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Abstract

Given a family of recognizable languages L1, . . . , Lm and recognizable languages K1 ⊆ K2,

the relative inclusion star height problem means to compute the minimal star height of some

rational expression r over L1, . . . , Lm satisfying K1 ⊆ L(r) ⊆ K2.

We show that this problem is of elementary complexity and give a detailed analysis its com-

plexity depending on the representation of K1 and K2 and whether L1, . . . , Lm are singletons.
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1 Introduction

The star height problem was raised by L.C. Eggan in 1963 [5]: Is there an algorithm which com-

putes the star height of recognizable languages? Like L.C. Eggan, we consider star height con-

cerning rational expressions with union, concatenation, and iteration in contrast to extended star

height which also allows intersection and complement. For several years, the star height problem

was considered as the most difficult problem in the theory of recognizable languages, and it took 25

years until K. Hashiguchi showed the existence of such an algorithm which is one of the most im-

portant results in the theory of recognizable languages [11]. His solution to the star height problem

relies on distance automata and yields an algorithm of non-elementary complexity, and it remains

open to deduce any upper complexity bound from K. Hashiguchi’s approach (cf. [17, Annexe B]).

Recently, the author presented another approach to the star height problem which relies on a

generalization of distance automata, the distance desert automata. He showed that the star height

of the language of a non-deterministic automaton is computable in twice exponential space which

is the first upper complexity bound to the star height problem [14, 16].

K. Hashiguchi also considered the relative star height problem: Given a finite family of recog-

nizable languages L1, . . . , Lm and some recognizable language K, compute the minimal star height

over all rational expressions r over L1, . . . , Lk satisfying L(r) = K [11]. In 1991, he considered

inclusion variants of these problems, as the inclusion star height problem: Given two recognizable

languages K1 ⊆ K2, compute the minimal star height over all rational expressions r satisfying

K1 ⊆ L(r) ⊆ K2 [12]. Finally, K. Hashiguchi considered the relative inclusion star height prob-

lem which is a joined generalization of the relative and the inclusion star height problem. In 1991,

K. Hashiguchi showed the decidability of all these variants of the star height problem [12]. The

proofs in [12] are complicated. Moreover, [12] is a continuation of the difficult series of papers

[9, 10, 11]. As for the star height problem, it remains open to deduce upper complexity bounds

from [12].

In the present paper, we utilize distance desert automata and develop techniques from [14, 16] to

give concise decidability proofs and upper complexity bounds to the relative inclusion star height

problem and its particular cases. As one main result, we show that the relative inclusion star

height problem, i.e., the most general variant, is of elementary complexity: it is decidable in triple

exponential space.

We study in detail how the representation of K1 and K2 (resp. K) affects the complexity.

In particular, we consider the case that K2 resp. K is given as the complement of some non-

deterministic automaton. We also examine the particular case that the languages L1, . . . , Lm

are singletons. In this way, we achieve a large variety of results. We even obtain some new

conclusions for the complexity of the star height problem: We can decide in 2hO(n) space whether

the complement of the language of some n-state non-deterministic automaton is of star height h.

2 Preliminaries

2.1 Notations, Rational Expressions, and Automata

We denote by P(M) the power set of some set M . We denote N := {0, 1, 2, . . . }.

Let Σ be some finite alphabet. We denote the empty word by ε. We denote by |w| the length

of some word w ∈ Σ∗.

We denote the set of rational expressions over Σ by REX(Σ) and define it as the least set of
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expressions which includes Σ, ε, ∅ and is closed such that for r, s ∈ REX(Σ), the expressions rs,

r ∪ s and r∗ belong to REX(Σ). We denote the language of some rational expression r by L(r).

The star height of rational expressions is defined inductively: we set sh(∅) := 0, sh(ε) := 0, and

sh(a) := 0 for every a ∈ Σ. For r, s ∈ REX(Σ), we set sh(rs) = sh(r ∪ s) := max{sh(r), sh(s)}, and

sh(r∗) := sh(r) + 1.

For some language L ⊆ Σ∗, we define the star height of L by

sh(L) := min
{
sh(r)

∣
∣L = L(r)

}
.

