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Abstract

Gene expression and its regulation are fundamental processes in every living cell and
organism. RNA molecules hereby play a central role by translating the genetic information
into proteins, by regulating gene activity and by forming structural components. The
kinetics of RNA metabolism differ widely between genes and conditions and play an
important role for cellular processes, but how this is achieved remains poorly understood.
Here, we used a novel experimental protocol that allows profiling of newly transcribed
RNAs in conjunction with an advanced computational modeling pipeline to explore the
kinetics of RNA metabolism and the underlying genetic determinants.
In the first study, we investigated cell cycle regulated gene expression and the contributions
of synthesis and degradation to mRNA levels in S.cerevisiae. During the cell cycle, the
levels of hundreds of mRNAs change in a periodic manner, but how this is carried out
by alterations in the rates of mRNA synthesis and degradation has not been studied
systematically. We were able to derive mRNA synthesis and degradation rates every 5
minutes during the cell cycle, and thus provide for the first time a high-resolution time
series of RNA metabolism during the cell cycle. A novel statistical model identified 479
genes that show periodic changes in mRNA synthesis and generally also periodic changes
in their mRNA degradation rates. Peaks of mRNA degradation follow peaks of mRNA
synthesis, resulting in sharp and high peaks of mRNA levels at defined times during the
cell cycle. Whereas the timing of mRNA synthesis is set by upstream DNA motifs and
their associated transcription factors (TFs), the synthesis rate of a periodically expressed
gene is apparently set by its core promoter.
In the second study, we developed metabolic labeling with RNA-Seq (4tU-Seq) and novel
computational methods to gain further insights into the kinetics of RNA metabolism and
its regulation. To decrypt the regulatory code of the genome, sequence elements must
be defined that determine RNA turnover and thus gene expression. Here we attempt
such decryption in an eukaryotic model organism, the fission yeast S. pombe. We first
derived an improved genome annotation that redefines borders of 36% of expressed
mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combined RNA labeling
in-vivo with mathematical modeling to obtain rates of RNA synthesis and degradation
for 5,484 expressed RNAs and splicing rates for 4,958 introns. We identified functional
sequence elements in DNA and RNA that control RNA metabolic rates, and quantified the
contributions of individual nucleotides to RNA synthesis, splicing, and degradation. Our
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approach reveals distinct kinetics of mRNA and ncRNA metabolism, separates antisense
regulation by transcription interference from RNA interference, and provides a general
tool for studying the regulatory code of genomes.
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Part I.

Introduction
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1. Gene expression and RNA life

1.1. Genome, transcriptome and proteome

The genetic information that is encoded in DNA contains the blueprint for all known pro-
teins in unicellular and multicellular organisms. Proteins act as macromolecular machines
that determine the cellular structure and carry out biochemical functions. The structure
and function of proteins in turn is dictated by the nucleotide sequence of genes [1]. Genes
are first transcribed into RNA molecules and then translated into amino acid sequences
which are then folded to yield functional proteins. (Figure 1.1, [2]). The proteome differs
widely between organisms and cell types and can be dynamically changed e.g. in different
phases of the cell cycle or to cope with changing conditions like starvation or osmotic
stress [3]. Protein levels and thus the composition of the proteome within a cell at any

Figure 1.1.: Flow of information from DNA to protein. Taken from Scitable - Gene expression
(Nature Education, 2010).
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given time depend on the balance of protein production and degradation. The metabolism
of proteins is heavily regulated at different levels including the rate of transcription, post-
transcriptional processing and translation (reviewed in [4]). Regulation of gene expression
and the amount of RNA molecules available to the translational machinery therefore take
central roles for the biochemical integrity of cells. [5, 6].

1.2. RNA synthesis

How and when genes are switched on and off is determined by complex networks of
protein-DNA interactions and the organization of chromatin [2]. Open chromatin allows
the binding of proteins that recruit the core transcription machinery and co-factors like
Mediator and SAGA at promoters of genes [7, 8]. Transcription initiation is further
regulated by transcription factor binding sites upstream and within promoters that act
as activators or repressors [9]. In the initial step of RNA synthesis, RNA polymerase
escapes from promoter proximal regions and makes the transition to productive elongation
of the RNA chain [10, 11]. After the synthesis of the complete transcript, polymerase
is released from the DNA template and terminates transcription (Figure 1.2, reviewed
in [12]). To orchestrate the transcription cycle, a diverse set of general transcription
factors interacts with components of RNA polymerase at each stage of the cycle. Kinases
and phosphatases act on the flexible C-terminal repeat domain (CTD) of polymerase
to regulate transcription [13]. The phosphorylation state of CTD residues serves as a
master regulator for the transitions from initiation to elongation and termination [14, 15].
Furthermore it couples transcription and RNA processing including efficient splicing and
3’ processing [16, 17, 18]. Recent findings revealed a connection between transcription
termination and RNA degradation, especially for the fate of non-coding RNAs [19, 20].
Transcription predominantly initiates at the promoters of protein-coding genes and pro-
duces sense transcripts. However, recent studies show that polymerases often transcribe
in both directions resulting in bi-directional promoters and in the production of non-
coding RNAs [21, 22]. These divergent and antisense non-coding transcripts as well
as the transcriptional activity itself exhibit diverse functions in the regulation of gene
expression. This includes the control of chromatin states by serving as scaffold for the
chromatin-modifying machinery, gene silencing by transcriptional interference and small
RNA mediated degradation of sense transcripts [23, 24, 25].
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Figure 1.2.: The transcription cycle of RNA polymerases. Taken from [12].

1.3. RNA splicing

In eucaryotes, protein-coding genes contain intronic sequences that are not part of the
mature mRNA. In the process of splicing, introns in the nascent pre-mRNA are excised
and exons are joined together. For the majority of genes, this is performed by a highly
conserved and flexible ribonucleoprotein complex, the spliceosome [26]. In a two-step
biochemical reaction involving two transesterification reactions, the RNA components of
the spliceosome interact with conserved sequence elements in the intronic RNA sequence
to cleave the intron and ligate the adjacent exons (Figure 1.3, [27, 28]). These sequence
elements comprise the core splicing signals that are required for spliceosome assembly:
the 5’ splice site, the 3’ splice site and the branchpoint sequence [29, 30]. Outside of the
core splice site motifs, the bulk of the information required for splicing is thought to be
contained in exonic and intronic cis-regulatory elements that function by recruitment of
sequence-specific RNA-binding protein factors that either activate or repress the use of
adjacent splice sites [31]. This allows cells to make use of alternative splicing to expand
the repertoire of mRNAs and thus the proteome (reviewed in [32]).
Splicing can either occur co-transcriptionally at nascent RNAs that are still bound to
chromatin or post-transcriptionally at full length transcripts [33, 34]. Emerging evidence
suggests that transcription and splicing are physically and functionally coupled [35]. In
yeast, it has been shown that polymerases pause at the 3’ end of introns in order to allow
the splicing reaction to occur [36]. In human, antisense transcription was found to regulate
alternative splicing of genes [37].

1.4. RNA degradation

Cells need to dynamically adjust their protein levels during proliferation, cell division or
to cope with changed environmental conditions. This is achieved by the degradation of
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Figure 1.3.: Splicing reactions to remove introns from pre-mRNAs.

proteins and in addition, the reduction of mRNA levels by active degradation. Various
tightly regulated RNA degradation pathways exist that further accomplish the renewal of
mRNA pools, degrade aberrant or misfolded RNAs and control the life-time of non-coding
and regulatory RNAs [38]. There are three major classes of RNA-degrading enzymes
(RNases): endonucleases that cut RNA internally, 5’ exonucleases that hydrolyze RNA
from the 5’ end, and 3’ exonucleases that degrade RNA from the 3’ end [39]. During
transcription, the nascent RNA is first capped at the 5’end and then polyadenylated
at the 3’ end which prevents cytoplasmic degradation [40]. The initial step in mRNA
degradation involves the removal of the poly-A tail. Deadenylated mRNAs can then either
be ’decapped’, a process that removes the 5’ cap and thus allows the degradation by the
Xrn1 exoribonuclease [41], or destroyed by the exosome that exhibits 3’-5’ nuclease activity
[42].



2. Transcriptome analysis

2.1. Profiling the transcriptome

Large-scale RNA quantification platforms allow the simultaneous measurement of tran-
scripts expressed in cells. Two major techniques exist: hybridization-based (Microarrays)
and sequencing-based (RNA-Seq). Microarrays contain thousands of different DNA se-
quence probes on their surface that are designed to be complementary to target gene
sequences. Fluorescently labeled target sequences that bind to a probe sequence generate
an optical signal [43]. The strength of this signal depends on the amount of target sample
binding to the probe and hence can be used to estimate relative transcript abundances [44].
One major disadvantage of Mircroarrays is the limitation to the measurement of known
transcripts. Sequencing based methods do not rely on specific probe-target matching
and thus allow the identifcation and quantification of all expressed RNAs genome-wide
[45, 46, 47]. Furthermore, RNA-Seq provides a higher dynamic range than Microarrays,
meaning a higher resolution to detect lowly expressed transcripts as well as avoiding
saturation effects with highly expressed transcripts [46, 48]. Strand-specific RNA-Seq
allows the exact identification of transcript boundaries on each strand which led to the
discovery of pervasive antisense transcription (reviewed in [49]). Studies using RNA-Seq
revealed new classes of non-coding transcripts including functional long non-coding RNAs
that exhibit cell-type and developmental time-point restricted expression patterns in
mammalian genomes [50, 51].
Several experimental techniques that make use of RNA-Seq have been developed to in-
vestigate different aspects of transcription and genome regulation. Cap-analysis gene
expression (CAGE) allows to isolate and sequence the initial bases at the 5’ end of capped
RNAs thereby permitting to map transcription initiation sites genome-wide [52]. Other
methods have been developed to selectively sequence the 3’ ends of untranslated regions
of transcripts to study alternative poly(A) site usage [53, 54]. RNA-Seq is also used to
systematically study protein-RNA interactions by sequencing and mapping of RNAs bound
to specific RNA binding proteins [55].
Recently, new experimental methods have been developed that use custom RNA-Seq
protocols together with mathematical modeling to quantify the contributions of RNA
synthesis and degradation to cellular RNA levels (see section 2.2).

6
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2.2. RNA metabolism kinetics

Gene expression can be regulated at each stage of RNA metabolism, during RNA synthesis,
splicing, and degradation. The ratio between the rates of RNA synthesis and degradation
determines steady-state levels of mature RNA, thereby controlling the amount of mRNA
and the cellular concentration of ncRNAs. The rates of both RNA degradation and splicing
contribute to the time required for reaching mature RNA steady-state levels following
transcriptional responses [56, 57].
Several methods to estimate RNA turnover rates genome-wide have been presented
including genomic run-on followed by RNA polymerase chromatin Immuno-precipitation
[58], cytoplasmic sequestration of RNA polymerase [59], and metabolic RNA labeling
[60, 61, 19, 62]. Metabolic RNA labeling allows the isolation of newly synthesized (labeled)
transcripts with minimal perturbation. After separation of labeled from pre-existing RNAs,
transcript abundances in each fraction can be quantified and synthesis and decay rates
estimated [60, 63].
Quantifying the individual contributions of synthesis and degradation led to an improved
understanding of how these processes are coordinated and how they control mRNA
levels. The rates of RNA synthesis show large variation across genes and are the major
determinants of constitutive and temporally or conditionally changing mRNA levels
[64, 57, 5]. RNA degradation modulates and fine-tunes mRNA abundance, largely varies
across conditions and between organisms, and can be dynamically changed to shape
gene expression [65, 66, 67, 68]. In contrast to synthesis and degradation rates, accurate
genome-wide kinetic parameters of splicing are still lacking, likely because sequencing
depth is more limiting to get measurements of short-lived precursor RNAs. Nonetheless,
recent studies in human [69] and mouse [61, 57] indicate that the rates of splicing also
vary within a wide range.



3. Cell-cycle regulated gene expression

3.1. Periodic gene expression

The eukaryotic cell cycle is controlled by periodic gene expression. Gene expression changes
during the cell cycle have been studied extensively in the budding yeast S. cerevisiae
and in the fission yeast Schizosaccharomyces pombe (reviewed in [70]). These studies
have revealed transcriptional regulatory proteins that drive cell cycle progression, their
DNA-binding motifs, and their target genes [71, 72]. Parts of the regulatory networks
that drive periodic gene expression could be reverse engineered [73, 74]. Cyclin-dependent
kinases (CDKs) are pacemakers of the cell-cycle oscillator [75], although the sequential
expression of TFs is sufficient to produce periodic expression for many cell cycle genes in
the absence of mitotic cyclins [76]. A model suggesting the coupling of a TF network to
CDK activity for robust oscillations in the cell cycle has been proposed [77].
The basis for these discoveries was laid by measurements of gene expression along the cell
cycle, followed by identification and quantification of cell cycle regulated genes [78, 79, 80].
Different studies have identified diverse sets of 300-1500 genes that are periodically
expressed [81, 82] (for a comprehensive overview of the results of different studies see the
Cell Cycle database, [83]). The variation in the total number and the overlap of reported
cell cycle genes arises from variation in experimental conditions like synchronization, strain,
technological platform, and the type of computational analyses [81].

3.2. Computational identification of periodically
expressed genes

There are two principal approaches to the computational identification of periodically
expressed genes from time series measurements, non-parametric (model-free) approaches
[80, 84] and parametric (model-based) methods [85, 86, 87]. Non-parametric methods
do not assume a specific shape of a periodic time course, nor do they make particular
assumptions on the distribution of the measurement errors. As such, they are inherently
robust. However, they merely provide a measure for ranking genes according to their
‘periodicity’ without extracting information on the actual shape of the gene’s time course.

8
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Parametric methods explicitly infer the ‘true’ expression time course of a gene as a basis
for a periodicity test. A proper modeling of the time course will not only increase the
sensitivity of periodicity detection, it will provide valuable additional information for the
grouping of periodically expressed genes. On the other hand, parametric models involve the
risk of over-fitting, leading to a low specificity in the periodicity test. A careful choice of
an appropriate model for periodic gene expression with a sparse parameter set is therefore
essential [88]. A successful screening method needs to account for measurement noise and
outliers, and ideally provides a smoothed, error-corrected estimate of the expression time
course. Additionally, it has to account for the loss of synchronization of cells along the
time course, which is caused by variability in progression through the cell cycle [81].

3.3. Cell cycle regulated mRNA synthesis and
degradation

The regulation of mRNA levels not only involves changes in mRNA synthesis but also
changes in mRNA degradation. Periodically expressed genes are enriched among genes
that are subject to cytoplasmatic capping which might also contribute to controlling
mRNA stability in the cell cycle [89]. Recently, long non-coding (lnc) RNAs have been
found to modulate cell cycle transcription and post-transcriptional events by associating
to the mRNA of cyclin-dependent kinases, thereby affecting their stability [90]. mRNA
degradation is known to determine cellular mRNA equilibrium levels [65], and time-variable
mRNA degradation can help in establishing a timely and precise adaption of mRNA levels
[60, 61, 91]. Single-cell, single-molecule studies identified the mitotic genes CLB2 and
SWI5 for which the process of periodic mRNA synthesis is corroborated by time-delayed
periodic fluctuations in the degradation of their transcripts [92, 93]. Periodically expressed
transcripts often encode proteins that are needed at a specific time of the cell cycle [94, 95].
Therefore any mechanism that sharpens the temporal profile of a periodically expressed
mRNA is potentially beneficial. Despite these efforts, major questions concerning cell cycle
gene expression remain. First, how do mRNA synthesis rates for periodically expressed
genes change during the cell cycle? Second, what are the mechanistic determinants for
the timing and magnitude of these synthesis rate changes? Third, do mRNA degradation
rates also change during the cell cycle, and if so, how do these changes contribute to the
observed changes in mRNA levels, i.e. transcript abundance?



4. Aims and scope of this thesis

All cellular biochemical processes in living organisms depend on the regulated expression of
the genome. Genome-wide expression profiling by quantification of transcript abundance
has thus become important standard in molecular biology research. Due to experimental
limitations, gene expression studies have focused for decades solely on the quantification
and comparison of steady-state RNA levels (total RNA). But changes in cellular transcript
abundance originate from changes in RNA metabolism, specifically synthesis, processing
and degradation rates, which total RNA measurements cannot resolve. To overcome
this limitation, new experimental and computational methods are needed that allow the
uncoupling of those processes.
The aim of this thesis was the development of computational methods and visualizations for
the estimation and analysis of RNA metabolism from high resolution tanscriptomic datasets.
The work covered here, builds on an established protocol to estimate RNA synthesis and
degradation rates by metabolic labeling of nucleotides in-vivo and subsequent quantification
of total and labeled RNAs with Microarrays (comparative Dynamic Transcriptome Analysis
(cDTA), [67]).
In our first study, we applied cDTA to synchronized cells from S.cerevisiae allowing for
the first time to monitor cell cycle regulated RNA metabolism in an eucaryote model
organism. Software and mathematical models were developed to identify genes that are
periodically expressed with high confidence and to estimate genome-wide mRNA synthesis
and degradation rates. Cell cycle specific transcriptional regulators were identified and
their contributions to target gene expression timing and level estimated. Finally, based on
a novel dynamic model of regulated RNA degradation, we found evidence for a general
destabilization mechanism that achieves high and sharp expression peaks of cell cycle
genes.
In the second study, we aimed to improve the cDTA protocol by using RNA-Seq to quantify
total and labeled RNA (4tU-Seq). In conjunction with the development of an advanced
computational analysis pipeline, we make use of this high-resolution data for RNA turnover
analyses. First, we established normalization and processing procedures for 4tU-Seq data
and developed a computational approach to estimate robust synthesis, degradation and
splicing rates. Next, we applied 4tU-Seq to wild type S.pombe cells in a time series with
very short labeling times of only two minutes. We further revised the current S.pombe
annotation resulting in the alteration of many transcript boundaries and the identification
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of novel ncRNAs. Finally, the combination of the improved annotation and precise RNA
turnover rate estimates enabled us to identify functional sequence elements in DNA and
RNA that control RNA metabolic rates, and even quantify the contributions of individual
nucleotides.



Part II.

Periodic mRNA synthesis and
degradation cooperate during cell cycle

gene expression
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5. Methods

5.1. cDTA of the yeast cell cycle

A BAR1 deletion strain was generated from WT strain BY4741 by replacing the BAR1
open reading frame from its start- to stop- codon with a KanMX module. BAR1 is
a protease that cleaves and inactivates alpha factor and so recovers cells from alpha
factor-induced cell cycle arrest. The Δbar1 strain was inoculated from a fresh overnight
culture at OD600 0.1. At OD600 0.4 alpha factor was added at a final concentration of 600
ng/mL for 2 hours leading to cell cycle arrest in G1. Synchronization was followed visually
by counting the number of budding cells under the microscope. Cells were centrifuged for 2
min at 1600 x g at 30°C and washed once with 3 x the original culture volume prewarmed
YPD. Cells were then re suspended in the original culture volume with prewarmed YPD
and released from alpha factor induced arrest. 41 consecutive samples were labeled for
5 min with 4-thiouracil every 5 min for 200 min. Labeling and sample processing was
performed as described [67]. In particular, S.pombe mRNA spike-ins were used as an
internal standard to estimate absolute abundance of S.cerevisiae mRNA levels in total
and labeled data. Total RNA purification, separation of labeled RNA as well as sample
hybridization and microarray scanning were carried out as previously described [67]. The
quantification of labeled and total mRNA time courses was performed in two independent
biological replicates.

