
On the Structure and Complexity of
Rational Sets of Regular Languages
Andreas Holzer1, Christian Schallhart2, Michael Tautschnig3, and
Helmut Veith1

1 Vienna University of Technology, Austria
2 University of Oxford, UK
3 Queen Mary, University of London, UK

Abstract
In the recently designed and implemented test specification language FQL, relevant test goals are
specified as regular expressions over program locations. To transition from single test goals to
test suites, FQL describes suites as regular expressions over finite alphabets where each symbol
corresponds to a regular expression over program locations. Hence, each word in a test suite
expression yields a test goal specification. Such test suite specifications are in fact rational sets
of regular languages (RSRLs). We show closure properties of general and finite RSRLs under
common set theoretic operations. We also prove complexity results for checking equivalence and
inclusion of star-free RSRLs and for checking whether a regular language is a member of a general
or star-free RSRL. As the star-free (and thus finite) case underlies FQL specifications, the closure
and complexity results provide a systematic foundation for FQL test specifications.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Rational Sets, Regular Languages, Test Specification in FQL, Closure
Properties, Decision Problems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.377

1 Introduction

Despite the success of model checking and theorem proving, software testing has a dominant
role in industrial practice. In fact, state-of-the-art development guidelines such as the avionic
standard DO-178B [27] are heavily dependent on test coverage criteria. It is therefore quite
surprising that the formal specification of coverage criteria has been a blind spot in the
formal methods and software engineering communities for a long time.

In a recent thread of papers [14, 12, 17, 16, 15, 6], we have addressed this situation
and introduced the Fshell Query Language (FQL) to specify and tailor coverage criteria,
together with Fshell, a tool to generate matching test suites for ANSI C programs. At
the semantic core of FQL, test goals are described as regular expressions whose alphabet
are the edges of the program control flow graph (CFG). For example, to cover a particular
CFG edge c, one can use the regular expression Σ? c Σ?. Importantly, however, a coverage
criterion usually induces not just a single test goal, but a (possibly large) number of test
goals – e.g. all basic blocks of a program. FQL therefore employs regular languages which
can express sets of regular expressions. To this end, the alphabet contains not only the CFG
edges but also postponed regular expressions over these edges, written within quotes.

For example, “Σ?” (a+ b+ c+d) “Σ?” describes the language {“Σ?” a “Σ?”, “Σ?” b “Σ?”,
“Σ?” c “Σ?”, “Σ?” d “Σ?”}. Each of these words is a regular expression that will then serve as
a test goal. Following [1], we call such languages rational sets of regular languages (RSRL).

© Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 377–388

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.377
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

378 On the Structure and Complexity of Rational Sets of Regular Languages

The goal of this paper is to initiate a systematic study of RSRLs from a theoretical point
of view, considering closure properties and complexity of common set-theoretic operations.
Thus, this paper is a first step towards a systematic foundation of FQL. In particular, a good
understanding of set-theoretic operations is necessary for systematic algorithmic optimization
and manipulation of test specifications. First results on query optimization for FQL have
been obtained in [6].

A rational set of regular languages is given by a regular language K over alphabet ∆,
and a regular language substitution ϕ : ∆→ 2Σ? , mapping each symbol δ ∈ ∆ to a regular
language ϕ(δ) over alphabet Σ. We extend ϕ to words w ∈ ∆+ with ϕ(δ · w) = ϕ(δ) · ϕ(w),
and set ϕ(L) =

⋃
w∈L ϕ(w) for L ⊆ ∆+. The class of rational sets of a monoid (M, ·, e) is

the smallest subclass of M such that (i) ∅ is a rational set, (ii) each singleton set {m} for
m ∈M is a rational set, and if N1 and N2 are rational sets (iii) then N1 ·N2 is a rational set
where · on rational sets is defined by the point-wise application of the monoid’s · operation,
(iv) N1 ∪N2 is a rational set, and (v) N?

1 is a rational set [9, 22].

I Definition 1 (Rational Sets of Regular Languages, RSRLs [1]). Given a finite alphabet Σ,
the rational sets of regular languages are the rational sets over the monoid (2Σ?

, ·, {ε}), where
ε denotes the empty word. We represent a rational set of regular languages R as tuple (K,ϕ),
where K ⊆ ∆+ is a regular language over a finite alphabet ∆, and ϕ is a regular language
substitution ϕ : ∆→ 2Σ? , such that R = {ϕ(w) | w ∈ K}. We say that RSRL R is Kleene
star free, if there exists (K,ϕ) = R such that K is finite (and hence Kleene-star free).

Depending on context, we refer toR as a set of languages or as a pair (K,ϕ), but we always
write L ∈ R iff ∃w ∈ K : L = ϕ(w). Consider the above specification “Σ?” (a+b+c+d) “Σ?”
over base alphabet Σ = {a, b, c, d}. To represent this specification as RSRL R = (K,ϕ),
we set ∆ = {δΣ?} ∪ Σ, containing a fresh symbol δΣ? for the quoted expression “Σ?”. We
set K = L(δΣ? (a+ b+ c+ d) δΣ?) with ϕ(δΣ?) = Σ? and ϕ(σ) = {σ} for σ ∈ Σ. Thus K
contains the words δΣ? a δΣ? , . . . with ϕ(δΣ? a δΣ?) = L(Σ? a Σ?) ∈ R, as desired.