We recall some standard terminology in automata theory. We assume that the reader is famil-

iar with Kleene’s theorem and basic operations as the complementation and determinization of

automata. See, e.g., [3, 6, 19, 21] for a survey.

A (non-deterministic) automaton is a tupel A = [Q,E, I, F ] where

1. Q is a finite set of states,

2. E ⊆ Q × Σ × Q is a set of transitions, and

3. I ⊆ Q, F ⊆ Q are sets called initial resp. accepting states.

Let k ≥ 1. A path π in A of length k is a sequence (q0, a1, q1) (q1, a2, q2) . . . (qk−1, ak, qk) of

transitions in E. We say that π starts at q0 and ends at qk. We call the word a1 . . . ak the label of

π. We denote |π| := k. As usual, we assume for every q ∈ Q a path which starts and ends at q and

is labeled with ε.

We call π successful if q0 ∈ I and qn ∈ F . For every 0 ≤ i ≤ j ≤ k, we denote π(i, j) :=

(qi, ai, qi+1) . . . (qj−1, ai−1, qj) and call π(i, j) a factor of π. For every p, q ∈ Q and every w ∈ Σ∗,

we denote by p
w
; q the set of all paths with the label w which start at p and end at q.

We denote the language of A by L(A) and define it as the set of all words in Σ∗ which are labels

of successful paths. We call some L ⊆ Σ∗ recognizable, if L is the language of some automaton. We

denote by REC(Σ∗) the class of all recognizable languages over Σ∗.

Let A = [Q,E, I, F ] be an automaton. We call A normalized if there are states qI , qF ∈ Q

such that I = {qI}, {qF } ⊆ F ⊆ {qI , qF }, and E ⊆ (Q \ F ) × Σ × (Q \ I). It is well known that

each automaton can be transformed in an equivalent normalized automaton by adding at most two

states.

2.2 Distance Desert Automata

Distance desert automata were introduced by the author in [14, 16]. They include K. Hashiguchi’s

distance automata [8] and S. Bala’s and the author’s desert automata [1, 2, 13, 15] as particular

cases.

Let h ≥ 0 and Vh := {∠0,g0,∠1,g1, . . . ,gh−1,∠h}. We define a mapping ∆ : V ∗
h → N. An

intuitive approach to understand the mapping ∆ is given in [14, 16]. Let π ∈ V ∗
h . For every

0 ≤ g ≤ h, we consider every factor π′ of π satisfying π′ ∈ {∠0,g0, . . . ,∠g}
∗ = V ∗

g , count the

number of occurrences of ∠g, and choose the maximum of these values.

More precisely, for 0 ≤ g ≤ h and π′ ∈ V ∗
h , let |π′|g be the number of occurrences of the letter

∠g in π′. Let

1. ∆g(π) := max π′∈V ∗
g

π′ is a factor of π

|π′|g and
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2. ∆(π) := max0≤g≤h ∆g(π).

It is easy to see that 0 ≤ ∆(π) ≤ |π|.

An h-nested distance desert automaton (for short distance desert automaton) is a tupel A =

[Q,E, I, F, θ] where [Q,E, I, F ] is an automaton and θ : E → Vh.

Let A = [Q,E, I, F, θ] be an h-nested distance desert automaton. The notions of a path, a

successful path, the language of A, . . . are understood w.r.t. [Q,E, I, F ]. For every transition

e ∈ E, we say that e is marked by θ(e). We extend θ to a homomorphism θ : E∗ → V ∗
h . We define

the semantics of A. For w ∈ Σ∗, let

∆A(w) := min
p∈ I, q ∈F, π∈ p

w
; q

∆(θ(π)).

We have ∆A(w) = ∞ iff w /∈ L(A). Hence, ∆A is a mapping ∆A : Σ∗ → N ∪ {∞}.

If there is a bound d ∈ N such that ∆A(w) ≤ d for every w ∈ L(A), then we say that A is

limited by d or for short A is limited. Otherwise, we call A unlimited.

We need the following result.

Theorem 2.1 ([14, 16]). Limitedness of distance desert automata is PSPACE-complete.