5.2. Model-based screening for periodic fluctuations in
time series (MoPS)

5.2.1. Description of the overall strategy

The MoPS algorithm is designed to recognize periodic behavior in a observation time
series g = (g(t1), g(t2), ..., g(tK)), having in mind the application to gene expression time
series in our cell cycle data. We will use a likelihood ratio statistic to decide whether a
time series displays periodic fluctuations or not. To that end, we will define a family of
test functions F , which consists of functions that we believe to exhaustively represent

14
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time courses of periodically expressed genes. On the other hand, we will define a set
of non-periodic test functions, F , that we believe to represent all typical time courses
of genes that are not periodic, e.g. constant genes, or genes that show temporal drift
(monotonically increasing/decreasing genes). Given a time course measurement g, and a
continuous function f , let L(f ; g) denote the likelihood of f , given the observations on g.
We determine the maximum likelihood fit fg ∈ F respectively f g ∈ F for the likelihood
function specified in Section 5.2.2. Our test statistic, termed periodicity score, becomes

log
L(fg; g)
L(f g; g)

(5.1)

The larger the periodicity score, the more likely g shows periodic fluctuations.
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Figure 5.1.: MoPS periodic and non-periodic test-functions. Illustration of the statistical test
used in MoPS to determine periodicity in time series data.

5.2.2. Preprocessing and Error Model

The raw total and labeled mRNA level measurements were corrected for 4-thiouridine
labeling bias as described in [60]. The cDTA protocol uses spike-in control RNAs of
S.pombe as an internal standard to normalize total mRNA arrays (resp. labeled mRNA
arrays) between time points. We multiplicatively rescaled all total measurements such
that the sum of all total gene expression levels at time zero equals 6 · 104, a recent estimate
of the number of transcripts per S.cerevisiae cell [96]. The true ratio between the (mean)
labeled expression measurements and the (mean) total expression measurements of all
genes cannot be obtained from our measurements. This normalization factor was derived
from the mean transcript half life in S.cerevisiae in wild type conditions, and it was chosen
as in [67].

Erratic deviations in lowly abundant genes (whose measurements have a high coefficient
of variation) might cause good periodic fits and hence false periodic gene calls if one
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assume constant errors (constant variance of measurements) across the whole range of
gene expression. We account for this by using a heteroscedastic error model. Let g(tk, i)
denote the (normalized) measurement of gene g, g ∈ G, at time tk, k = 1, .., K, in replicate
i ∈ I. Let g = (g(tk, i); k = 1, ..., K, i ∈ I). The likelihood function L(f ; g) measures
the goodness-of-fit by which a continuous function f approximates g at the measurement
time points t1, ..., tK . Our likelihood function itself is standard, we assume independence
of observations, and, as usual for gene expression measurements, Gaussian errors on the
logarithmic values of g,

L(f ; g) =
∏
i∈I

K∏
k=1

1
√2πσg,tk

exp
(
−(log g(tk, i)− log f(tk))2

2σ2
g,tk

)
(5.2)

For each gene g ∈ G, we measured each time course (labeled or total RNA) in two
replicates, namely g = (g(tk, i)). Denote by Θg the full parameter set (specified in Section
5.6.2) which characterizes the approximation functions for g. Our target function is the
negative log likelihood l(Θg; g),

l(Θg; g) =
∑
i∈I

K∑
k=1

(log g(tk, i)− log ĝ(tk; Θg))2

2 · σ2
g,tk

(5.3)

where ĝ(tk; Θg) is the approximation function for g. Our loss function combines the idea
of measuring similarity by correlation with the automatic penalization of genes whose
seemingly periodic variation is in the range of their measurement error. Note that in
Equation (5.3), σ2

g,tk
is used to describe the variance for the total mRNA levels. These

quantities still need to be defined. In our application, given merely 2 replicate measurements
per gene and time point, we face the challenge that the number of observations is not
sufficient to estimate the variances σ2

g,tk
meaningfully from the 2 replicates alone. Therefore,

we use a maximum-a-posteriori approach to regularize the gene-wise empirical variance by
an estimate of the overall, intensity-dependent variance of a microarray. For the estimation
of σ2

g,tk
, we let log ḡ(tk) be the mean of the replicates log g(tk, i), i ∈ I. We assume that

the replicate measurements log g(tk, i) are i.i.d. samples from a Gaussian distribution,

log g(tk, i) ∼ N (log g(tk, i); log ḡ(tk), σ2
g,tk,

) , i ∈ I

For each time point, we calculate a global, intensity-dependent estimate of the variance
by fitting a loess curve mtk(.) to the point set (ḡ(tk), var(g(tk, i); i ∈ I)), g ∈ G. Here,
var(g(tk, i); i ∈ I) denotes the empirical variance.

We assume a Gamma prior on σ2
g,tk

, given by



5.2. Model-based screening for periodic fluctuations in time series (MoPS) 17

σg,tk ∼ Γ (σg,tk , k = k(ḡ(tk)), θ = θ(ḡ(tk))) ∝ (σg,tk)k−1 exp(−σg,tk
θ

) (5.4)

(where γ(k) is the Gamma function). The shape parameter k and the scale parameter
θ are chosen such that the expectation value of Γ(σ; k, θ) equals m(log ḡ(tk)), and its
variance equals a parameter ν which is set to the mean of the squared residuals of the
loess fit. This is achieved by letting

k = m(log ḡ(tk))2

ν
, θ = ν

m(log ḡ(tk))
(5.5)

The regularized standard deviation is taken as the maximum a posteriori estimate

σregg,tk = arg max
σg,tk

[∏
i∈I
N (log g(tk, i); log ḡ(tk), σ2

g,tk,
) · Γ (σg,tk , k = k(ḡ(tk)), θ = θ(ḡ(tk)))

]
.

(5.6)

To safely guard against biases in the low intensity range, we additionally assume a minimum
level for σregg,tk , given by the 25% quantile of the respective residuals distribution.

5.2.3. Definition of periodic and non-periodic test functions

Definition of periodic test functions. Commonly, a gene g is called periodically
expressed with period λ′ ∈ (0,∞) and phase ϕ ∈ [0, 2π] if its expression (in one cell) can
be approximated, up to linear rescaling, by a cosine function

f(t) = cos(2π · t
λ′
− ϕ) (5.7)

The phase ϕ describes the time at which g assumes its maximum expression divided by
the cell cycle length; ϕ will therefore be also called the relative peak time. Accordingly,
we call ϕ

2π · λ
′ the (absolute) peak time of g.

We wish to be less restrictive with respect to the shape of the periodic function. We use
a slightly more general definition of a periodic gene. Let 〈x〉 the remainder x modulo
2π, i.e. the smallest non-negative number such that x = 〈x〉 + 2πz for some integer z.
Let ψ : [0, 2π]→ [0, 2π] be a monotonically increasing bijection of the unit interval. We
consider a gene periodically expressed with period λ′, phase ϕ and shape ψ if its expression
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can be approximated, up to linear rescaling, by a function f = f(t; λ′, ϕ, ψ),

f(t; λ′, ϕ, ψ) = cos(ψ
〈

2π · t
λ′

〉
− ϕ) (5.8)

Note that fixing ψ to the identity function yields the original notion of a periodic gene
(Equation 5.7).

We are measuring the population average of a large number of cells. Not all cells proliferate
at exactly the same speed. We assume that the cell cycle period length in the sample is not
constant for individual cells in the sample, it is distributed according to a random variable
λ′ = λ′(λ, σ) with mean period length λ and a standard deviation of σ. The measured
expression of a periodic gene within our sample population will therefore resemble, up to
linear rescaling, a function

γ(t; λ, ϕ, ψ, σ) =
ˆ
f(t; λ′, ϕ, ψ) dλ′(λ, σ) (5.9)

We finally arrive at the definition of the family of periodic test functions, given by

F = { a · γ(t; ϕ, ψ, λ, σ2) + b |

ϕ ∈ [0, 2π), ψ : [0, 2π]→ [0, 2π] a monotonically increasing bijection,(5.10)

λ ∈ (0,∞), σ2 ∈ (0,∞), a, b ∈ R}

Choice of period length distribution. We tested three different classes of period
length distributions for λ′. We scaled the parameters of the respective distributions such
that they all have an expectation value of λ and a variance of σ2. First, we chose a
Gaussian distribution that has been cropped to the interval [20, 200],

λ′ ∼ U[20,200] ∗ N (mean = λ, variance = σ2) , (5.11)

The cropping was necessary to avoid negative cell cycle times. Secondly, we chose a
log-normal distribution

λ′ ∼ LN (logmean = lnλ− τ/2, logsigma =
√
τ) , (5.12)
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with τ = ln(σ2/λ2 + 1) and thirdly, we selected a Gamma distribution

λ′ ∼ Gamma(shape = λ2

σ2 , scale = σ2

λ
) (5.13)

It turns out that the the mean and standard deviation of the cell cycle length distribution λ′

are enough to determine the dampening of the test function γ(t; λ, ϕ, ψ, σ) up to irrelevant
fluctuations. No matter which of the above distribution classes we chose, the results were
almost identical, so we decided to use the log-normal distribution henceforth.

Definition of non-periodic test functions. Our goal is to discriminate periodic genes
from non-periodic genes. To avoid false positive periodicity calls, the complementary set
of non-periodic test functions should exhaustively cover time courses that a non-periodic
gene can assume. Most often, a non-periodic gene has constant expression over time.
Alternatively, due to continuous changes in the experimental conditions, non-periodic
genes may show a constant drift, i.e., they are monotonically increasing or decreasing.
There might also be genes that have one extraordinarily high / low peak at exactly one
time point (in particular at t = 0). This might be due to a failure of the measurement, or
due to synchronization at the beginning of the time course. We therefore define a family
of non-periodic prototype test functions, consisting of the constant null function τ 0, a
linearly increasing function τ+, a linearly decreasing function τ−, and the delta functions

δ+
k (t) =

1 if t = tk

0 else
and δ−k (t) =

−1 if t = tk

0 else
, k = 1, ..., K. We define the family F

of non-periodic functions as the set of all affine-linear transforms of the prototype test
functions.

5.2.4. Parametrization of and screening for periodic genes

Maximum likelihood estimation in F . The infinite family of periodic test functions
F is parameterized by the tuple (a, b, λ, ϕ, ψ, σ2) (Equation (5.10)). Given a time series g,
our task is to find the maximum likelihood estimate fg = argminγ∈F l(g, γ). To that end,
we construct a finite set of “prototype” functions G, whose affine hull Ḡ = {aγ + b | γ ∈
G, a, b ∈ R} is assumed to lie sufficiently dense in F . An approximation of the maximum
likelihood estimate in F is then given by

fg = argminγ∈F l(γ; g) ≈ argminγ∈Ḡl(γ; g)

= argminγ∈G
[
argmin(a,b)l(aγ + b; g)

]
l2 = arg max (5.14)

The minimization problem for (a, b), given γ, can be solved analytically by a weighted
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linear regression, using the error model in (Equation (5.3)):

g(tk) ∼ γ(tk) , with weights σ−2
g,k , k = 1, ..., K (5.15)

The slope of the regression line determines a, and the intercept determines b. The minimiza-
tion over γ ∈ G is done by exhaustive search. The set G is defined as G ={ψ(t; λ, ϕ, ψ, σ2) |
λ, ϕ, ψ, σ2 taken independently from a representative grid}. The grid Gλ for λ runs from
30min to 90min in steps of 2.5min. The grid Gσ2 for the variance σ2 runs from 1min2 to
15min2 by steps of 1min2, and the grid Gϕ for the peak time ϕ runs from 0 to 2π · 39

4 in 40
equidistant steps. ψ runs through a representative set of piece-wise linear, monotonically
increasing functions that are parameterized by a vector y = (y1, ..., yr−1) in the following
way: Let r = 4, and let tj = j/r, j = 0, ..., r. Define ψ(t; y) as the piece-wise linear
function which linearly interpolates the points (tj, yj), j = 0, ..., r (set (t0, y0) = (0, 0) and
(tr, yr) = (1, 1)). Formally,

ψ(t; y) = r · [(t− tj−1) · yj−1 + (tj − t) · yj] if t ∈ [tj−1, tj]

The values y1, ..., yr−1 are chosen from a finite grid

Gψ = {(y1, ..., yr−1) | yj ∈ {
0
d
,

1
d
, ...,

d

d
}; y1 ≤ y2 ≤ ... ≤ yr−1} ,

for a given grid density d (we chose d = 5). In this way, a function f ∈ F is completely
characterized by the tuple

(ϕ, y = (y1, ..., yr−1), λ, σ2, a, b) ∈ G = Gϕ × Gψ × Gλ × Gσ2 × R× R

With our choice of r = 4, these are in total 7 parameters.

Note however, that the parameters are redundant: Assume that r is an even number.
Let ψ = ψ(.; (0, y, 1)) be parameterized by a vector y ∈ Gψ as described above. Define

y′ = (y′1, ..., y′r−1) by y′j =

yj+r/2 − yr/2 if j = 1, ..., r2 − 1

yj−r/s − yr/2 + 1 if j = r
2 , ..., r − 1

(check that y′ ∈ Gψ). By

elementary calculations, it can be shown that

f(t; λ, ϕ, ψ(.; (0, y, 1))) = −f(t+ λ

2 ; λ, ϕ+ π, ψ(.; (0, y′, 1))

I.e., a phase shift by λ
2 can be described by a re-parametrization of the shape parameters,

and by switching the sign. In other words, the parameter tuples (ϕ, y, λ, σ2, a, b) and
(ϕ+ π, y′, λ, σ2,−a, b) describe identical test functions. Therefore, we only need to screen
for ϕ values between 0 and π. In order to assign the correct peak time afterward, we
simply need to check the sign of a in the linear regression. If a ≥ 0, we keep the parameter
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set (ϕ, y, λ, σ2, a, b). If a is negative, the corresponding set (ϕ + π, y′, λ, σ2,−a, b) is the
one with the correct peak time.

Maximum likelihood estimation in F̄ . Since F̄ is the affine hull of a finite set of
prototype functions, we proceed as in (Equation (5.14)). The maximum likelihood estimate
in F̄ can be calculated exactly as

f̄g = argminγ∈F̄ l(γ; g)T

= argminγ∈prototypes
[
argmin(a,b)l(aγ + b; g)

]
(5.16)

Initial screen for periodic genes. The set P̃ of periodic genes is defined as the set
of genes g for which the (log) likelihood ratio statistic log L(fg ; g)

L(fg ; g) exceeds some threshold
value tmin. Genes that are not in P̃ are considered non-periodic. Assuming a fraction of
1/10 of periodic genes among all genes, tmin is determined by requiring that our criterion
for periodicity have a false discovery rate of α = 0.05). In this way, we identify genes
that are periodically expressed with high confidence and can estimate the mean cell-cycle
length and variation for each time series.

Refined screening to determine gene-specific parameters.

We estimate two gene-independent parameters, the mean cell cycle length λ and the
variance σ2 of the cell cycle length distribution in the initial screen from high-confidence
periodic genes. For fixed λ, σ2, let hg,λ,σ2 = âg · γ(t; λ, ϕ̂g, ψ̂g, σ2) + b̂g be the maximum
likelihood approximation of g under the constraint that λg = λ and σ2

g = σ2, i.e.,

(âg, b̂g, ϕ̂g, ψ̂g) = argmin(ag ,bg ,ϕg ,ψg)l(ag · γ(t; λ, ϕg, ψg, σ2) + bg; g) (5.17)

To determine the most likely global parameters λ̂, σ̂2, we solve

(λ̂, σ̂2) = argmin(λ,σ2)
∑
g∈P̃

l(hg,λ,σ2 ; g) (5.18)

Note that the sum in Equation (5.18) is taken only over the initially defined periodic genes,
because these are the candidates that are informative for the estimation of the global cell
cycle parameters.

A gene g is called periodic, if

log
L(hg,λ̂,σ̂2 ; g)
L(f g; g)

> tmin (5.19)

The set of all periodic genes is denoted by P . Genes that are defined as significant periodic
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in the refined screen are implicitly also significant periodic in the initial screen (P̃ ⊆ P ),
since L(hg; g) ≥ L(hg,λ̂,σ̂2 ; g).

Accounting for replicate experiments. Our cell cycle experiment was done in two
biological replicate time series, we do not only have one, but two time series, (g(r)(tk))k=1,...,K

, r ∈ R = {1, 2}, for each gene g . We noticed that there are slight differences in the
cell cycle length, thus we estimate two global parameter sets λ(r), (σ(r))2, r = 1, 2. The
gene-specific parameters a(r)

g , b(r)
g are estimated separately for each experiment, because

it is not unlikely that there are slight differences in the magnitude of regulation due to
slightly changed environmental conditions. The parameters ϕ̂g, ψ̂g that determine the
shape of the test function however are assumed to be common to all replicates. Finally,
our screening procedure for periodic genes can be stated:

Definition of the Periodicity score and screen for periodic genes.

• Input: Expression time series measurements g(r) = (g(r)(tk))k=1,...,K , g ∈ G, r ∈ R.

• For g ∈ G, r ∈ R, estimate the maximum likelihood fit of g(r) in F resp. F ,

h(r)
g = argminγ∈Gl(γ; g(r)) ∈ F , f̄ (r)

g = argminγ∈F l(γ, g(r)) ∈ F

• Initial screen: determine a threshold tmin, and find all periodic genes P̃ (r) in replicate
r ∈ R,

P̃ (r) = {g ∈ G | log
L(h(r)

g ; g(r))
L(f (r)

g ; g(r))
> tmin}

• For each replicate r ∈ R, calculate the global parameters λ̂(r), (σ̂(r))2 by

(λ̂(r), (σ̂(r))2) = argmin(λtoidentify,σ2)
∑

g∈P̃ (r)

l(h(r)
g,λ,σ2 , g

(r)) , (5.20)

where h(r)
g,λ,σ2 is the maximum likelihood approximation of g(r) in G under the con-

straints λ(r)
g = λ, (σ(r))2 = (σ(r))2 (see Equation (5.17)).

• Refined screening: for each gene g ∈ G, calculate ϕ̂g, ψ̂g, a(r)
g , b(r)

g , r ∈ R by

(ϕ̂g, ψ̂g, a(r)
g , b(r)

g ; r ∈ R) = argmin(ϕg ,ψg ,a
(r)
g ,b

(r)
g ; r∈R)

∑
r∈R

l(a(r)
g ·γ(t; λ̂(r), ϕg, ψg, σ̂

2)+b(r)
g ; g(r))

(5.21)

Let f (r)
g = â(r)

g · γ(t; λ̂(r), ϕ̂g, ψ̂g, (σ̂(r))2) + b̂(r)
g .
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• Define the periodicity score T (g) as

T (g) =
∑
r∈R

log
L(f (r)

g ; g(r))
L(f̄ (r)

g ; g(r))
(5.22)

• Define the set P of periodic genes, P = {g ∈ G | T (g) > |R| · tmin}.

• Output: The set P of periodic genes, and a set of parameters {λ̂(r), (σ̂(r))2, ϕ̂g, ψ̂g, a
(r)
g , b(r)

g ; g ∈
G, r ∈ R}.

