seen. As with many intronic variants, the 

ability to reliably call BP variants is dependent on the sequencing approach used: while the majority of 

BPs should be well-covered in WGS data, they are not within the targeted enrichment region for gene 

panels or WES. However, while the intended coverage of panel and exome sequencing is primarily 

exonic, both approaches may in fact show some degree of intronic coverage, usually lower than that 

of the target region. This is a result of the enrichment process, which encompasses small flanking 

regions to ensure adequate coverage of the target regions. 

 

Leveraging this intronic coverage may allow the investigation of variation at the BPS and PPT through 

re-analysis of existing data. In this study, we developed a bespoke bioinformatics approach that 

aimed to evaluate the frequency of SNVs at putative branch points for a cohort of patients. We further 

sought to identify cases where variants at the BPS may be responsible – either wholly or partially – for 

a patient’s phenotype. 

 

3.3. Materials and methods 
Curation of existing branchpoint variants 

Pathogenic variants shown to impact the function of the human BPS were curated from existing 

literature. We retained only SNVs for compatibility with empirical datasets and our selected predictive 

tools. SpliceAI scores (Jaganathan et al., 2019) were retrieved for all identified variants. 

 

Retinal dystrophy gene transcript selection 

For each of the genes present in the Manchester Centre for Genomic Medicine retinal dystrophy gene 

panel, we selected the transcript(s) assigned to that gene in-house for downstream analysis and 

extracted their intronic sequences via the Ensembl API (Howe et al., 2021). Selected transcripts are 

listed in Supplementary Table 10. 

 

Bioinformatics analysis 

The co-ordinates of experimentally derived BPSs were accessed via primary publication (Mercer et 

al., 2015). Source code for SVM-BPfinder and BPP was obtained through online repositories 

(https://bitbucket.org/regulatorygenomicsupf/svm-bpfinder/src/master/ and 

https://github.com/zhqingit/BPP, respectively). No customisable parameters were available for BPP; for 
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SVM-BPfinder, default parameters were used except for the minimum 3’SS-BP parameter, which was 

decreased to 10 bp to allow identification of any BPs located an abnormally short distance from the 

splice acceptor. Intronic sequences were retrieved for all retinal panel gene introns using the Ensembl 

API and bespoke scripts used to cross-reference intronic variants from retinal dystrophy panel 

patients with the output of SVM-BPfinder, BPP and the list of empirical branchpoints. 

 

Variant filtering strategy to identify putatively BP-impacting SNVs 

We filtered putatively BP-impacting variants for rarity by excluding those with an AF frequency > 1% 

in the gnomAD database (Karczewski et al., 2020). We further excluded any variants present in 10 in-

house individuals or more. Additionally, we filtered out heterozygous variants for which there was 

substantial imbalance in variant calling read support - namely, where one allele was supported by 

80% or more of the total reads at that base position. Such variants were hypothesised to be 

artefactual findings generated through erroneous variant calling. 

 

Midigene-based investigation of putative BP variant 

Midigene assays were conducted externally, as described in (Fadaie et al., 2021). 

 

3.4. Results 
3.4.1. SpliceAI is underpowered to detect branchpoint variants 
To evaluate the accuracy of SpliceAI in predicting BP-related splice disruption, we curated a list of 20 

high-confidence pathogenic branchpoint variants from existing literature (Table 5). Of these, 55% 

(11/20) affected the canonical branchpoint adenosine, while 45% (9/20) affected the highly conserved 

thymidine two bases upstream. The remaining variant affected a thymidine five bases upstream of the 

canonical adenosine. Cross-referencing with predictive scores revealed that, for this cohort of 

variants, SpliceAI (with a threshold score of significance > 0.2, as described above) had a sensitivity 

of 50%. Recent studies have consistently demonstrated that, at similar score thresholds, SpliceAI has 

an overall sensitivity of between 78-91% (Jaganathan et al., 2019, Wai et al., 2020, Riepe et al., 

2021). Despite the small sample size, this preliminary analysis suggests that SpliceAI may be 

underpowered to detect the splicing impact of some BP variants. We thus aimed to develop a 

bespoke approach to highlight genomic variants that may overlap branchpoint sites. 

 

3.4.2. Analysis of branchpoint frequency and distribution 
We aimed to re-analyse the intronic variants identified in a cohort of 2021 patients who had previously 

undergone clinical diagnostic sequencing against a retinal dystrophy gene panel (see 3.3.). We 

generated a map of both predicted and empirically identified branchpoints for all introns in 188 

transcripts annotated to the 176 genes associated with the retinal dystrophy panel, encompassing a 

total of 2560 unique introns. Introns ranged in length from 30-238,135 bp, with a median length of 

1766 bp (Figure 15a). 
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Empirically identified BPs were sourced from a previously described dataset (Mercer et al., 2015). No 

validated BP from this dataset was identified for 86.8% (2221/2560) of retinal dystrophy panel gene 

introns (Figure 15b); this likely represents the difficulty in experimentally capturing lariats, rather than 

a true lack of BP in those introns. Of the 13.2% (339/2560) of introns in which one or more validated 

branchpoints were identified, the majority (71.7%, 243/339) contained just a single branchpoint, with 

two and three branchpoints being identified in 18.9% (64/339) and 6.8% (23/339) of introns, 

respectively. Nine experimentally validated branchpoints overlapped the co-ordinates of intron 30 of 

the SNRNP200 gene, the greatest such number among the retinal dystrophy gene introns analysed 

(Figure 15c). Only one of the nine branchpoint residues was an adenosine, and was part of a CNA 

motif. 

 

The predictive component of our analysis combined the use of both SVM-BPfinder and BPP to predict 

the optimum branchpoint sequence within the last 500 bp of the intron. Between both tools, a total of 

3516 unique residues were predicted to be the branchpoint of at least one of the retinal dystrophy 

gene introns. For 60.1% (1539/2560) of surveyed introns, both tools returned the same predicted 

branchpoint, suggesting a relatively high concordance between their predictions (Figure 15d). We 

also compared the distance between the BP and 3’SS identified by each tool (Figure 15e). Both tools 

showed a median BP-3’SS distance of 27 bp across the surveyed introns; SVM-BPfinder, however, 

was more likely to predict residues very proximal and distal to the 3’SS as being BPs, with 17.7% of 

BPs predicted to be < 20 nt from the 3’SS, and 20.4% > 50 bp from the 3’SS (compared to 11.8% and 

5.4%, respectively, for BPP). This suggests BPP prioritises a narrower range of genomic space when 

predicting BPs than does SVM-BPfinder. 

 

SVM-BPfinder was unable to identify an optimal branchpoint for 1.5% (39/2560) of introns. 31 of these 

had at least one TNA motif in the final 500 bp of the intron, but with none predicted by the filtering 

algorithm to be sufficiently similar to the consensus BPS. The remaining 8 were all short introns of 75-

242 bp lacking any TNA motifs; 7 of these were predicted by BPP to have branchpoints with the 

recognised non-canonical CNA motif, while the remaining branchpoint was predicted to consist of a 

rare TGC motif. Of the 2543 total unique branchpoints identified by BPP, 9.2% (233/2543) were 

predicted to consist of non-TNA motifs. 

 

Using SVM-BPfinder, we also investigated the number of predicted branchpoints present in each 

intron (Figure 15f). Across all investigated genes, the number of unfiltered TNA motifs observed in 

the last 500 bp of each intron ranged from 1-73. Counting only those with a positive SVM output score 

(as stipulated by SVM-BPfinder when selecting the optimum branchpoint in an intronic sequence) 

reduced this to 0-22. When solely considering the final 100 bp of each intron, the unfiltered TNA motif 

counts ranged from 0-20, dropping to 0-9 when filtering for only positively-scoring motifs. The median 

number of positively-scoring TNA motifs in the final 100 bp of retinal dystrophy gene introns was just 

2. This suggests that, while a large number of sites within introns may theoretically serve as 

branchpoints, the number of those resembling genuine BPSs is much lower. 
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Gene HGVSc HGVSg Affected BP site Phenotype Citation Max SpliceAI 
score 

COL5A1 NM_000093.4:c.2701-25T>G chr9:g.137686903T>G -2 T Ehlers-Danlos syndrome type II Burrows et al., 1998 0.1634 

DYSF NM_003494.3:c.3443-33A>G chr2:g.71817308A>G A Mild limb-girdle muscular dystrophy (LGMD) Sinnreich et al., 2006 0.4426 

F9 NM_000133.3:c.253-25A>G chrX:g.138619496A>G A Haemophilia B David et al., 1998; Ketterling et al., 
1999 0.447 

FBN2 NM_001999.3:c.3974-26T>G chr5:g.127670562A>C -2 T Congenital contractural arachnodactyly (CCA) Maslen et al., 1997 0.464 

IKBKG/ 
NEMO NM_001099857.1:c.519-23A>T chrX:g.153788599A>T A Anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) Jørgensen et al., 2016 - 

ITGB4 NM_000213.3:c.1762-25T>A chr17:g.73732344T>A -2 T Epidermolysis bullosa with pyloric atresia (PA-JEB) Masunaga et al., 2015 - 

ITGB4 NM_000213.3:c.3977-19T>A chr17:g.73748508T>A -2 T Epidermolysis bullosa with pyloric atresia (PA-JEB) Chavanas et al., 1999 - 

KCNH2 NM_000238.3:c.2399-28A>G chr7:g.150646165T>C A Long QT syndrome Crotti et al., 2009 - 

L1CAM NM_000425.3:c.2432-19A>C chrX:g.153131293T>G A X-linked hydrocephalus Rosenthal et al., 1992 0.1446 

LCAT NM_000229.1:c.524-22T>C chr16:g.67976512A>G -2 T Fish-eye disease Kuivenhoven et al., 1996 - 

NPC1 NM_000271.4:c.882-28A>G chr18:g.21137182T>C A Niemann-Pick disease type C (NPC) Di Leo et al., 2004 - 

NTRK1 NM_002529.3:c.851-33T>A chr1:g.146853392T>A -2 T Congenital insensitivity to pain with anhidrosis (CIPA) Miura et al., 2000 - 

PC NM_000920.3:c.1369-29A>G chr11:g.66620883T>C A Type B pyruvate carboxylase deficiency Ostergaard et al., 2013 0.4153 

TH NM_199292.2:c.1198-24T>A chr11:g.2187017A>T -2 T Extrapyramidal movement disorder Janssen et al., 2000 0.5052 

TSC2 NM_001114382.1:c.5000-18A>G chr16:g.2138031A>G A Tuberous sclerosis Mayer et al., 2000 0.3819 

UROS NM_000375.2:c.661-31T>G chr10:g.127477605A>C -2 T Congenital erythropoietic porphyria Bishop et al., 2010 0.3114 

USH2A NM_206933.2:c.8682-17A>G chr1:g.216040529T>C A Usher syndrome Le Guédard-Méreuze et al., 2010 0.4978 

VWF NM_000552.3:c.6599-20A>T chr12:g.6101204T>A A Type 1 von Willebrand disease (VWD1) Identification: James et al., 2007; 
Functional testing: Hawke et al., 2016 - 

XPC NM_004628.4:c.413-9T>A chr3:g.14209889A>T -5 T Xeroderma pigmentosum Khan et al., 2004 0.974 

XPC NM_004628.4:c.413-24A>G chr3:g.14209904T>C A Xeroderma pigmentosum Khan et al., 2004 0.2742 

Table 5. Characteristics of 20 known pathogenic BP-impacting SNVs. 
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3.4.3. Investigation of branchpoint variation in retinal dystrophy gene panel patients 
We next cross-referenced the list of predicted branchpoints, derived from both the bioinformatics tools 

and experimentally-derived dataset, against a set of 6731 intronic variants called during sequencing 

of 2021 patients against the retinal dystrophy gene panel described above. Considering cases where 

variants were predicted to overlap either the BP adenine or the constrained residue two bases 

upstream, we observed that 1.5% (101/6731) of the variants overlapped with putative branchpoint 

residues from one of the three datasets, of which 78.2% (79/101) were rare (gnomAD AF < 1% and 

present in fewer than 10 in-house samples). Although more rigorous filters may ordinarily be applied 

to filtered for rare variants in dominant-acting genes, we opted to enforce the same in-house count 

filter for all variants, in case of the same pathogenic variant causing disease in multiple in-house 

patients. We additionally excluded five variants that displayed substantial allelic imbalance (allelic 

read count ratio of 80:20 or greater, see 3.3.), which were speculated to result from artefactual errors 

in variant calling. The final variant set consisted of 74 putatively BP-impacting variants present across 

50 genes in a total of 119 individuals; 56.7% (42/74) of these variants were predicted to affect the 

branchpoint residue, while the remainder (43.3%; 32/74) overlapped with the constrained residue two 

bases upstream. In seven individuals, two independent BP-overlapping variants were identified. 

 

We again investigated the concordance of predictions between SVM-BPfinder and BPP, as well as 

the set of empirically validated BPs (Figure 16a). Although only 6.8% (5/74) of the highlighted 

variants were predicted by all three approaches to overlap a BPS, there was higher concordance 

when considering SVM-BPfinder and BPP alone: 72 variants were predicted to overlap a BPS by at 

least one of the two tools, of which 41.7% (30/72) were predicted by both. Of the 15 variants affecting 

residues identified as BPs in the empirical dataset, the majority (86.7%; 13/15) were also highlighted 

Figure 15. Branchpoint distribution and frequency in retinal dystrophy gene introns. We evaluated the 
branchpoint characteristics of 176 retinal dystrophy (RD) genes featured on the MCGM gene panel (a) 
Introns varied widely in length from 30-238,135 bp (median = 1776 bp, orange line). (b) Most retinal 
dystrophy panel gene introns do not contain an experimentally validated branchpoint; 9.5% of introns 
contained a single validated BPS, with higher numbers of BPs identified in a much lower number of 
introns. (c) Intron 30 of the SNRNP200 gene contains nine experimentally validated BPs, the most of 
any surveyed intron. Only one has a canonical adenosine as the branchpoint residue. (d) The two 
bioinformatics tools used to predict BP residues showed fairly high concordance, with analysis of 
60.1% of introns returning the same predicted branchpoint using both tools. (e) Across all surveyed 
introns, the median distance between the BPS and 3’SS was the same regardless of bioinformatics 
tool used (median = 27, blue line). SVM-BPfinder, however, showed a stronger tendency to predict 
more proximal and distal residues as being BPs. (f) Using SVM-BPfinder, which evaluates the 
resemblance of each TNA motif in a sequence to the canonical BPS, we observed that the final 500 
and 100 bp of surveyed introns had between 0-73 and 0-20 TNA motifs, respectively. Introns had a 
median of two TNA motifs with positive SVM scores in the final 100 bp of the intron (bottom-right), 
which is used by SVM-BPfinder as an indicator of stronger BPS similarity. 
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by at least one of the two bioinformatics approaches, suggesting that, for this subset of variants, the 

selected predictive tools effectively recapitulated empirical findings. 

 

We re-analysed diagnostic reports for the 119 individuals harbouring putatively BPS-impacting 

variants to investigate the potential contribution of the variants to patient phenotype (Figure 16b, 

Supplementary Table S11). Phenotypic information was unavailable for 2.5% (3/119) of patients. 

53.8% (64/119) of investigated patients had already received a molecular diagnosis, defined as 

having a pathogenic or likely pathogenic variant(s) in a disease-causing state identified through prior 

gene panel testing; the genes harbouring putative BP variants were not associated with disease 

phenotype in these patients. Of the 52 unsolved patients with phenotypic data available, the putative 

BP variants in 76.9% (40/52) were not in genes typically associated with the respective phenotypes or 

Figure 16. Investigation of putative clinical BP-impacting variants. We cross-referenced 6731 intronic 
variants called during retinal dystrophy (RD) gene panel testing of 2021 individuals against an 
empirically generated BP dataset (Mercer et al., 2015) and two computationally predicted lists of retinal 
dystrophy gene branchpoints. (a) Of the 74 high-quality SNVs predicted to overlap a BP residue, 
50.0% were predicted by more than one tool. (b) The majority of patients harbouring putative BP 
variants had phenotypes not conventionally associated with loss of function of the affected gene. 
13/118 predicted BP-impacting variants were in genes potentially relevant to patient phenotype. (c) A 
putative BP variant was identified in intron 7 of the BBS1 gene, and was predicted to affect the 
canonical branchpoint adenosine residue 21 bases from the 3’ss. (d) Introduction of the variant into a 
midigene assay results in multiple aberrant bands when run on gel; (e) The majority of transcripts 
exhibited a 30-bp deletion of exon 8 (band 3 in (d)), with 22% of transcripts containing either a single- 
or multi-exon skip. (d) and (e) taken from Fadaie et al. (2021). 
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inheritance patterns. In two patients, heterozygous BP variants were identified in phenotype-relevant 

genes associated with autosomal dominant inheritance. These variants, however, were present in a 

heterozygous state in multiple other patients with unrelated phenotypes, and so were deemed unlikely 

to be pathogenic. In ten patients, putative BP variants were identified in phenotype-relevant genes 

associated with autosomal recessive inheritance, and in each patient constituted the first potentially 

pathogenic variant identified in the given gene. 

 

In one patient, we identified a putatively BP-impacting variant in intron 7 of the BBS1 gene (c.592-

21A>T). In this patient, a known pathogenic variant, c.1169T>G (p.Met390Arg; Mykytyn et al., 2002), 

had previously been identified in a heterozygous state through upstream gene panel testing, and had 

been reported as a carrier finding. The putative BP variant was predicted to affect the canonical 

adenosine of the branchpoint intron (Figure 16c). One other TNA motif was identified within 100 bp of 

the 3’ end of intron 7, but was not predicted by either SVM-BPfinder or BPP to be the optimal 

branchpoint sequence in intron 7. 

 

The patient had presented with non-syndromic retinitis pigmentosa (RP), which may be caused by 

homozygous loss-of-function variants in BBS1 (Estrada-Cuzcano et al., 2012), and so the identified 

variant was hypothesised to contribute to the RP phenotype in this patient. Notably, this variant was 

predicted to have a SpliceAI score of 0.204, and so would have been missed if applying the SpliceAI 

threshold of 0.25 recommended by the creators of the tool, but would have been identified if using the 

threshold of 0.2 identified in our earlier analysis of splice variants (see 2.4.2.). 

 

Initial investigation of the impact of the c.592-21A>T variant using a minigene assay did not result in 

significant disruption to splicing. However, following variant sharing, further downstream functional 

analysis of the effect of this variant was conducted elsewhere using a larger midigene assay 

incorporating a 7.3 kb insert, encompassing six exons of BBS1 (Fadaie et al., 2021). Wild-type 

splicing of the transcript was observed to be reduced by 63% in the presence of the c.592-21A>T 

variant. Three distinct mis-splicing events were identified (Figure 16d-e): 41% of all transcripts 

showed evidence of the use of an alternative acceptor in exon 8, leading to omission of 30 

nucleotides from the 5’ end of exon 8. Skipping of exon 8 was observed in 9% of transcripts, while 

13% of transcripts showed a multi-exon skip encompassing both exons 7 and 8. Due to the large 

scale of the disruption, this variant was deemed likely to cause disease when in compound 

heterozygosity with p.Met390Arg. 

 

3.5. Discussion 
Through our bespoke pipeline, we were able to identify a single pathogenic variant in BBS1 that had 

escaped consideration during upstream diagnostic analysis. We also identified a further ten variants 

in autosomal recessive genes that may represent a first pathogenic variant in the respective patients; 

further work to corroborate the effect of these variants will be necessary to evaluate the true 

frequency of splice-impacting BP variants in patient populations and the accuracy of our diagnostic 



 

 
 

105 

approach. Despite this uncertainty, these findings support the notion that the identification of 

pathogenic intronic variation is not well-served by current diagnostic pipelines. It should also be noted 

that, although genotype-phenotype correlations were not strong for most of the putative BP variants, 

they may still constitute reportable incidental findings if shown to significantly impact splicing. 

 

Recent years have seen the release of several other BP prediction tools, including the machine 

learning-based tools Branchpointer (Signal et al., 2018), LaBranchoR (Paggi and Bejerano, 2018) and 

RNABPS (Nazari et al., 2018). A recent comparison of six available BP prediction tools – including 

those described here – demonstrated that Branchpointer showed the greatest accuracy in identifying 

genuine branchpoints from falsely simulated ones (Leman et al., 2020), and so its incorporation, with 

other tools, into the approach described here may highlight putatively BP-impacting variants missed 

when using SVM-BPfinder and BPP alone. However, the same study also demonstrated that variants 

predicted by BPP to affect the BP adenosine or -2 residue were more likely to impact splicing than 

when predicted to do so by other tools, and recommended primarily using BPP in clinical contexts. 