3 Overview

3.1 The Star Height Problem and Some Variants of it

The star height problem was raised by L.C. Eggan in 1963 [5]: Given some recognizable language

K, compute the star height of K. Or equivalently, given some recognizable language K and some

integer h, decide whether sh(K) ≤ h. For several years, in particular after R. McNaughton

refuted some promising ideas in 1967 [18], the star height problem was considered as the most

difficult problem in the theory of recognizable languages, and it took 25 years until K. Hashiguchi

showed its decidability [11]. The complexity of Hashiguchi’s algorithm is extremely large, and

it remains open to deduce an upper complexity bound (cf. [17, Annexe B]). However, the author

showed the following result:

Theorem 3.1 ([14, 16]). Let h ∈ N and K be the language accepted by an n-state non-deterministic

automaton. It is decidable in 22O(n)
space whether sh(K) ≤ h.

In the present paper, we consider some generalizations of the star height problem.

An instance of the inclusion star height problem is a pair (K1,K2) of recognizable languages

K1 and K2 satisfying K1 ⊆ K2. The inclusion star height of (K1,K2) is defined by

sh(K1,K2) := min
{
sh(r)

∣
∣ K1 ⊆ L(r) ⊆ K2

}
.

Clearly, sh(K1,K2) ≤ min{sh(K1), sh(K2)}.

For every recognizable language K, we have sh(K) = sh(K,K), and hence, Eggan’s star height

problem is a particular case of the inclusion star height problem.

An instance of the relative star height problem is a tupel (K,m, σ) whereas

1. K is a recognizable language,

2. m ≥ 1,

3. σ : Γ → REC(Σ∗) whereas Γ = {b1, . . . , bm}.
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We call σ singular, if |σ(b)| = 1 for every b ∈ Γ.

The mapping σ extends to a homomorphism σ :
(
P(Γ∗),∪, ·

)
→

(
P(Σ∗),∪, ·

)
.

For every r ∈ REX(Γ), we denote σ(L(r)) by σ(r).

The relative star height of (K,m, σ) is defined by

sh(K,m, σ) := min
{
sh(r)

∣
∣ r ∈ REX(Γ), σ(r) = K

}

whereas the minimum of the empty set is defined as ∞.

Assume m = |Σ|, Σ = {a1, . . . , am}, and σ(bi) = {ai} for i ∈ {1, . . . ,m}. Clearly, we have

sh(K) = sh(K,m, σ) for every K ∈ REC(Σ∗). Hence, Eggan’s star height problem is a particular

case of the relative star height problem.

The finite power problem (FPP) means to decide whether some given recognizable language

L has the finite power property, i.e., whether there exists some integer k such that L∗ = ∪k
i=0L

i.

It was raised by J.A. Brzozowski in 1966, and it took more than 10 years until I. Simon and

K. Hashiguchi independently showed its decidability [20, 7].

Let L ⊆ Σ∗ be a recognizable language and set m := 1 and σ(b1) := L. We have σ(bk
1) = Lk for

every k ∈ N and σ(b∗1) = L∗. Hence, sh(L∗,m, σ) ≤ 1. The following assertions are equivalent:

1. sh(L∗,m, σ) = 0

2. There is a finite language G ⊆ b∗1 such that σ(G) = L∗.

3. There exists some g ∈ N such that σ
(
{ε, b1, b

2
1, . . . , b

g
1}

)
= L∗.

4. The language L has the finite power property.

Hence, sh(L∗, {L}) = 0 iff L has the finite power property. Consequently, the finite power

problem is a particular case of the relative star height problem.

An instance of the relative inclusion star height problem is a tupel (K1,K2,m, σ) whereas

1. K1, K2 are recognizable languages satisfying K1 ⊆ K2,

2. m and σ are defined as for the relative star height problem.

The relative inclusion star height of (K1,K2,m, σ) is defined by

sh(K1,K2,m, σ) := min
{
sh(r)

∣
∣ r ∈ REX(Γ), K1 ⊆ σ(r) ⊆ K2

}
.