5.3. Significance of MoPS periodicity scores

MoPS computes a periodicity score for each gene and thus allows ranking of all genes
according to their likelihood ratio to be periodically expressed respectively constantly
expressed. However, there is no obvious way to assign significance to this score. We
want to make use of existing knowledge derived from published studies about periodically
expressed genes. To do this, we define a positive set and a negative set. The positive set
comprises the top 200 periodic genes from Cyclebase [83] and the negative set consists of
genes that have never been classified as cell-cycle regulated in any cell-cycle expression
study considered [80, 82, 71]. The empirical distribution f of all MoPS scores is fitted by
a mixture of the empirical distributions f+and f−scores of the positive respectively the
negative set,

f ≈ µ · f+ + (1− µ) · f− ,

where the mixture coefficient µ ∈ [0, 1] estimates the fraction of periodic genes among all
genes. Fitting of µ was done be minimization of the Kolmogoroff-Smirnov statistic. µ, f+

and f− were then used to calculate the false discovery rate FDR(c) as a function of the
cutoff value c by

FDR(c) =
(1− µ) ·

´∞
c
f−(t)dt´∞

c
f(t)dt

5.4. Estimation of global and gene-specific parameters

In an initial screen we fit periodic test-functions that represent different combinations of
cell-cycle length (λ), cell-cycle length variation in the population (σ) and phase (φ) to
each expression profile. Using a strict periodicity score cutoff (FDR < 5%, scores with
best fitting λ, σ for each gene) this results in a set of periodic genes for each dataset with
associated loss for all examined λ, σ combinations. The globally best fitting λ and σ are
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then estimated by minimizing the overall loss for each combination over all genes. The
distribution of estimated gene-specific λ and σ agree well within each dataset and between
datasets. λ values range from 55 to 65 minutes and σ are mostly estimated to be in the
range of 4 to 8 minutes.

A second screening is then performed using the dataset-specific global parameters λ and
σ together with a refined set of periodic test-functions which are constructed from a
exhaustive combination of the gene-specific parameters. Expression time courses of all
genes are fitted to those periodic test-functions, separately for each dataset. This refines
the initial screening by estimating gene-specific characteristic parameters. The derived
characteristic expression time courses, the timing of peak expression and periodicity score
are highly correlated between replicates. Since the periodicity scores of labeled and total
datasets are highly similar for genes with positive scores, we averaged the scores and
estimated one cutoff to obtain one set of cell-cycle regulated genes. Controlling the false
discovery rate at 20%, we derive a cutoff of 0.78, which results in 479 significantly cell-cycle
regulated genes (see Figure 5.2 for examples). For each gene, the best fitting 1 min
resolution characteristic time course and its peak timing are averaged in total and labeled
replicate time series.
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Figure 5.2.: Examples of six genes with various periodicity scores estimated with MoPS. Shown
are total (black) and labeled (red) expression time courses (replicates averaged). All genes with
a score above 0.78 are deemed periodic and considered for downstream analyses.
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5.5. Motif search, association of TFs to periodic
transcripts

Genes were grouped with k-means clustering (k = 10) according to their modeled 1 min
resolution labeled expression time courses. Sequences 500 bases upstream of the respective
transcription start site (SGD project, www.yeastgenome.org/download-data/sequence,
Genome Release 64-1-1) were used as input for XXmotif [97] for each cluster. XXmotif was
used with standard parameters, medium threshold for merging of similar motifs and set to
report motifs that can occur multiple times per sequence. Motifs with an E-value higher
than one were discarded. The positional weight matrices (PWMs) derived from ChIP-chip
data [98] and the software TOMTOM (with standard parameters and Pearson correlation
as comparison function) were used to assign the XXmotif found motifs to significantly
similar, known TF-associated motifs (E-value < 1). Subsets of the 479 periodic genes are
formed by using ChIP-chip derived associations (p-value < 0.01) of TFs and their targets
[98]: genes that are regulated by a common set of cell cycle transcription factors (of 32
TFs identified in our TF screen).

5.6. Dynamic RNA turnover model and screen for
periodic fluctuations in RNA degradation

5.6.1. A model for mRNA synthesis and degradation

Let T (t) respectively L(t) denote the time-dependent total respectively labeled mRNA
amount of a certain transcript at time t. We assume that the mRNA population of a gene
is synthesized with a time-dependent synthesis rate µ = µ(t). We further assume that
mRNA decays exponentially at a time-dependent rate δ = δ(t). The amount of degraded
mRNA molecules during the time interval dt can be expressed as δ(t)T (t). The synthesis
rate function µ(t), the decay rate function δ(t) and the initial mRNA level T (0) determine
the total expression T (t) and its labeled expression L(t) by the differential equation

dT (t)
dt

= µ(t)− δ(t)T (t). (5.23)

Note that in [60], [67], we needed to account for an increase in the cell number with time.
Here, we only follow the first cell cycle of the experiment, because the fluctuations in later
cell cycles are attenuated too much to be informative for degradation estimation. Without
loss, we may therefore assume a constant cell number, which simplifies our calculations
considerably. Furthermore, we do not model cell growth, since we follow a synchronized
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population of cells for one cell cycle, therefore the growth rate α = 0. Equation (5.23) can
be solved efficiently for arbitrary, sufficiently smooth functions µ and δ using a numerical
ODE solver. Assuming piece-wise linear functions for µ and piece-wise constant functions
for δ, it is even possible to derive the analytical solution to Equation (5.23).

We start labeling at time point t0 and set

Θg(t, t0) :=
ˆ t

t0

δ(ξ)dξ (5.24)

The slope of the piece-wise linear function for µ changes at time points mi with i = 0, ..., k.
The piece-wise constant degradation rate δ changes at di with i = 0, ..., n. We set H :=
{hi | i = 0, ..., k + n} = {mi | i = 0, ..., k}⋃ {di | i = 0, ..., n}with hi ≤ hi+1 for all i. On
each interval [a, b] (a = hi,b = hi+1) we can calculate

φ(a, b) =
ˆ b

a

[
µa + µb − µa

mb −ma
· (ξ −ma)

]
eαξ+Θ(ξ,0)dξ .

Equation (5.23) can then be solved as

T (t)− T (tj) = e−Θ(t,tj)

T (tj) +N
∑
i|t>hi

φ(hi−1, hi) + φ(hmax, t)
 (5.25)

with hmax = max(hi > t). The total amount of mRNA can therefore be derived using
tj = 0 and T (0) = T0. The amount of labeled mRNA at time point tj is obtained from
Equation (5.25) by L(tj) = T (tj + tlab) − T (tj), where tlab is the length of the labeling
interval.

5.6.2. Model specification

Given total and labeled time courses T (tk, i) and L(tk, i) of a gene in replicates i ∈ I, our
main purpose is testing for the existence of periodic changes in mRNA degradation. We
compare a model with constant decay rate, δ(t) = δ, with a model for regulated decay, in
which δ(t) is a cosine function with average decay level δm, peak time ϕ and amplitude a.
The synthesis rate µ(t) is modeled as a piece-wise linear function with 10 min intervals
between interpolation points (5 min, µ0), (15 min, µ1), ..., (65 min, µ6). Additionally, we
need to rescale the measured labeled mRNA fractions L(t) by an unknown factor c in order
to match the true fraction of newly synthesized mRNA given the amount of measured
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total mRNA. This parameter reflects the true ratio between the (mean) labeled expression
measurements and the (mean) total expression measurements of all genes at time 0. Given
a complete parameter set Θ for one of the models, the synthesis and degradation rates are
then converted into predictions for the labeled and total mRNA time courses, T̂ (tk; Θ)
and L̂(tk; Θ). Our target l(Θ) function measures the goodness-of-fit for both time courses,
where goodness-of-fit is given by Equation (5.3). Hence,

`(Θ) =
∑
i∈I

`(Θ;T (tk, i)) +
∑
i∈I

`(Θ;L(tk, i))

=
∑
i∈I

K∑
k=1

(log T (tk, i)− log T̂ (tk; Θ))2

2 · σ2
T,tk,i

+
∑
i∈I

K∑
k=1

(log L(tk)− 1
c
· log L̂(tk; Θ))2

2 · σ2
L,tk,i

(5.26)

where σ2
T,tk,i

and σ2
L,tk,i

are the regularized replicate-, gene- and time-specific standard
deviations obtained in Section 5.2.2.

Thus, the full model M1 assuming constant decay for one gene is parameterized by

ΘM1 = {c, δ, µ0, ..., µk} (5.27)

and the competing model M2 using a sigmoidal function for the decay is parameterized by

ΘM2 = {c, δm, ϕ, a, µ0, ..., µk} (5.28)

Both models are fitted using standard Metropolis-Hastings MCMC (we use Gaussian
proposal functions truncated to the positive real values).

5.6.3. Detection of genes with variable degradation rate

Applying both the constant and the regulated decay model to a gene profile, this results
in a score for the constant model ΘM1 and a score for the regulated Model ΘM2 (compare
Equation (5.26)). For each gene profile we compare the fit of the two models by calculating
a Variable Degradation Score, VDS, which is given by the log-likelihood ratio between the
two models:

V DS = `(ΘM1)− `(ΘM2) (5.29)

Since constant degradation is a special case of variable degradation with a max/min ratio
of 1, the constant degradation model never scores better than the variable degradation
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model. Consequently, the Variable Degradation Score is never negative. It is zero when
both models fit equally well, and it is higher the more the variable degradation model is
required to explain the data. By simulations we determined the sensitivity and specificity
of different Variable Degradation Score cutoffs. We concluded that a Variable Degradation
Score cutoff of 0.3 ensures sufficiently high sensitivity and specificity for genes with a
degradation rate amplitude (max/min ratio) of at least 1.5.



6. Results and Discussion

6.1. cDTA monitors mRNA synthesis and degradation
during the cell cycle

To measure mRNA synthesis rates over the yeast cell cycle, we synchronized cells using
alpha factor as described [82]. For consistency with prior studies, we generated and used a
bar1 deletion strain of yeast (Methods 5.1). After release of cells in G1 phase we used
cDTA [60, 67] to measure the amount of newly synthesized and total RNA at 41 time
points separated by 5 minutes, covering 200 min, corresponding to three cell cycle periods.
At each time point newly synthesized RNA was labeled with 4-thiouracil for 5 minutes
(Figure 6.1A). Using S. pombe as an internal standard, we normalized the labeled and total
mRNA fractions across the time series to get absolute expression estimates (Methods 5.1).
The entire time series experiment was performed in two biological replicates. Because
labeled mRNA levels correlate well with mRNA synthesis rates, these data represent the
first genome-wide estimation of mRNA synthesis rates in synchronized cells at different
time points in the cell cycle.

We did extensive checks to verify the quality of our data set. Correlations (within labeled
respectively total samples) were consistently above 0.93 (an example is shown in Figure
6.1B). Strikingly, periodic expression already shows in the samples correlation structure.
Samples taken at similar time points in the cell cycle have a higher correlation than
samples taken at more distant time points in the cell cycle. This leads to a characteristic
tri-band diagonal correlation structure, corresponding to the three cell cycles that we
monitored. A principal component plot automatically places consecutive samples in a ‘cell
cycle clock’, a clock-wise spiral, demonstrating that most variation in the data (>74%) is
due to periodic expression fluctuations (Figure 6.1C).

29
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Figure 6.1.: cDTA cell cycle time course experiment and quality. (A) mRNAs were labeled with
4-thiouracil every 5 minutes until t=200min. After 5 min labeling time the respective sample was
stopped and further processed according to the cDTA protocol. The experiment was performed
in two replicates. For each mRNA, we obtained two time series of total mRNA levels (black and
grey lines), and two time series of labeled mRNA levels (dark red and light red lines). (B) As a
representative example, the scatter plot shows a comparison of the log labeled expression levels
for all genes 50 minutes after synchronization in the two independent time series. (C) The yeast
’cell cycle clock’. Each point corresponds to the microarray measurements of one time point. Its
coordinates are the projection of the corresponding expression vectors onto the two first principal
components in a principal component analysis. Color coding is according to time in the cell
cycle.
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denote the mean mRNA level and the amplitude, respectively. The decrease of the amplitude
along several cell cycles is due to synchrony loss, σ. Bottom panel: The cosine wave, our basic
model of periodic expression, is adapted to the time series by the shape parameter ψ, which is a
monotonic transformation of the ‘clock’ that ticks along the interval [0, 2π].
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6.2. Model-based periodicity screening (MoPS)

6.2.1. Overview

To study cell-cycle regulated RNA metabolism, we first developed a new parametric
screening method for the detection of periodic fluctuations in time (Model-based Periodicity
Screen, MoPS, Figure 6.2, Methods 5.2.4). MoPS is available as an R/Bioconductor package
at www.bioconductor.org and can be widely applied to various kinds of datasets. Here, we
used MoPS to examine each labeled and total mRNA expression time course for periodicity
and thus cell-cycle regulation. MoPS calculates a likelihood ratio statistic that compares
the best fit of a periodic expression curve to that of a non-periodic curve (Methods 5.2).
Periodic expression is modeled by a dampened, deformed cosine wave using 6 parameters
(Figure 6.2).The cell cycle length λ (min) corresponds to the time difference between
the first expression peak at peak time when the maximum mRNA level is observed and
the next expression peak. The periodically changing mRNA level is described by its
mean m and its amplitude A. The decrease of the mRNA level amplitude with time
due to progressive loss of synchronization between cells is described as the ’synchrony
loss’ σ. We explain this effect by variation in cell cycle length of individual cells in our
synchronized population. The parameter σ describes the dispersion of the cell cycle length
distribution. The deformation of the cosine wave is described by a ‘shape’ parameter ψ, a
bijective transformation of the interval [0, 2π]. Since the mean cell cycle length and the
loss of synchronization are a characteristic of the cell population, these two parameters
are common to all examined transcripts. This reduces the number of fitted parameters for
individual gene expression profiles to four, which makes MoPS extremely robust, despite
its flexibility that ensures excellent fits.

6.2.2. Simulation study to evaluate MoPS

Prior to the analysis of the cDTA time series, we conducted a simulation study to assess the
discriminatory power and the reconstruction accuracy of MoPS. We randomly generated a
set of 200 periodic functions f with period length λ = 12 min, no attenuation (σ = 0),
shape and peak time chosen at random, mean 0, and amplitude 1. Each function was
used to generate a periodic time course yj = f(tj) + εj, j = 1, ..., 37, for tj = λ

6 · j, and
Gaussian noise εj ∼ N (0, σ2

j ). We simulated heteroscedastic noise by choosing the variance
σ2
j dependent on the expression level, σ2

j = σ2
0 + σ2

0
2 · f(tj) ∈ [σ

2
0
2 ,

3σ2
0

2 ]. We varied the
global signal-to-noise ratio σ0 between -1 and 1.5. The data set was complemented by 200
time courses containing only noise of the same variance. We combined rigid or flexible
curve modeling (using only sine waves as basic functions, or the more flexible curves)
with a constant (homoscedastic) or a variable (heteroscedastic) error model, resulting in
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4 screening strategies. For each signal to noise ratio, all 400 time courses were ranked
according to their periodicity score, and discriminatory power of the periodicity score was
measured by the area under receiver operating curve (AUC, Figure 6.3A). It turns out that
a heteroscedastic error model is always beneficial if the magnitude of the errors is modeled
correctly. Remarkably, the discriminatory power is almost constant if one includes the
shape of the curve as a parameter, which indicates the robustness of our model against
overfitting. We additionally quantified the quality of the fit by calculating the average
residual sum of squares (RSS, Figure 6.3B) for all periodic time courses. For moderate
or low noise levels (log2 signal/noise › 0.5), flexible curve fitting yields a more accurate
estimate of the true curve, while at the same time extracting more information from the
data.
Taken together, the characterization of the space of periodic functions by a sparse, in-
terpretable parameter set makes the algorithm flexible enough to yield a concise fit of
periodic functions while at the same time being robust against overfitting. MoPS also
accounts for heteroscedastic noise in the measurements, which substantially improves the
quality of fit (examples in Figure 6.3C).

6.3. MoPS applied to cDTA time series

6.3.1. Identification and characterization of periodically expressed
genes

To identify a reliable set of genes that are periodically expressed, we applied MoPS
separately to total and labeled mRNA from both replicate cDTA time series. The cell
cycle length λ and the synchronization loss σ were estimated for each gene. Among genes
that have a positive periodicity score, the distribution of obtained cell cycle lengths λ
sharply peaks at a median of 62.5 min, and the distribution of the synchrony losses σ has a
median of 7 min (Figure 6.4A). The cell cycle length estimate of 62.5 min agrees well with
that of 65min in [82] who used the same strain and the same synchronization method. In a
second step, we fixed the parameters λ=62.5 min and σ=7 min, and recalculated all other
parameters, namely the phase of expression, the characteristic shape of its time course
and the periodicity score for all genes. The obtained values were in excellent agreement
between replicates, and also in good agreement between labeled and total mRNA (Figure
6.4B,C). Genes were then ranked according to their periodicity score (for a representative
selection of genes and their periodicity scores see Figure 5.2).

MoPS computes a periodicity score for each gene and thus allows ranking of all genes
according to their likelihood ratio to be periodically expressed resp. constantly expressed.
However, there is no obvious way to assign significance to this score. We used existing
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Figure 6.3.: Top panel: Detection specificity and sensitivity for screening with fixed sine shape
(blue) and variable curve shape (red), with constant error model (faint colors) and variable
error model (saturated colors). A) Each square represents the Area under curve value (AUC,
y-axis) for one method at a certain signal-to-noise level (x-axis). B) Each square represents
the average quadratic distance (RSS, y-axis) of the predictions to the true values at t1, ..., t37,
for all periodic time courses. Bottom panel (C): Examples of the true signal (black curve), the
measurements (grey squares connected by lines), for different noise levels, log2(signal-to noise) =
-1, 0, 1. Colored lines show curve fits derived from the measurements using sine waves (blue) or
flexible curves (red).
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knowledge derived from published studies about periodically expressed genes to define a
positive set and a negative set. The positive set comprises the top 200 periodic genes from
Cyclebase [83] and the negative set consists of genes that have never been classified as
cell cycle regulated in any cell cycle expression study. The empirical distribution of all
MoPS scores is fitted by a mixture of the empirical distributions of the MoPS scores of
the positive respectively the negative set (see Methods 5.3). A cut-off value was chosen to
control the false discovery rate at a 20% level (Figure 6.4F). The power of our screening
method was increased by combining the periodicity scores obtained from the total and
labeled mRNA from both replicates into one sum.

6.3.2. Validation of periodically expressed genes

6.3.2.1. Comparison with other cell-cycle expression studies

MoPS identified a total of 479 periodic genes with high confidence (Figure 6.4). In the
literature, different periodicity screening methods yield between 300 and 1500 genes that
are considered cell cycle regulated in yeast [99, 80, 100]. The agreement between the
datasets/methods is moderate [81], but nevertheless highly significant (p < 10-10 in all pair
wise Fisher tests). This shows that the detection of periodic genes strongly depends on
the method, the experimental conditions, and the stringency cut-off that has been applied.
Our set of significantly periodic genes can be compared to other studies by visualizing the
overlap in identified periodic genes (Figure 6.5). Three studies are chosen for comparison:
Spellman et al. [80] as the pioneering cell-cycle Microarray study; Granovskaia et al. [82]
as the most recent study; Cyclebase [83] as a meta-study that combines several studies.
Only 246 genes are found to be cell-cycle regulated by all studies, while there are 523
genes that are only identified in one study.