 

A notable limitation of our study is the absence of consideration of indels. A small number of BP-

impacting indels have been described previously in the literature (Agrawal et al., 2005, Aten et al., 

2013, Bosch et al., 2005). However, it has long been known that deletions at the 3’ end of the intron 

are also liable to impact splicing through the shortening of the PPT, such that assembly of the 

spliceosome is sterically unfeasible (Frendewey and Keller, 1985, Reed, 1989, Ruskin and Green, 

1985). Such variants are seemingly rare in Mendelian disease, though this may represent an under-

analysis of intronic indels analogous to that of BP-impacting variants. An extension of our approach to 

identify significant changes in PPT length may further boost diagnostic yield. 

 

One complexity in the investigation of mis-splicing is the presence of tissue-specific splicing 

differences that may not be apparent in the surveyed tissue or vector system. This is also true for 

BPs, which show extensive tissue specificity, with up to 75% of human introns identified by one study 

as exhibiting different branchpoint usage between tissues (Pineda and Bradley, 2018). These findings 

are supported by the multiple branchpoints identified in single introns in empirical datasets (Mercer et 

al., 2015, Taggart et al., 2012, Taggart et al., 2017), as in the case of SNRNP200 intron 30 described 

above. Accordingly, it may be hypothesised that investigation of the effect of BP variants should, 

where possible, be carried out in a disease-relevant tissue sample. The ability of non-human cell-

based assays to recapitulate biological findings observed in human tissues will be an important area 

of study to ensure that corroborative methodologies are accurately portraying biological impact. 

 

Relatedly, the failure of a minigene assay to demonstrate the splicing impact of the c.591-21A>T 

variant illustrates the importance of intelligent selection of functional assay. Multi-exon mis-splicing 

events, for instance, are not captured using a single-exon approach (Sangermano et al., 2019), and 

so our findings suggest that, where possible, assaying larger genomic regions may provide a more 

accurate picture of splicing dynamics. 
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Although we only identified one BP variant thus far confirmed to be pathogenic through our approach, 

this still constitutes a significant increase in the number of these ostensibly rare variants in the 

literature. It is promising that re-analysis of variants from a single gene panel cohort has led to a 

confirmed molecular diagnosis, and it can be speculated that re-analysis of further datasets may 

increase diagnostic yield further still. 
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4. MRSD: a novel quantitative approach for assessing 
suitability of RNA-seq in the clinical investigation of mis-
splicing in Mendelian disease 
 

4.1. Abstract 
RNA-seq of patient biosamples is a promising approach to delineate the impact of genomic variants 

on splicing, but variable gene expression between tissues complicates selection of appropriate 

tissues. Relative expression level is often used as a metric to predict RNA-sequencing utility. Here, 

we describe a gene- and tissue-specific metric to inform the feasibility of RNA-sequencing, 

overcoming some issues with using expression values alone. 

 

We derive a novel metric, Minimum Required Sequencing Depth (MRSD), for all genes across three 

human biosamples (whole blood, lymphoblastoid cell lines (LCLs) and skeletal muscle). MRSD 

estimates the depth of sequencing required from RNA-sequencing to achieve user-specified 

sequencing coverage of a gene, transcript or group of genes of interest. MRSD predicts levels of 

splice junction coverage with high precision (90.1-98.2%) and overcomes transcript region-specific 

sequencing biases. Applying MRSD scoring to established disease gene panels shows that LCLs are 

the optimum source of RNA, of the three investigated biosamples, for 69.3% of gene panels. Our 

approach demonstrates that up to 59.4% of variants of uncertain significance in ClinVar predicted to 

impact splicing could be functionally assayed by RNA-sequencing in at least one of the investigated 

biosamples. 

 

We demonstrate the power of MRSD as a metric to inform choice of appropriate biosamples for the 

functional assessment of splicing aberrations. We apply MRSD in the context of Mendelian genetic 

disorders and illustrate its benefits over expression-based approaches. We anticipate that the 

integration of MRSD into clinical pipelines will improve variant interpretation and, ultimately, diagnostic 

yield. 

 

4.2. Introduction 
Pinpointing disease-causing genomic variation informs diagnosis, treatment and management for a 

wide range of rare disorders. An underappreciated group of pathogenic variants is those that lie 

outside of canonical splice sites but act through disruption of pre-mRNA splicing, the process whereby 

introns are removed from nascent pre-mRNA to produce mature and functional transcripts 

(Supplementary Figure 4a). The ways through which genomic variants can disrupt pre-mRNA 

splicing are diverse (Supplementary Figures 4b-g), including both protein-coding and intronic 

variants that are well described as causes of rare disorders (Anna and Monika, 2018, Scotti and 

Swanson, 2016, Wai et al., 2020). However, the omission of intronic regions in targeted sequencing 
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approaches (Sangermano et al., 2019, Khan et al., 2020), discordance between in silico variant 

prioritization tools (Rowlands et al., 2020) and the lack of availability of the appropriate tissue from 

which to survey RNA for splicing disruption (Aicher et al., 2020, Marston et al., 2009) limit effective 

identification of pathogenic splice-impacting variants. 

 

RNA sequencing (RNA-seq) offers a potential route to overcome issues of variant interpretation (Wai 

et al., 2020, Mertes et al., 2021, Kremer et al., 2017, Byron et al., 2016, Marco-Puche et al., 2019, 

Cummings et al., 2017). The complex impacts of variants on splicing can be fully characterized 

through RNA-seq. Moreover, aberrant splicing events can be identified from RNA-seq datasets 

without prior knowledge of genomic variants driving their impact. Whilst targeted analyses, such as 

RT-PCR, also enable detection of splicing aberrations (Wai et al., 2020), such approaches are 

designed to test the presence of specific disruptions and may not identify the complete spectrum of 

splicing disruption caused by a single genomic variant.  

 

There is growing evidence that RNA-seq can substantially improve diagnostic yield across a variety of 

disease subtypes (Wai et al., 2020, Kremer et al., 2017, Cummings et al., 2017, Frésard et al., 2019, 

Lee et al., 2020) through identification of variants impacting splicing, or leading to impairment of 

transcript expression or stability (Abdrabo et al., 2020). However, there remain several hurdles to the 

effective and routine integration of RNA-seq into diagnostic pipelines. For example, surveying a whole 

transcriptome identifies a large number of splicing events – in the order of hundreds of thousands. 

Despite a recent increase in the number of tools designed to scrutinize RNA-seq data for so-called 

“splicing outliers” (Mertes et al., 2021, Ferraro et al., 2020, Jenkinson et al., 2020, Cummings et al., 

2017), there is little consensus regarding the best approach to filter true positive and pathogenic 

events from harmless or artefactual findings. Furthermore, diagnostic analysis using RNA-seq is only 

effective when sufficient levels of sequence coverage of a relevant gene transcript are present in the 

sampled tissue. 

 

In this study, we develop an informatics approach to quantify the likelihood that a transcript, or a 

defined set of transcripts, can be appropriately surveyed using RNA-seq. We name our framework the 

minimum required sequencing depth (MRSD), which can be utilized in a flexible and customized 

manner to assess the suitability of RNA-seq derived from different tissues to identify pathogenic 

splicing aberrations in specific genes of interest (Supplementary Figure 5). MRSD scores (available 

at: https://mcgm-mrsd.github.io/) can be utilized to select the most appropriate biosample to detect 

splicing aberrations for a candidate set of transcripts, or to guide the amount of sequencing reads 

from a specific biosample required to generate appropriate transcriptomic datasets for a transcript of 

interest. We apply these techniques to the study of monogenic disease genes, and assess four 

clinically accessible biosamples for their appropriateness to survey all known monogenic disease 

genes. 
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4.3. Materials and methods 
Minimum required sequencing depth (MRSD) score 

We generated a collated map of splice junction coverage for GTEx samples from four tissues (whole 

blood, n = 150; LCLs, n = 91; skeletal muscle, n = 184; cultured fibroblasts, n = 150; see Control 

RNA-seq data acquisition, below), using established methods (Cummings et al., 2017). These 

samples were designated as reference sets. Our model considers the level of sequencing coverage 

for splice junctions in each tissue-specific reference set and calculates the minimum required 

sequencing depth (MRSD), in millions of uniquely mapping 75 bp reads, that would be required for the 

desired proportion of splice junctions in a given transcript to be covered by a desired number of 

sequencing reads. The model is dynamic, and can be adjusted by the user to account for customized 

levels of desired sequencing coverage per splicing junction, the proportion of splicing junctions 

covered, and the so-called “MRSD parameter”, representing the proportion of control samples for 

which the returned MRSD holds true (suggested usage of 95 or 99%). 

 

MRSD is defined for an individual transcript in a given sample as: 

 

!"#$% = 	(/ *"+, - 

 

Where ( is the desired level of read coverage across desired proportion . of splice junctions, " is the 

set of read counts supporting each of the splice junctions in the transcript of interest, ordered from 

lowest to highest, and "+ is the read count at the position in " at which proportion .  of read counts 

values in " are greater than or equal to it. , represents the total number of sequencing reads, in 

millions of reads, in the RNA-seq sample (by default, the number of uniquely mapping sequencing 

reads). 

 

For instance, suppose a sample sequenced to a depth (,) of 40 M uniquely mapping sequencing 

reads generates coverage of 14, 16, 8 and 10 reads across the splice junctions of a five-exon 

transcript. Suppose we wish 75% of splice junctions to be covered by a minimum of 6 reads (i.e. . = 

0.75 and ( = 6). Here, " = (6, 10, 14, 16) and "+ = 10, as 3/4 (75%, i.e. .) of all values in " are 

greater than or equal to 10. Inserting these values into the formula shows that this transcript has an 

MRSD of /
01 213 = 24	!	uniquely mapping sequencing reads in this sample. 

 

The set of MRSD scores for the given transcript are then collated across all control samples and 

ordered from lowest to highest. The score at the 6-th percentile position in the collated list of sample-

specific MRSDs is returned as the overall MRSD for that transcript, where 6 is termed the “MRSD 

parameter” and is customizable by the user (default = 0.95). The MRSD0.99 of a transcript, for 

example, represents the sequencing depth that would be required for 99% of control samples to 

achieve the specified coverage for that transcript. The MRSD parameter therefore approximately 
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represents the likelihood that a sequencing run at the returned depth will yield the desired coverage 

level. An illustrated example of MRSD generation is provided in Supplementary Methods 1. 

 

Transcript selection 

MRSD can be calculated for any transcript sets of interest. To extend this to the gene level for the 

analyses shown here, we generated a single transcript model for each gene in the GENCODE v19 

human genome annotation (Supplementary Methods 2). We utilized a hierarchical approach for 

transcript selection, whereby we prioritized transcripts in the MANE v0.7 curated transcript list, 

providing that all splicing junctions for a given transcript were supported in the GENCODE v19 

annotation. Genes without MANE transcripts were assigned composite transcripts, consisting of the 

union of all junctions found in transcripts for the given gene in NCBI RefSeq. For genes that matched 

neither criteria, the union of all junctions present in all GENCODE v19-listed transcripts for that gene 

were used as the transcript model. 

 

Genomics England PanelApp data collection 

Tabulated versions of 295 gene panels were downloaded from the Genomics England PanelApp 

repository on June 28th 2021. Each panel was filtered to retain only genes assigned a “green” 

classification for that panel, representing the highest level of confidence of a real genotype-phenotype 

association. 

 

Control RNA-seq data acquisition 

FASTQs were downloaded from the Database of Genotypes and Phenotypes (dbGaP) under the 

project accessions phs000424.v8.p2 and phs000655.v3.p1.c1 for GTEx control individuals and 

neuromuscular disease patients, respectively. GTEx controls were selected for LCLs (n = 91), skeletal 

muscle (n = 184), whole blood (n = 150) and cultured fibroblasts (n = 150) according to tissue-specific 

criteria (Supplementary Methods 3) to ensure use of only high-quality samples in generating control 

splicing datasets.  

 

In-house RNA-seq generation 

RNA-seq datasets used to evaluate model performance were accessed from previously published 

datasets (Cummings et al., 2017), under dbGaP project accession phs000655.v3.p1.c1, through 

international consortia (Osborne et al., 2000), or from individuals in whom written informed consent 

was obtained and ethical approval for the study granted by Scotland A (refs: 06/MRE00/76 and 

16/SS/0201), South Central-Hampshire A (ref: 17/SC/0026), South Central-Oxford B (ref:11/SC/0269) 

or South Manchester (ref: 11/H10003/3). 

 

For in-house peripheral blood samples, RNA was extracted from PAXgene Blood RNA Kits and 

underwent poly-A enrichment library preparation using the TruSeq Stranded mRNA assay (Illumina) 

followed by 76 bp paired end sequencing using an Illumina HiSeq 4000 sequencing platform. For in-

house LCL samples, RNA was extracted from pelleted LCLs thawed directly into TRIzol reagent 
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(Invitrogen, 15596-026) using chloroform, and treated with TURBO DNase (Invitrogen, AM1907), 

following the manufacturers’ instructions. RNA was prepared using the NEBNEXT Ultra II Directional 

RNA Library Prep kit (NEB #7760) with the Poly-A mRNA magnetic isolation module (NEB #E7490), 

according to manufacturer’s instructions, and 75bp paired end sequencing was performed using the 

Illumina NextSeq 550 sequencing platform. Ribosomal RNA depleted datasets were generated using 

RNA extracted via the PAXgene Blood RNA system, and 150bp paired end sequencing performed via 

Novogene (Hong Kong) using the NEBNext Globin and rRNA Depletion and NEBNext Ultra 

Directional RNA Library Prep Kits on a HiSeq 2000 instrument (Illumina). RNA samples from 20 LCLs 

were obtained from the kConFab consortium. Poly(A)-selected RNA was generated using the TruSeq 

Stranded mRNA Library Prep Kit (Illumina), and 150bp paired end reads created using the NextSeq 

500 instrument (Illumina).  

 

Splice event identification 

All FASTQs were aligned and processed as previously described (Cummings et al., 2017). Briefly, 

this analysis consisted of two-pass alignment using STAR v2.4.2 (Dobin et al., 2013), marking of 

suspected PCR duplicates, and processing of the resulting alignments to generate tissue-by-tissue 

lists of read support counts for splice junctions present within the samples in the cohort. Metrics for 

each splicing event were collected (Box 1), and splicing junctions were filtered to retain only those 

events that were unique to single samples (singletons) or that were present in multiple samples (non-

singletons) but with an increased usage in the sample of interest, that is, with a higher normalized 

read count (NRC), than any control. The resulting list was ranked according to NRC fold change, with 

singletons with high read counts considered the most significant events. The resulting junctions were 

considered “events of interest”. 

 

Factors influencing the likelihood of aberrant splicing identification 

To calculate how the level of background splicing aberrations was altered by sample size, each 

individual in the three control splicing datasets was processed using the above pipeline (Cummings et 

al., 2017) and compared against 2000 bootstraps of 30, 60 and 90 controls each from their respective 

control tissue dataset with replacement. Events were then filtered to retain only those events for which 

the NRC was higher in the given individual than in any controls, and then counted for each bootstrap. 

Median counts for singleton and non-singleton events were collated for each control group size. We 

selected 31 splicing events identified in neuromuscular patient RNA-seq data that were either unique 

to, or highly increased in prevalence in, the individual. From the genes in which we identified these 

variants, samtools was used to remove random subsets of reads in 10% intervals from each of these 

events to simulate variability in the number of reads generated for the gene of interest. The resulting 

datasets, exhibiting variable expression of a single gene, were then rerun through the splice analysis 

pipeline and the above metrics gathered for these simulated datasets. 
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Curation of ClinVar variants of uncertain significance 

A tabulated version of the comprehensive ClinVar variant listing (Landrum et al., 2018) for January 

2021 was downloaded and filtered to retain only those variants that were annotated as either 

“Uncertain significance” or “Conflicting interpretations of pathogenicity”. SpliceAI scores (v1.2.1, 

Jaganathan et al., 2019) were generated for these variants and those with a score of 0.5 or greater 

retained for downstream analysis. 

 
 

4.4 Results 
4.4.1. Minimum required sequencing depth (MRSD) scores differ across biosamples 
We first curated a list of disease-related genes, comprising 3417 unique genes listed in at least one of 

the 295 disease panels in the Genomics England PanelApp repository. 95 single-exon genes were 

removed from this set, leaving 3322 genes for downstream analysis. MRSD scores were generated 

for each of these genes, corresponding to the required sequencing depth (in millions of uniquely 

mapping sequencing reads) for a specified level of coverage of the corresponding transcript, in four 

clinically relevant tissues: whole blood, cultured fibroblasts, LCLs and skeletal muscle. As MRSD is a 

transcript-level metric, each gene was assigned a single transcript using a hierarchical approach (see 

4.3.). Three parameters can be altered for the MRSD model; we observed that MRSD differed 

dependent on the values chosen for these parameters, which comprised the number of reads desired 

to cover each splice junction, the proportion of splicing junctions for each gene that must meet this 

coverage threshold (75% or 95%), and the proportion of sequencing runs for which the predicted 

depth is predicted to achieve the desired level of coverage (the “MRSD parameter” of either 95% or 

99%, denoted MRSD0.95 and MRSD0.99, respectively; Figure 17a-b). For example, when specifying a 

desired read coverage level of eight reads per splicing junction, we observed that increases in the 

desired proportion of covered splice junctions from 75-95% was associated with an increase in 

median MRSD of between 0.27% (in skeletal muscle, MRSD0.99) to 55.95% (in LCLs, MRSD0.95; 

Figure 17b, top). For all but one parameter combination, moving from MRSD0.95 to MRSD0.99 resulted 

in an increase in median MRSD of between 26.19-155.40%. However, when stipulating 95% splice 

junction coverage for skeletal muscle samples , we observed a decrease of 4.66% in MRSD scores 

when the MRSD parameter was increased from 95% (n = 1323, median = 42.52) to 99% (n = 973, 

median = 40.54); this was accounted for by an increase in the number of genes that were considered 

“unfeasible” for surveillance, i.e. those for which zero reads cover the given proportion of junctions (n 

unfeasible, MRSD0.95 = 1999, n unfeasible, MRSD0.99 = 2349). This definition of feasibility is limited by 

the sequencing depth of the control models on which the predictions are based. For example, no 

coverage of splice junctions in a particular transcript may have been observed simply due to low 

sequencing depth; with ultra-deep sequencing of the same sample, we may have observed coverage 

of splice junctions and so have been able to generate a feasible MRSD prediction. 
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Overall, these analyses suggested that, of the four investigated biosamples, fibroblasts would enable 

investigation of the most comprehensive set of genes for aberrant splicing. Although LCLs displayed, 

across all four parameter combinations, the lowest median MRSDs (range = 12.86-33.77, Figure 
17b, top), the difference in median MRSDs compared to fibroblasts was small (range = 14.44-35.06), 

while a greater number of genes were predicted “unfeasible” for analysis in LCLs than fibroblasts 

(42.8-62.5% vs. 38.6-60.7% of PanelApp genes, respectively). On the other hand, whole blood 

exhibited the highest number of unfeasible genes across the different parameter combinations (59.7-

80.3%). 

a 

b 

Figure 17. Minimum required sequencing depth (MRSD) predictions vary with changes in model parameters 
and across tissues. (a) When all other parameters are constant (default parameters used here), increasing the 
desired level of read coverage of a gene results in a proportional increase in MRSD. The distribution of MRSD 
scores for 3322 PanelApp genes in lymphoblastoid cell lines (LCLs) appears to be the lowest of the 3 tissues 
(median = 15.975 M at 10 reads), while whole blood exhibits the highest overall MRSD scores (median = 50.95 
M at 10 reads), suggesting coverage of disease genes is generally poorer in blood. (b, top) In most cases, for a 
given level of splice junction (SJ) coverage, increasing the desired confidence level (the proportion of RNA-seq 
runs for which the MRSD prediction is expected to be sufficient) results in an increase in median MRSD score. 
(b, bottom) The number of PanelApp genes for which no amount of sequencing is predicted to yield the 
specified level of coverage increases gradually as parameter stringency increases. At the highest level of 
stringency, the specified coverage was predicted unfeasible for between 60.7% (2017/3322, in fibroblasts) and 
80.3% (2668/3322, in blood) of PanelApp genes. 
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4.4.2. Accuracy of minimum required sequencing depth (MRSD) calculations 
We next obtained independent RNA-seq datasets for 68 samples from the three investigated tissues 

(blood, n = 12; LCLs, n = 4; muscle, n = 52), with a range of sequencing depths (Supplementary 
Figure S6). Across a variety of parameter combinations, we considered all transcripts for which the 

parameter-specific MRSD was lower than that of the sequencing depth of the sample, i.e. those 

genes which are expected to be covered to at least the specified level. The positive predictive value 

(PPV) of a sample was defined as the proportion of these transcripts that did achieve the specified 

level of coverage. Conversely, the negative predictive value (NPV) was calculated as the proportion of 

transcripts with an MRSD greater than the sample sequencing depth which, as predicted did not 

achieve the specified level of coverage. Across all investigated MRSD parameters, we observed 96% 

PPV and 79% NPV, on average, for the 68 samples (Figure 18a). We observed a general trend that 

the PPV and NPV of MRSD decreased and increased, respectively, as higher levels of required 

coverage were imposed (Figure 18b-c). Across all parameter combinations, PPV values ranged from 

90.1-98.2%, while NPV ranged from 56.4-94.7%, suggesting MRSD is a fairly conservative model that 

primarily returns positive results with high certainty. 