Note that the RSRL above is finite with exactly four elements. This is of course not
atypical: in concrete testing applications, FQL generates finite sets of test goals, since it
relies on Kleene star free RSRLs only. For future applications, however, it is well possible to
consider infinite sets of test goals e.g. for unbounded integer and real valued variables or for
path coverage criteria which are either matched partially, or by abstract executions. In this
paper, we are therefore considering the general, finite, and Kleene star free case.

I Example 2. Consider the alphabets ∆ = {δ1, δ2} and Σ = {a, b}. Then, (1) with
ϕ(δ1) = L(a?), ϕ(δ2) = {ab}, and K = L(δ1δ?2δ1), we obtain the rational set of regular
languages {L(a?(ab)ia?) | i ∈ N}; (2) with ϕ(δ1) = L(a?), ϕ(δ2) = {a}, and K = L(δ1δ?2),
we obtain ϕ(w1) ⊃ ϕ(w2) for all w1, w2 ∈ K with |w1| < |w2|; (3) with ϕ(δ1) = {ε, a},
ϕ(δ2) = {aa}, and K = L(δ1δ?2), we have |ϕ(w)| = 2 and ϕ(w) ∩ ϕ(w′) = ∅ for all
w 6= w′ ∈ K.

In the finite case we make an additional distinction for the subcase where the regular
expressions in ∆, i.e., the set of postponed regular expressions, are fixed. This has practical
relevance, because in the context of FQL, the results of the operations on RSRL will be
better readable by engineers if ∆ is unchanged.

Contributions and Organization

In Section 3, we show closure properties for general and finite RSRLs, considering the operators
product, Kleene star, complement, union, intersection, set difference, and symmetric difference.

A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith 379

We also consider the case of finite RSRLs with a fixed language substitution ϕ, as this case
is of particular interest for testing applications. In Section 4, we prove the complexity results
of the decision problems equivalence, inclusion, and membership for Kleene star free RSRLs.
To prove an upper bound on the complexity of the membership problem, we expand the
decidability proof in [1] and give a first complete and explicit algorithm for the problem. We
close in Section 5 in discussing how our results reflect back to design decisions for FQL.

2 Related Work

Afonin et al. [1] introduced RSRLs and studied the decidability of whether a regular language
is contained in an RSRL and the decidability of whether an RSRL is finite. Although Afonin
et al. shortly discuss possible upper bounds for the membership decision problem, their
analysis is incomplete due to gaps in their algorithmic presentation (see also a more detailed
discussion in Section 4.5). Closely connected to the membership problem is the question,
whether a regular language L is expressible via a combination of a given set of regular
languages Li. Motivated by query rewriting for graph databases, Calvanese et al. [7] show
the complexity of determining the maximal rewriting of a regular language L with given
regular languages Li. In earlier work, Hashiguchi [11] shows that it is decidable whether a
regular language L is expressible via a finite application of a subset of the regular operators
concatenation, union, and star to regular languages Li. Afonin et al. [1] realized that distance
automata [10] enable a decision algorithm for the membership problem for RSRL. Although
this construction relies on distance automata, the properties analyzed by Krob [23] and
Colcombet and Daviaud [8] are not applicable in our context. Kirsten [20, 21] generalizes
distance automata to distance desert automata and uses these automata to show the first
complexity result for determining whether a regular language is of a certain star height.
Berstel [5] surveys closure properties of rational and recognizable subsets of monoids and
thereby also the relationship between rational and recognizable subsets. Yet, most stated
results do not apply to RSRLs, hence we investigate closure properties of RSRLs. Pin [26]
introduced the term extended automata for RSRLs as an example of recognizable languages
that can be characterized by constraint systems over symbols and substrings occurring in
words of the language, but he did not further investigate any of their properties. In our
own related work on FQL [14, 13, 12, 17, 16, 15, 6], we deal with practical issues arising in
test case generation. Beyond RSRLs, FQL provides an additional language layer to extract
suitable alphabets from the programs e.g. referring with a single symbol to all basic blocks
of the program under scrutiny.

Let us finally discuss other work whose terminology is similar to RSRLs without direct
technical relation. Barceló et al. define rational relations, which are relations between words
over a common alphabet, whereas we consider sets of regular languages [3]. Barceló et
al. also investigate parameterized regular languages [4], where words are obtained by replacing
variables in expressions with alphabet symbols. Metaregular languages deal with languages
recognized by automata with a time-variant structure [2, 28]. Lattice Automata [24] only
consider lattices that have a unique complement element, whereas RSRLs are not closed
under complement (no RSRL has an RSRL as complement).

3 Closure Properties

We investigate the closure properties of RSRLs, considering standard set theoretic operators,
such as union, intersection, and complement, and variants thereof, fitting RSRLs. In

FSTTCS 2013

380 On the Structure and Complexity of Rational Sets of Regular Languages

particular, we apply those operators also to pairs in the Cartesian product of RSRLs, and
point-wise to each element in an RSRL and another given regular language.

I Definition 3 (Operations on RSRL). Let R1 and R2 be RSRLs and let R be a regular
language. Then, we define the following operations on RSRLs:

Operation Definition
Product R1 · R2 = {L1 · L2 | L1 ∈ R1, L2 ∈ R2}
Kleene Star R?