6.3.2.2. Benchmark on identification of bona-fide cell-cycle genes

We validated our periodicity screening using a framework proposed by de Lichtenberg
et al. [81]. They developed their own periodicity screening method and applied it to 6
different cell cycle expression data sets. The resulting 6 ranked lists plus a combined
reference list of periodically expressed genes are accessible from the Cyclebase repository
(www.cyclebase.org, [83]). We compared our ranking of periodic genes to these 7 lists using
the benchmark scheme as in [81]. The ranked lists were retrieved from Cyclebase. These
lists correspond to different cell-cycle microarray datasets that have been normalized in
the same manner and are ranked according to periodicity by the method of Lichtenberg et
al. [81]. Additionally, it contains a ranked list that was derived by combining all datasets.
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Figure 6.4.: (A) Identification of the global parameters cell cycle length (λ, x-axis) and
synchrony loss (σ, y-axis). Each gene yields an estimate (λ,σ). The 3D surface plot shows
their joint distribution with the medians λ=62.5min and σ=7min. (B) Replicate expression
measurements (black and grey dotted lines) of selected genes together with the fitted characteristic
time courses and timing of peak expression (light green). The estimates are averaged for further
analyses (dark green) (C) Estimated phases of genes that are significant periodic in labeled data
(Pearson correlation 0.97) (D) Total (black) and Labeled (red) time courses (dotted lines) are
shown together with the MoPS fitted characteristic time course (solid lines). Peak times as
estimated from MoPS are shown as green lines. (E) Comparison of individual periodicity scores
for total and labeled mRNA. (F) The distribution of periodicity scores (black distribution) is
approximated as a mixture of the periodicity score distributions of a set of bona fide periodic
(red distribution) and non-periodic genes (blue distribution). Based on this fit, the 20% false
discovery rate cutoff is calculated as 0.78.



6.3. MoPS applied to cDTA time series 37

237237

3333

121121

1818

3333

246246

9797

1818

9191

3333
1717 2929

107107

7474

1212

this study (479) Cyclebase (600)

Spellman (800) Granovskaia (598)
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Three different benchmark sets were used as a gold standard to assess the quality of a
gene list by a receiver operating characteristic (ROC) analysis:

• Set B1 - A total of 113 genes previously identified as periodically expressed in
small-scale experiments.

• Set B2 – 352 genes whose promoters were bound (P-value below 0.01) by at least
one of nine known cell cycle transcription factors in two independent Chromatin IP
studies.

• Set B3 – 518 genes annotated in MIPS [101] as ‘cell cycle and DNA processing’.

A comparison of our ranked list with the other lists was performed as proposed in [81].
In all 7 cases and for all 3 benchmark sets, the de Lichtenberg method has been proven
to perform better or at least as good as competing methods [102]. Our ranking, when
included in the ROC analysis, performs comparably to the Lichtenberg method in all 3
benchmark scenarios (Figure 6.6). Out of the top 200 periodic genes from the combined
ranking, we find 152 to be significantly periodic with our approach applied to our dataset.
Visual inspection shows that the 48 genes that we did not classify as periodic in our
dataset, indeed exhibit predominantly periodic profiles in labeled and total but show
low correlation between replicates or show deranged profiles in the first 30 minutes after
synchronization.

6.3.2.3. Robustness of peak time assignment

We follow the validation approach as described by Guo et al [87]. to estimate the robustness
of peak time assignment to experimental noise. We added varying amounts of Gaussian
noise to the measured time course of a gene and extract the peak timing of expression.
We then compare the perturbed estimates with the original peak times. As in [87], we
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studies. These genes were found to be bound by known cell-cycle associated transcription factors.
(C) Benchmark set B3 consists of 518 genes annotated in MIPS as ‘cell cycle’ or ‘DNA processing’.

select the top 100 genes ranked by our periodicity score for benchmarking. For varying
levels of noise, we generate 10 perturbed time courses for each gene, estimate the peak
time with MoPS and compute the unsigned timing differences to the original estimates.
The level of noise that is added at every time point is taken from a normal distribution
(mean =0, sd = noise.level * error). The error is estimated from the calculated variation
in our experimental replicate time series (see Section 5.2.2). We use four different levels
of noise: 0.5 (more precise than actual measurements), 1, 1.2 and 1.5. The median peak
time deviation was in the range of 1-2.5 min, confirming the accuracy of our estimates
(Figure 6.7).

6.4. Three expression waves during the cell cycle

We sorted all periodically expressed genes by their synthesis peak time (Figure 6.8). Among
the periodically expressed genes were many prominent cell cycle genes [79] including all
six genes of the minichromosome maintenance family (MCM2-7), cyclins, and histone
genes. These genes were used to assign cell cycle phases G1, S, G2, and M to measurement
time points in our data. Periodically expressed genes appeared to be grouped in three
expression waves, in agreement with previous observations [103]. A first wave shows peak
synthesis in G1 phase, a second during S phase, and a third at the onset of M phase
(Figure 6.8).
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Figure 6.7.: Violin plot showing peak time variation in simulated perturbed expression measure-
ments. Each violin shows the distribution of unsigned differences between peak timing estimated
from original and perturbed time courses (labeled data).

6.5. Recovery of cell cycle transcription factors

Our 479 periodically expressed genes also contained 8 transcription factors (TFs) that
potentially regulate the cell cycle. Since there is no consensus set of TFs that regulate
the cell cycle we systematically screened for transcriptional regulators of periodic genes
(Figure 6.9A). We used only the labeled mRNA data in this screen, because these represent
transcriptional regulation better than total mRNA profiles. The extracted shapes of
the periodic genes were grouped into 10 clusters by Euclidean distance average linkage
k-means clustering. For each of the clusters, we performed an XXmotif search [97] for DNA
sequence motifs in a region 500 bp upstream of the experimentally defined transcription
start site. In total, 50 motifs with E-value smaller than 1 were recovered. Each motif was
then matched to known DNA-binding protein motifs with TOMTOM (Methods 5.5). We
obtained a total of 50 DNA motifs that were associated with a total of 32 DNA-binding
transcription factors. The top motif identified from a G1 cluster perfectly matched the
known Mlu1 cell cycle box (MCB) motif (Figure 6.9B). The MCB motif is enriched in
promoters of genes required for DNA synthesis. TOMTOM identified two TFs that were
significantly associated with the MCB motif, MBP1 and SWI6, which form the MBF
heterodimer in which MBP1 acts as a sequence-specific, DNA-binding trans-activator.
MBF regulates expression during the G1/S transition [104]. The second best motif that
was found to be enriched in M phase was matched by multiple TFs (MCM1, NDD1, YOX1,
FKH2, DIG1, ASH1, and FKH1), reflecting a complex interaction network of activators
and repressors. The repressor Yox1 and the activator Fkh2-Ndd1 compete for binding
to Mcm1, although they associate at opposite sides of the dimeric Mcm1 transcription
factor. This competition determines the expression of late mitotic genes in yeast [105].
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Figure 6.8.: Fitted time courses of the 479 periodic genes. Each row corresponds to one gene.
Time is measured in terms of cell cycle phases G1,S,G2,M (x-axis). Genes were sorted according
to their peak time, starting with genes peaking in G1 phase. High (low) expression is encoded in
red (blue), where expression is taken relative to the gene’s mean expression. The histogram on
top shows the distribution of the peak times along the cell cycle. The snake plot to the left shows
the improvement of the MoPS fit over a fit with a sine wave. Each box in the plot summarizes
15 consecutive genes. The bottom plot shows how the synchronization of cells decreases with
time. Each measurement time point is represented by one column, which is a grey scale-coded
representation of the individual cell cycle time distribution across the cell cycle. The golden bar
marks the central 50% interval of the respective distribution. The dark red dot within the gold
bar marks the modes of these distributions.
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Figure 6.9.: Identification of cell-cycle related DNA motifs and transcription factors (A)
Workflow, consisting of a motif discovery step using XXmotif and a TF detection step using
TOMTOM. The input to XXmotif are the 500 bp upstream sequences of sets of co-regulated
genes. The resulting list of significantly enriched motifs is processed by TOMTOM to find TFs
with matching binding sites. (B) Sequence logos of the two top motifs, their associated TFs
(MBF for motif 1, MCM1, YOX1, NDD1 for motif 2), together with their E-value. (C) Venn
diagram showing the overlap of various integrative bioinformatics methods for the prediction of
cell-cycle related TFs.

The obtained set of 32 predicted cell cycle TFs partially overlaps with TFs in other studies
that integrate expression data with motif-discovery tools [106, 107, 76, 108, 109] (Figure
6.9C). It is evident that the association of TFs with cell cycle regulation is only clear for a
core set of a few TFs. Wu and Li performed a benchmark on TFs annotated as known cell
cycle regulators [110] with the Jaccard index as a measure of agreement. Their method
scores best (Jaccard index 0.293), whereas our set of TFs led to a Jaccard index of 0.275,
which is higher than 0.245, the score of the second best TF set [108] in their study.

6.6. TFs govern the expression timing of periodic genes

We investigated the influence of cell cycle regulating TFs on the mRNA synthesis of their
target genes. Using ChIP-chip derived TF-target gene associations [98] of our 32 cell cycle
regulators to our 479 periodic genes, we compare the total mRNA time course of a TF to
the labeled time course of its targets. 8 of our 32 cell-cycle TFs are periodically expressed
themselves. Their time course of total mRNA levels corresponds to their regulatory role in
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Figure 6.10.: Cell cycle regulators and their target genes. Two examples of identified cell-cycle
regulating TFs (A: SWI4, B: YOX1) and their periodically expressed target genes. The top panel
shows the measured, mean centered and re-scaled time courses of the TF (total mRNA, black
line) and its periodically expressed targets (labeled mRNA, grey lines). The yellow-orange band
marks the expression range of the central 50% of the targets at each time point. The bottom
panel shows the corresponding fitted time courses as derived from our screening procedure.

cell cycle-associated transcription activation or repression. The expression of an activating
TF is expected to precede the synthesis of its target genes. This is in accordance with
our observations. SWI4 is a known activator working together with SWI6 to activate
G1-specific transcription of targets. Indeed, the level of SWI4 mRNA peaks shortly before
the synthesis peaks of its periodic target genes (Figure 6.10A). In contrast, the expression
of a repressive TF should be preceded by the synthesis peak of its target genes. Indeed,
the transcriptional repressor YOX1 that regulates genes expressed in M/G1 phase [111]
shows high expression after peak synthesis of its target genes, and low mRNA levels when
the synthesis rate of its targets is high (Figure 6.10B).

The periodically expressed gene FKH2 is described as having a dual role as activating
and repressing TF [112]. Its targets peak either at the onset of M phase, shortly after
the FKH2 peak, or at late G1 phase, shortly before the FKH2 peak. The first group is
consistent with an activating role of FKH2, the second group seems to be repressed by
FKH2 (Figure 6.11). Targets of non-periodically expressed TFs show also coherent timing,
the most compelling example being the TF MBP1 and genes exclusively targeted by MPB1.
The same effect was observed for all target gene sets with identical motif composition in
their upstream region. Thus, in many instances the expression levels of regulatory TFs
could explain the synthesis rates of their target genes.
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Figure 6.11.: Labeled expression time courses
of 47 targets of the cell-cycle transcription fac-
tor FKH2. FKH2 total mRNA peaks at the
beginning of M-phase (black line). One group of
periodic targets show labeled expression peaks
approx. 10 minutes after FKH2 peak expression
(blue), a second group comprises genes that show
labeled peak expression when FKH2 levels are
low (red).

The mean expression and amplitude is esti-
mated for all 479 periodic genes by fitting
their MoPS estimated characteristic time
course to absolute mRNA concentrations.
The minimization problem is solved with
linear regression (see section 5.2.4). This
extends the MoPS estimated time courses
by adding information about the absolute
mRNA levels (Figure 6.12A,B). Mean ex-
pression levels of non-periodic genes are
determined by using the mean expression
in the time course of the first cell cycle. We
observe a very high correlation of absolute
mean mRNA levels in replicates of total
and labeled datasets (Figure 6.12C,D). The
distribution of the mean expression of the
periodic genes is comparable to that of all
genes, with the exception of the left tail
of weakly expressed genes. This is not sur-
prising, because periodic genes fluctuate in
their expression, which necessarily leads to
a certain minimum mean expression level.

6.8. The core promoter governs the synthesis rates of
periodic genes

The genes exclusively regulated by MBP1, though agreeing well in their timing, showed a
remarkable diversity in their synthesis mean and amplitude (Figure 6.13A). The distribution
of their mean synthesis rates resembles that of all periodic genes. This could also be
observed with other sets of target genes which are regulated by common cell cycle TF(s).
This suggested that TFs determine the timing but not the magnitude of the transcription
rate of their target genes. We therefore checked whether the synthesis rate is rather set
by the target gene core promoter sequence. We analyzed the deviation of the TATA
box sequence from the TATA consensus. Genes were partitioned into 3 groups, genes
with a perfect TATA box (0 mismatches to the TATA consensus motif), and TATA-
less genes showing 1 or 2 mismatches compared to the TATA box consensus at the
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Figure 6.12.: (A,B) Fitted absolute expression time courses and corresponding raw measure-
ments in labeled data for five periodic genes. (C,D) Correlation of estimated absolute mean
expression of 479 periodic genes between replicates in labeled and total data.

experimentally defined location where the transcription pre-initiation complex is formed
[113]. We excluded genes with more than 2 mismatches from the analysis, since only three
of these genes were periodically expressed. For non-periodic genes the distribution of mean
synthesis rates peaked at similar values for all TATA groups, with perfect TATA-containing
genes peaking only slightly higher than TATA-less genes (p-value < 1.7e-5, Wilcoxon
test) (Figure 6.13B). For periodic genes, however, the perfect TATA box group showed a
substantially higher mean synthesis rate than the imperfect TATA box groups (p-value
< 10e-10, Wilcoxon test). Although the differences are significant for non-periodic and
periodic genes, the effect is 3-fold stronger for periodic genes. Indeed, periodic genes with
very high levels in total and labeled mRNA were almost exclusively found in the perfect
TATA box group. Gene Ontology analysis [114] of the 80 periodic genes with a consensus
TATA box (using all 479 periodic genes as background) showed enrichment for processes
of cell cycle progression, with the most significant process being the regulation of CDK
activity by cyclins (CLN1, CLN2, CLB1, CLB6, PCL7, and PCL2). Further enriched Gene
Ontology categories include DNA replication (POL12, POL30), chromosome organization
during meiosis (MCD1, SGO1, GNA1), and chromatin assembly and histone formation
(HTB1, HTA1, HHT2) (Figure 6.13B). To corroborate these findings, we compared the
occupancy levels of the general transcription initiation factor TFIIB at core promoters
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[113] to the mean labeled mRNA levels of periodic and non-periodic genes. We observed
a high correlation of TFIIB occupancy with the expression mean (Figure 6.13C) and
amplitude. The highest correlation was found for periodic TATA-box containing genes.
Whereas other initiation factors behave like TFIIB, the initiation factor TFIID occupancy
correlated only weakly with expression levels of periodic genes, regardless of the core
promoter sequence. This is in line with the proposed role of TFIID in the transcription
of constitutively expressed genes [115]. To conclude, the mRNA synthesis of cell-cycle
regulated genes is governed by the sequence of the core promoter rather than the binding
of upstream TFs, which however control the timing of expression.

6.9. Degradation rates of periodic mRNAs are not
constant

Assuming that all copies of a transcript in an mRNA population share the same hazard of
being degraded, the time course of an mRNA population is described by the differential
equation

dT/dt = µ(t)− δ(t)·T (6.1)

where T is the mRNA level, µ(t) is the time-dependent synthesis rate and δ(t) is the
time-dependent degradation rate for that population. Given µ(t) and δ(t), Equation 6.1
can predict the time course of total and labeled mRNA levels. Note that Equation 6.1
leaves one degree of freedom, the boundary condition on T. By setting T(0) to the total
RNA level at time 0, the resulting solution T(t) to Equation 6.1 is the time course of the
total RNA. By letting T(tj)=0, the solution T(t), for t>tj, is the amount of labeled RNA
obtained after a (t- tj) min labeling pulse starting at time tj. For a description of the
numerical and analytical solutions to Equation 6.1 see Methods 5.6.1. We used Equation
6.1 to simulate how a peak in mRNA synthesis translates into total mRNA in different
degradation rate scenarios (Figure 6.14A). In particular, we computed the peak time
delay between synthesis rate peak and total mRNA peak. A constant, low degradation
rate leads to a broad peak in total RNA with a large peak time delay. A constant, high
degradation rate reduces this time delay substantially, yet at the expense of a reduced
total mRNA level. A variable degradation rate with a peak following the synthesis rate
peak however results in a shorter peak time delay while maintaining a high total mRNA
peak. The simulation shows that appropriate changes in the mRNA degradation rate
minimize the peak time delay while still achieving a quantitatively high total mRNA
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Figure 6.13.: Promoter and enhancer structure determine expression strength and timing (A)
Time courses (absolute labeled mRNA measurements) of 22 periodically expressed genes that are
exclusively annotated as MBP1 targets. Colors correspond to mean expression levels extracted
from our fitting procedure. Box plots on the right show the expression ranges of the 22 MBP1
targets (left) and all 479 periodic genes (right) in logarithmic scale. (B) Densities of mean labeled
mRNA expression of periodic genes respectively non-periodic genes (inset), stratified for the
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the mean (rounded to nearest tenth) of the respective distributions. Selected periodic genes that
have a consensus TATA-box and are associated with enriched cell-cycle processes (7 out of 80,
see text) are marked. (C) Correlations between the mean labeled expression of non-periodic and
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occupancies of general TFs involved in pre-initiation complex formation. The heatmap colors
range from green (moderate correlation) to yellow (good correlation) and red (high correlation).
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response. We therefore compared the peak time in labeled and total mRNA for each
periodic gene (Figure 6.14B). This revealed a median time delay of 2 min between the
total RNA with respect to the labeled RNA peak (mean 2.8, 1st quantile 0, 3rd quantile
4.0 min). According to our dynamic model, the expected time delay on the basis of a
median transcript half-life of 11.5 min however is 8 min. Assuming constant degradation
rates, the observed short peak time delays could only be explained by very short half-lives
in the range of 1-2 min. This is far below any estimate in the literature [60, 116, 65]. For
example, the ten cyclins which are found as periodically expressed in our data have a
mean peak shift of 0.8 min. The observed short delays between synthesis and total mRNA
peaks in periodic transcripts are therefore incompatible with the assumption of constant
degradation rates.

6.10. Periodic changes in mRNA degradation shape
expression peaks

To investigate the potential role of mRNA degradation rate changes quantitatively, we
extended the DTA method such that it allows for the estimation of changes in mRNA
synthesis and degradation rates. We exploit the fact that equation 6.1 translates a synthesis
time course µ(t) and a degradation time course δ(t) into predictions of total and labeled
mRNA (Figure 6.14A). This can be used to reverse engineer µ(t) and δ(t) from a pair of
observed labeled and total mRNA time courses (Figure 6.15A). We model the synthesis
rate as a piece-wise linear function, whereas the degradation rate δ(t) is modeled as sine
function (Methods 5.6.2). Note that we did not use the smoothed synthesis rate estimate
of MoPS, because MoPS aimed at the detection of periodic expression, and did not take
into account changes in mRNA degradation. Moreover, we wanted to exclude any model
bias and avoid findings due to slightly biased model assumptions. The measurement error
that determines the quality of fit was as in MoPS. The parameters were then fitted to the
measured cDTA data by Markov Chain Monte Carlo (Methods 5.6.2). This enabled us for
the first time to decompose cell cycle dependent mRNA expression into the processes of
mRNA synthesis and degradation.