 

Figure 18. Performance metrics of the MRSD model. The ability 
of MRSD to accurately predict levels of PanelApp disease gene 
coverage based on sequencing depth was tested on unseen 
RNA-seq datasets from blood (n = 12), LCLs (n = 4) and muscle 
(n = 52). (a) The mean positive predictive values (PPVs) and 
negative predictive values (NPVs) averaged across all parameter 
combinations for each RNA-seq dataset show that the median 
PPV is slightly lower, and the median NPV slightly higher, for 
whole blood than for LCLs and skeletal muscle. Breakdown of (b) 
PPVs and (c) NPVs for the MRSD model by parameters shows 
that specifying an increasing required read coverage results in a 
gradual decrease in PPV and increase in NPV across all tissues 
and parameter combinations. Dependent on parameter 
stringency, and limiting analysis to a maximum specification of 
20-read coverage, PPV predictions range from 90.1-98.2%, while 
NPV ranges from 56.4-94.7%. Overall, the model is fairly 
conservative and returns positive predictions only when they are 
deemed likely to be true. 

a 

Proportion of splice junctions covered 
b c 

M
R

S
D

 param
eter 

Proportion of splice junctions covered 

M
R

S
D

 param
eter 



 

 
 

116 

Although MRSD scores were derived from 75 bp paired-end RNA-seq data, we evaluated the ability 

of the model to predict transcript coverage in 150 bp paired-end data (LCLs, n = 20), and observed 

higher median PPV across samples than with 75 bp data for half of the four parameter combinations 

tested, while NPV was only slightly lower for all combinations (Supplementary Figure S7). While 

MRSD scores should ideally be applied to datasets generated using the same experimental 

approach, these data suggest that MRSDs may be loosely applicable between related methodologies. 

 

We additionally generated MRSD scores for the 3322 disease genes de novo based on the 150 bp 

dataset, and compared these to scores derived from a trimmed version of the same dataset, with all 

reads trimmed to 75 bp or fewer (Supplementary Figure S8). We observed that coverage was too 

poor to allow MRSD score generation regardless of read length for 45.8% (1520/3322) of disease-

associated genes. However, of the remaining 1802 genes, 13.5% (243/1802) counter-intuitively 

exhibited a higher MRSD in the 150 bp dataset, suggesting that fewer 75 bp reads than 150 bp reads 

were required to adequately cover these transcripts. In many cases, this was found to be due to a 

decrease in mapping quality of longer reads such that the reads did not pass the quality filters of the 

employed pipeline (Cummings et al., 2017). Further work is needed to ascertain whether this 

discarding of longer reads is a harmful artefact of the filtering process, or a genuine removal of 

uninformative reads. 

 

4.4.3. Comparison of MRSD and TPM as a guide for appropriate surveillance 
We compared MRSD to the use of relative expression level (in transcripts per million, TPM) as a 

possible indicator of RNA-seq suitability for the detection of aberrant splicing events. We compared 

the expression levels, in TPM, of the 3322 disease-associated genes against tissue-specific MRSD 

predictions, finding a negative correlation between the level of gene expression and its predicted 

MRSD across all four tissues (r2 = 0.613-0.714; Figure 19a-d). This confirms that more highly-

expressed genes are associated with lower MRSD scores. However, we noted significant overlap 

between genes grouped into low-MRSD (< 100 M reads) and high-MRSD (≥ 100 M reads) brackets. 

For example, among genes considered low-MRSD, TPM values ranged from 0.99-246,600, while 

feasible genes with high-MRSD values had TPM values between 0.14-8644 (Figure 19e). We 

quantified the overlap between these distributions, demonstrating that, depending on the tissue, 

between 93.0% and 99.3% of high-MRSD genes had higher TPM values than at least one low-MRSD 

gene. We also observed that, in their respective tissues, the TPMs of 44.0-60.0%, 8.5-16.7% and 3.4-

6.6% of high-MRSD genes exceeded those of the 5%, 30% and 50% least-expressed low-MRSD 

genes, respectively (Figure 19e). The substantial overlap in the TPM values for low and high MRSD 

genes suggests that relative expression does not provide a wholly accurate representation of 

transcript coverage in RNA-seq data. Such inconsistencies may arise from bias in the regions of 

genes that are sequenced, for example, genes with high degrees of 3’ bias in RNA-seq datasets 

(Supplementary Figure S9). 
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a   Whole blood b   Lymphoblastoid cell lines (LCLs) 

c   Skeletal muscle 

e 

d   Cultured fibroblasts 

Figure 19. Comparison of MRSD and transcripts per 
million (TPM) predictions for disease-related genes. 
MRSD and TPM predictions for 3322 genes present in the 
Genomics England PanelApp repository are inversely 
correlated in (a) whole blood (r2 = 0.661), (b) LCLs (r2 = 
0.613), (c) skeletal muscle (r2 = 0.714) and (d) cultured 
fibroblasts (r2 = 0.668), as might be expected; however, 
the correlation is broad and there is high variation in the 
TPMs both of genes considered low- and high-MRSD 
(MRSD ≤ or > 100 M reads, respectively, dotted line). (d) 
Bracketing PanelApp genes by MRSD range shows that 
there is substantial overlap in the TPMs of genes across 
different MRSD predictions, to the extent that sufficient 
coverage of genes with TPMs up to 2796.5 is predicted 
unfeasible in some cases. This suggests relative 
expression level alone is not an adequate proxy for 
transcript coverage. Log transformation in (d) excludes 
553 entries with TPMs of 0 in the unfeasible group. Default 
MRSD parameters (8-read coverage of 75% of splice 
junctions, confidence level of 95%) used throughout. 



 

 
 

118 

4.4.4. Traits of pathogenic splicing variation vary widely between genes and events 
We next aimed to determine the optimal MRSD parameters for detection of aberrant splicing. This 

required a deeper understanding of the proportion of transcripts likely impacted by pathogenic splicing 

events. We investigated 21 RNA-seq samples from patients harboring pathogenic mis-splicing events 

using a previously described analysis pipeline (Cummings et al., 2017). These included a wide variety 

of mis-splicing effects (Supplementary Figure S10). We calculated median TPM and MRSD values 

for the genes in which the mis-splicing events were present (Supplementary Table S12). The 

method employed for aberrant splicing detection pooled read support counts for splicing junctions 

from reference RNA-seq datasets to generate tissue-specific models of “healthy” splicing. We then 

generated splice junctions counts from the 21 patient RNA-seq datasets and merged these with those 

in the healthy splicing models (datasets summarized in Supplementary Table S13), collecting 

pipeline-specific metrics indicative of aberrant splicing events (Box 1). We observed high variability in 

all metrics associated with pathogenic aberrant splicing events (Table 6). All patients harbored at 

least one pathogenic splicing event supported by two or more reads and with normalized read counts 

(NRCs) ≥ 0.19, and 80% of these events had a relative fold change in NRC > 19x relative to controls 

(Table 6). While a blanket set of parameters for all aberrant splicing events may be unsuitable, our 

data suggests that 90% of pathogenic events could be retained if filtering for events that were 

singletons (evident only in a single sample), or were non-singletons with an NRC > 0.25.  
 

We further investigated the ability of three recent splice prediction tools to identify the 21 pathogenic 

events; these were FRASER (Mertes et al., 2021), SPOT (Ferraro et al., 2020) and LeafCutterMD 

(Jenkinson et al., 2020). We observed that the performance of these tools was mixed: LeafCutterMD 

performed the worst, identifying 57.1% (12/21) of the events, while SPOT and FRASER identified 

76.2% (16/21) and 81.0% (17/21) events, respectively. Of the 17 events identified by FRASER, only 

one was not identified as being a statistically significant splicing outlier (p < 0.05), likely due to this 

variant (in BRCA1) being present in three members of the LCL patient cohort investigated. FRASER 

was still able to assign significance to a pathogenic mis-splicing event supported by just 3 reads; 

however, while the pipeline used for our initial analysis (Cummings et al., 2017) is able to identify 

pathogenic splicing events with a lower number of supporting reads, it is likely that significance-based 

tools, such as FRASER, LeafCutterMD and SPOT, may require a deeper amount of sequencing to 

highlight these events as significant. 

Box 1. Metrics collated during splice event analysis 

- Read count – Number of split reads supporting the existence of a given splice junction 

- Normalized read count (NRC) – Ratio of the number of reads supporting a given junction to the numbers 

of reads supporting adjoining canonical junction with the highest supporting read count 

- NRC fold change – fold difference in NRC for a given event between an individual and the control individual 

with the next-highest NRC for that event 

- Number of samples – the number of individuals, across both case and controls, in which an event is present 

- Rank – position of a given event in a list of significant events, when ordered by decreasing read count (for 

singleton events) or fold change (for non-singleton events) 
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Table 6. Range of splice-related metrics observed in known pathogenic splicing events 

 

 

4.4.5. Factors influencing the likelihood of pathogenic splicing variation identification 
& MRSD predictions 
To further define the most informative parameters for use in the MRSD model, we investigated the 

impact of a variety of metrics on the capability to identify pathogenic splicing events, including number 

of samples within the healthy reference set, the degree of read support for splicing junctions, and the 

relative expression of genes of interest. Namely, we aimed to quantify the effect of changes in these 

metrics on both the total number of events of interest and the position within the list of events (see 

4.3. for filtering and ranking strategy). Overall, our analyses suggested that two supporting reads for 

an aberrant splicing event that is novel or has an NRC > 0.25 would reliably highlight pathogenic 

aberrations amongst transcriptome-wide splicing variation. We acknowledge that, for variant reporting 

purposes, a higher read support may be desired for improved certainty; however, for the purposes of 

highlighting pathogenic splicing variation in the first instance, we have found these filtering 

parameters to be robust. 

 

 

 Tissue 

Metric Whole blood (n=3) LCLs (n=7) Skeletal muscle (n=11) 

Read count 2-40 4-38 2-462 

NRC 0.48-1.25 0.19-1.52 0.34-3.19 

NRC fold change Singletons 3.7-8.2 + singletons 19.6-442 + singletons 

Number of samples 1 1-48 1-110 

Rank 2-5 10-232 1-342 

FRASER events 
identified 

3/3 4/7 10/11 

FRASER p-values 7.97 x 10-11 - 0.0022 2.36 x 10-5 - 0.13182 4.27 x10-13 - 0.0160 

LeafCutterMD events 
identified 

3/3 2/7 7/11 

LeafCutterMD p-
values 

6.19 x 10-11 - 0.00936 7.66 x 10-6 - 0.586 2.2 x 10-15 - 1.35 x 10-3 

SPOT events 
identified 

3/3 6/7 7/11 

SPOT p-values 0.000181 - 0.0426 1 x 10-6 - 0.13582 0.00469 - 0.0159 



 

 
 

120 

We first identified how the number of control samples used as a reference set for “healthy splicing” 

impacted our ability to identify aberrant splicing events. For all samples within our healthy splicing set, 

we iteratively selected groups of control samples at sizes of 30, 60 or 90. We observed that moving 

from 30 to 60 controls is associated with a mean reduction in event count of 19.3% (28.1% of non-

singleton events, 17.1% of singleton events) across the three tissues, while increasing the control size 

to 90 results in a further reduction of 10.2% of events (16.5% of non-singleton events, 9.5% of 

singleton events; Figure 20); this effect was consistent across tissue types. 

 

We next investigated how read count filters impacted the number of events observed for a given 

individual (Figure 20). Filtering out all splicing events supported by just a single read against a 

background of 90 control samples removes, on average, 91.2% of events (60.4% of non-singleton 

events, 97.3% of singleton events). Increasing read support thresholds to 10 unique sequencing 

reads results in a total of 99.4% of events being excluded on average (96.2% of non-singleton events, 

99.99% of singleton events), while retaining only those events supported by 100 reads or more 

removes an average of 99.97% of events (99.8% of non-singleton events, 100.0% of singleton 

events). 

 

To understand how the level of read support impacted the ability to identify specific events, we 

collated 31 aberrant splicing events across 22 muscle-derived RNA-seq samples, and downsampled 

Figure 20. Bootstrapping reveals the filtering power of increasing control dataset size and enforcing read filter 
thresholds in splice event analysis. Counting the significant events identified in each individual in a control splicing 
dataset when analysed against 2000 bootstraps each of 30, 60 and 90 other individuals from within the control dataset 
for the same tissue reveals a small decrease in the number of total events identified as control dataset size increases, 
predominantly from non-singleton events. Enforcing a read coverage threshold has a more significant effect on event 
counts, particularly for singleton events, where filtering out events supported by a single read removes up to 95% of 
singletons. LCLs appear to exhibit the greatest number of splicing events regardless of filter, although this may be due 
to differences in sequencing depth between tissues. 
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reads in the genes containing these events to simulate reduction in expression. We observed that we 

could identify the same aberrant splicing events at reduced relative expression levels, and, while read 

support decreased (Figure 21a), the ranked position of the event within the rank-ordered output 

remained approximately the same in most cases (Figure 21b). However, the weakened read support 

increased the risk of eliminating the variant from consideration when read count filters were applied 

(Figure 21c). This analysis further emphasized that TPM values alone may not be a reliable measure 

of ability to survey all splicing junctions within a gene; we observed that splice junctions in different 

samples covered by the same number of sequencing reads belonged to genes with widely ranging 

TPM values (Supplementary Figure S11). For example, splice junctions covered by eight reads 

were identified in genes with TPMs ranging between 0.17 and 52. 

 
Based on these investigations, we selected an eight-read coverage value for downstream analyses; 

as we observed that the majority of pathogenic mis-splicing events have an NRC ≥ 0.25; stipulating 

Figure 21. Variability in expression level influences the capacity to identify mis-splicing events. Genes 
harboring a selection of 31 splicing events that were identified during analysis of 52 muscle-based RNA-seq 
datasets (and which would be identified as events of interest using a filter of normalized read count (NRC) > 
0.19) were artificially downsampled to simulate variation in expression. (a) Reduction in expression leads to an 
intuitive and proportional reduction in the number of reads supporting each mis-splicing event. (b) The rank 
position – where the event appears in a list of all splicing events in its respective sample, ordered by 
decreasing NRC fold change relative to controls, and – is generally consistent as expression of the gene 
decreases; however, for a subset of events, reduction in expression is sufficient to cause stochastic changes 
in the NRC value, and so cause movement of the event down the prioritized list. (c) Variation in expression 
impacts our ability to identify events of interest when filters of read count supporting the events are enforced. 
When the 31 events experience a 50% reduction in expression, for instance, the application of a minimum 15-
read filter leads to the exclusion of 41.9% (13/31) of events. 

a b 

c Read count 
filter 
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an eight-read coverage requirement means that aberrant events should be covered by at least two 

reads, and so be retained when filtering single-read events from the list of splicing events. We 

appreciate that the use of more stringent parameters may be preferable in some use cases, such as 

to generate sufficient corroboration to support the reporting of a diagnostic finding to a patient or when 

using significance-based tools such as FRASER, LeafCutterMD and SPOT. However, our 

investigations have shown this approach to be robust for the initial highlighting of aberrant splicing 

events for downstream analysis. 

 

4.4.6. Implications for investigation of variants in known disease-causing genes 
We next sought to investigate the disease. Based on our above investigations, we generated MRSD 

scores for the cohort of 3322 multi-exon disease genes using the following parameters: read 

coverage = 8; proportion of junctions = 75%; MRSD parameter = 95% across whole blood, LCLs and 

skeletal muscle. We acknowledge that these parameters may be too lenient for some use cases, but 

a 

b 

Figure 22. Application of MRSD scores to disease 
genes listed in the Genomics England PanelApp 
repository. (a) Comparison of PanelApp panel gene 
MRSD predictions between tissues shows blood to 
exhibit markedly poorer coverage of disease genes 
than do LCLs, skeletal muscle or fibroblasts. (b) 
Comparison of PanelApp panel gene MRSDs between 
tissues shows many panel genes have greater 
coverage in fibroblasts than blood and, to a lesser 
extent, skeletal muscle and LCLs over a variety of 
disease subtypes. Panels where skeletal muscle 
shows the best coverage of panel genes intuitively 
correspond to phenotypes such as neuromuscular 
disorders and distal myopathies. 40 exemplar panels 
shown here. 
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anticipate that the evidence for the majority of mis-splicing events can be reliably identified using 

these parameters. Evaluation of model performance was not possible for fibroblast MRSDs due to a 

lack of independently generated samples. Using this approach, and with expected PPV = 0.936-

0.974, NPV = 0.776-0.880 across the three tissues, we observed that 64.2% (2133/3322) of 

PanelApp genes were predicted to be low-MRSD (< 100 M reads required) in at least one of the four 

tissues (Figure 22a). At the individual tissue level, 28.2% (936/3322) of PanelApp genes in whole 

blood, 49.4% (1641/3322) in LCLs, 43.6% (1447/3322) in skeletal muscle, and 53.7% (1784/3322) in 

cultured fibroblasts were predicted to be low-MRSD (Figure 22a). Of note, fibroblasts were observed 

to have the highest (or joint-highest) proportion of low-MRSD panel genes in 186/295 disease gene 

panels (63.1%, Figure 22b). This was the case for LCLs in 126/295 panels (42.7%), and skeletal 

muscle in 70/295 panels (23.7%). In only 21/295 panels (7.1%) did whole blood exhibit the highest 

proportion of low-MRSD genes. 

 

MRSD predictions revealed many use cases for specific tissues: in the familial rhabdomyosarcoma 

panel, for example, none of the 11 genes were predicted to be low-MRSD in blood, while 10/11 were 

predicted low-MRSD in LCLs (Figure 22), of which nine were actually assigned an MRSD < 50 M 

reads. 

 

Overall, this analysis suggests both that whole blood may often represent the poorest choice of RNA 

source tissue in terms of disease gene coverage; in contrast, fibroblasts appear to show robustly high 

coverage of splice junctions in disease gene transcripts across diverse disease subtypes, and so may 

represent a more reliable source of RNA for clinical transcriptomic investigations. 

 

4.4.7. Quantifying the resolving power of RNA-seq for variants of uncertain 
significance 
To analyze the possible impact of diagnostic RNA-seq integration on variant interpretation, we 

curated variants of uncertain significance (VUSs) from the ClinVar variant database (Landrum et al., 

2018) that were predicted by SpliceAI (Jaganathan et al., 2019) to impact splicing (score ≥ 0.5; see 

4.3.). Of a total of 352,011 ClinVar variants, 185,119 (52.6%) were identified as VUSs, and 7,507 

(2.1%) were retained after filtering based on SpliceAI score. Cross-referencing the MRSDs of the 

genes harboring SpliceAI-prioritized variants across tissues revealed that, at a specified read 

coverage of 8 reads, between 25.8% and 67.8% of these variants may lie in genes that are low-

MRSD in at least one of the four tissues (Figure 23a), dependent on the stringency of the model. This 

range lies between 24.9-64.0% when specifying 10 reads, and 18.7-52.0% when specifying a 

coverage of 20 reads (Supplementary Figure S12), suggesting just under one in seven VUSs may 

be investigated using RNA-seq when using very high levels of stringency. 

 

Further, among the 30 genes in which the greatest number of predicted splice-impacting VUSs were 

identified, 23 were predicted to be low-MRSD in at least one tissue (Figure 23b). Interestingly, raising 

the specified read coverage from 8 to 10 reads removes only one further gene, ATM, from the low-
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MRSD category (Supplementary Figure S13). However, when specifying a deeper level of read 

coverage (20 reads), only 18 (60%) of the top 30 genes remain low-MRSD. This includes increases in 

MRSD such that three of the four genes with the greatest number of predicted splice-impacting VUSs 

have MRSDs above 100 M reads. Regardless, the guided application of RNA-seq to functionally 

investigate the splicing impact of VUSs holds promise to improve diagnostic yield. 

 

 

 

 

 

Figure 23. The scope for resolution of variants of uncertain significance (VUSs) using RNA-seq-based analysis. 
MRSD scores were derived for the genes harbouring VUSs present in ClinVar if the variants were predicted by the 
predictive tool SpliceAI to impact splicing (score ≥ 0.5; Jaganathan et al., 2019) (a) Depending on the stringency of 
the MRSD model parameters, between 25.8% (1940/7507) and 67.8% (5086/7507) of variants predicted to impact 
splicing are expected to be adequately covered by 100 M uniquely mapping reads or fewer in at least one of the 
four tissues (whole blood, LCLs, skeletal muscle and fibroblasts). Variants were most likely to be found to be in 
low-MRSD genes (MRSD ≤ 100 M) in fibroblasts, irrespective of model parameters. (b) Among the 30 genes with 
the greatest number of predicted splice-impacting VUSs, 23 were predicted to be adequately covered (using 
default parameters) with 100 M uniquely mapping reads or fewer in at least one of the four tissues. An 8-read 
junction support parameter was used throughout. 

a Proportion of splice junctions covered 
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4.5. Discussion 
The recent development of machine learning approaches has underpinned improvements to the 

prioritization of variants that impact splicing and cause rare disease (Rowlands et al., 2019). Despite 

these advances, corroboration of the effect of such variants remains a major obstacle to improving 

diagnostic yield for Mendelian disorders. This obstacle is amplified by the unexpected functional 

impact of some variants on splicing, which may change the way the variant is classified in accordance 

with current guidelines (Rowlands et al., 2020). The MRSD-based approach described here allows 

the informed selection of biosample(s) for bulk RNA-seq, based on the required number of 

sequencing reads that need to be generated for appropriate surveillance of genes of interest. This 

approach enables the effective identification of patients, disease groups and genomic variants that 

are amenable to functional assessment of mis-splicing through RNA-seq, and may help to improve 

the efficiency and accuracy of genomic diagnostic approaches.  