1 =
⋃

i∈NR
i
1

Point-wise Ṙ?
1 = {L? | L ∈ R1}

Complement R1 = {L ⊆ 2Σ?

| L /∈ R1}
Point-wise Ṙ1 = {L | L ∈ R1}

Binary Operators R1 ∩R2, R1 ∪R2, R1 −R2 (standard def.)
Point-wise R1 ·∪ / ·∩ / ·−R = {L ∪ / ∩ /−R | L ∈ R1}
Cartesian R1 ×∪ / ×∩ / ×−R2 = {L1 ∪ / ∩ /− L2 | L1 ∈ R1, L2 ∈ R2}

Symmetric Difference R1∆R2 = {L | L ∈ ((R1 ∪R2)− (R1 ∩R2))}

We analyze three different classes of RSRLs for being closed under these operators:
(1) General RSRLs, (2) finite RSRLs, and (3) finite RSRLs with a fixed language substi-
tution ϕ. For closure properties, we do not distinguish between Kleene star free and finite
RSRLs, since every finite RSRL is expressible as Kleene star free RSRL (however, given an
RSRL with Kleene star, it is non-trivial to decide whether the given RSRL is finite or not [1]).
Therefore, all closure properties for finite RSRLs apply to Kleene star free RSRLs as well.
Hence, cases (2-3) correspond to FQL. Case (3) is relevant for usability in practice, allowing
to apply the corresponding operators without constructing a new language substitution. This
does not only significantly reduce the search space but also provides more intuitive results to
users.

I Theorem 4 (Closure Properties of RSRL). The following table summarizes the closure
properties for RSRLs.

Operation Closure Property
General Finite RSRLs

(+ closed − not closed ? unknown) General Fixed Subst.
Product + + +
Kleene Star + − −

Point-wise − + −
Complement − − −

Point-wise − + −
Union + + +

Point-wise − + −
Cartesian − + −

Intersection ? + +
Point-wise − + −
Cartesian − + −

Difference ? + +
Point-wise − + −
Cartesian − + −
Symmetric ? + +

As most proofs for Theorem 4 are straightforward, we only exemplify the proofs for
point-wise operators using the point-wise union operator (cf. Proposition 6) and show the
rest of the proofs in an extended online version of this paper [18]. The following set of
regular languages is not an RSRL and we use it to prove the non-closure of RSRLs under
the point-wise union operator.

A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith 381

I Example 5. Consider the set M = {{b} ∪ {ai | 1 ≤ i ≤ n + 1} | n ∈ N} ⊆ 2{a,b}? .
M contains infinitely many languages, therefore, any RSRL R = (K,ϕ), with M = R,
requires a regular language K containing infinitely many words. By Ln we denote the set
{b} ∪ {ai | 1 ≤ i ≤ n + 1}. Then, L0 (L1 (. . . Li−1 (Li (Li+1 (. . .. There must be
a word w = uvz ∈ K such that uviz ∈ K, for all i ≥ 1 (cf. pumping lemma for regular
languages [19]). Furthermore, there must be such a word w = uvz such that ϕ(u) 6= ∅,
ϕ(v) 6= ∅, ϕ(v) 6= {ε}, and ϕ(z) 6= ∅. This is due to the fact that we have to generate
arbitrary long words ai. We can assume that b /∈ ϕ(v) because otherwise bi ∈ ϕ(vi), for all
i ≥ 1. Therefore, ak ∈ ϕ(v) for some k ≥ 1. Since b ∈ ϕ(uvz) has to be true, we can assume
w.l.o.g. that b ∈ ϕ(u). But, then bak . . . ∈ ϕ(uvz). This is a contradiction to the fact that,
for all n ≥ 1, bak . . . /∈ Ln.

I Proposition 6 (Closure of Point-wise Union). The set R1 ·∪R is, in general, not an RSRL.

Proof. Let R1 = (L(δ1δ?2), ϕ) with ϕ(δ1) = {a} and ϕ(δ2) = L(a + ε) and let R = {b}.
Then, R1 ·∪ R = {{b} ∪ {ai | 1 ≤ i ≤ n + 1} | n ∈ N} which is not an RSRL, as shown in
Example 5. J

4 Decision Problems

Given a regular language R ⊆ Σ? and an RSRL R = (K,ϕ) over the alphabets ∆ and Σ, the
membership problem is to decide whether R ∈ R holds. Given another R′ = (K ′, ϕ′), also
over the alphabets ∆′ and Σ, the inclusion problem asks whether R ⊆ R′ holds, and the
equivalence problem, whether R = R′ holds.

I Theorem 7 (Equivalence, Inclusion, and Membership for Kleene star free RSRLs). Membership,
inclusion, and equivalence are PSpace-complete for Kleene star free represented RSRLs.

This holds true, since in case of Kleene star free represented RSRLs (given explicitly
as (K,ϕ) with K finite), we can enumerate the regular expressions defining all member
languages in PSpace. Given the PSpace-completeness of regular language equivalence, we
compare a given regular expression with all member languages, solving the membership
problem in PSpace. Doing so for all languages of another RSRL solves the inclusion problem,
and checking mutual inclusion yields an algorithm for equivalence. This approach does not
immediately generalize to finite RSRLs, since finite RSRLs R = {ϕ(w) | w ∈ K} may be
generated from an infinite K with Kleene stars.