We further developed a score quantifying the strength of periodic mRNA degradation. It is
based on the comparison of two models for the explanation of the labeled and total mRNA
time series of a gene. One model assumes a constant mRNA degradation rate, δ(t) = const,
and the other assumes a sinusoidal degradation rate, δ(t) = a ∗ cos(t− ϕ) + const. The
log likelihood ratio of the respective best fits, termed ‘variable degradation score’, was
used to rank genes according to their fluctuations in mRNA degradation (Methods 5.6.3).
The variable degradation score was averaged over both replicate time series. Periodic
transcripts had a mean variable degradation score of 0.64 (+-0.47 std.dev), as opposed to
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Figure 6.14.: (A) Calculation of labeled and total mRNA time courses as functions of mRNA
synthesis and decay. A peak in RNA synthesis rate (top, orange line) translates into different
time courses of total RNA concentration (3rd panel, black lines) and labeled RNA concentration
(bottom, red lines) according to different time courses of its degradation rate (2nd panel, blue
lines). Shown are three realistic degradation scenarios: The solid respectively dotted blue line
corresponds to a constant low respectively high degradation rate, the dashed blue line shows a
scenario in which degradation peaks a while after the synthesis rate peak. A low (high) constant
degradation rate leads to a long (short) peak shift between total mRNA and RNA synthesis rate.
A variable, peaked degradation leads to a short peak shift, while at the same time achieving
almost the same amplitude of total RNA variation. (B) Scatter plot of labeled vs. total RNA
peak time for 479 periodically expressed genes. The distance of a point to the main diagonal
measures the peak shift for the corresponding gene (see inset, illustrating the peak shift between
a total (black) and labeled (red) mRNA time course). Solid light blue line: observed median
peak time delay = 2 min, corresponding to a constant mRNA degradation rate of at least 0.4
(half-life of 1.7 min). Solid dark blue line: expected median peak shift = 8 min corresponding to
the average physiological degradation rate δ = 0.06 in S.cerevisiae (half-life of 11.5 min).
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non-periodic transcripts (mean 0.40, +-0.44 std.dev). Conversely, genes with a variable
degradation score above 0.3 comprised 74.7% of all periodic transcripts. Additionally, the
variable degradation score was positively correlated with the periodicity score of periodic
transcripts (Figure 6.15B, Spearman correlation = 0.2, p<10e-10). This indicates that
periodic variation in mRNA degradation is a common feature of periodic transcripts. We
chose a conservative score cutoff of 0.3 to call genes with variable degradation. The 479
periodic genes were highly and significantly enriched for genes with variable degradation
(odds ratio 3.3, p-value < 10e-10 in a Fisher test). Changes in degradation rates might
be confined to a single cell cycle phase or might be gene-specific. We grouped the 358
periodic genes with variable degradation according to the cell cycle phase in which their
transcription peaks and examined the distributions of their degradation peaks (Figure
6.15C). It turns out that there is no specific cell cycle phase where the degradation of all
transcripts is maximal. Instead, there appears to be a preferential time delay between
synthesis peak and degradation peak of 21 min on average (Figure 6.15D).

To examine the influence of the time delay between synthesis and degradation peak time
on the amplitude of total mRNA expression, we conducted a simulation. Therefore, the
same cosine-shaped synthesis rate was used while shifting the cosine-shaped degradation
rate from 0 to 2π(= cell cycle length) (Figure 6.16A). The corresponding total mRNA
levels were computed according to Equation (5.25). Due to the periodicity property of
our model, the degradation rate peak shift by 2π corresponds to the results where the
degradation rate is not shifted, and thus results for the shift by 2π are not shown here. The
amplitudes of the total level vary with the shift of the degradation rate from the synthesis
rate. The maximal amplitude in the total level is reached when the degradation rate is
shifted by π = 30 min. Figure 6.16B shows the resulting amplitudes and peak time delays
between the total RNA level and the synthesis rate for the simulated shifts in degradation
rate peak time. For our set of periodic genes with variable degradation the observed peak
time delay between synthesis and degradation rate corresponds to 21 min. It turns out
that a time delay of 20-30 min strikes an optimum balance between total RNA peak height
and peak shift. Thus, a quantitatively high and sharp expression response can be achieved
at a much lower degradation rate than for constant RNA degradation. We conclude that
periodic changes in mRNA degradation rates are a common, functionally relevant property
of periodically expressed genes. Periodic changes in degradation efficiently achieve a sharp
peaking of mRNA expression at defined time points during the cell cycle.
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Figure 6.15.: (A) Fitting of the dynamic mRNA turnover model to experimental data. The
two lower panels show the measured labeled RNA (solid red line) and total mRNA (solid black
line) time courses for YNL312W (RFA2). The time courses were fitted using either a variable
degradation scenario (red / black dashed lines) or a constant degradation scenario (red / black
dotted lines). In both scenarios, the synthesis rates are estimated by a piece-wise linear function
(first panel, dashed / dotted orange lines) and the degradation rates are estimated by a constant
respectively a sine function (second panel, dashed / dotted blue lines). (B) Correlation between
the periodicity score and the variable degradation score for 2584 genes with periodicity score > 0.
Quartiles of the regulated-degradation score distribution (y-axis) are shown as a function of the
periodicity score (x-axis). The interquartile range (25%-75% quantile is shown in orange-red, the
extreme regions (0%-25% and 75%-100% quantile) are shown in grey, the central black line is
the median line (C) Distribution of degradation rate peak times in the cell cycle. The genes are
grouped according to the peak time of their synthesis rate (G1:red, S:green, G2:blue, M:yellow).
The numbers in brackets correspond to the numbers of genes in each group. Generally the
degradation peak is shifted by approximately 20 minutes relative to the synthesis peak. (D)
Correlation of degradation rate peak times (x-axis) and synthesis rate peak times (y-axis) for
periodically expressed genes with regulated degradation. For genes where the synthesis peaks at
the end of a cell cycle and the degradation rate peaks at the beginning of the subsequent cell
cycle, the synthesis rates were shifted by -60 minutes.
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A B

Figure 6.16.: (A) Total mRNA time courses retrieved using degradation rates that only differ
in their degradation peak shift relative to the synthesis rate peak. The resulting amplitudes
of the total mRNA levels vary. (B) Shifting the cosine shaped degradation rate relative to the
synthesis rate results in different amplitudes and peak times of the total mRNA level. Top:
Derived amplitudes for the total mRNA expression level. Bottom: Shift between the peak times
of the total mRNA levels and the synthesis rate. The red rectangle indicates the bars which
correspond to the degradation rate shift which is most similar to the one we observed for our set
of regulated periodic genes (21 min).
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7. Methods

7.1. 4tU labeling, RNA extraction and sequencing

All experiments were done with the strain ED666 (BIONEER) (h+, ade6-M210, ura4-D18,
leu1-32). A fresh plate (YES) was inoculated from glycerol stock. An over-night culture
was inoculated (YES medium) from a single colony and grown at 30 °C. In the morning a
120 mL culture (YEA medium) was started at OD600 0.1 and grown to OD600 of 0.8 at
32 °C in a water bath at 150 rpm. 4-thiouracil was added to 110 mL of culture at 5 mM
final concentration. 20 mL samples were taken out after 2, 4, 6, 8, and 10 minutes. Each
sample was centrifuged immediately at 32 °C, at 3,500 rpm for 1 min. The supernatant
was discarded and the pellet was frozen in liquid nitrogen. All experiments were performed
in two independent biological replicates. Total RNA was extracted and samples were
DNase digested with Turbo DNase (Ambion). Labeled RNA was purified as published
[67]. ribosomal RNA was depleted using the Ribo-ZeroTM Gold Kit (Yeast, Epicentre)
according to the manufacturer’s recommendation with 1.5 μg labeled RNA and with 2.5
μg total RNA as input. Sequencing libraries for the time series samples were prepared
according to the manufacturer’s recommendations using the ScriptSeq™ v2 RNA-Seq
Library Preparation Kit (Epicentre). Libraries were sequenced on Genome Analyzer IIx
(Illumina). See Table 7.1 for an overview of the generated RNA-Seq data.

Table 7.1.: RNA-Seq datasets used to annotate transcribed regions and to study RNA
metabolism in S.pombe.

Sample Description Application Replicate RNA fraction Run mode # raw reads # filtered mapped reads strandedness [%]
A Steady-state annotation 1 Total paired-end 113292612 42904610 97,6
B Steady-state annotation 2 Total paired-end 189347452 56629032 98,0
C 4tU - 2 min modeling 1 Labeled single-end 19102425 14977187 96,0
D 4tU - 2 min modeling 2 Labeled single-end 20123933 16047260 93,9
E 4tU - 4 min modeling 1 Labeled single-end 19715587 15967411 95,1
F 4tU - 4 min modeling 2 Labeled single-end 20311245 16261056 94,9
G 4tU - 6 min modeling 1 Labeled single-end 5986881 4917973 95,6
H 4tU - 6 min modeling 2 Labeled single-end 23557057 18833825 93,7
I 4tU - 8 min modeling 1 Labeled single-end 13207441 10895573 92,5
J 4tU - 8 min modeling 2 Labeled single-end 18534117 14905967 96,0
K 4tU - 10 min modeling 1 Labeled single-end 23565650 19340203 93,3
L 4tU - 10 min modeling 2 Labeled single-end 17075745 13611139 95,5
M Steady-state modeling 1 Total single-end 18330704 11973808 95,5
N Steady-state modeling 2 Total single-end 19597405 12056019 94,8

54
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7.2. RNA-Seq read mapping

Single- and paired-end RNA-Seq reads were mapped to the reference S.pombe genome
(ASM294v2.26) with the splice-aware aligner GSNAP [117], excluding split reads and read
pairs longer than 5000 nt, and allowing up to 7 % mismatches. To detect known and novel
splice sites, a splice site definition file compiled from the current annotation (Pombase
V2.22) was supplied to GSNAP and the probabilistic model to identify splice junctions
de novo (flag –novelsplicing) was used. After mapping, aligned paired-end reads were
further filtered based on SAM flags contained in the alignment files to keep only pairs
with proper pairing and orientation (-f 99, -f 147 ). Finally, PCR duplicates were removed
with samtools [118] rmdup (standard parameters). Splice sites were identified by using
the CIGAR string of all mapped paired-end total RNA reads (replicates added). All sites
supported by 10 or more spliced reads were considered for downstream analyzes. As only
48 introns were found with alternative splice sites (with identical start but different end
coordinate, or vice-versa), alternative splicing was later on not considered. For each of
those 48 splice sites, the splice junction with the highest read support was kept.

7.3. Mapping of Transcriptional Units

To map transcriptional units (TUs) we applied a segmentation algorithm to the paired-end
Total RNA-Seq data separately for each strand. The per base coverage was extracted by
considering the full fragments of a read-pair, e.g. from the start coordinate of the first
read in the pair to the end coordinate of the second read in the pair. The cumulative read
coverage vectors over the two biological replicate datasets was considered. The algorithm
takes as input a coverage vector and three segmentation parameters: coverage cutoff,
minimal length (min-length) and maximal gap (max-gap).

First, all positions in the genome that exceeded the coverage cutoff were marked. Second,
non-marked positions that were located between two marked positions that have a sepa-
ration less than max-gap are also marked. Third, regions with a consecutive number of
marked positions greater than min-length were reported. We used the current S. pombe
annotation (Pombase V2.22) to estimate suitable values for the three segmentation param-
eters in our data: first, a coverage cutoff was estimated by an approach similar to [119].
The distribution of the per base coverage between current annotations was modeled as a
bi-modal distribution consisting in few non-annotated transcribed regions and a majority
of non-transcribed (background) regions. The background-region distribution was modeled
as a Gaussian distribution. The mode m of the background-region distribution was set to
the median of the whole distribution. The variance of the background-region distribution
was estimated as the variance of the distribution that is obtained by mirroring the part of
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the mixture with values lower than the mode m about the axis y = m. The cutoff (10.26)
distinguishing background from transcribed regions was then set to a one-sided nominal
p-value of 0.01 for the fitted Gaussian.
Second, min-length and max-gap are estimated simultaneously in an exhaustive search
over all combinations of min-length and max-gap values between 10 and 1,000: for each
combination, a segmentation of the genome was performed and scored based on the overlap
with transcripts of the current annotation. We used the Jaccard index as a similarity
measure, which is defined as the size of the intersection divided by the size of the union of
the two sets. The Jaccard index reached maximal values for min-length and max-gap in
the range between 50 and 500. Since there was no single optimal combination and the
S. pombe transcriptome is very dense, we chose rather small parameters with min-length
200 and max-gap 80. With these parameters (coverage cutoff = 10.26, min-length = 200,
max-gap = 80), the segmentation resulted in 7,062 TUs. To further improve this map of
TUs, we only kept TUs that showed significant read coverage (average per base coverage
< 20 in the two-minute labeled 4tU-Seq samples, normalized for sequencing depth using
annotated ORFs read counts and following [120]. This filter resulted in a high-confidence
set of 5,596 TUs.

These TUs are then classified according to the overlap with known transcripts: 112
partially overlapped ORFs and were discarded for further analysis. The remaining final
set of 5,484 TUs were classified into four disjoint classes: i) ORF-TUs entirely contain one
ORF only and not more than 70% of any annotated ncRNA ii) nc-TUs do not contain
entire ORFs, overlap at least 70% of an annotated ncRNA and not more than 70% of
any other annotated ncRNA iii) Novel nc-TUs do not overlap by more than 70% any
annotated ncRNA and do not overlap any ORF iv) multicistronic TUs contain multiple
ORFs entirely or overlap 70% of two or more annotated transcripts.

7.4. Read counts per exon, intron and splice junctions

Counts of reads aligning completely within exons or introns were obtained with the software
HTseq-counts [121] with settings –stranded=yes and -m intersection-strict. To count reads
that map to splice sites we used HTseq with one different parameter (-m union) to allow
counting of reads that spanned the junctions. For each intron, we defined the 5’SS as the
2 nt region that contains the last position of the upstream exon and the first position
of the intron. Accordingly, we defined the 3’SS as the 2 nt region that contains the last
position of the intron and the first position of the downstream exon. To distinguish spliced
and unspliced junction mapping reads, a custom script checked the cigar string of each
alignment for occurrences of skipped reference bases (“N”). Alignments containing “N”
and overlapped with a splice site, were counted as spliced junction reads.
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7.5. Estimation of RNA metabolism rates from 4tU-Seq
data

7.5.1. Overview

We used a probabilistic model that relates read counts of some kind (exonic reads,
spliced and unspliced junction reads) to a set of model parameters Θ which includes the
RNA metabolism rates and technical nuisance parameters. With casual notations, we
modeled the probability of observing read counts k of one kind in one sample as p(k|Θ) =
NB(k|mean(Θ), dispersion), where NB() is the negative binomial distribution. Subsections
7.5.2 - 7.5.5 model the RNA species concentrations in the sequenced samples and subsection
7.5.6. models the expected number of reads sequenced given these concentrations. This
gives mean(Θ). Subsection 7.5.7 describes the parameter estimation procedure.

7.5.2. Junction Model

For a given junction, let [precursor RNA] be the cellular concentration of the unspliced
RNA and [mature RNA] the cellular concentration of the spliced RNA. With synthesis
rate µ, splicing rate σ and degradation rate λ the following ODEs describe the dynamic of
the system assuming first-order kinetics:

d[precursor RNA]
dt

= µ− σ[precursor RNA]

d[mature RNA]
dt

= σ[precursor RNA]− λ[mature RNA]

with following initial conditions:

[precursor RNA]labeled|t=0 = 0

[mature RNA]labeled|t=0 = 0

[precursor RNA]unlabeled|t=0 = µ

σ

[mature RNA]unlabeled|t=0 = µ

λ
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Under the assumption that introduction of labeled Uracils in the media (t = 0), the
solutions are:

[precursor RNA]labeled(t) = µ

σ
(1− e−σt)

[mature RNA]labeled(t) = µ

λ(λ− σ)(λ(1− e−σt)− σ(1− e−λt))

[precursor RNA]unlabeled(t) = µ

σ
e−σt

[mature RNA]unlabeled(t) = µ

λ(λ− σ)(λe−σt − σe−λt)

7.5.3. Exon model

For single-exon TUs, there is no processing. Following the same rate notations, we obtain
the same kinetics as for the precursor RNA:

[exon RNA]labeled(t) = µ

σ
(1− e−σt)

[exon RNA]unlabeled(t) = µ

σ
e−σt

7.5.4. Uracil Bias

Not all uracils available to the transcription machinery are labeled, leading to a labeling
bias against transcripts with a small number of Us [60]. Following Miller et al. [60], the
probability p(4tUI) that one transcript incorporates at least one 4tU was modeled as:

p(4tUI) = 1− (1− p(4tU replaces U))Number of U in transcript

This correction was difficult to apply to the junction model because of all possible RNA
variants (isoforms, precursor and mature RNAs) overlapping the junction. However, we
found that a U-bias correction would have negligible effects for intron-containing TUs
because even their mature RNAs were generally containing many Us (short TUs were
almost all single-exon). Hence, for typical values of p(4tU replaces U), p(4tUI) was very
close to 1 for intron-containing TUs. In the following, U-bias correction was only applied
to the exon model, which became:
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[exon RNA]labeled(t) = p(4tUI)µ
σ

(1− e−σt)

[exon RNA]unlabeled(t) = µ

σ
e−σt + (1− p(4tUI))µ

σ
(1− e−σt)

7.5.5. Cross-contamination

What we measure is the purified and the not purified (so-called total) fractions of RNA.
Measurements are sensitive to small amount of cross-contamination of unlabeled RNAs in
the purified fraction, because unlabeled RNAs can represent the vast majority of RNAs
especially at early time points. Thus, we introduced a cross-contamination factor χ that
we assumed to be common to all RNA species for simplicity. Up to sample-specific factors
common to all RNA species, the concentration of purified and not purified RNA relates to
the RNA cellular concentrations as:

[purified RNA] = (1− χ)[labeled RNA] + χ[unlabeled RNA]

[not purified RNA] = [labeled RNA] + [unlabeled RNA]

7.5.6. Expected number of reads given RNA species concentrations

7.5.6.1. Expected number of reads

Let xi,j be the concentration of feature i in sample j (e.g. [purified precursor RNA] is
the concentration of the feature ’unspliced read’ in labeled samples). The expected counts
ki,j of feature i in sample j was modeled as:

E(ki,j) = FjNixi,j

where Fj is sample-specific scaling factor (see below) and Ni is the effective length of
feature i (see below).

7.5.6.2. Controlling for overall amount of labeled RNA and sequencing depth

The RNA sequencing protocol requires a constant amount of starting material and yields
approximately the same number of reads per sample. Hence, the overall increase of
labeled RNA over time is not reflected in the total amount of reads obtained. Therefore,
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normalization of the samples relative to each other had to be performed using sample-
specific factors Fj. This normalization factor also allows controlling for variations in
sequencing depth.