 

The primary purpose of MRSD is to predict the likelihood of observing pathogenic splicing defects in a 

given transcript and tissue, and we quantify the utility of four distinct biosamples in this manner for 

known monogenic disease genes (Figure 21). Through this analysis, we are able to highlight 

biosamples that may be most informative for RNA-seq based analysis datasets for specific disease 

subsets. Although our model is conservative (Figure 17), we demonstrate through MRSD-guided re-

inspection of VUSs in ClinVar that it may be possible to use RNA-seq to clarify the effect of up to 

2.4% of variants of uncertain significance (Figure 23a). 

 

Other approaches to select genes amenable to functional analysis through RNA-seq include 

leveraging relative gene expression metrics (Frésard et al., 2019, Murdock et al., 2021), or tools 

which assess the similarity of transcript isoforms between tissues, e.g. MAGIQ-CAT (Aicher et al., 

2020). We show that, whilst TPM values are well correlated with MRSD scores (Figure 19a-c), 

uneven sequencing coverage across the length of the transcript may, in some cases, falsely identify 

specific genes or splice junctions as being amenable to RNA-seq-based analysis (Supplementary 
Figure S9). 3’ sequencing bias, which is a known artefact of poly-A enriched mRNA sequencing 

(Finotello et al., 2014, Nagalakshmi et al., 2008, Wang et al., 2009), may elevate the risk of 

inaccurately selecting genes that could be surveyed through RNA-seq when considering TPM alone. 

Additionally, the normalization against sequencing depth that occurs during the calculation of TPM 

obscures information about raw read count, which is important when analyzing the utility of RNA-seq 

for clinical diagnostics. MRSD scoring, conversely, leverages variation in sample read depth to 

provide quantitative predictions about optimal sequencing depths. 

 

Some novel bioinformatics tools may complement the utility of MRSD. The aforementioned tool 

MAGIQ-CAT (Aicher et al., 2020), for instance, assesses the degree to which transcript isoforms in a 

sampled tissue accurately resemble those in the primary disease-affected tissue. However, MAGIQ-

CAT primarily captures the degree of similarity between isoform structure and does not aim to provide 

a quantitative readout to guide the diagnostic route. Thus, a proxy tissue may be described as 
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suitable for RNA-seq-based analysis despite having poor coverage of splice junctions. We envision 

that the use of both MAGIQ-CAT and MRSD could comprehensively capture information about the 

utility of RNA-seq, both in terms of similarity of isoform structure relative to the disease-affected tissue 

and in terms of the likelihood of observing disruptions to this structure. 

 

There are several limitations of the current MRSD model, which could be incorporated into future 

work. Firstly, the MRSD model cannot directly be extended to predict the suitability of datasets to 

detect allele-specific expression biases and differential gene expression, which have been 

demonstrated to be evidence of pathogenic mechanisms in known disease-causing genes (Kremer et 

al., 2017, Byron et al., 2016, Frésard et al., 2019, Kukurba et al., 2014). Although further 

investigations are required to quantify and prove this suitability, it is likely that genes with low MRSD 

scores are also amenable to investigations of differential gene expression and isoform imbalance. 

 

Secondly, further extensions to the model could incorporate genomic background which influences 

gene expression profiles. For example, interferonopathies are a class of genomic immune disorders 

(Rodero and Crow, 2016, Volpi et al., 2016) that are characterized by the aberrant upregulation of 

large numbers of transcripts belonging to so-called “interferon-stimulated genes” (Rodero and Crow, 

2016, Schneider et al., 2014). As a result of these wide-ranging impacts on their transcriptomes, 

MRSD predictions, which ostensibly represent the “normal” transcriptomic landscape, may not 

accurately reflect the degree of sequencing coverage for certain transcripts in patients with 

interferonopathies, or indeed other disease groups where disrupted expression of many transcripts is 

characteristic, such as disorders where chromatin structure (Bélanger et al., 2018, Liu et al., 2009) or 

the function of the spliceosome (Wood et al., 2019, Wood et al., 2020, Buskin et al., 2018) is 

disrupted. Moreover, the current MRSD model does not explicitly account for the presence of 

expression quantitative trait loci (eQTLs) or splicing quantitative trait loci (sQTLs) which are known to 

influence gene expression profiles (Richards et al., 2012, Takata et al., 2017, Westra and Franke, 

2014). We have demonstrated that modulation in expression levels may disrupt our ability to reliably 

highlight pathogenic splicing events (Figure 21c). As a greater number of paired transcriptome and 

genomic datasets become available, we expect that MRSD scores can be generated in a dynamic 

manner to account for the presence of eQTLs, sQTLs or other modifiers of gene expression profiles. 

 

Thirdly, our approach is built for a specific cohort of RNA-seq-based analyses; namely, the analysis of 

a selection of tissues by bulk short-read poly-A enrichment RNA-seq, processed using a specific 

bioinformatics analysis pipeline (Cummings et al., 2017). This experimental RNA-seq approach 

currently remains widespread (Cummings et al., 2017, Frésard et al., 2019, Lee et al., 2020); 

however, our model may be readily applicable to RNA-seq generated using alternative 

methodologies, such as increased read length, with only minor variations in model performance 

(Supplementary Figure 8). As other technologies, such as long-read (Mantere et al., 2019, Merker et 

al., 2018, Pauper et al., 2020), single-cell (Del-Aguila et al., 2019, Nomura, 2021) and spatially 

resolved RNA-seq (Crosetto et al., 2015, Larsson et al., 2021, Marx, 2021, Navarro et al., 2020), 
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become more prevalent in a clinical setting, appropriate control datasets must be generated to 

develop corresponding MRSD models. Similarly, recent research has shown noticeable 

improvements to diagnostic yield for neuromuscular disorders by conducting RNA-seq on in vitro 

myofibrils generated by a fibroblast-to-myofibril transdifferentiation protocol (Gonorazky et al., 2019). 

Such patient-derived cell line approaches represent a promising avenue to scrutinize transcripts not 

otherwise observable in proxy tissues (Wood et al., 2020, Lin et al., 2011). As these protocols gain 

wider use, generation of control RNA-seq data from healthy individuals using these approaches will 

be vital both to allow the generation of MRSD scores and to accurately assess pathogenicity of any 

identified mis-splicing events. 

 

In summary, the novel MRSD model presented here offers a gene-specific readout to predict the most 

suitable biosample for interrogation of splicing disruption at the transcript level. This may uncover 

previously unintuitive choices of biosample, as discussed above in the case of familial 

rhabdomyosarcoma (Figure 22c; see 4.4.6.). The use of different biosamples is associated with 

different costs: while whole blood is routinely taken in the clinic, cell-based RNA-seq requires 

harvesting and culturing of patient cells, and muscle biopsy is an invasive procedure that is generally 

only undertaken if deemed necessary. Our tool may allow clinical staff to make informed decisions 

about the likely cost-benefit balance of RNA-seq analysis to ensure such costs are not incurred 

unnecessarily. We expect that the use of MRSD will allow effective and appropriate integration of 

RNA-seq into diagnostic genomic services, and ultimately improve variant interpretation and 

diagnostic yield. 
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5. Discussion 
5.1. Summary of aims and key findings 
The clinical analysis of variants impacting splicing is hindered by numerous challenges at the levels of 

identification, prioritization and functional analysis. The work described here aimed to develop and 

apply novel bioinformatics analyses to address these challenges, and offer potential avenues to 

facilitate a more comprehensive approach to splice variant analysis. 

 

Despite the development of several machine learning-based tools for splice prediction in recent years, 

the clinical interpretation of splice-impacting variants still relies in many cases on the use of older 

tools that may not provide the most accurate predictions of splice variant impact. The first aim of this 

work was thus to facilitate the integration of recent bioinformatics tools for the prediction of mis-

splicing. Through comparison of seven of these tools, as well as a consensus-based approach, 

against a large set of clinical variants functionally validated for splice impact, I identified the use of 

SpliceAI as the most effective individual strategy for splice variant prioritisation. However, through the 

design of a novel approach that weighted individual predictions by the maximum predictive score 

possible for the respective tool, it was possible to achieve a small improvement on the performance of 

any one individual model. 

 

Through the application of SpliceAI scores to a cohort of retinal dystrophy gene panel-derived intronic 

variants, I was able to identify 758 intronic variants that were predicted to impact splicing, including 

379 cases in which the respective variant had not yet been noted on an existing diagnostic report (or 

in which the variant was identified but splice impact not considered). These constituted a potentially 

new set of pathogenic variants for clinical consideration. 

 

Despite the efficacy of SpliceAI in predicting splice impact among our selected cohort of variants, it 

remained to be seen whether this efficacy would hold equally across different types of splice variant. 

When applying SpliceAI scores to 30 known pathogenic branchpoint-impacting variants, I was able to 

demonstrate that the SpliceAI splice impact threshold of 0.2 recommended by the tool’s creators 

would have successfully predicted only 50% of the true positive variants as being splice-impacting. 

 

My second aim was therefore to develop a novel bioinformatics pipeline to uniquely predict the 

likelihood of a variant potentially impacting a branchpoint residue. To this end, I designed a meta-

analytical tool that, for a given variant, cross-referenced an empirically derived branchpoint dataset 

and the predictions of two existing branch point predictive models to highlight variants at potentially 

critical residues within the branchpoint sequence. Applying this to a cohort of intronic retinal dystrophy 

gene panel variants revealed a set of ten putatively branchpoint-impacting variants for which zygosity 

and genotype-phenotype correlation supported pathogenicity, including one variant in the BBS1 gene 

that was shown through downstream functional analysis to be pathogenic and causative (in a 

compound heterozygous state) of the patient phenotype of retinitis pigmentosa. 
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While predictive models, such as those described in Chapters 2 & 3, serve a valuable function as 

tools for variant prioritisation, functional evidence is nonetheless required for pathogenicity to be 

reliably assigned to a variant. One of the most promising technologies to do so is direct analysis of the 

transcriptome through RNA-seq; however, integration of RNA-seq requires consideration, among 

other factors, of the tissue-specific expression of transcripts, which limits the set of genes which can 

be consistently surveyed for splicing dysfunction in clinically derived biosamples. This formed the 

basis of the final aim of the project: to devise a novel predictive pipeline to inform clinical staff of the 

likelihood of being able to investigate mis-splicing of a given transcript or gene in a given tissue. 

 

I thus developed the minimum required sequencing depth (MRSD) metric, based on control 

transcriptomic data from the GTEx project, across four different clinical biosamples of interest. I 

demonstrated the high positive and negative predictive values of the model, and showed the ability of 

the metric to capture the uneven nature of splice junction coverage across the lengths of specific 

transcripts, in a way that is not captured by conventional “total expression” metrics. 

 

Using our selected bioinformatics pipeline for identification of mis-splicing events in RNA-seq data 

(Cummings et al., 2017), we quantified the characteristics of a selection of known pathogenic mis-

splicing events. From this, a minimum parameter set was inferred consisting of 8 reads covering 75% 

of splice junctions (and with an MRSD parameter of 0.95), which was sufficient to identify 90% of the 

cohort of investigated pathogenic events. 

 

Finally, I applied these scores to real sets of disease-associated genes and clinical variants of 

uncertain significance. When considering the numbers of low-MRSD (MRSD £100 M reads) genes 

present in panels listed in the Genomics England PanelApp repository, we observed that fibroblasts 

were the optimum choice (out of four selected tissues) for 63.1% of gene panels. Applying MRSD 

scores to predicted splice-impacting variants of uncertain significance in ClinVar showed that, 

depending on model stringency, the impact of 25.8-67.8% of these variants may be investigated using 

RNA-seq in one or more of the investigated tissues. 

 

In summary, this work has provided new insights into both the prediction of splice impact, and its 

investigation at a functional level. However, there are nonetheless several aspects of splicing biology 

and research that may have implications for the findings presented here. While potentially challenging 

the results described here, these may also serve as the starting points for promising new avenues of 

research. 
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5.2. Clinical bioinformatics in a rapidly evolving computational landscape 
Throughout the work conducted by others and described here, bioinformatics tools have proven an 

invaluable asset in both the prediction and confirmation of the splicing impact of variants. Although 

our analysis of splicing prediction tools has highlighted SpliceAI as perhaps the most effective 

predictor of splicing impact, even high-performing models such as SpliceAI may exhibit biases and 

weakness, as demonstrated by its seeming decrease in power when identifying known pathogenic 

branchpoint variants (see 3.4.1.). Similarly, a recent study investigating three distinct cohorts of splice 

donor GT>GC variants – a class of canonical splice variant that does not invariably impact splicing – 

showed that, while SpliceAI was by some margin the best performing tool in predicting GT>GC splice 

impact, it still had a ROC-AUC of just 0.79 (Chen et al., 2020). Together, these results suggest that 

certain subtypes of variants may be inherently more difficult for current models to assess accurately, 

and consequently that negative splicing predictions for these variants should not necessarily be 

blindly trusted without further investigation. Additionally, the continually expanding repertoire of 

predictive tools available to researchers means that comparative analyses of such variant subtypes 

should be repeated periodically to incorporate the latest developments. 

 

Since conducting the work in Chapter 2, for instance, several major splicing prediction tools have 

been released, including CADD-Splice (Rentzsch et al., 2021), an extension of the CADD framework 

specifically tailored to prediction of splicing variants, and Super Quick Information-content Random-

forest Learning of Splice variants (SQUIRLS; Danis et al., 2021). In the paper describing CADD-

Splice, a similar analysis to that detailed in Chapter 2 was conducted to compare the relative 

performances of existing machine learning models and revealed that a composite model reminiscent 

of our approach incorporating predictions from both MMSplice and SpliceAI into the CADD framework 

substantially improved upon the poor ability of CADD to predict splicing impact. 

 

A similar trend has emerged for the field of branchpoint prediction, in which, as mentioned above (see 

3.5.), the development of novel tools like LaBranchoR (Paggi and Bejerano, 2017) and Branchpointer 

(Signal et al., 2016) have merited comprehensive comparative testing. While the results of this testing 

(Leman et al., 2020) have suggested that BPP – one of our selected tools – is the optimal choice for 

clinical use, it may still be subject to biases that can be compensated for by other tools or 

approaches, in much the same way that SpliceAI, despite its high accuracy, has difficulty in correctly 

identifying branchpoint variants impacting splicing. As with splice prediction tools, iterative conduction 

of comparative studies as subsequent tools are released will be crucial to ensure that any BP 

prediction tools integrated into clinical practice are the most effective choice. 
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5.3. Tissue-specific transcripts in clinical analysis of mis-splicing 
Alongside differential gene expression, a key hallmark of tissue specificity at the genetic level 

(alongside differential gene expression) is the existence of diverse transcript species that may vary in 

proportion between tissues, or may even be completely unique to a single tissue. Such transcripts 

may allow diversification of function or regulation for a single gene, and so hold substantial biological 

importance. In the context of clinical examinations of splicing, however, this rich diversity may 

confound diagnostics at multiple levels. 

 

When considering predictive approaches to splicing analysis, for example, it may be necessary to 

ensure that tissue-specific splicing features are accounted for in predictive models if greater transcript 

diversity is known to be associated with a particular gene(s) and/or tissue(s) of interest. Where the 

use of tissue-associated splicing features is governed by a small number of highly specific factors, 

this is particularly pertinent; in humans, for instance, the splicing factor SRRM4 is involved in the 

inclusion of microexons across a number of neural cell types (Calarco et al., 2009; Irimia et al., 2014), 

and its family member SRRM3 is further required for inclusion of such microexons in the retina for 

around 75 genes (Ciampi et al., 2021). As such events only occur in a minority of transcripts when 

compared to all annotated transcripts, there is a likelihood that many models may be underpowered to 

detect changes affecting tissue-specific isoforms. Further, where training of a machine learning-based 

is based on provision of a known transcript model, as in the cases of CryptSplice (Lee et al., 2017), a 

bias will likely exist in favour of constitutive transcript features, as the supplied model may list tissue-

specific transcripts with lower confidence, or omit them entirely, particularly where the supplied 

transcript models are older. 

 

Taken together, these observations imply that some of the “negative” findings in Chapters 2 may, in 

fact, have constituted pathogenic variants for which the retina-specific impact was simply not 

predicted. A further extension to my comparative analysis that simulates likely disruptive changes (for 

example, canonical splice site variants) to tissue-specific isoforms may reveal whether, and to what 

extent, an underpower exists in current predictive models. 

 

Some predictive tools have indeed begun to incorporate tissue-specific considerations. Of note, the 

tool MTSplice, an extension of the MMSplice framework that integrates a so-called “tissue module” to 

reflect tissue-specific splicing patterns, including the peripheral retina, was recently described by 

Cheng et al. (2021). While most surveyed variants did not differentially impact splicing across tissues, 

the authors did note a handful of highly tissue-specific splicing disruptions that suggested the model 

accurately recapitulates biology for at least some transcript species. This may prove a useful starting 

point for re-analysis of the splice impact of our retinal dystrophy variant cohort. 

 

Tissue-specific transcript diversity may also have significant implications for the design of gene panels 

and clinical exomes, which risk overlooking the capture of biologically important sequences if not 

updated to included novel features identified in successive transcript annotations. A limit to this 
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process may be the predominance of bulk RNA-seq as a tool to capture transcriptome diversity: as 

most human tissues are highly heterogeneous mixtures of large numbers of cell types, our current 

understanding of their transcriptomic landscapes may overrepresent the transcript species identified 

in the most numerous cell types, while underserving those that may exist in smaller number, such as 

stem cells. 

 

As transcriptomic data becomes publicly available across a wider range of cell types, and with a 

gradual move away from bulk tissue RNA-seq - perhaps even at the level of single-cell RNA-seq for 

individual cell types, it may be anticipated that exciting new layers of splicing regulation may be 

identified. Consequently, there is a need to regularly monitor literature and incorporate novel 

transcript features in clinically relevant genes into enrichment strategies. 

 

The design of the MRSD approach in Chapter 4 has thus far been based around transcripts selected 

not so much for their biological relevance as for the confidence in their existence. While suitable for 

proof of principle, use of our selected transcripts may not necessarily reflect the most clinically 

relevant transcript. An extension to the MRSD framework and web portal that allows user selection of 

transcripts of choice will therefore give clinicians the ability to tailor MRSD analyses and predictions to 

their particular use case based on the relevant disease subtype. 

 

Increasing numbers of lines of study show that tissue-specific transcript features may be sources of 

pathogenic variation: besides the DYNC2H1 example described above (see 1.3.5.1.), the retina-

specific ORF15 variant of the RPGR gene is already well-established as a prevalent cause of X-linked 

retinal degeneration (Vervoort et al., 2000), and variants in the retina-specific second exon of the 

COL2A1 gene, typically associated with Stickler syndrome, have also been shown to cause a 

uniquely or predominantly ocular phenotype (Richards et al., 2000). There will doubtless exist such 

effects in other as-yet-unidentified transcripts, particularly for disease subtypes affecting tissues with 

high numbers of tissue-specific transcripts, such as cardiac (Zhu et al., 2021) and nervous tissue (Raj 

and Blencowe, 2015; Ray et al., 2020;). Thus, a directed effort to identify novel transcript features will 

be an important next step in improving diagnostic yield for several disease subtypes. 