In the general case, the situation is quite different: Previous work shows that the
membership problem is decidable [1], but without turning the construction into a concrete
algorithm or determining an upper bound for complexity of the problem. Taking this work
as starting point, in the remainder of this section, we give an 2ExpSpace upper bound on
the complexity of the problem, discussing the relationship with [1] at the end of the section.
The decidability of inclusion and equivalence remains open.

4.1 Membership for general RSRLs
By definition, the membership problem is equivalent to asking whether there exists a w ∈ K
with ϕ(w) = R. For checking the existence of such a w, we have to check possibly infinitely
many words in K efficiently. To render this search feasible, we (A) rule out irrelevant parts
of K, and (B) treat subsets of K at once. This leads to the procedure membership(K,R,ϕ)
shown in Algorithm 1, which first enumerates with M ′ ∈ enumerate(K,R,ϕ) a sufficient set
of sublanguages (Line 1), and then checks each of those sublanguages individually (Line 2).

FSTTCS 2013

382 On the Structure and Complexity of Rational Sets of Regular Languages

Algorithm 1: membership(R,K,ϕ)
input : regular languages R ⊆ Σ?, K ⊆ ∆?,

regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆
returns : true iff ∃w ∈ K : ϕ(w) = R (i.e., iff R ∈ (K,ϕ))

1 foreach M ′ ∈ enumerate(R,K,ϕ) do
2 if basiccheck(R,M ′, ϕ) then return true;
3 return false;

More specifically, we employ the following optimizations: We rule out (A.1) all words w
with ϕ(w) 6⊆ R, and (A.2) all words w whose language ϕ(w) differs from R in the length of
its shortest word. We subdivide the remaining search space (B) into finitely many suitable
languages M ′ and check the existence of a w ∈M ′ with ϕ(w) = R in a single step.

We discuss a mutually fitting design of these steps below and consider the resulting
complexity. However, due to space limitations, we put the necessary proofs into an extended
online version of this paper [18].

(A.1) Maximal Rewriting

To rule out all w with ϕ(w) 6⊆ R, we rely on the notion of a maximal ϕ-rewriting Mϕ(R)
of R, taken from [7]. Mϕ(R) consists of the words w with ϕ(w) ⊆ R, i.e., we set Mϕ(R) =
{w ∈ ∆+ | ϕ(w) ⊆ R}. Furthermore, all subsets M ⊆Mϕ(R) are called rewritings of R, and
if ϕ(M) = R holds, M is called exact rewriting.

I Proposition 8 (Regularity of maximal rewritings [7]1). Let ϕ : ∆→ 2Σ? be a regular language
substitution. Then the maximal ϕ-rewriting Mϕ(R) of a regular language R ⊆ Σ? is a regular
language over ∆.

As all words w with ϕ(w) = R must be element of Mϕ(R), we restrict our search to
M = Mϕ(R) ∩K.

(A.2) Minimal Word Length

We restrict the search space further by checking the minimal word length, i.e., we compare
the length of the respectively shortest word in R and ϕ(w). If R and ϕ(w) have different
minimal word lengths, R 6= ϕ(w) holds, and hence, we rule out w. We define the minimal
word length minlen(L) of a language L with minlen(L) = min{|w| | w ∈ L}, leading to the
definition of language strata.

I Definition 9 (Language Stratum). Let L be a language over ∆, and ϕ : ∆ → 2Σ? be a
regular language substitution, then the B-stratum of L, denoted as L[B,ϕ], is the set of
words in L which generate via ϕ languages of minimal word length B, i.e., L[B,ϕ] = {w ∈
L | minlen(ϕ(w)) = B}.

Starting with M = Mϕ(R) ∩K, we restrict our search further to M [minlen(R), ϕ].

1 This proposition is not trivial, as ϕ is not a homomorphism mapping each word to a single word, but
a substitution mapping each word w to a language ϕ(w); if ϕ(w) would yield only words, we would
immediately obtain Mϕ(R) = ϕ−1(R) for ϕ−1(L) = {w | ϕ(w) ∩ L 6= ∅}.

A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith 383

(B) 1-Word Summaries

It remains to subdivide M [minlen(R), ϕ] into finitely many subsets M ′, which are then
checked efficiently without enumerating their words w ∈ M ′. Here, we only discuss the
property of these subsets M ′ which enables such an efficient check, and later we will describe
an enumeration of those subsets M ′. When we check a subset M ′, we do not search for
a single word w ∈ M ′ with ϕ(w) = R but for a finite set F ⊆ M ′ with ϕ(F) = R. The
soundness of this approach will be guaranteed by the existence of 1-word summaries: A
language M ′ ⊆ ∆? has 1-word summaries, if for all finite subsets F ⊆ M ′ there exists a
summary word w ∈M ′ with ϕ(F) ⊆ ϕ(w). The property we exploit is given by the following
proposition.

