64 research outputs found

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    On the Complexity of the Relative Inclusion Star Height Problem

    Get PDF
    Given a family of recognizable languages L1, . . . ,Lm and recognizable languages K1 ⊆ K2, the relative inclusion star height problem means to compute the minimal star height of some rational expression r over L1, . . . ,Lm satisfying K1 ⊆ L(r) ⊆ K2. We show that this problem is of elementary complexity and give a detailed analysis its complexity depending on the representation of K1 and K2 and whether L1, . . . ,Lm are singletons

    On the Structure and Complexity of Rational Sets of Regular Languages

    Get PDF
    In a recent thread of papers, we have introduced FQL, a precise specification language for test coverage, and developed the test case generation engine FShell for ANSI C. In essence, an FQL test specification amounts to a set of regular languages, each of which has to be matched by at least one test execution. To describe such sets of regular languages, the FQL semantics uses an automata-theoretic concept known as rational sets of regular languages (RSRLs). RSRLs are automata whose alphabet consists of regular expressions. Thus, the language accepted by the automaton is a set of regular expressions. In this paper, we study RSRLs from a theoretic point of view. More specifically, we analyze RSRL closure properties under common set theoretic operations, and the complexity of membership checking, i.e., whether a regular language is an element of a RSRL. For all questions we investigate both the general case and the case of finite sets of regular languages. Although a few properties are left as open problems, the paper provides a systematic semantic foundation for the test specification language FQL

    Sampled Semantics of Timed Automata

    Full text link
    Sampled semantics of timed automata is a finite approximation of their dense time behavior. While the former is closer to the actual software or hardware systems with a fixed granularity of time, the abstract character of the latter makes it appealing for system modeling and verification. We study one aspect of the relation between these two semantics, namely checking whether the system exhibits some qualitative (untimed) behaviors in the dense time which cannot be reproduced by any implementation with a fixed sampling rate. More formally, the \emph{sampling problem} is to decide whether there is a sampling rate such that all qualitative behaviors (the untimed language) accepted by a given timed automaton in dense time semantics can be also accepted in sampled semantics. We show that this problem is decidable

    Decidability Results for the Boundedness Problem

    Full text link
    We prove decidability of the boundedness problem for monadic least fixed-point recursion based on positive monadic second-order (MSO) formulae over trees. Given an MSO-formula phi(X,x) that is positive in X, it is decidable whether the fixed-point recursion based on phi is spurious over the class of all trees in the sense that there is some uniform finite bound for the number of iterations phi takes to reach its least fixed point, uniformly across all trees. We also identify the exact complexity of this problem. The proof uses automata-theoretic techniques. This key result extends, by means of model-theoretic interpretations, to show decidability of the boundedness problem for MSO and guarded second-order logic (GSO) over the classes of structures of fixed finite tree-width. Further model-theoretic transfer arguments allow us to derive major known decidability results for boundedness for fragments of first-order logic as well as new ones

    Safety and Liveness of Quantitative Automata

    Get PDF
    The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-ordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications

    Size-Change Abstraction and Max-Plus Automata

    Get PDF
    Max-plus automata (over ℕ ∪ − ∞) are finite devices that map input words to non-negative integers or − ∞. In this paper we present (a) an algorithm allowing to compute the asymptotic behaviour of max-plus automata, and (b) an application of this technique to the evaluation of the computational time complexity of programs
    • …
    corecore