 

5.4. Proxy tissues and the selection of valid functional assays 
Our development of MRSD has highlighted the critical importance of selecting tissues with suitable 

coverage of transcripts of interest. Despite the clinical value we predict MRSD scoring will bring, it 

does also reveal that RNA-seq of clinically accessible tissues is not sufficient for adequate gene 

coverage for a large number of disease subtypes. As previously alluded to (see 4.5.), one of the most 

intriguing developments is in the transdifferentiation of patient cells to clinically relevant cell types, as 

conducted by Gonorazky et al. (2019) in the case of fibroblast-derived myofibrils in the study of 

neuromuscular disorders. 
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However, this approach, while ostensibly very effective in the case of myofibrils, may have varying 

efficacy and economic feasibility in other disease and tissue types. One experimental system used to 

invest retinal biology and pathogenesis is retinal organoids. Generated from patient pluripotent stem 

cells (hPSCs), retinal organoids recapitulate much of the in vivo structure of the retina, including even 

neurite outgrowths (Fligor et al., 2018). These systems would likely be an incredibly beneficial source 

of RNA for the investigation of undiagnosed Mendelian retinal dystrophy patients. However, the 

protocol to culture these organoids is substantially time-consuming, taking around 100 days for a fully-

formed organoid to develop from initial culture (Li et al., 2021). Such cultures are also very expensive, 

both in terms of reagents and the training of personnel to be able to culture them, limiting their clinical 

applicability 

 

For other cell types, the transdifferentiation and culture process may be yet more time-consuming. In 

the case of one protocol for the culture of interneuron cells, for example, a protocol of 20-30 weeks is 

recommended to differentiate hPSCs into fully mature neural cells (Nicholas et al., 2013). However, 

other transdifferentiation approaches may not be as time-consuming: with the addition of small 

molecule inhibitors, for example, one study demonstrated the high-efficacy generation of nociceptors 

from hPSCs in just 10 days (Chambers et al., 2012). Considering the lack of clinically accessible 

tissues for the investigation of neurodevelopmental (or otherwise neurological) disorders, these may 

serve a particularly valuable diagnostic role. However, there remains an additional time constraint for 

the initial generation of the hPSCs, and the growth of sufficient numbers of cells to yield adequate 

RNA for transcriptomic analysis. 

 

The incorporation of such culture techniques into clinical practice is therefore limited in many cases by 

their economic and infrastructural feasibility. Further, although they may serve as proxies for tissues 

of clinical interest, their transcriptomic landscapes may not wholly reflect those of tissues in a native 

biological context. For MRSD scores to be useful in these contexts, development of culture 

methodologies must be accompanied by the release of associated RNA-seq datasets, to allow 

effective generation of control splice junction counts. MRSD may then serve as a useful guiding 

metric for clinical integration of RNA-seq for these promising transdifferentiation methodologies. 
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5.5. Reanalysis of existing data 
Decreasing sequencing costs have allowed whole genome sequencing to become an increasingly 

adopted sequencing methodology for Mendelian disease, particularly for panel- or exome-negative 

cases (Mattick et al., 2018; Palmer et al., 2021). It is notable that the work conducted in Chapters 2 

and 3 did not rely on the generation of novel patient datasets: rather, through analysis of the variation 

in the ~50 bp intronic regions covered by standard gene panel enrichment kits, it was possible to 

identify substantial numbers of non-coding variants not highlighted through upstream diagnostic 

analyses, and these were identified in substantial numbers (331/2783; 12.1%) of investigated patients 

in Chapter 2 (see 2.4.4.). While the majority of these are unlikely to represent causes of Mendelian 

disease in the respective patients, my work demonstrated a number of potentially pathogenic variants. 

In addition, for identified intronic variants classified as likely benign or benign, reporting of these 

incidental findings is nonetheless important to ensure accuracy of diagnostic reporting. 

 

Further, my work in Chapter 3 demonstrates that, while gene panels may not seem an intuitive 

diagnostic methodology for investigation of intronic sequence elements, such as branchpoints, there 

is in fact sufficient intronic coverage to conclusively identify pathogenic intronic variants affecting such 

elements. It may be expected that this observation holds true for other near-splice site elements, such 

as the poly-pyrimidine tract and extended 5¢ splice site, as well as for other sequencing 

methodologies, such as exomes, that rely on the targeted enrichment of exonic regions. 

 
5.6. Future prospects for interpretation of pathogenic splicing 
The incorporation of the ACMG guidelines (Richards et al., 2015) into routine clinical practice has 

greatly improved consistency in variant interpretation both within and between diagnostic centres, and 

has thereby improved the quality of variant reporting returned to patients and their families. As 

discussed in 1.3.5.1., provision in these guidelines for non-canonical splice variants is lacking, and 

extension of existing guidelines to cover these (or the development of novel and bespoke guidance 

for them) is likely to refine their interpretation and may lead to new diagnoses. 

 

Beyond the level of the individual variant, however, an intriguing possibility is the development of 

guidelines for the interpretation of pathogenicity of mis-splicing events themselves. While I have made 

initial attempts to conduct such an analysis in Chapter 4, the sample numbers in my analysis remain 

low, and a collaborative pooling of RNA-seq data for patients harbouring known mis-splicing events 

between centres would allow more robust discernment of the precise characteristics of pathogenic 

splicing variation. There is a substantial unmet need to provide a platform for data sharing in this 

regard: a database displaying the reads supporting pathogenic and benign events, as well as 

accompanying splice metrics, may aid the interpretation of mis-splicing events in a manner similar to 

that of the variant sharing platform GeneMatcher (Sobreira et al., 2015). Further, comparison of 

pathogenic splicing characteristics between different RNA-seq analytical methodologies, such as 

FRASER (Mertes et al., 2021), LeafCutterMD (Jenkinson et al., 2020) and SPOT (Ferraro et al., 

2020) will allow prediction of mis-splicing impact to be more consistent across analytical approaches. 
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The development of such guidelines may prove especially valuable where an interpreted variant is 

incompletely penetrant: for such variants, we may anticipate from current guidelines that interpretation 

would yield an identical classification between individuals. With the incorporation of splicing event-

level metrics, however, it may be demonstrated that a single variant can result in mis-splicing in one 

individual, and a lack thereof in another (perhaps due to underlying genetic background), suggesting 

incomplete penetrance of the variant and resulting in different variant classifications according to the 

individual in question. Thus, guidelines can begin to encompass inter-patient variation and ensure that 

returned variant classifications are pertinent to the patient in question. 

 

A likely consideration for the development of mis-splicing guidelines is the necessity of gene-specific 

regulations: such variant interpretation frameworks, most often based on the ACMG guidelines, have 

already been developed for genes such as PTEN (Mester et al., 2019) and multiple RASopathy genes 

(Gelb et al., 2018). Concerted efforts to characterise the impact of mis-splicing for individual genes, or 

individual exons within genes, are lacking in existing literature. It is likely that genes highly 

constrained against loss of function may require much lower levels of splice disruption to result in 

disease presentation, while less constrained genes may require all or almost all alleles to harbour 

pathogenic splicing changes for disease phenotypes to present. 

 

Variably expressive splice variants may also underlie the phenotypic spectrums seen for individual 

genes, as seen in one study demonstrating the milder osteogenesis imperfecta phenotype observed 

in patients with less penetrant COL1A1 and COL1A2 splice variants (Li et al., 2019). Gene-specific 

splicing guidelines may allow severity of phenotype, or the presence/absence of specific phenotypic 

features, to guide the interpretation of mis-splicing events. Again, the sharing of RNA-seq and/or other 

functional data will be crucial to shed light on exactly what constitutes a pathogenic mis-splicing event 

for a given gene. 

 

5.7. Concluding remarks 
Splicing variation has long proven difficult to identify and interpret. However, the landscape of clinical 

bioinformatics is now well-placed to begin to unpick the complexities of mis-splicing in disease 

contexts. In this work, I have demonstrated the importance of re-analysis of existing genomic data 

through the lens of mis-splicing, and the value of developing novel approaches to account for 

shortfalls in the performance of bioinformatics models. 

 

With the increasing diversity in computational and experimental frameworks to examine splicing 

impact, as well as the increasing sharing of patient data, a more holistic approach to prediction and 

interpretation of splice impact is fast becoming possible. This will serve only to improve diagnostic 

yield and allow a greater number of Mendelian disease patients to receive a molecular diagnosis that 

may improve diagnosis, management and, ultimately, treatment of their disorders. 
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Appendix 1 – Supplementary Tables 
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Supplementary Table S1. List of functionally assayed variants for comparison of splice prediction tools. 249 functionally assayed variants are 

listed in order of chromosomal location (positions are given according to the GRCh37 genome build). The impact of each variant is given in the 

“Outcome” column, with TP representing true negatives - i.e. variants for which no significant impact on splicing was observed - and TP 

representing true positives, variants that appear to significantly disrupt splicing in the employed assay. 
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HGVSc Gene symbol Chromosome Position Ref Alt Splice 
region Assay type Outcome 

NM_014874.3:c.838C>T MFN2 chr1 12061479 C T exonic RT-PCR TN 

NM_001146289.1:c.1224-80G>A 
P3H1 
(LEPRE1) chr1 43220741 C T deep intronic RT-PCR + RNA-seq TP 

NM_000350.2:c.5584+6T>C ABCA4 chr1 94476812 A G 5′ extended Minigene TP 

NM_005850.4:c.417C>T SF3B4 chr1 149898557 G A exonic RT-PCR + RNA-seq TP 

NM_019032.5:c.2559G>A ADAMTSL4 chr1 150531125 G A exonic RT-PCR TP 

NM_206933.2:c.14343+36C>G USH2A chr1 215823898 G C 5′ extended Minigene TN 

NM_001011.3:c.507+3A>G RPS7 chr2 3627853 A G 5′ intronic RT-PCR TN 

NM_000179.2:c.806C>G MSH6 chr2 48025928 C G exonic RT-PCR TN 

NM_000179.2:c.3416G>A MSH6 chr2 48030802 G A exonic RT-PCR TN 

NM_000179.2:c.3439-16C>T MSH6 chr2 48032033 C T 3′ intronic RT-PCR TN 

NM_006343.2:c.2486+6T>A MERTK chr2 112779977 T A 5′ extended Minigene TP 

NM_001040142.1:c.2919+3A>G SCN2A chr2 166201424 A G 5′ intronic Minigene TP 

NM_000090.3:c.1815+5G>A COL3A1 chr2 189861949 G A 5′ extended RT-PCR TN 

NM_000090.3:c.3133G>A COL3A1 chr2 189871110 G A exonic RT-PCR TN 

NM_018297.3:c.930C>T NGLY1 chr3 25778898 G A exonic RT-PCR TP 

NM_000249.3:c.80G>A MLH1 chr3 37035118 G A exonic RT-PCR TN 

NM_000249.3:c.122A>G MLH1 chr3 37038115 A G exonic RT-PCR TP 

NM_000249.3:c.935A>C MLH1 chr3 37061851 A C exonic RT-PCR TN 

NM_000249.3:c.1989+6T>G MLH1 chr3 37090106 T G 5′ extended RT-PCR TN 

NM_052985.3:c.3039+4A>G IFT122 chr3 129226609 A G 5′ extended Minigene TP 

NM_000283.3:c.2130-15G>A PDE6B chr4 658655 G A 3′ intronic Minigene TP 

NM_002890.2:c.2011+6T>G RASA1 chr5 86670739 T G 5′ extended RT-PCR TP 

NM_002397.4:c.835-9T>G MEF2C chr5 88025173 A C 3′ intronic RT-PCR TP 

NM_001354896.1:c.295C>T APC chr5 112102960 C T exonic RT-PCR TN 

NM_000038.5:c.1549-8A>G APC chr5 112163618 A G 3′ intronic RT-PCR TP 

NM_001999.3:c.4594+3A>G FBN2 chr5 127654568 T C 5′ intronic RT-PCR TP 

NM_080680.2:c.2682G>A COL11A2 chr6 33141279 C T exonic RT-PCR TN 
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NM_001142800.1:c.6571+4558A>

G 
EYS chr6 64787191 T C deep intronic Minigene TN 

NM_006208.2:c.241G>T ENPP1 chr6 132168916 G T exonic RT-PCR TP 

NM_001277115.1:c.6547-963G>A DNAH11 chr7 21746354 G A deep intronic Minigene TP 

NM_000492.3:c.3874-4522A>G CFTR chr7 117288374 A G deep intronic Minigene TP 

NM_001174067.1:c.1029G>A FGFR1 chr8 38282027 C T exonic RT-PCR TP 

NM_017890.4:c.7226C>T VPS13B chr8 100779102 C T exonic RT-PCR TN 

NM_000264.4:c.2704-11C>T PTCH1 chr9 98222076 G A 3′ intronic RT-PCR TN 

NM_001306210.1:c.574G>C TGFBR1 chr9 101895009 G C exonic RT-PCR TP 

NM_000368.4:c.211-7T>G TSC1 chr9 135801133 A C 3′ intronic RT-PCR TP 

NM_000093.3:c.1195G>A COL5A1 chr9 137623372 G A exonic RT-PCR TN 

NM_000314.4:c.253G>C PTEN chr10 89690846 G C exonic RT-PCR TP 

NM_000314.4:c.373A>G PTEN chr10 89692889 A G exonic RT-PCR TN 

NM_000314.4:c.553C>G PTEN chr10 89711935 C G exonic RT-PCR TN 

NM_000314.4:c.593T>C PTEN chr10 89711975 T C exonic RT-PCR TN 

NM_000314.4:c.830C>T PTEN chr10 89720679 C T exonic RT-PCR TN 

NM_006204.3:c.1072-11T>C PDE6C chr10 95389004 T C 3′ intronic Minigene TN 

NM_000256.3:c.3815-10T>G MYBPC3 chr11 47353442 A C 3′ intronic RT-PCR TN 

NM_000256.3:c.1624+4A>T MYBPC3 chr11 47364125 T A 5′ extended RT-PCR TP 

NM_000256.3:c.1457+5G>C MYBPC3 chr11 47364376 C G 5′ extended RT-PCR TP 

NM_000256.3:c.1224-21A>G MYBPC3 chr11 47364834 T C 3′ intronic RT-PCR TP 

NM_130799.2:c.1050-3C>G MEN1 chr11 64573245 G C 3′ intronic RT-PCR TP 

NM_024649.4:c.592-21A>T BBS1 chr11 66287067 A T 3′ intronic Minigene TN 

NM_006946.2:c.4150C>A SPTBN2 chr11 66463876 G T exonic RT-PCR TN 

NM_007103.3:c.1080G>A NDUFV1 chr11 67379040 G A exonic RT-PCR TP 

NM_002335.2:c.1413-7T>A LRP5 chr11 68157342 T A 3′ intronic Minigene TN 

NM_016401.3:c.539+3A>G 
HIKESHI 
(C11orf73) chr11 86055766 A G 5′ extended RT-PCR TP 

NM_003002.2:c.314+5G>A SDHD chr11 111959740 G A 5′ extended RT-PCR TP 

NM_000059.3:c.79A>G BRCA2 chr13 32893225 A G exonic RT-PCR TN 
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NM_000059.3:c.167A>C BRCA2 chr13 32893313 A C exonic RT-PCR TN 

NM_000059.3:c.223G>C BRCA2 chr13 32893369 G C exonic RT-PCR TN 

NM_000059.3:c.280C>T BRCA2 chr13 32893426 C T exonic RT-PCR TN 

NM_000059.3:c.441A>G BRCA2 chr13 32900253 A G exonic RT-PCR TN 

NM_000059.3:c.506A>G BRCA2 chr13 32900409 A G exonic RT-PCR + RNA-seq TN 

NM_000059.3:c.520C>T BRCA2 chr13 32900639 C T exonic RT-PCR TP 

NM_000059.3:c.598A>G BRCA2 chr13 32900717 A G exonic RT-PCR TN 

NM_000059.3:c.632-3C>G BRCA2 chr13 32903577 C G 3′ intronic RT-PCR TP 

NM_000059.3:c.772C>A BRCA2 chr13 32905146 C A exonic RT-PCR TN 

NM_000059.3:c.1127T>G BRCA2 chr13 32906742 T G exonic RT-PCR + RNA-seq TN 

NM_000059.3:c.1291A>C BRCA2 chr13 32906906 A C exonic RT-PCR TN 

NM_000059.3:c.1480G>A BRCA2 chr13 32907095 G A exonic RT-PCR + RNA-seq TN 

NM_000059.3:c.1804G>A BRCA2 chr13 32907419 G A exonic RT-PCR TN 

NM_000059.3:c.1936A>C BRCA2 chr13 32910428 A C exonic RT-PCR TN 

NM_000059.3:c.2803G>C BRCA2 chr13 32911295 G C exonic RT-PCR TN 

NM_000059.3:c.2810A>C BRCA2 chr13 32911302 A C exonic RT-PCR TN 

NM_000059.3:c.3032C>G BRCA2 chr13 32911524 C G exonic RT-PCR TN 

NM_000059.3:c.3073A>G BRCA2 chr13 32911565 A G exonic RT-PCR TN 

NM_000059.3:c.6938-4C>T BRCA2 chr13 32920960 C T 3′ intronic RT-PCR TN 

NM_000059.3:c.7021C>T BRCA2 chr13 32929011 C T exonic RT-PCR TN 

NM_000059.3:c.7610A>G BRCA2 chr13 32930739 A G exonic RT-PCR TN 

NM_000059.3:c.7822C>G BRCA2 chr13 32936676 C G exonic RT-PCR TN 

NM_000059.3:c.8192A>G BRCA2 chr13 32937531 A G exonic RT-PCR TN 

NM_000059.3:c.8258T>C BRCA2 chr13 32937597 T C exonic RT-PCR TN 

NM_000059.3:c.8378G>T BRCA2 chr13 32944585 G T exonic RT-PCR TP 

NM_000059.3:c.8486A>G BRCA2 chr13 32944693 A G exonic RT-PCR TP 

NM_000059.3:c.8963G>A BRCA2 chr13 32953896 G A exonic RT-PCR TN 

NM_000059.3:c.9104A>C BRCA2 chr13 32954037 A C exonic RT-PCR TN 

NM_000059.3:c.9104A>C BRCA2 chr13 32954037 A C exonic RT-PCR TN 

NM_000059.3:c.9242T>C BRCA2 chr13 32954268 T C exonic RT-PCR TN 
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NM_000059.3:c.9367A>G BRCA2 chr13 32968936 A G exonic RT-PCR TN 

NM_000059.3:c.9456G>T BRCA2 chr13 32969025 G T exonic RT-PCR TN 

NM_000059.3:c.9502-13C>G BRCA2 chr13 32971022 C G 3′ intronic RT-PCR + RNA-seq TN 

NM_000059.3:c.9586A>G BRCA2 chr13 32971119 A G exonic RT-PCR TN 

NM_000059.3:c.9604C>T BRCA2 chr13 32971137 C T exonic RT-PCR TN 

NM_000059.3:c.10045A>G BRCA2 chr13 32972695 A G exonic RT-PCR TN 

NM_000059.3:c.10249T>C BRCA2 chr13 32972899 T C exonic RT-PCR + RNA-seq TN 

NM_020366.3:c.491-386C>T RPGRIP1 chr14 21770261 C T deep intronic Minigene TN 

NM_030621.4:c.1509G>A DICER1 chr14 95583959 C T exonic RT-PCR TN 

NM_002420.5:c.899+29G>A TRPM1 chr15 31355292 C T 5′ extended Minigene TP 

NM_000138.4:c.8149G>A FBN1 chr15 48704843 C T exonic RT-PCR TP 

NM_000138.4:c.8037C>G FBN1 chr15 48707747 G C exonic RT-PCR TN 

NM_000138.4:c.7916A>G FBN1 chr15 48707868 T C exonic RT-PCR TN 

NM_000138.4:c.7754T>C FBN1 chr15 48712949 A G exonic RT-PCR TN 

NM_000138.4:c.7664G>T FBN1 chr15 48713790 C A exonic RT-PCR TN 

NM_000138.4:c.7633C>T FBN1 chr15 48713821 G A exonic RT-PCR TN 

NM_000138.4:c.7606G>A FBN1 chr15 48713848 C T exonic RT-PCR TN 

NM_000138.4:c.7582T>C FBN1 chr15 48713872 A G exonic RT-PCR TP 

NM_000138.4:c.7379A>G FBN1 chr15 48717640 T C exonic RT-PCR TN 

NM_000138.4:c.7204+7C>G FBN1 chr15 48719757 G C 5′ extended RT-PCR TN 

NM_000138.4:c.7204G>C FBN1 chr15 48719764 C G exonic RT-PCR TN 

NM_000138.4:c.7203A>G FBN1 chr15 48719765 T C exonic RT-PCR TP 

NM_000138.4:c.7003C>T FBN1 chr15 48719965 G A exonic RT-PCR TP 

NM_000138.4:c.6815A>G FBN1 chr15 48722924 T C exonic RT-PCR TN 

NM_000138.4:c.6740-3C>G FBN1 chr15 48723002 G C 3′ intronic  RT-PCR TN 

NM_000138.4:c.6694T>C FBN1 chr15 48725108 A G exonic RT-PCR TP 

NM_000138.4:c.6453C>T FBN1 chr15 48729201 G A exonic RT-PCR TN 

NM_000138.4:c.6313+3A>T FBN1 chr15 48729962 T A 5′ intronic RT-PCR TP 

NM_000138.4:c.6251G>C FBN1 chr15 48730027 C G exonic RT-PCR TP 
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NM_000138.4:c.6164-3C>T FBN1 chr15 48730117 G A 3′ intronic RT-PCR TN 