Given some instance (K1,K2,m, σ) of the relative inclusion star height problem, we call some

r ∈ REX(Γ) a solution of (K1,K2,m, σ) if sh(r) = sh(K1,K2,m, σ) and K1 ⊆ σ(r) ⊆ K2.

For some instance (K,m, σ) of the relative star height problem, the tupel (K,K,m, σ) is a tupel

of the relative inclusion star height problem, and we have sh(K,m, σ) = sh(K,K,m, σ). Hence, the

relative star height problem is a particular case of the relative inclusion star height problem.

As above, the inclusion star height problem is particular case of the relative inclusion star height

problem.

The following figure shows the relations between the five above problems. The arrows go from

particular to more general problems.
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In 1991, K. Hashiguchi showed that the relative inclusion star height problem is decidable:

Theorem 3.2 ([12]). Given some instance (K1,K2,m, σ) of the relative inclusion star height prob-

lem, sh(K1,K2,m, σ) is effectively computable.

3.2 Main Results

In the paper, we examine the complexity of the above variants of the star height problem. As one

main result, we show that the most general variant, the relative inclusion star height problem, is

of elementary complexity.

We consider the complexity of the variants of the star height problem under various aspects.

We distinguish the cases that either K2 or its complement Σ∗ \K2 or both K2 and its complement

Σ∗ \ K2 are given by non-deterministic automata with at most n2 states. Note that we have the

latter case if K2 is given by a deterministic automaton with n2 states.

Moreover, we distinguish the cases that σ is singular or arbitrary.

3.2.1 The Relative Inclusion Star Height Problem

Let (K1,K2,m, σ) be an instance of the relative inclusion star height problem. By n1 we denote

the number of states of some non-deterministic automaton which recognizes K1.

We assume that for i ∈ {1, . . . ,m} the language σ(bi) is given by some normalized non-

deterministic automaton Bi. We denote by nσ the sum of the number of states of Bi for i ∈

{1, . . . ,m}.

We achieve the following bounds on the space complexity of the relative inclusion star height

problem:

Table 1: Complexities for the relative inclusion star height problem.

σ bound existence sh(K1,K2,m, σ) ≤ h sh(K1,K2,m, σ) = ?

K2
sing. n2 O(n1nσn2) n1nσ22

O(n2)
n1nσ22

O(n2)

arb. 22
n2

n1nσ22
O(n2)

n1nσ2h2O(n2)
n1nσ22

2O(n2)

Σ∗ \ K2 arb. 2n2 n1nσ2O(n2) n1nσ2hO(n2) n1nσ22
O(n2)

both sing. n2 O(n1nσn2) n1nσ2hO(n2) n1nσ2O(n2
2)
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We will prove the entries in Table 1 Section 5.8.1. In the lines of the table we consider four

cases: In the first two cases K2 is given by a non-deterministic automaton with n2 states and σ is

singular resp. not necessarily singular. In the third case, Σ∗ \ K2 is given by a non-deterministic

automaton with n2 states and σ is not necessarily singular. In the fourth case, both K2 and Σ∗ \K2

are given by non-deterministic automata with at most n2 states and σ is singular.

There are no lines “Σ∗ \K2 sing.” and “both arb.” in the table, since in these cases, we achieve

just the same complexity results as in the more general case “Σ∗ \ K2 arb.”.

In the column “bound” we give a bound on the relative star height of (K1,K2,m, σ) provided

that (K1,K2,m, σ) has a solution. In the column “existence”, we give an upper bound on the

space complexity for the problem to decide the existence of a solution. The values in this column

are essentially the values in the column “bound” multiplied by n1nσ. Indeed, both the problem

to decide the existence of a solution and the upper bound on sh(K1,K2,m, σ) are closely related

to an automaton AL which recognizes the language L = {w ∈ Γ∗ |σ(w) ⊆ K2}. In particular, the

bound on sh(K1,K2,m, σ) is the star height of L which is at most as large as the number of states

of AL. In Section 5.4, we will see that the number of states of AL crucially depends on whether σ

is singular.

In the column “sh(K1,K2,m, σ) ≤ h” we give a space complexity for deciding whether or not

sh(K1,K2,m, σ) ≤ h. In the fist line, this complexity does not depend on h. We will discuss this

fact in Section 5.8.1.