7.5.6.3. Controlling for TU length

The exon model is based on all reads overlapping the exon, and therefore depends on
the exon length, yet not in a simple proportional fashion. Indeed, purified transcripts
are sonicated into fragments of a typical length, in our case about 200bp (mean fragment
length, the actual number is not essential, it is only used in the derivation step). For
asymptotically long transcripts, the expected number of fragments per transcript is:

Ni ≈
length of transcript i
mean fragment length , for i long intronless TU

However, this approximation fails for short transcripts. Indeed, sonication of short
transcripts (about less than 2 times the mean fragment length) leads to a large fraction of
very short fragments that are selected against during library preparation and do not get
sequenced. Hence, to model the relation between fragment length and expected number
of sequenced fragments for the whole range of transcript lengths, we empirically used a
linear approximation that includes an offset Loff (see estimation below). This led us to an
effective length such that:

Ni = length of transcript i+ Loff

mean fragment length , for i intronless TU

In contrast, the junction model relies on spliced and unspliced reads that overlap junctions.
Reads that overlap a junction satisfy two criteria: i) they originate from fragments that
overlap the junction and ii) the reads themselves overlap the junction. Junctions are
typically further away from transcript ends compared to the fragment length. We therefore
assumed that the expected number of possible fragments satisfying criterion i) is the same
for all junctions genome-wide. Criterion ii) implies that the effective length for the junction
model is proportional to read length. Matching junction model and exon model estimates
to the same scale was achieved by setting the effective length of the junction model to
read length (78bp in our case) over mean fragment length:

Ni = read length
mean fragment length , for i spliced or unspliced junction
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7.5.7. Parameter estimation

In the following we develop a method for estimating all parameters based on the observed
count data by maximizing the likelihood.

Assuming negative binomial distribution of RNA-Seq read counts [120], the log likelihood
reads as:

ll =
∑
i,j

log(NB(ki,j|Ei,j(Θ), α) (7.1)

where Θ is the set of parameters {µi, σi, λi, Fj, χ, Loff, p(4tUreplacesU)} for all junctions
or exons i and for all samples j, and where α is the dispersion parameter of the negative
binomial. We assumed that the dispersion parameter is uniform over all samples and
features, which we believe is a reasonable assumption.

7.5.7.1. Estimation of the dispersion parameter

Due to the complexity of the model and the large number of parameters it is not practically
feasible to directly optimize the log likelihood. In a first step the mean Ei,j of each data
point (a data point is given by the number of reads belonging to one transcriptional
feature e.g. exonic reads, junction reads at one time point) between the two replicates was
computed. In a second step, the dispersion α was fitted by maximum likelihood letting
the Ei,j fixed:

α = argmax
∑
i,j

log(NB(ki,j|Ei,j, α)) (7.2)

Then the actual model was fitted using this value of α as fixed parameter. The expected
counts obtained by this model were used again with (2) to get an improved estimate for α.
Two rounds of iterations showed that α is a stable parameter and does not differ much
from the first order guess (about 10% change). Forced changes of α by factor of 10 and
0.1 showed that the actual model parameters Θ are quite robust against variation of α,
since the estimated rates did not change significantly (relative changes 10−4). Hence, we
did not increase the number of iterations.

7.5.7.2. Overall estimation procedure

After extensive testing and numerical simulations, we found that the best results were
obtained using the following procedure.
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Transcripts with a length less than 120 base pairs were excluded from the analysis because
of insufficient coverage, as the read length itself comprises 80 base pairs. We used the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using the R function optim() with
analytical gradient. We actually maximized the logarithm of the log likelihood, which
turned out to give more reproducible results.

1. Start with Loff = 0,p(4tUreplacesU) = 1 , χ = 0, and, and keep them as fixed
parameters in the BFGS optimization procedure.

2. Select the 350 “best” intronless genes (in terms of coverage by visual inspection in
IGV) and apply BFGS with the exon model (because we have the least number of
assumptions here). The fitting is repeated 100 times using different start parameters,
which allows us to estimate the robustness of the model. In this way we were able
to extract the set of normalizing constants Fj for each sample (median of the fits).
Because they are relative quantities, we deliberately set F1 = 1.

3. Run the exon model and the junction model using the Fj as fixed input parameters.
Each fit is done with 100 different initial values. Define the median of the calculated
parameters as estimate.

4. Repeat step 2 and 3 using different values for the cross-contamination ranging from 0
to 5 % (independent experiments with spike-ins motivated this range), different Loff

and p(4tUreplacesU). These two parameters were set according to criteria described
below.

Criteria for step 4 are as follows. Under the assumption that all junctions within one
gene should have the same synthesis rate we chose the level of cross-contamination with
the best correlation of the synthesis rates between the first and second junction of genes
with 2 or more introns. When setting p(4tUreplacesU) for the exon model so that these
correlations match each other, we observed no significant correlations between synthesis
rate and gene length. This result was in agreement with the junction model, for which
no correlation between synthesis rate and gene length was found either. Moreover, the
best value for p(4tUreplacesU) was 1%, which is strictly within the expected range and
close to the value of 0.5% estimated by [60] when profiling S. cerevisiae. Nonetheless, one
should keep in mind that the lack of correlation between synthesis rate and gene length
for intronless genes in our data is due to a modeling assumption and not a result of our
investigations. The results were used to improve our estimate of the dispersion parameter
and steps 1 to 4 were repeated to improve the model parameters even further.

7.5.8. Rescaling of synthesis rate

The two quantities [purified RNA], [not purified RNA] are both linear in µ. Hence, the
synthesis rate can only be estimated up to a global constant. We therefore arbitrarily set
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F1 = 1 for the fitting. Absolute synthesis rates were then obtained by scaling all values
so that the median steady-state expression level of ORF-TUs matches the one reported
by a genome-wide absolute quantification study (median of 2.4 coding mRNAs per cell,
Marguerat et al. [64]).

7.6. Identification of sequence elements predictive for
rates and linear regression

The goal of this procedure was to identify sequence elements predictive for a given rate of
interest (synthesis, splicing, or degradation), in a given gene region of interest (promoter
for all TUs and 5’UTR, coding sequence, introns, 3’UTR for ORF-TUs) and to estimate
coefficients for each nucleotide at each position of these sequence elements. The procedure
consisted of two consecutive stages ’seed finding’ and ’seed extension and regression’.

The output of the ’seed finding’ stage are initial sequence elements that associate with the
rate. To this end, a linear mixed model was considered to assess the effect of each possible
6-mer in turn, while controlling for random effects over all 6-mers. We followed here an
idea proposed by Liyang et al. [122] to estimate the activity of microRNAs. Formally, the
effect of the j-th 6-mer on the rate was modeled according to:

y = Wα + xjβj + u+ ε

p(u) = N(u|0, λτ−1K)

p(ε) = N(ε|0, τ−1I)

, where y is a n-vector of rates over all n TUs (respectively splice sites), W is an optional
n× c matrix of covariates, α is the corresponding vector of coefficients, xj is the n-vector
of the number of instances of the j-th 6-mer in the region over all TUs (respectively
splice sites), βj is its coefficient, u is a n-vector of random effects, and ε is the n-vector
of errors. For all rates, we considered as covariate the unit vector in order to model an
intercept. We also considered as covariate the length of the 3’UTR in the case of the
degradation rate, which we had found to be significantly associated with degradation. For
other rates, no further covariate was used. The covariance matrix K was set to XTX

where X, whose columns are the xj, is the matrix of 6-mers counts. The covariance on
the random effects allows controlling for the effects of all other 6-mers. The model was
fitted using the GEMMA software [123]. All 6-mers significantly associated with the rate
(FDR <0.1, likelihood-ratio test with Benjamini-Hochberg correction for multiple testing)
were retained. If both a 6-mer and its reverse complement were found significant, the
two were considered as a single unstranded 6-mer, and the other ones as stranded 6-mers.
Significant 6-mers overlapping by all but one or two base (eg. TTAATG and TAATGA)
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and sharing more than half of their genome-wide instances reciprocally were recursively
assembled into longer k-mers (in this example TTAATGA). This procedure led to stranded
and unstranded k-mers that we coined ’seed’.

The goal of the ’seed extension and regression’ stage is to extend seeds to cover neighbor
nucleotides significantly and to estimate the effect of each nucleotide. This is achieved
with the following iterative procedure:
1. Initialization: The ’sites’ are initialized by all elements in the region of interest matching
the seed up to one mismatch (two mismaches for the long HOMOL-box motifs) together
with 2 nucleotides 5’ and 2 nucleotides 3’ of it. For the unstranded motifs (two homol
boxes) we also considered the reverse complements of the motifs as match.

2. Linear regression: We denote by ni the number of sites for the i-th TU and L the
length of a site. The ’consensus’ sequence is defined as the sequence of the position-wise
most frequent nucleotides over all sites. The following linear model is fitted by maximum
likelihood:

yi = β0 +
ni∑
j=1

βcons +
L∑
k=1

βk,wi,j,k
+ εi

where β0 is the intercept, i.e. the average level in the absence of any site, βcons is the effect
of one consensus site, wi,j,k is the k-th nucleotide of the j-th site of the i-th TU, and βk,A,
βk,C , βk,G, βk,T are the effects of each nucleotide at position k relative to the nucleotide
of the consensus site at the same position. By definition βk,w is constrained to be 0 if w
equals the k-th nucleotide of the consensus sequence. The errors εi are assumed to be
independently and identically normally distributed. Reverse complemented motifs enter in
their canonical form.

3. Extension: For each site considered in step 2, its overall effect βcons +∑L
k=1 βk,wi,j,k

is
tested to be significantly different from 0 (P < 0.05). To compute the p-value we evaluate
the multivariate t-statistic (using glht of the multcomp package in R). A position weight
matrix (PWM) is constructed based on all significant sites extended by 2 nucleotides 5’
of the 5’-most significant position and 2 nucleotide 3’ of the 3’-most significant position.
To construct the PWM, the genomic nucleotide distribution is taken as background
distribution. The sequences significantly matching the PWM (P> 0.80, multinomial model
with a Dirichlet conjugate prior) are considered as the new sites. Step 2 and 3 are repeated
until sites do not get extended in length. This is decided by visual inspection of the
obtained PWM (the extended bases equal the background distribution). It turned out
that the extension stage was only necessary and useful for the two well conserved Homol
boxes.
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The final motif sequence we report is the consensus sequence of the motifs. We searched
again in the regions of interest for them (allowing 1 mismatch for all but the two HOMOL-
Boxes (2 mismatches)). We finally applied the same linear model as in point 2. on these
found sites to obtain the final coefficients.

7.7. Validation of sequence model using an eQTL dataset

We compared fold-change associated with local genetic variants in Clément-Ziza et al.
[124] with the predicted effects from the sequence-to-rate model described in section 7.6.

7.7.1. Read counts

This study profiled steady-state RNA levels and not the newly synthesized RNAs. Hence,
the coverage on introns was too poor to perform accurate quantification of the precursor
RNAs. We thus focused on the quantification of steady-state levels of mature RNAs of our
TUs. To this end, RNA-Seq data from recombinant S. pombe strains libraries [124] were
downloaded from ArrayExpress (E-MTAB-2640). Genetic variants and strain genotypes
were obtained as supplementary Datasets from the manuscript. RNA-Seq reads from each
strain were mapped separately to the reference genome using STAR (version 2.4.0i) Dobin
et al. [125] with default options. We considered for further analysis ki,j, the number of
reads overlapping at least one exon for TU i in sample j.

7.7.2. Fold change associated with local genetic variants

The read counts ki,j defined above were modeled according to the following generalized
linear model:

ki,j ∼ NB(µi,j, αi)

µi,j = sj × qi,j
log2(qi,j) = β0

i + β local
i gi,j +

∑
b,batch

βbatch
b xbatch

j,b

where NB is the negative binomial distribution, αi is a gene-specific dispersion parameter;
sj is the size factor of sample j; gi,j is the genotype (0 for the reference allele, 1 for the
alternative allele) at the variant of interest for gene i in sample j; xbatch

j,b is 1 if sample j
is from batch b and 0 otherwise. The model was implemented with the R/Bioconductor
package DESeq2 [120], which provides robust estimation of the size factors, of the dispersion
parameters and the fold changes. The log-fold change of interest, β local

i , together with
its standard error, was then considered for further analysis. Effect of batches, reported
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in the original study, were dominating the signal and important to control for. We also
investigated controlling for hotspots (8 eQTL hotspots were reported in the original study)
but this led to an increased variance for little bias reduction.

7.8. Multivariate analysis of splicing time

We performed linear regression of log splicing time of each junction against i) all the
nucleotides of 5’SS, the BS and the 3’SS region, ii) TU log-synthesis time, iii) the TU length
and iv) the number of introns in the TU. First regression was done against each covariate
individually. Then, a joint model was build incrementally including each covariate in this
order. Fraction of explained variance for both procedures are reported in table 7.2.

Table 7.2.: Fraction of explained variance in splicing rates.

Covariate Individual Incremental
Sequence 0.50 0.50
log-synthesis time 0.45 0.42
TU length 0.09 0.07
Number of introns 0.034 0.0024

Except for the number of introns, all covariates contributed approximately equally in the
individual and in the incremental model, showing that they are independently predicting
synthesis time. In contrast, the number of introns did not added explained variance,
likely because the predicted splicing time already correlated with number of introns. To
determine the important nucleotides of the 5’SS, the BS and the 3’SS region, we used
cross-validation. We started with all nucleotides +/-10 of the 5’SS, the BS and the 3’SS
and decreased the window sizes systematically in several reduce steps. First we increased
the starting position of the 5’SS -10 to -9,-8,-7, ... until cross-validation showed a loss
in predictive power. Then we decreased the 5’SS +10 position in a similar manner. We
continued analogously with the BS and 3’SS. We also used several different orders of
removing the nucleotides (e.g. starting with 3’SS), to assert that we get similar results
which are not biased by the order we apply the reduce step. We used 10-fold cross-
validation. We trained the model on 9 parts and validated on the 10th part. Hereby we
received a set of 10 models. To report the accuracy of our estimates we use the standard
deviations of the coefficients reported by each model, the reported coefficients are the
median of all 10 models.



8. Results and Discussion

8.1. Yeast as a model organism to study eukaryotic
mRNA metabolism

The fission yeast Schizosaccharomyces pombe (S. pombe) is an attractive model organism to
study eukaryotic RNA metabolism. S. pombe shares important gene expression mechanisms
with higher eukaryotes that are not prominent or even absent in the budding yeast S.
cerevisiae. These include splicing, which occurs for ~50% of the genes and is achieved
with conserved spliceosomal components [126] and conserved consensus splice site (SS)
sequences [127, 128], heterochromatin silencing [129], and RNA interference [130]. Because
of its relevance for studying eukaryotic gene expression, S. pombe has been extensively
characterized by genomic studies, and this led to an annotation of transcribed loci that
includes ncRNAs [131, 132, 133], a map of polyadenylation sites [54, 134], the ‘translatome’
as measured by ribosome profiling [135], and an absolute quantification of protein and
RNA [136].

8.2. Strategy to study RNA metabolism and regulatory
elements in S.pombe

We used the fission yeast S. pombe as a model system to quantify RNA metabolism
genome-wide, to identify genomic regulatory elements at single-nucleotide resolution, and
to quantify the contribution of these elements to the kinetics underlying RNA metabolism.
Our approach consists of three steps (Figure 8.1). First, we performed short and progressive
metabolic labeling of RNA with 4-thiouracil coupled with strand-specific RNA-Seq (4tU-
Seq, section 7.1). With the use of advanced computational modeling, we obtained accurate
estimates of RNA synthesis and degradation rates for 5,484 transcribed loci and splicing
rates for 4,958 splice sites. Second, a novel statistical modeling procedure quantifies the
contribution of each single nucleotide in predicting RNA metabolic rates and thereby
identifies sequence features that contribute to RNA metabolism rates. We then supported
a causal role of these features by comparing RNA expression fold-changes between strains
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Figure 8.1.: Overview of the approach. Our approach for identifying regulatory elements
that quantitatively determine RNA metabolism rates consists of three steps. In step 1 (top),
genome-wide estimate of in vivo synthesis, splicing and degradation rates are obtained from the
analysis of 4tU RNA labeling time series. In step 2 (middle), sequence motifs (colored boxes)
that are predictive for each rate are identified. The method provides for each motif and each
nucleotide in a motif an estimate of its quantitative contribution to the rate. In step 3 (bottom),
the elements identified in step 2, which might be predictive by mere correlation, are tested for
causality. To this end, ratio of average expression levels in a population harboring the reference
allele versus a population harboring a single nucleotide variant are compared to model-predicted
fold-change.

differing by a single nucleotide at these sites with the corresponding fold-changes predicted
by the model. Our approach relies on an accurate annotation of the genome. In particular,
accurate transcript boundaries are important for quantifying RNA metabolism. We
therefore first set out to precisely define the transcriptional units in S. pombe.
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8.3. Mapping transcriptional units in S. pombe

To map transcribed regions in the S. pombe genome, we carried out strand-specific, paired-
end deep sequencing of total RNA (RNA-Seq) from fission yeast grown in rich media
(section 7.1). Genomic intervals of apparently uninterrupted transcription (Transcriptional
Units, TUs, Figure 8.2A) were identified with a segmentation algorithm applied to the
RNA-Seq read coverage signal (section 7.3). The three parameters of the algorithm, the
minimum per base coverage, the minimum TU length and the maximum gap between
TUs, were chosen to best match the existing genome annotation (Pombase version 2.22
[137], Figure 8.2B,C). TUs that did not show significant signal in the 4tU-Seq dataset
were considered as artifacts and discarded (section 7.3). The segmentation led to a total
of 5,484 TUs (Figure 8.2D), of which 4,105 were containing a complete, annotated open
reading frame (ORF-TU), 1,014 were non-coding TUs (ncTU), and the remaining 365 TUs
contained two or more annotated adjacent transcripts, and thus may be multicistronic
RNAs. Only a small number of novel splice sites were identified (148 out of 4,958), and
no evidence for alternative splicing or circular RNAs was found, in line with previous
RNA-Seq studies of S. pombe [132]. A total of 402 ORFs (8%) in the existing annotation
were not recovered.

8.4. Significantly revised S. pombe genome annotation

The resulting annotation of ncTUs in S. pombe differed largely from the current one.
We identified 487 novel ncTUs, changed the boundaries by more than 200 nt of 422
(27%) previously annotated ncRNAs and could not recover 1011 (66%) of the previously
annotated ncRNAs (Figure 8.3A). A large fraction of the latter apparently represent
spurious antisense RNAs that are often generated with conventional protocols, but their
generation was suppressed here with the use of actinomycin D [138]. Indeed, 49% of those
non-recovered ncRNAs were located antisense to highly expressed ORF-TUs and showed
on average 66-fold higher antisense than sense coverage (Figure 8.3B). Thus, we redefined
the location and boundaries of most ncRNAs in S. pombe, leaving only 105 of the currently
annotated ncRNAs unchanged.
We also redefined boundaries for 1,481 coding transcripts that differed from the existing
annotation by at least 200 nt. Untranslated regions (UTRs) of ORF-TUs were generally
much shorter than previously annotated (mean difference 91 nt). This difference apparently
also stemmed from spurious antisense RNAs in previous datasets because 68% of the 376
3’UTRs that were at least 250 nt shorter in our annotation showed higher antisense than
sense coverage (Figure 8.3C). Our revised transcript 3’-ends were centered around experi-
mentally mapped polyadenylation (polyA) sites [54], whereas the previously annotated
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Figure 8.2.: Improved annotation of transcribed loci. (A) Example of transcribed loci annotation
on a 12 kb region of chromosome 1. Data is displayed symmetrically in horizontal tracks for the
plus strand (upper half) and the minus strand (lower half). From most external to most central
tracks: RNA-Seq per base read coverage (marine blue), identified ORF-TUs (dark blue) and
identified ncTUs (light blue), currently annotated ORFs and ncRNAs (gray, Pombase v2.22).
On the current annotation tracks, UTRs are marked as thin rectangles and introns as lines.
Typical changes that this study provides to the current annotation include the merging of
adjacent transcripts into a single TU (e.g. SPAC3G9.16c and SPAC3G9.15c into TU.0896), the
identification of novel ncRNAs (e.g. TU.0897), not recovered ncRNAs (SPNCRNA.891) and
correction of aberrant long UTRs (e.g. 3’UTR of SPAC3G9.13c as TU.0899). (B) Distribution
of mean RNA-Seq read coverage per segments for currently annotated (blue) and not currently
annotated regions (red) and mean coverage cutoff for the segmentation algorithm to call a region
expressed (vertical line). (C) Jaccard index (z-axis) when computing per base overlap between
automatic segmentation and current annotation versus min-length and max-gap parameters of the
segmentation algorithm. (D) Classification of the 5,484 TUs into ORF-containing (ORF-TUs),
nc-TUs overlapping 70% of an annotated ncRNA (nc-TU), TUs overlapping more than one
annotated TU (multicistronic TUs), and novel non-coding (Novel nc-TU).
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3’-ends typically extended well beyond polyA sites (median difference = 3 nt versus 45
nt, Figure 8.3D). Thus our map of TUs provides a significantly revised annotation of the
S. pombe genome that removes false positive ncRNAs from the current annotation and
shortens aberrant long UTRs.
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Figure 8.3.: Comparison of our annotation with Pombase. (A) From left to right: number of
currently annotated transcripts that could not be recovered, are fully recovered, differ by more
than 200 nt, and novel TUs for ORFs (dark blue) and ncRNAs (light blue). (B) Sense mean
coverage (x-axis) versus antisense mean coverage (y-axis) of 1011 non-recovered ncRNAs of the
current annotation. (C) Mean sense coverage (x-axis) and antisense coverage (y-axis) of Pombase
3’UTR regions that extend TU defined 3’UTRs by 250nt or more. Per base coverage is extracted
from total RNA-Seq data used in this study. The mass of the data in upper left quadrant indicate
that long Pombase UTRs mostly arise from antisense artifacts in former studies. (D) Differences
between 3’ ends of ORF-TUs and polyA-sites mapped by Mata et al. (2013) (left), between 3’
ends of ORF-TUs and the corresponding currently annotated 3’UTR end (middle), and between
5’ ends of ORF-TUs and the corresponding currently annotated 5’UTR end (right).