I Proposition 10 (Membership Condition for Summarizable Languages, adapting [1]). Let
M ′ ⊆ ∆? be a regular language with 1-word summaries and ϕ(M ′) ⊆ R. Then there exists a
w ∈M ′ with ϕ(w) = R iff there exists a finite subset F ⊆M ′ with ϕ(F) = ϕ(M ′) = R.

Putting it together

First, combining A.2 and B, we obtain Lemma 11, to subdivide the search spaceM [B,ϕ] into
a set rep(M,B,ϕ) of languages M ′ with 1-word summaries. Second, in Theorem 12, building
upon Lemma 11 and A.1, we fix B = minlen(R) and iterate through these languages M ′. We
check each of them at once with our membership condition from Proposition 10. In terms of
Algorithm 1, Lemma 11 provides the foundation for enumerate(K,R,ϕ) and Proposition 10
underlies basiccheck(R,M ′, ϕ).

I Lemma 11 (Summarizable Language Representation, adapting [1]). Let M ⊆ ∆? be a regular
language and ϕ : ∆→ 2Σ? be a regular language substitution. Then, for each bound B ≥ 0,
there exists a family rep(M,B,ϕ) of union-free regular languages M ′ ∈ rep(M,B,ϕ) with
1-word summaries, such that M [B,ϕ] ⊆

⋃
M ′∈rep(M,B,ϕ)M

′ ⊆M holds.

I Theorem 12 (Membership Condition, following [1]). Let R = (K,ϕ) be a RSRL and
ϕ : ∆ → 2Σ? be a regular language substitution. Then, for a regular language R ⊆ Σ?,
we have R ∈ R, iff there exists an M ′ ∈ rep(Mϕ(R) ∩K,minlen(R), ϕ) with a finite subset
F ⊆M ′ with ϕ(F) = ϕ(M ′) = R.

We obtain the space complexity of membership, depending on the size of the expressions
which represent the involved languages. More specifically, the complexity depends on the
expression sizes ||R|| and ||K|| and the summed size ||ϕ|| = Σδ∈∆||ϕ(δ)|| of the expressions
in the co-domain of ϕ.

I Theorem 13 (membership(R,K,ϕ) runs in 2ExpSpace). More precisely, it runs in
DSpace

(
||K||r22(||R||+||ϕ||)s)

for some constants r and s.

We prove Theorem 13 in Section 4.4, relying on the algorithms presented in Sections 4.2
and 4.3.

4.2 Implementing basiccheck(R, M ′, ϕ)
Since Lemma 11 produces only languages M ′ = N1S

?
1N2 . . . NmS

?
mNm+1 with 1-word sum-

maries, we restrict our implementation to such languages and exploit these restrictions
subsequently. So, given such a language M ′ over ∆, and a regular language substitution
ϕ : ∆→ 2Σ? , we need to check whether there exists a finite F ⊆M ′ with ϕ(F) = ϕ(M ′) = R.

FSTTCS 2013

384 On the Structure and Complexity of Rational Sets of Regular Languages

Algorithm 2: basiccheck(R,M ′, ϕ)
input : regular languages R ⊆ Σ?, M ′ ⊆ ∆?, and

regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆
requires :M ′ is union-free and ϕ(M ′) ⊆ R
returns : true iff ∃ finite F ⊆M ′ : ϕ(F) = ϕ(M ′) = R

1 build AM ′ ;
2 if AM ′ limited then
3 if ϕ(M ′) = R then return true;
4 return false;

We implement this check with the procedure basiccheck(R,M ′, ϕ), splitting the condition
of Proposition 10 into two parts, namely (1) whether there exists a finite F ⊆ M ′ with
ϕ(F) = ϕ(M ′), and (2) whether ϕ(M ′) = R holds. While the latter condition amounts to
regular language equivalence, the former requires distance automata as additional machinery.

I Definition 14 (Distance Automaton [10]). A distance automaton over an alphabet ∆ is a
tuple A = 〈∆, Q, ρ, q0, F, d〉 where 〈∆, Q, ρ, q0, F 〉 is an NFA and d : ρ→ {0, 1} is a distance
function, which can be extended to a function on words as follows. The distance function d(π)
of a path π is the sum of the distances of all edges in π. The distance µ(w) of a word w ∈ L(A)
is the minimum of d(π) for all paths π accepting w.

A distance automaton A is called limited if there exists a constant U such that µ(w) < U

for all words w ∈ L(A).

In our check for (1), we build a distance automaton which is limited iff a finite F with
ϕ(F) = ϕ(M ′) exists. Then, we rely on the PSpace-decidability [25] of the limitedness of
distance automata to check whether F exists or not.

Distance-automaton Construction

Here, we exploit the assumption that M ′ is a union-free language over ∆: Given the regular
expression defining M ′, we construct the distance automaton AM ′ following the form of this
regular expression:

δ ∈ ∆: We construct the finite automaton Aδ with L(Aδ) = ϕ(δ). We extend Aδ to a
distance automaton by labeling each transition in Aδi

with 0.
e · f : Given distance automata Ae and Af with Ae = (Qe,Σ, ρe, q0,e, Fe, de) and Af =
(Qf ,Σ, ρf , q0,f , Ff , df), we set Ae·f = (Qe]Qf ,Σ, ρe ∪ ρf ∪ ρ, q0,e, Ff , de·f) where ρ =
{(q, ε, q0,f) | q ∈ Fe} and de·f = de ∪ df ∪ {(t, 0) | t ∈ ρ}, i.e., we connect each final state
of Ae to the initial state of Af and assign the distance 0 to these connecting transitions.
e?: We construct the distance automaton Ae = (Qe,Σ, ρe, q0,e, Fe, de). Then, Ae? =
(Qe,Σ, ρe ∪ ρ, q0,e, Fe ∪ {q0,e}, de?), where ρ = {(q, ε, q0,e) | q ∈ Fe} and de? = de ∪
{((q, ε, p), 1) | (q, ε, p) ∈ ρ}, i.e., we connect each final state of Ae to the initial states of
Ae and assign the corresponding transitions the distance 1.