If we want to decide whether sh(K1,K2,m, σ) ≤ h for some h which exceeds the value given

in column “bound”, then the problem to decide whether sh(K1,K2,m, σ) ≤ h is equivalent to

the problem whether (K1,K2,m, σ) has a solution. Hence, if h is larger than the value in the

column “bound”, then we can decide sh(K1,K2,m, σ) ≤ h in the complexity shown in the column

“existence”.

Finally, the column “sh(K1,K2,m, σ) = ?” gives the complexity of computing sh(K1,K2,m, σ).

An algorithm which computes sh(K1,K2,m, σ) decides at first whether (K1,K2,m, σ) has a solu-

tion. If so, then the algorithm decides for h = 0, 1, 2, . . . whether sh(K1,K2,m, σ) ≤ h. In this

computation, h cannot exceed the value in the column “bound”. Hence, the complexity in the col-

umn “sh(K1,K2,m, σ) = ?” is essentially the complexity from the column “sh(K1,K2,m, σ) ≤ h”

whereas we use the value from the column “bound” as bound for h.

3.2.2 The Relative Star Height Problem

We consider the relative star height problem, i.e., we assume K1 = K2 and denote K := K1 = K2.

We distinguish the cases that K is given by a non-deterministic automaton with n states (line 1

and 2 in Table 2), and the case that both K and Σ∗ \ K are given by non-deterministic automata

with at most n states (line 3 and 4 in Table 2). We also distinguish the cases that σ is singular

(line 1 and 3 in Table 2) or not necessarily singular (line 2 and 4 in Table 2). We achieve the

following bounds on the space complexity: The entries are understood as for the relative inclusion

star height problem and proved in Section 5.8.2.

3.2.3 The Inclusion Star Height Problem

We deal with the inclusion star height problem. Let (K1,K2) be an instance of the inclusion star

height problem. We achieve the following complexity bounds:

In the lines, we distinguish the cases that either K2, or Σ∗ \ K2 of both K2 and Σ∗ \ K2 are

given by non-deterministic automata with n2 states.
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Table 2: Complexities for the relative star height problem.

σ bound existence sh(K,m, σ) ≤ h sh(K,m, σ) = ?

K
sing. n O(nσn2) nσ22

O(n)
nσ22

O(n)

arb. 22
n

nσ22
O(n)

nσ2h2O(n)
nσ22

2O(n)

both
sing. n O(nσn2) nσ2hO(n) nσ2O(n2)

arb. 2n nσ2O(n) nσ2hO(n) nσ22
O(n)

Table 3: Complexities for the inclusion star height problem.

bound sh(K1,K2) ≤ h sh(K1,K2) = ?

K2 min{n1, n2} n12
2O(n2)

n12
2O(n2)

Σ∗ \ K2 min{n1, 2
n2} n12

hO(n2) n12
min{n1, 2

n2}O(n2)

both min{n1, n2} n12
hO(n2) n12

min{n1, n2}O(n2)

Clearly, the column σ is irrelevant. Since (K1,K2) has always a solution, the column “existence”

is irrelevant. The entries in the column “bound” arise due to the fact that sh(K1,K2) is less than

sh(K1) and less than sh(K2).

3.2.4 The Star Height Problem

Finally, we deal with the star height problem. Let K be a recognizable language. We achieve the

following complexity bounds:

Table 4: Space complexity bounds for the star height problem.

bound sh(K) ≤ h sh(K) = ?

K n 22
O(n)

22
O(n)

Σ∗ \ K 2n 2hO(n) 22
O(n)

both n 2hO(n) 2O(n)

In the lines, we distinguish the cases that either K, or Σ∗ \ K of both K and Σ∗ \ K are given

by non-deterministic automata with at most n states. The entries are proved in Section 5.8.4.

For the computation of the star height of K (column “sh(K)= ?”), we achieve the same twice

exponential space complexity bound regardless of whether K or its complement is given by some

non-deterministic automaton with n states. However, the bound arises in two different ways. If K

is given by some non-deterministic automaton, then the test “sh(K) ≤ h” requires 2h2O(n)
space.