8.5. Quantification of S. pombe RNA metabolism

To quantify the kinetics of RNA synthesis, splicing, and degradation genome-wide, we
sequenced newly synthesized RNA after metabolic RNA labeling with 4-thiouracil (4tU-
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Seq) and used the obtained data for kinetic modeling (Figure 8.1, step 1). In cells,
the nucleobase 4tU gets efficiently converted to thiolated UTP and incorporated during
transcription into newly synthesized RNAs, which can then be isolated and sequenced. To
cover the typical range of synthesis, splicing, and degradation rates, cells in a steady-state
culture were harvested after 2, 4, 6, 8, and 10 minutes following 4tU addition. The data
contained many reads that stemmed from intronic sequences and reads comprising exon-
intron junctions, showing that 4tU-Seq captured short-lived precursor RNA transcripts
(section 7.4). These reads from unspliced RNA gradually ceased during the time course
(Figure 8.4A,B), indicating that the kinetics of RNA splicing may be inferred from the
data.
To globally estimate rates of RNA synthesis, splicing, and degradation, we used a first-
order kinetic model with constant rates that describes the amount of labeled RNA as a
function of time (Figure 8.4C). We modeled splicing of individual introns, where splicing
refers to the overall process of removing the intron and joining the two flanking exons.
The model was fit to every splice junction using the counts of spliced and unspliced
junction reads (Figure 8.4C, D). We included in the model scaling factors that account
for variations in sequencing depth, an overall increase of the labeled RNA fraction, and
cross-contamination of unlabeled RNA (section 7.5). The model was fitted using maximum
likelihood and assuming negative binomial distribution to cope with overdispersion of
read counts [139, 140]. Our method yields absolute splicing and degradation rates, but
provides synthesis rates up to one factor common to all TUs. Absolute synthesis rates were
obtained by scaling all values so that the median steady-state level of ORF-TUs matches
the known median of 2.4 mRNAs per cell [136]. To facilitate comparisons of the obtained
RNA metabolic rates, we present the synthesis rate as the average time to synthesize one
transcript in a single cell (‘synthesis time’); the degradation rate as the time needed to
degrade half of the mature RNAs (‘half-life’); and the splicing rate as the time to process
half of the precursor RNA junction (‘splicing time’).
The synthesis times and half-lives inferred from distinct splice junctions of the same TU
agreed well, demonstrating the robustness of our approach (Spearman rank correlation =
0.44 for synthesis time, P < 2 x 10-16 and Spearman rank correlation = 0.79 for half-life,
P < 2 x 10-16, Figure 8.4E). Based on this comparison, we estimated the accuracy to be
typically 46% for synthesis times and 31% for half-lives (mean coefficient of variation).
Estimation of the accuracy based on comparing the estimates obtained from the two time
series replicates indicate that the accuracy of the estimates of splicing times is between
the accuracy for half-lives and synthesis times. The variations in the rate estimates were
much smaller than the dynamic range of the rates (about 50-fold each), allowing us to
interpret rate differences. Supported by the good agreement of rates across junctions, we
took the mean synthesis times and half-lives as estimates for the entire TU.

In order to estimate synthesis and degradation rates of intronless genes, a kinetic model that
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Figure 8.4.: Estimating RNA processing rates using labeled RNA time series. (A) Per base
coverage (grey tracks) in a logarithmic scale of 4tU-Seq samples at 2, 4, 6, 8, and 10 min. labeling
and for one RNA-Seq sample (i.e. steady-sate) along the UTRs (white boxes), the exons (dark
boxes) and the introns (lines) of the TU encoding cdc2. (B) Distribution of sequencing-depth
normalized unspliced junction read counts (top panel) and normalized spliced junction read
counts (lower panel) for the complete 4tU-Seq time series and the steady-state RNA-Seq samples.
(C) Schema of the junction first-order kinetics model. Each splice junction is modeled individually,
assuming constant synthesis time, splicing time and half-life. Unspliced junction reads (blue) are
specific to the precursor RNA and spliced junction reads (red) are specific to the mature RNA.
(D) Observed (circles) and fitted (lines) splice junction counts for the first intron of TU.0597
(php3). Unspliced (blue) and spliced (red) normalized counts (y-axis) are shown for all 4tU-Seq
samples and the steady-state sample (x-axis). (E) Half-life estimated from the first (x-axis)
versus the second (y-axis) splice junction on TUs with two or more introns.
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(light blue) and splicing times for junctions (C). Median indicated as vertical line.

takes as input all reads overlapping the exon was used. When applied to intron-containing
genes, parameter estimates with the exon model were consistent with those obtained with
the splice junction model. Overall, synthesis and degradation rates correlated well with
previous estimates from microarray data ([67], Spearman rank correlation = 0.45, P < 2 x
10-16 for synthesis rate and Spearman rank correlation = 0.74, P < 2 x 10-16 for half-life),
strongly supporting our rate estimation procedure.

8.6. Distinct kinetics of mRNA and ncRNA metabolism

Overall, RNA synthesis and degradation occurred on similar time scales (median synthesis
time of 7.4 min compared to a median half-life of 11 min) and about an order of magnitude
slower than splicing (median splicing time 37 sec Figure 8.5). These results are consistent
with splicing of beta-globin introns within 20 to 30 sec as measured by in vivo single
RNA imaging [141], and argue against earlier slower estimates for splicing times of 5 to 10
min [142]. Notably, ncTUs were synthesized at a significantly lower rate than ORF-TUs
(median synthesis times of 23 min and 6.1 min, respectively, P < 2 x 10-16, Wilcoxon
test), and were degraded slightly faster (median half-life of 12 min for ORF-TUs versus
7.4 min for ncTUs, P < 2 x 10-16, Wilcoxon test). Thus, the differences in steady-state
levels of mRNAs and ncRNAs are achieved both by longer synthesis times and shorter
half-lives for ncRNAs, although the differences in synthesis times dominate. Transcription
is known to be the major determinant of gene expression. However, among genes expressed
above background level as investigated here, the dynamic ranges across the bulk of all
TUs (95% equi-tailed interval) showed similar amplitudes for all three rates (53-fold for
synthesis, 47-fold for half-life, and 33-fold for splicing time, Figure 8.5). Hence, there are
large and comparable variations between genes at the level of RNA synthesis, degradation,
and splicing. In the following, we first analyze the determinants for RNA synthesis and
degradation, and then discuss the determinants for splicing rates.



8.7. Sequence motifs associated with RNA metabolism 75

A
pA site

3‘ UTR5‘ UTR
Promoter
(200 nt) Intron

Exon1 Exon2

TSS

CAGTCACA
(Homol D-box)
ACCCTACCCT
(Homol E-box)

CAACCA
ACCAAC
AACCAC
CCAACA

ACTAAC (BS)
GTAAGT (5‘ss)
Fast splicing

Fast synthesis
Long half-life

CAACCA
Short half-life

Long half-life
Short half-life

TTAATGA
TATTTAT
ACTAAT

B
CAGTCACA

ACCCTACCCT
CAACCA

AACCAC

ACCAAC

CAACCA
CCAACA

ACTAAT

TTAATGA

TATTTAT

C
A

G
TC

A
C

A

A
C

C
C

TA
C

C
C

T
C

A
A

C
C

A

A
A

C
C

A
C

A
C

C
A

A
C

C
A

A
C

C
A

C
C

A
A

C
A

A
C

TA
AT

TT
A

AT
G

A

TA
TT

TA
T

Promoter 5‘ UTR 3‘ UTR

0 200 400 600

Enriched

Depleted

1

≤10-3

≤10-3

Fisher test FDR

ORF−TUs

Figure 8.6.: Sequence motifs associated with in vivo degradation and synthesis rates (A) The 12
motifs found in promoter, 5’UTR, intron and 3’UTR sequences of ORF-TUs are shown, together
with their qualitative effects on RNA metabolism rates. No motif was found in coding sequences.
(B) Number of ORF-TUs with at least one occurrence (horizontal bar) and significant (FDR <
0.1) co-occurrence enrichment (red) and depletion (blue) for all motif pairs. Significance was
assessed using Fisher test within ORF-TUs with a mapped polyA site (Mata et al.), followed by
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8.7. Sequence motifs associated with RNA metabolism

We systematically searched for motifs in ORF-TU sequences that could influence RNA
synthesis, splicing, and degradation rates (Figure 8.1, step 2). First, 6-mer motifs were
identified, whose frequency in a given gene region (promoter, 5’UTR, coding sequence,
intron, 3’UTR) significantly correlated with either rate while controlling for other 6-mer
occurrences (multivariate linear mixed model, section 7.6). Next, overlapping motifs
associating with the same rate in the same direction were iteratively merged and extended
to include further nucleotides that significantly associated with the rate. We found 12
motifs that significantly associated with RNA metabolism kinetics (Figure 8.6A). Motifs
found within TUs were strand-specific, consistent with their function as part of RNA,
whereas motifs found in the promoter region (except one, CAACCA), occurred in both
orientations, suggesting that they function in double-stranded DNA. These observations
strongly supported the functional relevance of the discovered motifs. The number of
ORF-TUs per motif ranged from 58 (ACCCTACCCT) to 765 (TATTTAT) with motifs in
the 3’ UTR being the most abundant (Figure 8.6B).

8.8. Determinants of high expression

Motifs that were predictive of RNA synthesis times were only found in the promoter
region, further validating our approach (Figure 8.6A). We identified de novo the Homol
D-box (CAGTCACA), a fission yeast core promoter element, and the Homol E-box
(ACCCTACCCT), providing positive controls. In agreement with literature [143, 144], the
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Homol D-box and the Homol E-box motifs were enriched in ribosomal protein genes (32%
and 41% of all ORF-TUs with these motifs), frequently co-occurred in promoters (Figure
8.6B, Fisher test, False Discovery Rate < 0.1) and showed strong localization preference
at a distance of around 45 bp (Homol D-box) and 65 bp (Homol E-box) upstream of the
TU 5’end (Figure 8.7A). The 3’UTRs of ORF-TUs with a Homol E-box were significantly
depleted for all three motifs that we found to be associated with mRNA instability (FDR
<0.1, Figure 8.6B), indicating that the high levels of expression of these genes are achieved
by a combination of efficient promoter activity and RNA-stabilizing 3’UTRs. Both motifs
associated with decreased synthesis time by 28% (Homol D-box) and 32% (Homol E-box)
per motif instance (Linear regression, Figure 8.7B,C), but also with increased half-life
(50% and 31%) of the corresponding RNAs (Figure 8.7D,E), likely because those RNAs
are both highly synthesized and stable.

8.9. Determinants of RNA half-life

Motifs that were predictive of RNA half-lives were found in the promoter and in UTRs. A
novel AC-rich promoter motif (CCAACA) is located near the TU 5’end (Figure 8.7A), and
associated with a decrease in half-life by 30% per motif instance (Linear regression, Figure
8.8A). Four AC-rich motifs were found (CAACCA, AACCAC, ACCAAC, and CCAACA)
in 5’ UTRs, preferentially located near the TU 5’end (Figure 8.8B) and were associated
with an increased RNA half-life (only one example shown in Figure 8.8C). Thus, for the
AC-rich motif CCAACA the associated effect with half-life is the opposite, depending on
whether the motif is located upstream or downstream of the TU 5’end.
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Figure 8.9.: Motifs in the 3’UTR of ORF-TUs. (A) Fraction of ORF-TUs containing the motif
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Distributions of half-lives of ORF-TUs that have zero, one, two or more than two occurrence(s)
of the motif TATTTAT. (C) and (D) As in (B) for the motif TTAATGA and ACTAAT.

Three motifs were detected in 3’ UTRs of ORF-TUs that all were associated with decreased
RNA half-lives. One of these (TATTTAT) corresponds to the known AU-rich element
(ARE) that destabilizes RNAs [145, 146] and that was found in 19% of the ORF-TUs
and for which we estimated a half-life decrease per motif instance of 33% (Figure 8.9B).
The second motif (TTAATGA) and the third motif (ACTAAT) are novel and associated
with a reduction in transcript half-lives by similar extents (30% and 27%, Figure 8.9C,D).
These two motifs were found in a large number of ORF-TUs (466 and 514, 11% and 13%
respectively), and were co-occurring (FDR < 0.1, Figure 8.6B), yet not overlapping with
each other. These findings suggest that TTAATGA and ACTAAT are widespread RNA
elements that determine important RNA stability regulatory pathways. In contrast to the
AU-rich element, the two novel 3’UTR motifs were sharply peaking 28 bp (ACTAAT) and
25 bp (TTAATGA) upstream of the polyA site (Figure 8.9A), indicating that they could
implicate similar mechanisms, that are distinct from the AU-rich element pathway, and
that are related to RNA polyadenylation or involve interactions with the polyA tail. Two
of our motifs, the AC-rich element in the promoter region and the ACTAAT in 3’UTRs
are enriched in the same regions of human, mouse, rat, and dog genes [147], indicating
that their function is conserved from S. pombe to mammals.
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8.10. Effects of single nucleotides on RNA kinetics

We next asked whether deviations from the consensus sequence of the discovered motifs can
predict changes in synthesis time and half-life. We considered a linear model that included
the effect of changes at each base position and the number of motifs present in each gene
or RNA and fitted across all genes allowing for mismatches (Methods 7.6). Generally,
deviations from the consensus sequence associate with decreased effects of the motif on
synthesis time or half-life. These changes often neutralize the effect of the motif. For
instance, loss of the consensus Homol D-box apparently increased synthesis time two-fold
(Figure 8.10A, purple line). A single-nucleotide deviation from the consensus Homol
D-box motif by a C at the 6th position associated with a 1.6-fold increased synthesis time.
Similarly, a T to G substitution at the 5th position of the TTAATGA motif was predicted
to lead to a 1.4-fold increased half-life, similar to the loss of the complete consensus motif
(Figure 8.10B). Changes in positions flanking the motif have minor effects but may play
functional roles. Nucleotides associated with important effects tended to also be more
frequent (Sequence logo, Figure 8.10A,B) indicating that there is evolutionary pressure
on these positions and further indicating that these motifs are functional. Similar results
were obtained for all motifs (see Appendix).

8.11. New regulatory motifs are functional

Although the above analysis strongly indicated that the identified motifs were functional,
the evidence remained correlative. In order to test the functional role of these new motifs,
we asked whether genetic variants affecting these sequence elements resulted in a perturbed
expression level in a direction and extent that match the predictions (Figure 8.1, step
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3). We analyzed expression data of an independent study that profiled steady-state RNA
levels of a library of 44 different recombinant strains obtained from a cross between the
standard laboratory strain 968, also profiled here, and a South African isolate Y0036
[124]. In recombinant panels, the alleles of a reference and of an alternate parental strain
are randomly shuffled by meiosis recombination within the population. For a variant of
interest, recombinant strains group in two sub populations: about one half carries the
reference allele and the other half the alternate allele. Variants that are not in linkage with
the one of interest, for lying on another chromosome or far away on the same chromosome,
are approximately equally inherited within the two sub populations. Hence, differential
gene expression between the two sub populations reflects local regulatory variants, such as
promoter and RNA motifs, while controlling for distant, trans-acting regulatory variants.
To evaluate the effects due to perturbations of the motifs, we restricted the analysis to
ORF-TUs with a variant that we predicted to significantly affect the rate (Methods 7.7),
and harboring no further variant within the promoter region and the whole TU. These
variants affected 20 motifs and were all single nucleotide variants (Table 8.1).

Table 8.1.: Comparison of predicted and observed effects on gene expression when cis-regulating
motifs are mutated. Description of columns: 1) ID 2) strand 3) p-value of motif
4) region 5) motif 6) associated rate 7) sequence 8) mutated sequence 9) log10
observed fold-change 10) standard error of observed fold-change 11) log10 fold
change predicted 12) p-value of predicted effect 13) standard error of predicted
fold-change.