If the resulting distance automaton AM ′ is limited, then there exists a finite subset F ⊆M ′
such that ϕ(F) = ϕ(M ′). This implies that (1) holds.

So, given M ′ and R together with all languages in the domain of ϕ as regular expressions,
basiccheck(R,M ′, ϕ) in Algorithm 2 first builds AM ′ (Line 1) and checks its limitedness
(Line 2), amounting to condition (1). For condition (2), basiccheck verifies that ϕ(M ′) and
R are equivalent (Line 3) and returns true if both checks succeed.

A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith 385

Algorithm 3: enumerate(R,K,ϕ)
input : regular languages R ⊆ Σ?, K ⊆ ∆?, and

regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆
yields :L ∈ rep(M,minlen(R), ϕ) for M = Mϕ(R) ∩K

1 M := Mϕ(R) ∩K;
2 for L ∈ unionfreedecomp(M) do unfold(L,ϕ,minlen(R));

Algorithm 4: unfold(L,ϕ,B)
input : union-free regular language L ⊆ ∆?, written as

L = N1S
?
1N2 . . . NmS

?
mNm+1 ⊆ ∆? with Ni ∈ ∆? and union-free Sh ⊆ ∆?,

regular language substitution ϕ with ϕ(δ) ⊆ Σ? for all δ ∈ ∆, and bound B
yields :L′ ∈ rep(L,B, ϕ)

1 if ∀Sh∀w ∈ Sh : ε ∈ ϕ(w) then yield L;
2 else
3 fix Sh arbitrarily with ∃w ∈ Sh : ε 6∈ ϕ(w);
4 E := Sh ∩∆?

ε; // ∆ε = {δ ∈ ∆ | ε ∈ ϕ(δ)}
5 L0 := N1S

?
1N2 . . . NhE

?Nh+1 . . . NmS
?
mNm+1;

6 unfold(L0, ϕ,B);
// Lp := N1S

?
1N2 . . . NhE

?ĒpS
?
hNh+1 . . . NmS

?
mNm+1 (see text)

7 for p ∈ critical(Sh) with minlen(ϕ(Lp)) ≤ B do unfold(Lp, ϕ,B);

I Lemma 15 (basiccheck(R,M ′, ϕ) runs in PSpace). basiccheck(R,M ′, ϕ) runs in PSpace,
which is optimal up to the assumption that PSpace does not collapse with a lower class, as
it solves a PSpace-complete problem.

4.3 Implementing enumerate(K, R, ϕ)
Our enumeration algorithm must produce the languages rep(M,B,ϕ), guaranteeing that all
M ′ ∈ rep(M,B,ϕ) have 1-word summaries, and that M [B,ϕ] ⊆

⋃
M ′∈rep(M,B,ϕ)M

′ ⊆ M

holds (as specified by Lemma 11). To this end, we rely on a sufficient condition for the
existence of 1-word summaries. First we show this condition with Proposition 16, before
turning to the enumeration algorithm itself.

I Proposition 16 (Sufficient Condition for 1-Word Summaries). Let L be a union-free language
over ∆, given as L = N1S

?
1N2 . . . NmS

?
mNm+1, with words Nh ∈ ∆? and union-free languages

Sh ⊆ ∆?. If ε ∈ ϕ(w) for all w ∈ Sh and all Sh, then L has 1-word summaries.

We are ready to design our enumeration algorithm, shown in Algorithm 3, and its recursive
subprocedure in Algorithm 4. Both algorithms do not return a result but yield their result
as an enumeration: Upon invocation, both algorithms run through a sequence of yield
statements, each time appending the argument of yield to the enumerated sequence. Thus,
the algorithm never stores the entire sequence but only the stack of the invoked procedures.

Initializing the recursive enumeration, Algorithm 3 obtains the maximum rewriting M :=
Mϕ(R) ∩K of R (Line 1) and iterates over the languages L in the union-free decomposition
of M (Line 2) to call for each L the recursive procedure unfold, shown in Algorithm 4. In
turn, Algorithm 4 takes a union free language L = N1S

?
1N2 . . . NmS

?
mNm+1 and a bound B

to unfold the Kleene-star expressions of L until the precondition of Proposition 16 is satisfied
or minlen(ϕ(L)) > B.

FSTTCS 2013

386 On the Structure and Complexity of Rational Sets of Regular Languages

More specifically, unfold exploits a rewriting, based on the following terms: Given a union
free language Sh, let E = Sh∩∆?