NM_000138.4:c.6158G>A FBN1 chr15 48733923 C T exonic RT-PCR TN 

NM_000138.4:c.6031T>G FBN1 chr15 48736744 A C exonic RT-PCR TN 

NM_000138.4:c.5926G>A FBN1 chr15 48736849 C T exonic RT-PCR TN 

NM_000138.4:c.5834G>A FBN1 chr15 48737656 C T exonic RT-PCR TN 

NM_000138.4:c.5789A>G FBN1 chr15 48737701 T C exonic RT-PCR TN 

NM_000138.4:c.5788+5G>A FBN1 chr15 48738898 C T 5′ extended RT-PCR TN 

NM_000138.4:c.5707G>A FBN1 chr15 48738984 C T exonic RT-PCR TP 

NM_000138.4:c.5678A>G FBN1 chr15 48739013 T C exonic RT-PCR TN 

NM_000138.4:c.5627G>A FBN1 chr15 48741009 C T exonic RT-PCR TN 

NM_000138.4:c.5497T>C FBN1 chr15 48744807 A G exonic RT-PCR TN 

NM_000138.4:c.5377T>C FBN1 chr15 48748879 A G exonic RT-PCR TN 

NM_000138.4:c.5372G>T FBN1 chr15 48748884 C A exonic RT-PCR TN 

NM_000138.4:c.5296G>A FBN1 chr15 48752443 C T exonic RT-PCR TN 

NM_000138.4:c.5021G>A FBN1 chr15 48756140 C T exonic RT-PCR TP 

NM_000138.4:c.4780G>A FBN1 chr15 48758023 C T exonic RT-PCR TN 

NM_000138.4:c.4747+5G>A FBN1 chr15 48760130 C T 5′ extended RT-PCR TN 

NM_000138.4:c.4582G>T FBN1 chr15 48760609 C A exonic RT-PCR TP 

NM_000138.4:c.4343A>G FBN1 chr15 48762947 T C exonic RT-PCR TP 

NM_000138.4:c.4096G>A FBN1 chr15 48766566 C T exonic RT-PCR TN 

NM_000138.4:c.4031G>A FBN1 chr15 48766781 C T exonic RT-PCR TN 

NM_000138.4:c.4027G>A FBN1 chr15 48766785 C T exonic RT-PCR TN 

NM_000138.4:c.3974A>T FBN1 chr15 48766838 T A exonic RT-PCR TN 

NM_000138.4:c.3964G>C FBN1 chr15 48773852 C G exonic RT-PCR TN 

NM_000138.4:c.3963A>G FBN1 chr15 48773853 T C exonic RT-PCR TP 

NM_000138.4:c.3772C>T FBN1 chr15 48776081 G A exonic RT-PCR TN 

NM_000138.4:c.3712G>A FBN1 chr15 48777571 C T exonic RT-PCR TN 

NM_000138.4:c.3533A>G FBN1 chr15 48779328 T C exonic RT-PCR TN 

NM_000138.4:c.3509G>A FBN1 chr15 48779352 C T exonic RT-PCR TN 

NM_000138.4:c.3463+3A>C FBN1 chr15 48779506 T G 5′ intronic RT-PCR TN 
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NM_000138.4:c.3344A>G FBN1 chr15 48779628 T C exonic RT-PCR TN 

NM_000138.4:c.3332G>A FBN1 chr15 48780315 C T exonic RT-PCR TN 

NM_000138.4:c.3268C>T FBN1 chr15 48780379 G A exonic RT-PCR TN 

NM_000138.4:c.3209-13T>A FBN1 chr15 48780451 A T 3′ intronic RT-PCR TN 

NM_000138.4:c.3197G>C FBN1 chr15 48780576 C G exonic RT-PCR TP 

NM_000138.4:c.3124G>C FBN1 chr15 48780649 C G exonic RT-PCR TN 

NM_000138.4:c.2953G>A FBN1 chr15 48782177 C T exonic RT-PCR TN 

NM_000138.4:c.2952C>A FBN1 chr15 48782178 G T exonic RT-PCR TN 

NM_000138.4:c.2927G>A FBN1 chr15 48782203 C T exonic RT-PCR TN 

NM_000138.4:c.2645C>T FBN1 chr15 48787352 G A exonic RT-PCR TN 

NM_000138.4:c.2638G>A FBN1 chr15 48787359 C T exonic RT-PCR TN 

NM_000138.4:c.2369G>A FBN1 chr15 48788347 C T exonic RT-PCR TN 

NM_000138.4:c.2293G>A FBN1 chr15 48789463 C T exonic RT-PCR TN 

NM_000138.4:c.1916G>A FBN1 chr15 48797266 C T exonic RT-PCR TP 

NM_000138.4:c.1909T>C FBN1 chr15 48797273 A G exonic RT-PCR TN 

NM_000138.4:c.1883G>A FBN1 chr15 48797299 C T exonic RT-PCR TN 

NM_000138.4:c.1846G>A FBN1 chr15 48797336 C T exonic RT-PCR TN 

NM_000138.4:c.1633C>T FBN1 chr15 48802322 G A exonic RT-PCR TN 

NM_000138.4:c.1595A>G FBN1 chr15 48802360 T C exonic RT-PCR TN 

NM_000138.4:c.1588G>A FBN1 chr15 48805746 C T exonic RT-PCR TN 

NM_000138.4:c.1510T>C FBN1 chr15 48805824 A G exonic RT-PCR TN 

NM_000138.4:c.1426T>A FBN1 chr15 48807626 A T exonic RT-PCR TN 

NM_000138.4:c.1169C>T FBN1 chr15 48808538 G A exonic RT-PCR TN 

NM_000138.4:c.736G>A FBN1 chr15 48829808 C T exonic RT-PCR TN 

NM_000138.4:c.640G>A FBN1 chr15 48829904 C T exonic RT-PCR TP 

NM_000138.4:c.538+4A>G FBN1 chr15 48888476 T C 5′ intronic RT-PCR TN 

NM_000138.4:c.433T>C FBN1 chr15 48892345 A G exonic RT-PCR TN 

NM_000138.4:c.364C>T FBN1 chr15 48892414 G A exonic RT-PCR TN 

NM_000138.4:c.247+9A>G FBN1 chr15 48905198 T C 5′ extended RT-PCR TN 

NM_000138.4:c.184C>T FBN1 chr15 48905270 G A exonic RT-PCR TP 
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NM_004855.4:c.847-10A>G PIGB chr15 55632800 A G 3′ intronic RT-PCR TN 

NM_005902.3:c.802C>T SMAD3 chr15 67473722 C T exonic RT-PCR + RNA-seq TP 

NM_001271.3:c.4138-6T>G CHD2 chr15 93545401 T G 3′ intronic RT-PCR TN 

NM_000548.3:c.4492A>C TSC2 chr16 2134715 A C exonic RT-PCR TP 

NM_001009944.2:c.1723-23T>C PKD1 chr16 2166142 A G 3′ intronic RT-PCR TP 

NM_024675.3:c.3201+5G>C PALB2 chr16 23625320 C G 5′ extended RT-PCR TN 

NM_001605.2:c.2286G>A AARS chr16 70289631 C T exonic RT-PCR TP 

NM_001142864.2:c.6963C>T PIEZO1 chr16 88782855 G A exonic RT-PCR TP 

NM_001142864.2:c.6651C>A PIEZO1 chr16 88783440 G T exonic RT-PCR TN 

NM_001256182.1:c.5511G>A ANKRD11 chr16 89347439 C T exonic RT-PCR TN 

NM_000430.3:c.900+3A>G PAFAH1B1 chr17 2577585 A G 5′ intronic RT-PCR TN 

NM_000430.3:c.1002+6T>A PAFAH1B1 chr17 2579906 T A 5′ extended RT-PCR TP 

NM_000546.5:c.783-60G>A TP53 chr17 7577215 C T deep intronic RT-PCR TP 

NM_000546.5:c.623A>G TP53 chr17 7578226 T C exonic RT-PCR + RNA-seq TN 

NM_000180.3:c.3043+5G>A GUCY2D chr17 7919164 G A 5′ extended Minigene TN 

NM_005208.4:c.213C>T CRYBA1 chr17 27577316 C T exonic Minigene TP 

NM_001042492.2:c.1062+3A>G NF1 chr17 29527616 A G 5′ intronic RT-PCR TP 

NM_001042492.2:c.7895A>G NF1 chr17 29684312 A G Exonic RT-PCR + RNA-seq TP 

NM_007294.3:c.5453A>G BRCA1 chr17 41199674 T C exonic RT-PCR TP 

NM_007294.3:c.5431C>A BRCA1 chr17 41199696 G T exonic RT-PCR TP 

NM_007294.3:c.5425G>T BRCA1 chr17 41199702 C A exonic RT-PCR TN 

NM_007294.3:c.5407G>T BRCA1 chr17 41199720 C A exonic RT-PCR TN 

NM_007294.3:c.5332+13G>T BRCA1 chr17 41203067 C A 5′ extended RT-PCR TN 

NM_007294.3:c.5252G>A BRCA1 chr17 41209094 C T exonic RT-PCR TN 

NM_007294.3:c.5207T>C BRCA1 chr17 41209139 A G exonic RT-PCR TN 

NM_007294.3:c.5198A>G BRCA1 chr17 41209148 T C exonic RT-PCR TN 

NM_007294.3:c.5157G>T BRCA1 chr17 41215386 C A exonic RT-PCR TN 

NM_007294.3:c.5153-26A>G BRCA1 chr17 41215416 T C 3′ intronic RT-PCR TN 

NM_007294.3:c.5152+6T>C BRCA1 chr17 41215885 A G 5′ extended RT-PCR TP 

NM_007294.3:c.5152+5G>C BRCA1 chr17 41215886 C G 5′ extended RT-PCR TP 
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NM_007294.3:c.5117G>A BRCA1 chr17 41215926 C T exonic RT-PCR TP 

NM_007294.3:c.5096G>A BRCA1 chr17 41215947 C T exonic RT-PCR TN 

NM_007294.3:c.5075-6C>A BRCA1 chr17 41215974 G T 3′ intronic RT-PCR TN 

NM_007294.3:c.5074+7T>C BRCA1 chr17 41219618 G G 5′ extended Minigene TN 

NM_007294.3:c.5024C>T BRCA1 chr17 41219675 G A exonic RT-PCR TN 

NM_007294.3:c.5024C>T BRCA1 chr17 41219675 G A exonic RT-PCR TN 

NM_007294.3:c.4987-11T>C BRCA1 chr17 41219723 A G 3′ intronic RT-PCR + RNA-seq TN 

NM_007294.3:c.4868C>G BRCA1 chr17 41223063 G C exonic RT-PCR TN 

NM_007294.3:c.4676-8C>G BRCA1 chr17 41223263 G C 3′ intronic RT-PCR + RNA-seq TP 

NM_007294.3:c.4484+15T>C BRCA1 chr17 41228490 A G 5′ extended RT-PCR TN 

NM_007294.3:c.4393A>G BRCA1 chr17 41228596 T C exonic RT-PCR TN 

NM_007294.3:c.4357+6T>C BRCA1 chr17 41234415 A G 5′ extended RT-PCR TN 

NM_007294.3:c.4343G>A BRCA1 chr17 41234435 C T exonic RT-PCR TP 

NM_007294.3:c.3845A>T BRCA1 chr17 41243703 T A exonic RT-PCR TN 

NM_007294.3:c.3047A>G BRCA1 chr17 41244501 T C exonic RT-PCR TN 

NM_007294.3:c.1731A>G BRCA1 chr17 41245817 T C exonic RT-PCR + RNA-seq TN 

NM_007294.3:c.612G>C BRCA1 chr17 41247921 C G exonic RT-PCR TN 

NM_007294.3:c.509G>A BRCA1 chr17 41251830 C T exonic RT-PCR TN 

NM_007294.3:c.286G>C BRCA1 chr17 41256900 C G exonic RT-PCR TN 

NM_007294.3:c.286G>A BRCA1 chr17 41256900 C T exonic RT-PCR TN 

NM_007294.3:c.213-5T>G BRCA1 chr17 41256978 A C 3′ intronic RT-PCR TN 

NM_007294.3:c.213-14C>G BRCA1 chr17 41256987 G C 3′ intronic RT-PCR TP 

NM_007294.3:c.212G>T BRCA1 chr17 41258473 C A exonic RT-PCR TP 

NM_007294.3:c.189A>T BRCA1 chr17 41258496 T A exonic RT-PCR TP 

NM_007294.3:c.134+3A>T BRCA1 chr17 41267740 T A 5′ intronic RT-PCR TN 

NM_007294.3:c.81-14C>T BRCA1 chr17 41267810 G A 3′ intronic RT-PCR TP 

NM_007294.3:c.81-65G>C BRCA1 chr17 41267861 C G deep intronic RT-PCR TN 

NM_007294.3:c.36A>G BRCA1 chr17 41276078 T C exonic RT-PCR TN 

NM_007294.3:c.19C>T BRCA1 chr17 41276095 G A exonic RT-PCR TN 

NM_015443.3:c.2725-5T>G KANSL1 chr17 44110563 A C 3′ intronic RT-PCR TN 
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NM_015443.3:c.1848G>A KANSL1 chr17 44143903 C T exonic RT-PCR TP 

NM_005993.4:c.1922G>C TBCD chr17 80863929 G C exonic RT-PCR TP 

NM_007254.3:c.578+4A>G PNKP chr19 50367577 T C 5′ intronic RT-PCR TP 

NM_001308632.1:c.1620C>T POLD1 chr19 50910365 C T exonic RT-PCR TP 

NM_015629.3:c.528-38C>T PRPF31 chr19 54627090 C T 3′ intronic Minigene TN 

NM_018848.3:c.803T>G MKKS chr20 10393360 A C 3′ exonic RT-PCR TN 

NM_018848.3:c.749G>A MKKS chr20 10393414 C T exonic RT-PCR TN 

NM_015600.4:c.867+5G>A ABHD12 chr20 25288597 C T 5′ extended Minigene TN 

NM_001098.2:c.526-642C>T ACO2 chr22 41910739 C T deep intronic Minigene TP 

NM_001034853.1:c.1754-3C>G RPGR chrX 38146501 G C 3′ intronic Minigene TP 

NM_001034853.1:c.247G>T RPGR chrX 38182106 C A exonic Minigene TP 

NM_001399.4:c.957C>G EDA chrX 69255240 C G exonic RT-PCR TN 

NM_001286074.1:c.488C>A TAF1 chrX 70595092 C A exonic RT-PCR TN 

NM_004208.3:c.697-27T>G AIFM1 chrX 129274619 A C 3′ intronic RT-PCR TP 

NM_001110556.1:c.2747A>T FLNA chrX 153590426 T A exonic RT-PCR TN 

NM_001363.3:c.915+10G>A DKC1 chrX 153997595 G A 5′ intronic RT-PCR + RNA-seq TP 
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Supplementary Table S2. Pairwise comparisons of the AUC for each in-silico prioritization tool. Displayed are the p-values for each 

comparison, calculated using the pROC R package (bootstrap test, 2,000 iterations). Significant differences in the AUC after Bonferroni 

correction are indicated by bold text, showing that SpliceAI and a consensus approach perform better than all other approaches. All 

approaches perform better than CADD alone.  

 

 SpliceAI SPIDEX MMSplice MaxEntScan KipoiSplice TraP S-CAP CADD Consensus 

SpliceAI x         

SPIDEX 4.61E-09 x        

MMSplice 5.35E-06 0.05125 x       

MaxEntScan 9.23E-08 0.08028 0.9835 x      

KipoiSplice 5.37E-05 0.009853 0.69 0.6723 x     

TraP 9.79E-05 0.005707 0.5183 0.4253 0.7236 x    

S-CAP 2.01E-10 0.5741 0.09294 0.1365 0.06732 0.03671 x   

CADD 2.20E-16 8.08E-05 1.69E-12 6.73E-12 2.13E-11 1.01E-10 3.39E-13 x  

Consensus 0.2358 1.80E-09 2.74E-05 8.37E-08 5.43E-08 1.09E-05 4.47E-10 2.20E-16 x 

 
  



 

 

 
171 

Supplementary Table S3. Optimal thresholds and values calculated through ROC-AUC for 250 variants of uncertain significance which had 
received functional analysis through blood-based RNA analysis or synthetic minigene assays. We determined 80/250 variants to impact 

splicing (true positives) and 170/250 variants to not impact splicing (true negatives). ROC curves were created using the pROC ggplot2 

package in R, and 95% confidence intervals were calculated using 2,000 stratified bootstrap replicates. Optimal thresholds were selected 

based on the maximum Youden’s J statistic, as calculated using pROC. 

 

Prioritization Approach Optimal Threshold Specificity Sensitivity 
AUC 

(95% CI) 

SpliceAI 0.145 0.9 0.9113924 
0.9536 

(0.9238-0.9771) 

SPIDEX 1.84715 0.8882353 0.5443038 
0.7305 

(0.6570-0.8018) 

MMSplice 0.2892759 0.8235294 0.721519 
0.8081 

(0.7459-0.8659) 

MaxEntScan 1.715 0.7411765 0.8607595 
0.8103 

(0.7576-0.8653) 

KipoiSplice 0.509906 0.9176471 0.721519 
0.8299 

(0.7638-0.8942) 

TraP 0.4675 0.8176471 0.7974684 
0.8428 

(0.7858-0.8938) 

S-CAP 0.00245211 0.8117647 0.6329114 
0.7471 

(0.6823-0.8075) 

CADD 25.2 0.4470588 0.7088608 
0.4716 

(0.4004-0.5486) 

Consensus 3.5 0.8647059 0.8860759 
0.9375 

(0.9106-0.9651) 

Weighted metric 

(SpliceAI & Consensus) 
0.6275 0.9117647 0.9240506 

0.9635 

(0.9413-0.9818) 
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Supplementary Table S4. Thresholds utilized for each of the in silico splicing algorithms to identify variants expected to impact splicing. 
 
 

Tool Threshold 

SpliceAI 0.2 

MaxEntScan Increase or decrease of 1  

SPIDEX Increase or decrease of 5 

TraP 

  Non-coding 
  Coding 

 

0.289 

0.416 

MMSplice Increase or decrease of 2 

KipoiSplice 0.95 

CADD 

  Exonic 
  5extended 
  3intronic 
  5intronic 
  Anything else 

 

7.39 

0.005 

0.006 

0.006 

0.006 

S-CAP 

  Exonic 
  5extended 
  3intronic 
  5intronic 
  5core 
  3core 

 

0.009 

0.005 

0.006 

0.006 

0.033 

0.034 
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Supplementary Table S5. Variability in accuracy of splice prediction tools. Using the standard error of the mean (SEM), 95% confidence 

intervals (CIs) were calculated across the 2,000 bootstraps used to calculate model accuracy, as depicted in Figure 9c. We observed that, for 

all tools investigated, variability in accuracy was low across the bootstraps. 

 
  

Approach Mean accuracy SEM 95% CI 
CADD 0.3877 0.001340 0.3864-0.3890 

Consensus 0.8679 0.0009484 0.8670-0.8689 

KipoiSplice 0.7475 0.001224 0.7462-0.7487 

MaxEntScan 0.7247 0.001279 0.7234-0.7260 

MMSplice 0.7560 0.001193 0.7548-0.7572 

S-CAP 0.7512 0.001201 0.7500-0.7524 

SPIDEX 0.6963 0.001262 0.6951-0.6976 

SpliceAI 0.9082 0.0008068 0.9074-0.9090 

TraP 0.7807 0.001172 0.7796-0.7820 
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Supplementary Table S6. Summary of rare unique variants prioritized by each in silico 
splicing prediction tool/strategy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table S7. Number of rare unique variants prioritized using different levels 
of consensus between in silico splicing tools. 
 

Consensus (n of 8 
tools) Number of prioritized variants Number of 5’ / 3’ core 

variants 
1 8,660 1 

2 6,373 1 

3 1,439 1 

4 279 4 (1%) 

5 102 3 (3%) 

6 76 21 (28%) 

7 82 52 (63%) 

8 93 83 (89%) 
 
 
Supplementary Table S8. Summary of SpliceAI variant scores by their overlap with other in 
silico splicing tools also prioritizing the variant. LCI = lower 95% confidence interval; UCI = 
upper 95% confidence interval. 
 

Consensus Median n LCI UCI 
SpliceAI alone 0.36 2 0.060 0.661 

1 other 0.267 48 0.230 0.304 
2 others 0.290 101 0.251 0.330 
3 others 0.424 103 0.375 0.474 
4 others 0.541 63 0.477 0.604 
5 others 0.783 50 0.719 0.846 
6 others 0.961 73 0.914 1 
7 others 0.974 88 0.945 1 

Tool Number of prioritized variants 

CADD 16,110 

SPIDEX 684 

SpliceAI 674 

MaxEntScan 3,115 

MMSplice 259 

KipoiSplice 224 

TraP 2,024 

S-CAP 6033 

Consensus (4/8) 632 
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Supplementary Table S9. Summary of SpliceAI variant scores by the impacted region of 
the genome, as defined in Jagadeesh et al. (2019). LCI, lower 95% confidence interval; UCI, 
upper 95% confidence interval. 
 

Region Median n LCI UCI 
3′ core 0.982 63 0.941 1 

3′ intronic 0.432 78 0.369 0.495 
5′ core 0.973 84 0.947 1 

5′ extended 0.621 84 0.571 0.671 
5′ intronic 0.487 22 0.391 0.584 

exonic 0.303 197 0.271 0.336 
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Supplementary Table 10. 175 genes from the MCGM retinal dystrophy panel and their 
associated transcripts for routine genetic testing. 
 