1 2 3 4 5 6 7 8 9 10 11 12 13
TU.0209 + 2,06E-03 UTR3 TTAATGA half-life TTTTAATGGTT TTTTAATGATT -0,091 0,028 -0,090 1,60E-02 0,037
TU.0236 + 7,19E-06 UTR5 CCAACA half-life CACCACCACC CACAACCACC -0,035 0,019 -0,102 1,76E-03 0,033
TU.0236 + 2,09E-03 UTR5 ACCAAC half-life CCACCACCAC CCACAACCAC -0,035 0,019 -0,118 4,21E-04 0,033
TU.0236 + 4,42E-03 UTR5 AACCAC half-life ACCACCACCA ACCACAACCA -0,035 0,019 -0,075 3,25E-02 0,035
TU.0369 + 9,32E-04 UTR5 AACCAC half-life TAAACGACTT TAAATGACTT -0,066 0,029 -0,199 8,22E-07 0,040
TU.0488 + 6,80E-05 UTR5 ACCAAC half-life GTATCAACGT GTATCAACAT -0,020 0,014 0,079 3,02E-04 0,022
TU.0737 + 2,52E-03 UTR3 ACTAAT half-life AAATTAATCA TAATTAATCA -0,022 0,022 -0,031 1,31E-03 0,010
TU.0796 + 1,47E-02 UTR3 ACTAAT half-life TTACCAATTA TCACCAATTA 0,019 0,034 0,030 1,21E-02 0,012
TU.2921 + 1,21E-02 UTR3 ACTAAT half-life GAACAAATAG GAAGAAATAG 0,049 0,024 0,087 8,76E-04 0,026
TU.2961 + 5,39E-05 UTR3 TTAATGA half-life GCTTAATGACC GCTTAATGGCC 0,194 0,045 0,090 1,60E-02 0,037
TU.3073 + 1,77E-03 UTR3 TTAATGA half-life ATTTAATAAAT TTTTAATAAAT -0,027 0,016 -0,032 1,26E-02 0,013
TU.3189 + 1,71E-03 UTR3 ACTAAT half-life TTACTATTTG TTACTATCTG NA NA 0,094 5,18E-03 0,034
TU.4953 - 4,38E-04 Promoter CAGTCACA synthesis GAGAGTCACATC GAGATTCACATC -0,196 0,026 -0,141 4,71E-07 0,028
TU.5006 - 2,41E-03 UTR3 TATTTAT half-life TATAATTATGA TGTAATTATGA 0,052 0,031 0,036 3,31E-03 0,012
TU.5217 - 9,81E-12 UTR3 TATTTAT half-life ATTATTTATAG ATTGTTTATAG -0,001 0,030 0,073 5,84E-04 0,021
TU.5869 - 3,41E-02 UTR5 CCAACA half-life TTCCAATATA TTCCAGTATA 0,011 0,025 -0,124 1,46E-02 0,051
TU.6215 - 1,72E-02 UTR3 ACTAAT half-life TTAGTAATTA TTAGCAATTA 0,001 0,023 0,078 5,61E-03 0,028
TU.6266 - 4,26E-02 UTR3 TATTTAT half-life AGTGTTTATGA AGTGCTTATGA 0,063 0,030 0,126 1,01E-05 0,028
TU.6563 - 4,22E-04 UTR3 TTAATGA half-life TATTAATAAAA TATTACTAAAA -0,001 0,031 0,092 2,17E-02 0,040
TU.4953 - 4,38E-04 Promoter CAGTCACA half-life GAGAGTCACATC GAGATTCACATC -0,196 0,026 -0,143 2,01E-07 0,027

A positive control was provided by the alternate allele of the gene rctf1, which differed
from the reference allele by a single nucleotide, a G-to-T substitution at the third position
of a Homol D-box motif in its promoter. Recombinant strains harboring the alternate allele
showed significantly lower steady-state expression levels (Figure 8.11A, P = 2 x 10-10,
one-sided Wilcoxon test) consistent with the predicted 1.35-fold increased synthesis time
(Figure 8.10A). Two variants acting in an opposite fashion demonstrated the functional
role of the 3’UTR motif TTAATGA. The linear model predicted a 1.23-fold increased
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half-life for a A to G substitution at the 7th position (7.A>G, Figure 8.10B). Consistently,
7.A>G substitution occurring on the gene SPCC794.06 led to a significantly increased
expression level (Figure 8.11B, P = 2 x 10-4) whereas the (7.G>A) in the gene mug65 led
to a significantly decreased expression level (Figure 8.11C, P = 10-4). Among the novel
motifs, the TTAATGA could be validated (3 out of 4 genes with a significant change in
expression in the predicted direction P < 0.05) as well as the AACCAC motif (2 out of 2
genes with a significant change in expression in the predicted direction P < 0.05). The
other motifs generally did not yield significant changes, possibly because the predicted
and the observed effects were of small amplitude. Over all 20 variants, the observed and
predicted fold-changes did not only agree in direction but also in amplitude (Pearson
correlation, P = 9 x 10-4, Figure 8.11D, Table 8.1), demonstrating that most motifs were
functional and that the model predicted quantitatively the effects of single mutations.

8.12. Intron sequences determining splicing kinetics

Sequence motifs predictive of splicing times were found only in introns, and here only
in the donor region downstream of the 5’-splice site (5’SS) and at the branch site (BS).
We complemented this set with the 3’-splice site (3’SS) and extended motifs in each
direction as far as significant single nucleotide effects were found (Linear regression and
cross-validation, Methods 7.6, Figure 8.12A). Significant effects were found up to six
nucleotides downstream of the 5’SS. These bases are those pairing with the spliceosome
component U6 small nuclear RNA during the first catalytic step of splicing (reviewed in
[148, 149]). We also found significant effects up to seven nucleotides 5’ of the branch point
adenosine and one nucleotide 3’ of it, entailing all but one of the seven nucleotides pairing
with the U2 small nuclear RNA [148]. These two regions showed the strongest effects,
with typically 1.1- to 1.5-fold decreased splicing time compared to consensus, showing that
exact base-pairing with U6 and U2, although not required for splicing, is a determinant for
its kinetics. Significant but weaker effects (less than 1.1-fold) extending up to 8 nucleotides
3’ and 5’ of the 3’SS were also found. Deviations from the consensus sequence invariably
associated with increased splicing time (Figure 8.12A). Also, splicing time anti-correlated
with the frequency of the core branch site sequence across the genome (Figure 8.12B).
These observations indicate that there is selective pressure on all introns for rapid splicing
in S. pombe. We then asked whether the selective strength at these positions always
reflected their quantitative contribution to the rate of splicing. Overall, the mean effect
of a deviation from the consensus significantly correlated with how little variable the
base was across all introns genome-wide (Kullback-Leibler information, Spearman rank
correlation = 0.61, P = 5 x 10-4, Figure 8.12C). Positions within the branch site region
and downstream of the 5’SS are most commonly found as consensus and showed the largest
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Figure 8.11.: Validation of motif SNP effects on expression. (A,B,C) Boxplot and individual
data point of exonic read counts normalized for sequencing depth and batch effects (y-axis) for
strains grouped by genotype (x-axis) for the gene rctf1 (A), SPCC794.06 (B), and mug65 (C) (D)
Validation of motifs using expression data of a recombinant strain library (Clément-Ziza et al.,
2015). Fold-change in steady-state expression level due to a single nucleotide variant as predicted
from our models (x-axis) against average expression fold-change between strains harboring the
variant and strains harboring the reference allele (y-axis). Estimated standard errors for the
prediction and the observed are represented by the vertical and horizontal segments. The overall
Spearman rank correlation is 0.76 (P=0.006). In legend: SNP code and one-sided Wilcoxon test
P-value.

effect on splicing kinetics. The last nucleotide of the 5’ exon is generally a guanine but
did not influence splicing time (5’SS-1 position), indicating that other sources of selection
influence this position.

8.13. Splicing kinetics also depends on RNA synthesis

Splicing time did not strongly correlate with intron length (Spearman rank correlation
= 0.03, P = 0.05) and correlated negatively with TU length (Spearman rank correlation
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Figure 8.12.: Determinants of in vivo splicing rates. (A) Prediction of the relative effect on
splicing time (y-axis) for single nucleotide substitution compared to consensus sequence around
the 5’splice site, the branch site and the 3’splice site (cartoon top panel). Effects at invariant
positions (5’SS: GU, BS: A and 3’SS: AG) cannot be computed. (B) Occurrence (bottom panel)
and distribution of half-splicing times (top panel) per BS motif (x-axis) sorted by frequency. The
median splicing time of introns with consensus sequence is indicated with a dashed line. (C)
Information content (y-axis) versus mean effect on splicing time (x-axis) for each position (relative
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content > 0.3 are highlighted. (D) Distribution of splicing times (y-axis) versus number of introns
in the TU (x-axis). (E) Splicing time (y-axis) versus synthesis time (x-axis)

= -0.16, P < 2 x 10-16), showing that short transcripts are spliced more slowly. This is
in contrast to observations in mouse, where short transcripts and short introns are more
rapidly spliced than longer ones [57]. This apparent discrepancy might be due to the
fact that S. pombe neither contains very long genes nor very long introns. Splicing time
increased with the number of introns (Figure 8.12D) as in mouse cells [57], independently
of the relative position of the intron within the transcript. However, this correlation
could be explained by the fact that genes with few introns also have efficient splice site
and branch site sequences (multivariate analysis, section 7.8). Thus it is not the number
of introns per se that affects splicing, rather, genes that give rise to rapidly processed
RNAs evolved to have few introns and efficient splicing RNA elements. Splicing time
correlated positively with synthesis time (Spearman rank correlation = 0.28, P < 2 x
10-16, Figure 8.12E), in agreement with results in mouse. This may be due to co-evolution
of synthesis and splicing, or because highly transcribed loci are more readily accessible
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to the splicing machinery. This finding is not in contradiction to the understanding that
fast RNA polymerase elongation inhibits splicing [142], because synthesis rate is mostly
determined by the rate of transcription initiation rather than elongation [150]. Altogether,
multivariate analysis (Methods 7.8) indicated that sequence elements, synthesis time, and
TU length independently enhance splicing, where sequence is the major contributor (50%
of the explained variance), followed by synthesis rates (42% of the explained variance).

8.14. Antisense transcription affects mRNA synthesis,
not stability

Repression by antisense transcription is increasingly being recognized as an important mode
of regulation of gene expression, but its mechanisms remain poorly understood [151, 152].
In our revised genome annotation, convergent TUs generally did not overlap (1022 out
of 1616), typically leaving 75 bp of untranscribed sequence in between (Figure 8.13A).
Among overlapping convergent pairs, TU 3’-ends were enriched within introns (P = 0.001)
and depleted within exons (P = 0.001) of the opposite strand (1,000 random permutations
of TU pairs), likely because coding sequence is highly restrained and may impair encoding
of polyadenylation and termination signals for the opposite strand. Although transcripts
are generally not antisense to each other, we found 520 ncTUs antisense of ORF-TUs (one
example in Figure 8.13B).
In fission yeast, antisense transcription could repress sense RNA synthesis, as in S. cerevisiae
[19], or affect RNA stability by RNA interference, because fission yeast, unlike budding
yeast, contains the RNAi machinery. ORF-TUs with antisense ncTUs overlapping at
least 40% exhibited significantly increased synthesis times (Wilcoxon test, P = 9 x 10-7),
consistent with repression of mRNA synthesis by antisense transcription. This effect was
higher when the antisense ncTU covered a larger area of the ORF-TU (Figure 8.13C).
However, no difference regarding mRNA stability was observed (Figure 8.13D). Taking
together, these results indicate that expression levels of those ORF-TUs were mainly
regulated by means of mutually exclusive transcription rather than by RNA interference,
which would be predicted to affect transcript stability.
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9. Conclusions and Outlook

The work presented in this thesis elucidates novel molecular mechanisms that regulate
in-vivo RNA metabolism. By combining metabolically labeled RNA profiling with compu-
tational modeling we could obtain genome-wide estimates for RNA synthesis, splicing and
degradation in two different experimental setups. For both studies, we made use of a novel
experimental protocol that allows the purification and quantification of newly synthesized
RNAs with minimal perturbation. Advanced mathematical modeling was used to translate
the raw time series measurements of relative RNA abundances into comparable and mean-
ingful estimates of RNA turnover kinetics. Robust statistical methods and procedures
were developed and applied in a biology driven way to investigate cellular processes and
genetic sequences associated with and regulating RNA metabolism in cells.

9.1. Periodic mRNA synthesis and degradation
cooperate during cell cycle gene expression

In the first study (Part II), we conducted the first systematic investigation of mRNA
synthesis and degradation rates during the cell cycle, using as an eukaryotic model system
the yeast S. cerevisiae. The labeling protocol was applied to monitor mRNA synthesis
and degradation of synchronized cells along three cell cycles. We developed and released
the software package MoPS, a general-purpose, model-based screening algorithm for the
identification of periodic changes in time course measurements. By integrating total
and labeled mRNA replicate time series, MoPS identified a reliable set of 479 genes
with periodic expression during the cell cycle. In contrast to other periodicity screening
methods, MoPS is particularly robust and extracts meaningful parameters from a periodic
time course. These parameters, like expression peak time, peak height, and the shape of
the expression time course laid a solid basis for an in-depth analysis of the underlying
biological phenomena.
We found that labeled and total mRNA time courses are highly similar for most genes.
This indicates that transcription is the key determinant of cell-cycle phase specific mRNA
expression. By clustering of the fitted gene-specific parameters of labeled expression, we
identified groups of co-transcribed genes. We were able to retrieve known regulatory
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DNA motifs and identify transcription factors that determine cell cycle phase-specific
transcription, confirming and extending previous work. By comparing gene expression
levels of TFs with synthesis rates of their target genes, we consistently observed that total
mRNA levels of activating (repressive) cell cycle TFs peak when transcription of its targets
is maximal (minimal). Further investigation of co-regulated gene clusters revealed that
the timing and the magnitude of periodic expression have different causes. Genes that
have common binding sites for cell cycle TFs show coherent timing of expression, but
differ in their mRNA synthesis rates. Striking examples are genes exclusively regulated
by MBP1, a transcription factor that has a well-studied role in regulating expression of
late G1 genes [153, 154]. Although these genes have very similar temporal profiles, they
exhibit large differences in their synthesis rates and total mRNA levels. These differences
are related to the composition of the core promoter TATA sequence, and correlate with
the binding of general transcription factors. Periodic genes that drive cell cycle progression
or regulate fundamental processes like chromatin organization in S-phase are found to be
highly induced and tend to have a consensus TATA box.

The most intriguing finding from our results is however that most periodically expressed
genes show periodic changes in the degradation rates of their mRNAs. We realized that
total mRNA levels peak on average only 2 min after labeled mRNA, which indicates the
peak of mRNA synthesis activity. This short time delay could not be explained when
constant degradation rates were assumed. Computational modeling of degradation kinetics
of periodically transcribed genes indicated that the stability of mRNAs decreases shortly
after transcription ceases. This highlights the importance of post-transcriptional control
on the regulation of genes involved in cell cycle-associated processes. Varying mRNA
degradation rates during the cell cycle were previously observed [93]. In this study, two
mitotic periodic genes SWI5 and CLB2 show a decrease in mRNA stability after peak
expression to prevent carryover of mRNAs into the next cycle. Our results extend these
findings to the majority of all periodic transcripts.
It is an open question how these changes are achieved, but due to the generality of the
phenomenon we suggest that increased transcript degradation following a peak of mRNA
synthesis is a passive phenomenon [155]. Other studies propose destabilizing, specific
RNA-binding factors. Since the two hypotheses are not mutually exclusive, we expect a
combination of both mechanisms. Whereas the molecular mechanisms underlying this
phenomenon remain to be uncovered, our study revealed that periodic changes in mRNA
synthesis and temporally delayed changes in degradation are common events that achieve
concise and strong mRNA expression changes during the cell cycle.
Taken together, we obtained for the first time, RNA synthesis and degradation rates in
synchronized cells and found evidence for a global mechanism that destabilizes or actively
degrades cell-cycle regulated mRNAs. Furthermore, the excellent reproducibility of the
measurements and the high temporal resolution at which mRNA synthesis rates and total
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mRNA expression were determined will make our data an ideal resource for more advanced
reverse engineering approaches of cell cycle related gene expression networks.

9.2. Determinants of RNA metabolism in the
Schizosaccharomyces pombe genome

In the second study (Part III), we performed metabolically labeled RNA profiling with
RNA-Seq (4tU-Seq) at high temporal resolution in wild-type fission yeast cells.
We estimated genome-wide RNA synthesis, splicing and degradation rates and systemati-
cally related them to regulatory sequence elements. We could identify known and novel
DNA and RNA motifs that significantly affect RNA metabolism kinetics. We were able
to estimate the effect of single bases on turnover rates and could validate the identified
motifs with independent data from genetically distinct S.pombe strains [124].
The basis for this study was led by the transition from Microarrays to RNA-Seq for quantifi-
cation of labeled and total RNA, because it permits the generation of strand-specific data
with a higher dynamic range and single-nucleotide resolution [46]. We developed advanced
computational kinetic modeling and statistical procedures that make use of the sequencing
data in multiple ways. First, we use the paired-end information of the strand-specific reads
to get an accurate map of transcript boundaries across the S.pombe genome. Second, it
allowed us to profile not only the abundance of mRNAs but the complete transcriptome
including short-lived non-coding RNAs. Third, the relative occurrences of split and unsplit
reads across splice junctions enabled us to investigate splicing kinetics.
With this data, we first systematically annotated the transcribed genome of S.pombe,
thereby redefining most ncRNAs and a large fraction of UTRs in mRNAs, in particular
5’UTRs and thus promoter regions. Advanced kinetic modeling using the 4tU-Seq time
series data then allowed us to accurately estimate RNA metabolism rates for all transcripts
of the new annotation (Figure 8.1, step 1).
We further introduced an approach to discover regulatory elements in the genome that
combines the metabolic rates with robust regression on DNA sequence (Figure 8.1, step
2). Without using further information than simple gene architecture (promoter, UTRs,
exons and introns), this approach recovered known regulatory motifs de novo, such as core
promoter elements and the 3’UTR AU-rich element, but also provided two novel 3’UTR
motifs, and functional AC-rich sequences in promoters and in 5’UTRs. An important
advantage of this approach is the ability to determine the contributions of individual
sequence elements to each step of RNA metabolism. Whereas standard motif enrichment
analysis discriminates only between two classes of data (e.g. highly versus lowly expressed),
we used quantitative regression and therefore could exploit the full range of the data
without applying any cutoff. Regression furthermore has the benefit to provide quantitative
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predictions regarding genetic perturbations that could be directly compared to expression
fold-changes for functional validations.
Validation of the discovered motifs was achieved by exploiting existing transcription profiles
of genetically distinct strains from an independent study [124]. We asked whether genetic
variants affecting the motifs resulted in a perturbed expression level in a direction and
extent that match the predictions (Figure 8.1, step 3). Overall, the observed and predicted
fold-changes did not only agree in direction but also in amplitude, demonstrating that
most motifs were functional and that the model predicted quantitatively the effects of
single mutations. The beauty of this validation approach lies in the fact that we can
exploit natural occurring genetic variation and do not need to introduce any modifications
or perturbations into the cells. This is important, since it has been shown that even small
changes can lead to aberrant behavior of molecular processes in cells [67].
Due to the high temporal resolution of the 4tU-Seq dataset, we were further able to investi-
gate the kinetics of splicing. We revealed that splicing in S.pombe takes in average less than
one minute and that splicing rates profoundly depend on conserved nucleotides around the
branch point and the donor and acceptor sites. So far, only Rabani and colleagues [57],
using mouse cells, have reported a computational tool to estimate genome-wide splicing
rates. That study had used mammalian cells, resulting in a limitation in sequencing depth
that restricted many parts of the analysis to the 10% most expressed splice junctions.
Due to the higher sequencing depth, our analysis in S. pombe could be global. Another
advantage of fission yeast is the absence of alternative splicing, which simplifies the analysis
and makes rate estimation very robust.

The approach presented here is a pioneering approach to profile RNA metabolism at high
temporal resolution. Further research can build on this and investigate differences in
rates between different conditions or mutants. With the increased resolution compared to
common total RNA-Seq, one could investigate changes in RNA metabolism upon external
stimuli like heat stress or intracellular perturbations like blocking of certain pathways or
the knockdown of general transcription or degradation factors. Mutants of the C-terminal
repeat domain of RNA polymerase II are a particular interesting target since its role in
the coupling of transcription and splicing is only poorly understood.
The presented method to decrypt the regulatory code of RNA metabolism is general and
could be applied to other higher organisms. In the future, the application of our model
may help to understand the consequences of regulatory variation in the human genome,
with important implications for understanding gene regulation and interpreting the many
disease-risk variants that fall outside of protein-coding regions [156].
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Figure 9.1.: Effects of single nucleotides on RNA kinetics. (A) Nucleotide frequency within
motif instances (lower track) and prediction of the relative effect on synthesis time (upper track)
for single nucleotide substitution in the Homol E-box consensus motif and of complete loss of the
consensus motif (purple line). (B-I) As in (A) for all identified motifs and corresponding rates.
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