ε with ∆ε = {δ ∈ ∆ | ε ∈ ϕ(δ)} denote all words w in Sh with
ε ∈ ϕ(w) and let Ē = Sh \E. Since Ē is in general not union free, we need to split Ē further.
To this end, we define ufs(Sh, p) recursively for an integer sequence p = 〈pH | pT 〉 with head
element pH and tail sequence pT . Intuitively, a sequence p identifies a subexpression in Sh
by recursively selecting a nested Kleene star expression; ufs(Sh, p) unfolds Sh such that this
selected expression is instantiated at least once. Formally, for Sh = α1β

?
1α2 . . . αnβ

?
nαn+1 we

set ufs(Sh, ε) = Sh and ufs(Sh, p) = α1 . . . αpH
β?pH

ufs(βpH
, pT)β?pH

αpH+1 . . . αn+1. Consider
Sh = A?(B?C?)?D? (with all αi = ε for brevity), then we obtain

ufs(Sh, 〈2, 1〉) = A? (B?C?)? ufs(B?C?, 〈1〉) (B?C?)? D?

= A? (B?C?)? (B? ufs(B, ε) B? C?) (B?C?)? D?

= A? (B?C?)? (B? (B) B? C?) (B?C?)? D?

instantiating B at position 〈2, 1〉 at least once. Let critical(Sh) be integer sequences which
identify a subexpression of Sh which directly contain a symbol δ with ε 6∈ ϕ(δ) (and
not only via another Kleene-star expression). Then, we write Ē =

⋃
p∈critical(Sh) Ēp, with

Ēp = ufs(Sh, p). This discussion leads to the following rewriting:

I Proposition 17 (Rewriting for 1-Word Summaries). For every union free language S?h, we
have S?h = E? ∪

⋃
p∈critical(Sh)E

?ĒpS
?
h. All languages in the rewriting, i.e., E? and E?ĒpS?h,

are union free, E? has 1-word summaries, and minlen(S?h) < minlen(E?ĒpS?h) holds for all
p ∈ critical(Sh).

If L already satisfies the precondition imposed by Proposition 16, Algorithm 4 yield-s
L and terminates (Line 1). Otherwise, it fixes an arbitrary Sh violating this precondition
and rewrites L recursively with Proposition 17 (Lines 3-7). (1) Termination: In each
recursive call, unfold either eliminates in L0 an occurrence of a subexpression Sh violating the
precondition of Proposition 16 (Line 6), or increases the minimum length in Lp, eventually
running into the upper bound B (Line 7). (2) Correctness: Setting B =∞, unfold yield-s a
possibly infinite sequence of union free languages which have 1-word summaries such that
their union equals the original language L: As the generation of these languages is based
on the equality of Proposition 17 each rewriting step is sound and complete, leading to an
infinite recursion tree whose leaves yield the languages in the sequence. The upper bound
on minimum length only cuts off languages Lp producing words of minimum length beyond
B, i.e., Lp ∩ L[B,ϕ] = ∅, and in consequence, it is safe to drop Lp, since we only need to
construct rep(L,B, ϕ) with rep(L,B, ϕ) ⊇ L[B,ϕ].

4.4 Upper Bound of the Complexity
The proof of Theorem 13 is based on the size of the maximum rewriting M = Mϕ(R) ∩K of
||K||22(||R||+||ϕ||)l

for some constant l, shown in [7], and unfold’s complexity: In Proposition 18,
we show an upper bound on the space complexity of unfold, leading to the complexity of
enumerate in Lemma 19 and the desired proof of Theorem 13.

I Proposition 18 (unfold(L,ϕ,B) runs in DSpace(B2||L||4 + ||ϕ||)).

I Lemma 19 (enumerate(R,K,ϕ) runs in DSpace
(
||K||422(||R||+||ϕ||)k)

).

Proof of Theorem 13. The enumeration runs in DSpace
(
||K||422(||R||+||ϕ||)k)

, producing
expressions for basiccheck at most of the same size (Lemma 19). Since basiccheck is in PSpace
(Lemma 15), we obtain the overall complexity DSpace

(
||K||r22(||R||+||ϕ||)s)

⊆ 2ExpSpace
for some constants r and s. J

A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith 387

4.5 Differences to Afonin and Khazova [1]
Afonin and Khazova show that the membership problem is decidable. In determining an
upper bound for the complexity of membership problem, we had to expand their approach
significantly: In general, we follow a top-down approach to describe the overall algorithm,
whereas Afonin and Khazova go bottom-up, focusing on the building blocks enabling the
decision procedure. More specifically, basiccheck is described in [1], while enumerate is
omitted, as [1] deals with decidability only, deeming the bound on the enumeration size
irrelevant. Hence Algorithms 3 and 4 are new, as well as the construction in Section 4.3,
leading to Proposition 17. Based on the new algorithms, we contribute Theorem 13, together
with Proposition 18, and Lemma 19. Moreover, in [1], the overall algorithm and the proof for
Theorem 12 are only described in a brief paragraph. Finally, Section 4.1, albeit technically not
new, provides a much more conceptual and hopefully accessible description of the algorithm.