Gene symbol Ensembl Gene ID RefSeq transcript ID(s) Ensembl transcript ID(s) 

ABCA4 ENSG00000198691 NM_000350 ENST00000370225 

ABHD12 ENSG00000100997 NM_001042472 ENST00000339157 

ACBD5 ENSG00000107897 NM_145698 ENST00000396271 

ADAM9 ENSG00000168615 NM_003816 ENST00000487273 

ADAMTS18 ENSG00000140873 NM_199355 ENST00000282849 

AHI1 ENSG00000135541 NM_001134832 

NM_017651 

ENST00000327035 

ENST00000457866 

AIPL1 ENSG00000129221 NM_014336 ENST00000381129 

ARL2BP ENSG00000102931 NM_012106 ENST00000219204 

ARL6 ENSG00000113966 NM_032146 ENST00000335979 

BBIP1 ENSG00000214413 NM_001195306 ENST00000448814 

BBS1 ENSG00000174483 NM_024649 ENST00000318312 

BBS10 ENSG00000179941 NM_024685 ENST00000393262 

BBS12 ENSG00000181004 NM_001178007 ENST00000542236 

BBS2 ENSG00000125124 NM_031885 ENST00000245157 

BBS4 ENSG00000140463 NM_033028 ENST00000268057 

BBS5 ENSG00000163093 NM_152384 ENST00000295240 

BBS7 ENSG00000138686 NM_176824 ENST00000264499 

BBS9 ENSG00000122507 NM_198428 ENST00000242067 

BEST1 ENSG00000167995 NM_004183 ENST00000378043 

C1QTNF5 ENSG00000223953 NM_015645 ENST00000445041 

C21orf2 ENSG00000160226 NM_004928 ENST00000339818 

C2orf71 ENSG00000179270 NM_001029883 ENST00000331664 

C8orf37 ENSG00000156172 NM_177965 ENST00000286688 

CA4 ENSG00000167434 NM_000717 ENST00000300900 

CABP4 ENSG00000175544 NM_145200 ENST00000325656 

CACNA1F ENSG00000102001 NM_005183 ENST00000376265 

CACNA2D4 ENSG00000151062 NM_172364 ENST00000382722 

CAPN5 ENSG00000149260 NM_004055 ENST00000278559 

CC2D2A ENSG00000048342 NM_001080522 ENST00000503292 

CDH23 ENSG00000107736 NM_022124 ENST00000224721 

CDH3 ENSG00000062038 NM_001793 ENST00000264012 

CDHR1 ENSG00000148600 NM_001171971 

NM_033100 

ENST00000332904 

ENST00000372117 

CEP164 ENSG00000110274 NM_014956 ENST00000278935 

CEP290 ENSG00000198707 NM_025114 ENST00000552810 

CERKL ENSG00000188452 NM_001030311 ENST00000410087 

CHM ENSG00000188419 NM_000390 ENST00000357749 

CIB2 ENSG00000136425 NM_006383 ENST00000258930 

CLN3 ENSG00000188603 NM_000086 ENST00000359984 

CLRN1 ENSG00000163646 NM_001195794 ENST00000328863 
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NM_052995 ENST00000295911 

CNGA1 ENSG00000198515 NM_001142564 ENST00000544810 

CNGA3 ENSG00000144191 NM_001298 ENST00000393504 

CNGB1 ENSG00000070729 NM_001297 ENST00000251102 

CNGB3 ENSG00000170289 NM_019098 ENST00000320005 

CNNM4 ENSG00000158158 NM_020184 ENST00000377075 

CRB1 ENSG00000134376 NM_201253 ENST00000367400 

CRX ENSG00000105392 NM_000554 ENST00000221996 

CSPP1 ENSG00000104218 NM_024790 ENST00000262210 

CYP4V2 ENSG00000145476 NM_207352 ENST00000378802 

DFNB31 ENSG00000095397 NM_015404 ENST00000362057 

DHDDS ENSG00000117682 NM_024887 ENST00000360009 

DTHD1 ENSG00000197057 NM_001136536 

NM_001170700 

ENST00000357504 

ENST00000456874 

EFEMP1 ENSG00000115380 NM_001039348 ENST00000394555 

ELOVL4 ENSG00000118402 NM_022726 ENST00000369816 

EMC1 ENSG00000127463 NM_015047 ENST00000477853 

EYS ENSG00000188107 NM_001142800 ENST00000503581 

FAM161A ENSG00000170264 NM_001201543 ENST00000404929 

FLVCR1 ENSG00000162769 NM_014053 ENST00000366971 

FSCN2 ENSG00000186765 NM_001077182 ENST00000417245 

FZD4 ENSG00000174804 NM_012193 ENST00000531380 

GNAT1 ENSG00000114349 NM_000172 ENST00000433068 

GNAT2 ENSG00000134183 NM_005272 ENST00000351050 

GNPTG ENSG00000090581 NM_032520 ENST00000204679 

GPR125 ENSG00000197177 NM_145290 ENST00000334304 

GPR179 ENSG00000277399 NM_001004334 ENST00000342292 

GPR98 ENSG00000164199 NM_032119 ENST00000405460 

GRM6 ENSG00000113262 NM_000843 ENST00000231188 

GUCA1A ENSG00000048545 NM_000409 ENST00000053469 

GUCA1B ENSG00000112599 NM_002098 ENST00000230361 

GUCY2D ENSG00000132518 NM_000180 ENST00000254854 

HARS ENSG00000170445 NM_002109 ENST00000504156 

HMX1 ENSG00000215612 NM_018942 ENST00000400677 

IDH3B ENSG00000101365 NM_006899 

NM_174855 

ENST00000380843 

ENST00000380851 

IFT140 ENSG00000187535 NM_014714 ENST00000426508 

IMPDH1 ENSG00000106348 NM_000883 ENST00000338791 

IMPG1 ENSG00000112706 NM_001563 ENST00000369950 

IMPG2 ENSG00000081148 NM_016247 ENST00000193391 

INPP5E ENSG00000148384 NM_019892 ENST00000371712 

INVS ENSG00000119509 NM_014425 ENST00000262457 

IQCB1 ENSG00000173226 NM_001023570 ENST00000310864 

ITM2B ENSG00000136156 NM_021999 ENST00000378565 
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KCNJ13 ENSG00000115474 NM_002242 ENST00000233826 

KCNV2 ENSG00000168263 NM_133497 ENST00000382082 

KIAA1549 ENSG00000122778 NM_001164665 

NM_020910 

ENST00000440172 

ENST00000440172 

KIF11 ENSG00000138160 NM_004523 ENST00000260731 

KLHL7 ENSG00000122550 NM_001031710 ENST00000339077 

LCA5 ENSG00000135338 NM_181714 ENST00000392959 

LRAT ENSG00000121207 NM_004744 ENST00000336356 

LRP5 ENSG00000162337 NM_002335 ENST00000294304 

LZTFL1 ENSG00000163818 NM_020347 ENST00000296135 

MERTK ENSG00000153208 NM_006343 ENST00000421804 

MFRP ENSG00000235718 NM_031433 ENST00000445041 

MKKS ENSG00000125863 NM_018848 ENST00000399054 

MKS1 ENSG00000011143 NM_001165927 

NM_017777 

ENST00000537529 

ENST00000393119 

MVK ENSG00000110921 NM_000431 ENST00000228510 

MYO7A ENSG00000137474 NM_000260 ENST00000409709 

NDP ENSG00000124479 NM_000266 ENST00000378062 

NEK2 ENSG00000117650 NM_002497 ENST00000366999 

NMNAT1 ENSG00000173614 NM_022787 ENST00000377205 

NPHP1 ENSG00000144061 NM_000272 ENST00000393272 

NPHP3 ENSG00000113971 NM_153240 ENST00000337331 

NPHP4 ENSG00000131697 NM_015102 ENST00000378156 

NR2E3 ENSG00000278570 NM_014249 ENST00000617575 

NRL ENSG00000129535 NM_006177 ENST00000397002 

NYX ENSG00000188937 NM_022567 ENST00000342595 

OAT ENSG00000065154 NM_000274 ENST00000368845 

OFD1 ENSG00000046651 NM_003611 ENST00000340096 

OTX2 ENSG00000165588 NM_021728 ENST00000339475 

PANK2 ENSG00000125779 NM_153638 ENST00000316562 

PCDH15 ENSG00000150275 NM_001142763 

NM_001142769 

NM_001142770 

NM_001142771 

ENST00000361849 

ENST00000395445 

ENST00000395438 

ENST00000373965 

PCYT1A ENSG00000161217 NM_005017 ENST00000292823 

PDE6A ENSG00000132915 NM_000440 ENST00000255266 

PDE6B ENSG00000133256 NM_000283 ENST00000255622 

PDE6C ENSG00000095464 NM_006204 ENST00000371447 

PDE6G ENSG00000185527 NM_002602 ENST00000331056 

PEX1 ENSG00000127980 NM_000466 ENST00000248633 

PEX2 ENSG00000164751 NM_000318 ENST00000357039 

PEX7 ENSG00000112357 NM_000288 ENST00000318471 

PHYH ENSG00000107537 NM_006214 ENST00000263038 

PITPNM3 ENSG00000091622 NM_031220 ENST00000262483 
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PLA2G5 ENSG00000127472 NM_000929 ENST00000375108 

PRCD ENSG00000214140 NM_001077620 - 

PROM1 ENSG00000007062 NM_006017 ENST00000447510 

PRPF3 ENSG00000117360 NM_004698 ENST00000324862 

PRPF31 ENSG00000105618 NM_015629 ENST00000321030 

PRPF4 ENSG00000136875 NM_004697 ENST00000374198 

PRPF6 ENSG00000101161 NM_012469 ENST00000266079 

PRPF8 ENSG00000174231 NM_006445 ENST00000304992 

PRPH2 ENSG00000112619 NM_000322 ENST00000230381 

RAB28 ENSG00000157869 NM_001017979 ENST00000330852 

RAX2 ENSG00000173976 NM_032753 ENST00000555978 

RBP3 ENSG00000265203 NM_002900 ENST00000224600 

RBP4 ENSG00000138207 NM_006744 ENST00000371464 

RD3 ENSG00000198570 NM_183059 ENST00000367002 

RDH12 ENSG00000139988 NM_152443 ENST00000551171 

RDH5 ENSG00000135437 NM_001199771 ENST00000257895 

RGR ENSG00000148604 NM_002921 ENST00000359452 

RGS9 ENSG00000108370 NM_001165933 

NM_003835 

ENST00000443584 

ENST00000262406 

RHO ENSG00000163914 NM_000539 ENST00000296271 

RIMS1 ENSG00000079841 NM_001168407 

NM_001168410 

NM_014989 

ENST00000401910 

ENST00000517827 

ENST00000521978 

RLBP1 ENSG00000140522 NM_000326 ENST00000268125 

ROM1 ENSG00000149489 NM_000327 ENST00000278833 

RP1 ENSG00000104237 NM_006269 ENST00000220676 

RP1L1 ENSG00000183638 NM_178857 ENST00000382483 

RP2 ENSG00000102218 NM_006915 ENST00000218340 

RP9 ENSG00000164610 NM_203288 ENST00000297157 

RPE65 ENSG00000116745 NM_000329 ENST00000262340 

RPGR ENSG00000156313 NM_001034853 ENST00000378505 

RPGRIP1 ENSG00000092200 NM_020366 ENST00000400017 

RPGRIP1L ENSG00000103494 NM_015272 ENST00000379925 

RS1 ENSG00000102104 NM_000330 ENST00000379984 

SAG ENSG00000130561 NM_000541 ENST00000409110 

SDCCAG8 ENSG00000054282 NM_006642 ENST00000366541 

SEMA4A ENSG00000196189 NM_022367 ENST00000368285 

SLC24A1 ENSG00000074621 NM_001254740 

NM_004727 

ENST00000339868 

ENST00000261892 

SNRNP200 ENSG00000144028 NM_014014 ENST00000323853 

SPATA7 ENSG00000042317 NM_018418 ENST00000393545 

TEAD1 ENSG00000187079 NM_021961 ENST00000361905 

TIMP3 ENSG00000100234 NM_000362 ENST00000266085 

TMEM237 ENSG00000155755 NM_001044385 ENST00000409883 
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TOPORS ENSG00000197579 NM_005802 ENST00000360538 

TRIM32 ENSG00000119401 NM_012210 ENST00000450136 

TRPM1 ENSG00000134160 NM_002420 ENST00000397795 

TSPAN12 ENSG00000106025 NM_012338 ENST00000222747 

TTC8 ENSG00000165533 NM_144596 ENST00000380656 

TUB ENSG00000166402 NM_177972 ENST00000299506 

TULP1 ENSG00000112041 NM_003322 ENST00000229771 

UNC119 ENSG00000109103 NM_005148 

NM_054035 

ENST00000335765 

ENST00000301032 

USH1C ENSG00000006611 NM_005709 

NM_153676 

ENST00000318024 

ENST00000005226 

USH1G ENSG00000182040 NM_173477 ENST00000319642 

USH2A ENSG00000042781 NM_206933 ENST00000307340 

VCAN ENSG00000038427 NM_004385 ENST00000265077 

VPS13B ENSG00000132549 NM_017890 ENST00000358544 

WDPCP ENSG00000143951 NM_015910 ENST00000272321 

WDR19 ENSG00000157796 NM_025132 ENST00000399820 

ZNF423 ENSG00000102935 NM_015069 ENST00000561648 

ZNF513 ENSG00000163795 NM_144631 ENST00000323703 
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Supplementary Table S11. List of putative branchpoint-impacting SNVs identified through retinal dystrophy gene panel testing. BP position is 
“A” for variants affecting the branchpoint residue itself, while “-2” represents variants affecting the conserved residue (most often a thymidine) 
two bases upstream. A patient’s phenotype was deemed to be “solved” if a variant(s) was returned as likely pathogenic or pathogenic and 
wholly accounted for patient phenotype, including being in the correct zygosity. A given patient may harbour multiple SNVs. Colouring of rows 
indicates the corresponding section of the pie chart in Figure 12b. 
 
 
Patient ID Gene HGVSg BP position Supporting datasets Solved? Consistent with 

phenotype/inheritance? 
Existing carrier 

finding? 

1 ADAM9 chr8:38948762T>C -2 All Y N N 

2 AHI1 chr6:135774598T>A A BPP Y N N 

3 BBS1 chr11:66278454A>G A Mercer; SVM-BPfinder N N N 

4 BBS1 chr11:66287067A>T A SVM-BPfinder; BPP N Y Y 

5 BBS1 chr11:66288725C>T A BPP N N N 

6 BBS1 chr11:66290900C>T -2 Mercer; BPP N Y N 

7 BBS2 chr16:56531016T>C A BPP Y N N 

8 BBS2 chr16:56533849T>C A BPP Y N N 

9 BBS2 chr16:56543976T>G A All N Y N 

10 BBS7 chr4:122749687A>G -2 SVM-BPfinder Y N N 

11 BEST1 chr11:61724829A>T A SVM-BPfinder; BPP N N N 

12 CACNA2D4 chr12:1919533A>T -2 SVM-BPfinder; BPP N N N 

13 CC2D2A chr4:15589418A>T A BPP Y N N 

14 CC2D2A chr4:15602831T>C -2 SVM-BPfinder; BPP Y N N 

15 CDH23 chr10:73491718T>C -2 BPP Y N N 

16 CDH23 chr10:73548657T>G -2 SVM-BPfinder; BPP Y N N 

17 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP Y N N 

18 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP N N N 

19 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP N N N 

20 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP N N N 
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21 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP Y N N 

22 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP Y N N 

23 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP Y N N 

24 CEP164 chr11:117244435T>A -2 SVM-BPfinder; BPP Y N N 

25 CEP164 chr11:117282757C>T -2 BPP N N N 

26 CEP164 chr11:117282757C>T -2 BPP N N N 

27 CEP164 chr11:117282757C>T -2 BPP Y N N 

28 CEP164 chr11:117282757C>T -2 BPP Y N N 

29 CEP164 chr11:117282757C>T -2 BPP Y N N 

30 CEP164 chr11:117282757C>T -2 BPP Y N N 

31 CEP164 chr11:117282757C>T -2 BPP Y N N 

32 CEP290 chr12:88457911A>C -2 SVM-BPfinder N N N 

33 CERKL chr2:182412603T>A A BPP Y N N 

34 CHM chrX:85236842T>G A BPP N N N 

35 CLN3 chr16:28493535G>C -2 Mercer; BPP Y N N 

36 CLN3 chr16:28493535G>C -2 Mercer; BPP Y N N 

37 CLN3 chr16:28493535G>C -2 Mercer; BPP Y N N 

38 CSPP1 chr8:68070663A>T A BPP Y N N 

39 EFEMP1 chr2:56103893A>T -2 SVM-BPfinder; BPP N N N 

40 FSCN2 chr17:79503144T>C -2 SVM-BPfinder; BPP N N N 

41 FSCN2 chr17:79503144T>C -2 SVM-BPfinder; BPP Y N N 

42 FSCN2 chr17:79503144T>C -2 SVM-BPfinder; BPP Y N N 

43 GNPTG chr16:1412428A>G A All N N N 

44 GPR179 chr17:36490765A>G -2 SVM-BPfinder; BPP N N N 

45 GPR179 chr17:36491164T>C A SVM-BPfinder Y N N 

46 GPR179 chr17:36493112T>A A SVM-BPfinder; BPP N N N 

47 GPR179 chr17:36493112T>A A SVM-BPfinder; BPP Y N N 

48 GPR179 chr17:36493112T>A A SVM-BPfinder; BPP Y N N 



 

 
 

183 

49 GPR179 chr17:36493112T>A A SVM-BPfinder; BPP Y N N 

50 GPR98 chr5:89938443A>T A SVM-BPfinder N N N 

51 GPR98 chr5:89938443A>T A SVM-BPfinder Y N N 

52 GPR98 chr5:90021338A>G A BPP N N N 

53 GRM6 chr5:178419123T>C A SVM-BPfinder Y N N 

54 GUCY2D chr17:7919736T>C -2 SVM-BPfinder; BPP No diagnostic report available 

55 GUCY2D chr17:7919736T>C -2 SVM-BPfinder; BPP No diagnostic report available 

56 HARS chr5:140053942T>C A All Y N N 

57 HARS chr5:140057027A>G -2 SVM-BPfinder; BPP N N N 

58 IFT140 chr16:1574938T>C A BPP Y N N 

59 IFT140 chr16:1576105G>A -2 Mercer; BPP Y N N 

60 IFT140 chr16:1621572T>A A SVM-BPfinder; BPP N N N 

61 IMPG2 chr3:100963651T>G A SVM-BPfinder; BPP N Y N 

62 IMPG2 chr3:100963651T>G A SVM-BPfinder; BPP Y N N 

63 IMPG2 chr3:100963651T>G A SVM-BPfinder; BPP Y N N 

64 IMPG2 chr3:100964972T>C A SVM-BPfinder; BPP N Y N 

65 KIAA1549 chr7:138554540T>C A BPP Y N N 

66 KIAA1549 chr7:138593884T>A A SVM-BPfinder N N N 

67 LRP5 chr11:68170919C>G -2 Mercer; BPP Y N N 

68 LRP5 chr11:68205880A>G A All N N N 

69 MERTK chr2:112702519A>T A SVM-BPfinder Y N N 

70 MYO7A chr11:76900357A>C A SVM-BPfinder; BPP N N N 

71 NPHP1 chr2:110919286A>G -2 SVM-BPfinder N N N 

72 NPHP1 chr2:110919286A>G -2 SVM-BPfinder No diagnostic report available 

73 NPHP1 chr2:110919286A>G -2 SVM-BPfinder Y N N 

74 NPHP1 chr2:110919286A>G -2 SVM-BPfinder Y N N 

75 NPHP3 chr3:132418941A>G -2 SVM-BPfinder Y N N 

76 PCDH15 chr10:55973850A>T -2 SVM-BPfinder Y N N 
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77 PDE6B chr4:648589C>T -2 BPP Y N N 