5 Conclusion

Motivated by applications in test case specifications with FQL, we have studied general and
finite RSRLs. While we showed that general RSRLs are not closed under most common
operators, finite RSRLs are closed under all operators except Kleene stars and complement-
ation (Theorem 4). This shows that our restriction to Kleene star free and hence finite
RSRLs in FQL results in a natural framework with good closure properties. Likewise, the
proven PSpace-completeness results for Kleene star free RSRLs provide a starting point to
develop practical reasoning procedures for Kleene star free RSRLs and FQL. Experience with
LTL model checking shows that PSpace-completeness often leads to algorithms which are
feasible in practice. In contrast, for general and possibly infinite RSRLs, we have described
a 2ExpSpace membership checking algorithm – leaving the question for matching lower
bounds open. Nevertheless, reasoning on general RSRLs seems to be rather infeasible.

Last but not least, RSRLs give rise to new and interesting research questions, for instance
the decidability of inclusion and equivalence for general RSRLs, and the closure properties
left open in this paper. In our future work, we want to generalize RSRLs to other base
formalisms. For example, we want ϕ to substitute symbols by context-free expressions, thus
enabling FQL test patterns to recognize e.g. matching of parentheses or emptiness of a stack.

Acknowledgements. This work received funding in part by the Austrian National Research
Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF), by the Vienna Science
and Technology Fund (WWTF) grant PROSEED, and by the European Research Council
under the European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement DIADEM no. 246858.

References
1 S. Afonin and E. Hazova. Membership and Finiteness Problems for Rational Sets of Regular

Languages. In DLT, pages 88–99, 2005.
2 G. A. Agasandyan. Variable-Structure Automata. Soviet Physics Doklady, 1967.
3 P. Barceló, D. Figueira, and L. Libkin. Graph Logics with Rational Relations and the

Generalized Intersection Problem. In LICS, pages 115–124, 2012.
4 P. Barceló, J. L. Reutter, and L. Libkin. Parameterized Regular Expressions and their

Languages. Theor. Comput. Sci., 474:21–45, 2013.
5 J. Berstel. Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart,

1979.

FSTTCS 2013

388 On the Structure and Complexity of Rational Sets of Regular Languages

6 D. Beyer, A. Holzer, M. Tautschnig, and H. Veith. Information Reuse for Multi-goal
Reachability Analyses. In ESOP, pages 472–491, 2013.

7 D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of Regular
Expressions and Regular Path Queries. JCSS, 64:443–465, 2002.

8 T. Colcombet and L. Daviaud. Approximate Comparison of Distance Automata. In STACS,
pages 574–585, 2013.

9 S. Eilenberg and M. P. Schützenberger. Rational Sets in Commutative Monoids. J. Algebra,
13:173–191, 1969.

10 K. Hashiguchi. Limitedness Theorem on Finite Automata with Distance Functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982.

11 K. Hashiguchi. Representation Theorems on Regular Languages. J. Comput. Syst. Sci.,
27(1):101–115, 1983.

12 A. Holzer, V. Januzaj, S. Kugele, B. Langer, C. Schallhart, M. Tautschnig, and H. Veith.
Seamless Testing for Models and Code. In FASE’11, pages 278–293, 2011.

13 A. Holzer, D. Kroening, C. Schallhart, M. Tautschnig, and H. Veith. Proving Reachability
using FShell (Competition Contribution). In TACAS, pages 538–541, 2012.

14 A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did You Specify Your Test
Suite? In ASE, pages 407–416, 2010.

15 A. Holzer, M. Tautschnig, C. Schallhart, and H. Veith. FSHELL: Systematic Test Case
Generation for Dynamic Analysis and Measurement. In CAV, pages 209–213, 2008.

16 A. Holzer, M. Tautschnig, C. Schallhart, and H. Veith. Query-Driven Program Testing. In
VMCAI, pages 151–166, 2009.

17 A. Holzer, M. Tautschnig, C. Schallhart, and H. Veith. An Introduction to Test Specification
in FQL. In HVC, pages 9–22, 2010.

18 Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. On the
Structure and Complexity of Rational Sets of Regular Languages. CoRR, abs/1305.6074,
2013.

19 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, 1979.

20 D. Kirsten. Distance Desert Automata and the Star Height One Problem. In FoSSaCS,
pages 257–272, 2004.

21 D. Kirsten. Distance Desert Automata and the Star Height Problem. ITA, 39(3):455–509,
2005.

22 S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. RAND
Corporation Memorandum, 1951.

23 D. Krob. The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. Intl. Journal of Algebra and Computation, 4(3):405–425, 1994.

24 O. Kupferman and Y. Lustig. Lattice Automata. In VMCAI, pages 199–213. 2007.
25 H. Leung and V. Podolskiy. The limitedness problem on distance automata: Hashiguchi’s

method revisited. TCS, 310(1–3):147–158, 2004.
26 J.-E. Pin. Mathematical Foundations of Automata Theory. Lecture Notes, 2011.
27 RTCA DO-178B. Software Considerations in Airborne Systems and Equipment Certifica-

tion, 1992.
28 A. Salomaa. On Finite Automata with a Time-Variant Structure. Information and Control,

13(2):85 – 98, 1968.

	Introduction
	Related Work
	Closure Properties
	Decision Problems
	Membership for general RSRLs
	Implementing basiccheck(R,M',)
	Implementing enumerate(K,R,)
	Upper Bound of the Complexity
	Differences to Afonin and Khazova membership

	Conclusion