78 PDE6B chr4:659014C>T -2 BPP Y N N 

79 PDE6C chr10:95380375A>G A SVM-BPfinder N Y N 

80 PEX1 chr7:92116899T>C A SVM-BPfinder Y N N 

81 PEX1 chr7:92138745T>C A SVM-BPfinder; BPP N N N 

82 PEX1 chr7:92138745T>C A SVM-BPfinder; BPP N N N 

83 PEX1 chr7:92138745T>C A SVM-BPfinder; BPP Y N N 

84 PEX1 chr7:92151596G>A -2 BPP Y N N 

85 PEX7 chr6:137187743A>G A SVM-BPfinder; BPP Y N N 

44 PITPNM3 chr17:6387120G>A -2 Mercer; BPP N N N 

86 PITPNM3 chr17:6387120G>A -2 Mercer; BPP N N N 

87 PITPNM3 chr17:6387120G>A -2 Mercer; BPP N Y N 

88 PITPNM3 chr17:6387120G>A -2 Mercer; BPP Y N N 

89 PITPNM3 chr17:6387120G>A -2 Mercer; BPP Y N N 

90 PITPNM3 chr17:6387120G>A -2 Mercer; BPP Y N N 

91 PROM1 chr4:16017902A>G -2 SVM-BPfinder; BPP Y N N 

92 PRPF31 chr19:54627837T>G A Mercer Y N N 

86 PRPF31 chr19:54631645C>T -2 Mercer; BPP N N N 

93 PRPF31 chr19:54631645C>T -2 Mercer; BPP Y N N 

94 PRPF31 chr19:54631645C>T -2 Mercer; BPP Y N N 

95 PRPF8 chr17:1558859T>G A Mercer Y N N 

96 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP N N N 

97 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP N N N 

98 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP N N N 

99 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP N Y N 

100 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP Y N N 

101 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP Y N N 

102 PRPH2 chr6:42666266T>A A SVM-BPfinder; BPP Y N N 
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103 RGR chr10:86007321A>G A BPP N N N 

104 RGR chr10:86007321A>G A BPP N N N 

105 RGR chr10:86007321A>G A BPP N N N 

106 RGR chr10:86007321A>G A BPP Y N N 

107 RPGRIP1 chr14:21762816A>T A SVM-BPfinder N N N 

108 RPGRIP1 chr14:21792750G>A -2 BPP N Y N 

61 RPGRIP1L chr16:53670462A>G -2 SVM-BPfinder; BPP N N N 

109 RPGRIP1L chr16:53670462A>G -2 SVM-BPfinder; BPP N N N 

110 RPGRIP1L chr16:53670462A>G -2 SVM-BPfinder; BPP N N N 

111 RPGRIP1L chr16:53672354T>C A SVM-BPfinder; BPP N N N 

46 RPGRIP1L chr16:53672354T>C A SVM-BPfinder; BPP N N N 

112 RPGRIP1L chr16:53672354T>C A SVM-BPfinder; BPP Y N N 

113 RPGRIP1L chr16:53672354T>C A SVM-BPfinder; BPP Y N N 

92 RPGRIP1L chr16:53672354T>C A SVM-BPfinder; BPP Y N N 

114 SAG chr2:234229263A>G A SVM-BPfinder N Y N 

82 SEMA4A chr1:156128160A>C A SVM-BPfinder; BPP N Y N 

115 TULP1 chr6:35466259G>A -2 BPP N Y N 

65 USH1C chr11:17518381A>G -2 SVM-BPfinder; BPP Y N N 

116 USH2A chr1:216243678A>T -2 SVM-BPfinder; BPP Y N N 

117 USH2A chr1:216390937T>G A BPP N N N 

118 USH2A chr1:216390937T>G A BPP N N N 

119 WDR19 chr4:39205244A>G A SVM-BPfinder N N N 
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Variant (HGVSg) Gene 
Source of 

RNA 
Phenotype TPM 

MRSD  

(M reads) 

chr2:152,355,017G>T  

NEB 

Skeletal 
muscle 

Nemaline myopathy 857.9 9.83 chr2:152,389,953A>C 

chr2:152,544,805C>T 

chrX:31,790,694-
31,798,498invdel  DMD 

Duchenne muscular 
dystrophy 24.84 79.4 

chrX:32,274,692G>A Myalgia, myoglobinuria 

chr2:179,446,219ATACT>A  

TTN 

Fetal akinesia  

349.5 47.63 
chr2:179,642,185G>A Multi/minicore 

congenital myopathy 

chr21:47,409,881C>T 
COL6A1 Collagen VI-related 

dystrophy 56.02 16.25 
chr21:47,409,881C>T 

chr19:38,958,362C>T RYR1 Congenital fiber-type 
disproportion 425.5 3.45 

chr1:46,655,129C>A POMGNT1 a-Dystroglycanopathy 29.26 6.01 

chr17:41,199,655C>G 

BRCA1 

LCL Inherited breast cancer 
susceptibility 

19.985 217.19 

chr17:41,246,879T>C 

chr17:41,246,879T>C 

chr17:41,246,879T>C 

chr17:41,258,551C>A 

chr13:32,945,238G>A 
BRCA2 10.16 Unfeasible 

chr13:32,969,074A>T 

chr19:33,892,776C>T PEPD 

Whole blood 

Prolidase deficiency 18.89 28.31 

chr20:35,526,363C>G SAMHD1 Aicardi-Goutières 
syndrome 48.53 24.68 

chr23:153,997,595G>A MED13L MRFACD 5.89 262.34 

 
Supplementary Table S12. Summary of pathogenic splicing events analyzed in this study. 
All co-ordinates are given in relation to the GRCh37 genome build. TPM, transcripts per 
million; MRSD, minimum required sequencing depth. 
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Tissue No. samples Source Sequencing type Usage 

Blood 151 

GTEx 75-bp paired end poly-
A enrichment, Illumina 

Generation of MRSD model, 
bootstrapping analysis of event 

counts 
LCL 91 

Muscle 184 

Blood 

1 

Inhouse 

150-bp paired end 
globin depletion, 

Illumina 

Collation of known pathogenic mis-
splicing events 

12 75-bp paired end poly-
A enrichment, Illumina 

Collation of known pathogenic mis-
splicing events & MRSD model 

validation 

LCL 

20 
150-bp paired end 
poly-A enrichment, 

Illumina 

Collation of known pathogenic mis-
splicing events 

4 Inhouse 75-bp paired end poly-
A enrichment, Illumina MRSD model validation 

Muscle 52 
Previously 

published data 
(3) 

75-bp paired end poly-
A enrichment, Illumina 

Collation of known pathogenic mis-
splicing events, downsampling of 

pathogenic events & MRSD model 
validation 

 
Supplementary Table S13. Summary of RNA-seq datasets utilized in this the generation 
and testing of the MRSD scoring framework. RNA-seq datasets derived using different 
methodologies were used for various aspects of this section of work. All data used to 
generate the MRSD model was based on data from the GTEx consortium across all three 
analyzed tissues. 
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Appendix 2 – Supplementary Figures 
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Supplementary Figure S1. DNAH11 c.6547-963G>A. (A) Family pedigree showing the 
proband and her unaffected father and mother who carry heterozygous alleles of DNAH11 
c.8610C>G and c.6547-963G>A, respectively. (B) Gel electrophoresis results for the proband, 
visualized using an Agilent 2200 Tapestation (original unaltered images are presented in 
Supplementary Figure S3). RNA was reverse transcribed after extraction from whole blood 
and then amplified using primers specific to exons 39 and 40 of the DNAH11 gene 
(NM_001277115.1).  The caption shows two distinct cDNA amplicons in the proband sample 
separated by ~40 base pairs. (C) Integrated Genomic Viewer snapshot of the alignment of 
sequencing products to the human reference genome (GRCh37) showing the introduction of 
a 38 base pair cryptic exon (chr7:21,746,318-21,746,355) as a result of c.6547-963G>A. The 
top and bottom bands were sequenced after being cut from an agarose gel electrophoresis. 
(D) Impact of the cryptic exon on the translated protein. The cryptic exon shifts the reading 
frame and is expected to introduce a premature stop codon in exon 40, resulting in premature 
termination of protein synthesis, p.Ile2183Lysfs*15. Amino acids (AAs) are provided with 
single letter notations, with X indicating a stop codon. Vertical intersects indicate transition of 
the cDNA to the adjacent exon. 
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Supplementary Figure S2. Uncropped gel electrophoresis photographs for data used in 
Figure 8. The Invitrogen 1 Kb Plus Ladder was used for prediction of fragment size. The lanes 
used in Figure 8 are indicated. Only the lanes indicated are relevant for MERTK c.2486+6T>A 
and SCN2A c.2919+3A>G. 
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Supplementary Figure S3.  Uncropped images from the Agilent Tapestation showing cDNA 
bands amplified from patient sample. The images shown are the default images from the 
Agilent 2200 Tapestation system, with band concentrations scaled to each individual sample. 
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Supplementary Figure S4. Categories of potentially pathogenic splicing events and their 
representation in analytical pipeline output. Disruption of (a) wild-type splicing may lead to 
(b) skipping of one or more exons, the creation of novel splice sites in (c) exonic or (d) 
intronic regions that may outcompete the canonical sites, or result in (e) the generation of an 
intronic pseudoexon. (f) Splicing may be abrogated completely, leading to total retention of 
the intron. (g) Within longer exons, creation of a novel splice site may lead to a so-called 
“exitron”, whereby a central portion of the exon is absent from the final transcript. Green 
triangles indicate canonical splice sites; red triangles indicate non-canonical sites. 
  

a) Wild-type splicing b) Exon skipping c) Exonic cryptic splice site 

d) Intronic cryptic splice site e) Pseudoexon inclusion f) Intron retention 

 
g) Exitron 
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Supplementary Figure S5. Workflow for MRSD score generation. Users can create their 
own MRSD scores using the code provided online at https://github.com/mcgm-mrsd/mrsd-
explorer. Starting with a set of RNA-seq samples, reads are aligned and the split reads 
counted using an established pipeline. Then, using our bespoke Python scripts, users can 
generate their own predictive scores (using parameters of their choice) and classify 
transcripts according to the level of sequencing required to obtain the specified coverage. 
Alternatively, users are free to investigate pre-computed scores for all GENCODE v19 genes 
across four tissues (whole blood, skeletal muscle, cultured fibroblasts and lymphoblastoid 
cell lines, or LCLs) at our web portal: http://mcgm-mrsd.github.io/ 
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Supplementary Figure S6. Sequencing depths of RNA-seq samples used for evaluation of 
MRSD model accuracy. Whole blood (n = 12), LCL (n = 4) and skeletal muscle (n = 52) 
RNA-seq samples were derived from in-house or previously published data (Cummings et 
al., 2017) for validation of the MRSD model efficacy. Sequencing depths across the three 
tissues ranged from 20.6-281.5 M uniquely mapping reads. 
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Supplementary Figure S7. Effect of varying sequencing read length on MRSD model 
performance. Despite being derived from 75 bp paired end RNA-seq data, MRSD scores 
show similar performance when applied to 75 or 150 bp paired end read-based RNA-seq, 
both in terms of (top) PPV and (bottom) NPV. When specifying 75% splice junction 
coverage, MRSD PPV is generally higher when the model is applied to 150 bp read-based 
data. This likely reflects the fact that junctions predicted to be sufficiently covered by 75 bp 
reads will be more likely to be sufficiently covered by reads of greater length, and so positive 
predictions are more likely to hold true when applied to longer-read data. We also observe 
that NPV for 150 bp read datasets is lower than that for 75 bp across all 4 parameter 
combinations; conversely to PPV, this is possibly because transcripts not sufficiently 
covered by 75 bp reads are more likely to be sufficiently covered by 150 bp reads, thus 
making negative predictions less likely to hold true in longer-read data. In most cases, 
differences in model performance between 75 and 150 bp is low, suggesting MRSD may, in 
some cases, provide a suitable approximation of transcript coverage in RNA-seq datasets 
with read lengths different to those used to construct the model. 
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Supplementary Figure S8. MRSD scores are generally lower when derived from RNA-seq 
runs of longer read length. MRSD predictions generated from 20 LCL-based 150 bp RNA 
sequencing runs were compared against those generated following trimming of the same 
reads to a maximum of 75 bp. For 45.8% (1520/3322) of disease-associated genes, 
coverage was too poor to generate an MRSD score regardless of read length (group 6), 
while MRSDs could be generated but remained the same regardless of read length for just 
4/3322 (0.12%) genes (group 5). Intuitively, of the 54.1% (1798/3322) of genes for which at 
least one dataset allowed MRSD generation, a higher MRSD was observed in the 75 bp 
dataset for 86.5% (1555/1798, groups 1 and 2). However, for the remaining 13.5% of genes 
(243/1798, groups 3 and 4), a lower MRSD score was generated using the 75 bp dataset 
than the 150 bp dataset. For many of these genes, it was determined that a shortening of 
the reads actually improved their quality to the extent that they were more likely to pass the 
enforced quality filters – namely, that a mapping event must be the primary alignment, that 
the read must map successfully (i.e. must have a mapping quality of 60) and that the read 
must be a split read. We observed that in group 4, comprising genes for which MRSD 
generation is unfeasible using the 150 bp dataset but feasible using the 75 bp dataset, there 
was a median 36.8-fold increase in the number of reads passing these read filters following 
trimming (bottom). Further work is needed to investigate alternative causes of this counter-
intuitive pattern, and to determine whether the discarding of the longer reads represents an 
artefactual drawback to the read filtering process, or an effective way to filter reads for 
quality that is missed using shorter reads. 
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Supplementary Figure S9. Evidence for 3’ sequence bias confounding the use of TPM as a 
guiding RNA-seq metric. Analyzing the number of reads (per 1 M uniquely mapping input 
reads) mapping to individual splice junctions within three genes with substantial TPM-MRSD 
discrepancy demonstrates that highly expressed genes may exhibit biased coverage of 
splice junctions. For IGHM (top) and ALDOA (middle) in LCLs and muscle, respectively, a 
sufficient proportion of junctions towards the 3’ end of the transcript have no read support in 
a sufficient number of patients, resulting in an MRSD prediction of “unfeasible”, despite high 
coverage of other junctions within the same transcript. Coverage of the final two splice 
junctions in RPL10 (bottom) in LCL-based RNA-seq data is low but not non-zero in many 
patients, giving a feasible but high MRSD prediction. In some cases, this bias may result 
from artefacts of library preparation, or may possible reflect genuine isoform shifts in the 
given tissue. Higher splice junction numbers represent junctions closer to the 3’ end of 
transcripts. 
  

IGHM 

ALDOA 

RPL10 

Median TPM in LCLs = 4880 
MRSD prediction: Unfeasible 

Median TPM in muscle = 2796.5 
MRSD prediction: Unfeasible 

Median TPM in whole blood = 828.3 
MRSD prediction: 134.5 M reads 



 

 
 

199 

 
 
Supplementary Figure S10. Exemplar events identified during pathogenic splice event 
analysis. Selected Sashimi plots for (a) exon skipping, (b) exonic splice gain, (c) 
pseudoexonization and (d) intron retention events identified as the cause of disease in our 
patient datasets. The presence of aberrant splice junctions with outlying event metrics 
allowed flagging of these as potentially pathogenic. For (d), the intron retention event was 
identified from the 2 reads supporting usage of an extremely weak alternative splice 
acceptor four bases downstream of the abrogated canonical acceptor; however, in the 
absence of any aberrant splicing events, intron retention events are more difficult to identify 
from RNA-seq data using current bioinformatics pipelines. 
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Supplementary Figure S11. Relative gene expression level does not reflect the raw read 
coverage of transcript splice junctions. When simulating decreased gene expression by 
downsampling reads in genes containing novel splicing events identified in upstream 
analysis, it emerged that expression of a gene (in transcripts per million, TPM) does not 
directly correlate with the number of reads supporting splice junctions in that gene. Among 
the events supported by 8 reads, for example, gene expression ranged from 0.17-52 TPM. 
This may be accounted for by variation in the proportion of transcripts containing the event, 
variation in the coverage across the length of a transcript (as shown in Supplementary 
Figure S9), or variation in the depth to which a sample has been sequenced. Thus, when 
specifying a metric threshold above which we expect splice aberration to be observable, 
relative expression level may not appropriately represent expected read support. Axes are 
limited for ease of visualization. 
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Supplementary Figure S12. Increasing specified read coverage reduces the number of 
ClinVar variants that can be analyzed. Similarly to Figure 19a (main text), we generated 
MRSD scores for genes harboring predicted splice-impacting ClinVar variants (SpliceAI 
score ≥ 0.5; Jaganathan et al., 2019) using more stringent read coverage parameters (10 
and 20 reads). We observed only a small reduction in the number of ClinVar variants in low-
MRSD genes when specifying 10 reads (24.9-64.0% dependent on parameters). Specifying 
20 read coverage, however, drastically reduces the percentage of ClinVar variants in low-
MRSD genes to 18.7-52.0%. 
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Supplementary Figure S13. Increasing specified read count removes highly VUS-prone 
genes from the scope of analysis. Similarly to Figure 19b, we looked among the 30 genes 
harboring the most predicted splice-impacting ClinVar variants and considered how many 
were low-MRSD in at least one of the four investigated tissues when specifying increasing 
levels of read coverage. Only one extra gene, ATM, becomes ostensibly high-MRSD when 
specifying a 10-read coverage parameter when compared with the 8-read coverage data 
(Figure 19b). However, by specifying a 20-read level of coverage, a further four genes are 
removed from the scope of analysis, leaving 18/30 (60%) still considered low-MRSD. 
  

10 reads 

20 reads 



 

 
 

203 

Appendix 3 – Supplementary Methods 
 
Supplementary Methods 1. Illustration of MRSD calculation methodology. MRSD scores 
utilize the level of read coverage supporting the existence of splice junctions in control RNA-
seq datasets to predict the depth of sequencing required to achieve a specified level of 
splice junction coverage in a transcript of interest. For a given transcript in a given individual:  
 

1. Read coverage values are collated across all splice junctions in the transcript model 
(with a single transcript assigned to each gene if investigating at the gene level, see 
Supplementary Methods 2) 

2. Each of these values is divided by the sequencing depth – by default defined as the 
number of uniquely mapping sequencing reads (in millions of reads) to produce a 
per-1 M read coverage value for each junction 

3. The desired level of read coverage is divided by the per-1 M read coverage value of 
the splice junction with the X’th percentile lowest read coverage, which gives the 
depth of sequencing that would be required for X% of junctions to be covered with 
the desired number of reads or higher. This figure is the sample-specific MRSD. 

 
The sample-specific MRSDs are collated across all control RNA-seq samples, and a global 
MRSD is then derived by taking the !-th percentile highest prediction from among these; ! 
is termed the MRSD parameter, and represents the proportion of control RNA-seq samples 
for which sequencing at the returned MRSD would have sufficiently covered that gene. By 
extension, it is also an approximate measure of the likelihood that a subsequent RNA-seq 
run at the returned depth will yield the specified coverage. 
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Supplementary Methods 2. Tiering methodology for selection of transcripts for MRSD 
generation. To calculate MRSD values for all protein-coding genes, a single transcript model 
was established for each gene. Firstly, transcripts present in the MANE v0.7 curated 
transcript set were selected for genes where these existed, provided the co-ordinates of all 
splice junctions in that transcript (given in relation to the GRCh38 reference genome) 
mapped back to known junctions in build GRCh37. For genes where these conditions were 
not met, transcript models were formed from the union of all junctions present in all RefSeq 
transcripts listed for that gene on Ensembl BioMart. Finally, for any genes lacking a 
corresponding RefSeq transcript(s), a transcript model was derived consisting of the union of 
all junctions present in all transcripts assigned to that gene in the GENCODE v19 
annotation. 
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Supplementary Methods 3. Tissue-specific criteria for filtering of high-quality GTEx control 
RNA-seq datasets. Filtering of GTEx controls was conducted to select the highest quality 
samples based on the below tissue-specific parameters. Parameters were selected and 
adjusted on a tissue-by-tissue basis to exclude metric outliers and samples that may 
confound analysis of pathogenic splicing events (e.g. excluding cancer patients from LCL 
control cohorts, in which inherited breast cancer was studied). The corresponding column 
names in the GTEx v8 sample attribute (pht002743.v8) and subject phenotype 
(pht002742.v8) files are italicized. 
 
 
 
Skeletal muscle (as listed in [1]) 

• RNA integrity number/RIN (SMRIN): between 6-9 
• Sample ischemic time (SMTSISCH): <720 (i.e. <12 hours) 
• Hardy scale (DTHHRDY): 0, 1 or 2, corresponding to sudden deaths 
• Age (AGE): <50 

o Unless BMI <30 
 
Whole blood 

• Samples included in GTEx analysis freeze, corresponding to higher quality samples 
(SMAFRZE): not flagged EXCLUDE due to technical issues 

• RIN (SMRIN): between 6-9 
• Sample ischemic time (SMTSISCH): <0 
• Hardy scale (DTHHRDY): 0, 1 or 2 

 
EBV-transformed lymphocytes (LCLs) 

• SMAFRZE: not flagged EXCLUDE due to technical issues 
• RIN (SMRIN): > 9 
• MHCANCER5, MHCANCERC and MHCANCERNM all 0 to eliminate all non-

metastatic cancers and all cancers in the past 5 years or current 
• DTHHRDY: 0, 1 or 2 
• No reported history (MHGENCMT) of: 

o Breast cancer 
o Ovarian cancer 
o Pancreatic cancer 
o Prostate cancer 
o Colorectal cancer 
o No patients filtered out through this criterion  

 

Cultured fibroblasts 
• As for EBV-transformed lymphocytes, except with the addition of the following: 

o RIN (SMRIN) > 9.7 
o Uniquely mapping reads (MPPDUN): > 60 M 

 
 
 
 
 
 