Since sh(K) ≤ n, the algorithm answers immediately “yes” if h ≥ n. Hence, we can estimate 2h2O(n)
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by 2n2O(n)
and absorb the factor n into 2O(n) which gives a complexity bound of 22O(n)

.

If Σ∗ \ K is given by a non-deterministic automaton with n states, then the test “sh(K) ≤ h”

requires just 2hO(n) space. Now, we do not necessarily have sh(K) ≤ n, we just have sh(K) ≤ 2n.

Thus, the algorithm can answer immediately “yes” if h ≤ 2n. Hence, the computation of sh(K)

requires 22O(n)O(n), i.e., 22O(n)
space.

3.2.5 Variants of the Limitedness Problem

To achieve the above results on the relative inclusion star height problem and its particular cases,

we show some generalized variants of the limitedness problem of distance desert automata.

Let A be a distance desert automaton and let L′ ⊆ Σ∗. We say that A is limited on L′ iff there

is some d ∈ N such that ∆A(w) ≤ d for every w ∈ L(A) ∩ L′.

Theorem 3.3. Let A be a distance desert automaton and let A′ be an automaton. To decide

whether A is limited on L(A′) is PSPACE-complete in the number of states of A and A′.

We show that the mappings definable by distance desert automata are somehow closed under

inverse homomorphisms.

Let m ≥ 1 and Γ = {b1, . . . , bm}. Moreover, let τ : Γ → REC(Σ∗) be a mapping. We extend τ

to a homomorphism τ : P(Γ∗) → P(Σ∗).

We assume that for every i ∈ {1, . . . ,m}, the language τ(bi) is given by a normalized, non-

deterministic automaton Bi. We assume that ε /∈ τ(bi). We denote by nτ the sum of the numbers

of states of the automata Bi for i ∈ {1, . . . ,m}.

Let h ≥ 1 and A = [Q,E, I, F, θ] be a h-nested distance desert automaton over Γ.

We define a mapping ∆′ : Σ∗ → N ∪ {∞} by setting

∆′(w) := min
{
∆A(u)

∣
∣ u ∈ Γ∗, w ∈ τ(u)

}

for every w ∈ Σ∗.

Proposition 3.4. We can effectively construct an (h + 1)-nested distance desert automaton A′

over Σ with at most |Q| · (nτ − 2m + 1) states which computes ∆′.

We show by Example 4.2 that the condition ε /∈ τ(bi) for i ∈ {1, . . . ,m} is necessary for

Proposition 3.4.

4 Variants of the Limitedness Problem

4.1 Limitedness on a Recognizable Language

In this section, we prove Theorem 3.3.

Let A = [Q,E, I, F, θ] be a distance desert automaton and let A′ = [Q′, E′, I ′, F ′] be an au-

tomaton. We denote L′ := L(A).

We define a distance desert automaton A′′ by a product construction. Let Q′′ := Q × Q′,

I ′′ := I × I ′, and F ′′ := F × F ′. For every a ∈ Σ, p, q ∈ Q, and p′, q′ ∈ Q′, we put the transition

t :=
(
(p, p′), a, (q, q′)

)
in E′′ iff (p, a, q) ∈ E and (p′, a, q′) ∈ E′. If this is the case, then we set

θ′′(t) = θ((p, a, q)).
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Lemma 4.1. For every w ∈ Σ∗, we have

∆A′′(w) =

{

∆A(w) if w ∈ L(A) ∩ L′

∞ if w /∈ L(A) ∩ L′.

In particular, A′′ is limited iff A is limited on L′.

Proof. Let w ∈ Σ∗. Assume w /∈ L(A) ∩ L′. By the construction of A′′, there is no accepting path

for w in A′′, and hence, ∆A′′(w) = ∞. We assume w ∈ L(A) ∩ L′ in the rest of the proof.

Given two accepting paths π (resp. π′) for w in A (resp. A′), we can construct an accepting

path π′′ for w in A′′ such that θ′′(π′′) = θ(π). Consequently, ∆A′′(w) ≤ ∆A(w), and in particular,

∆A′′(w) ∈ N.

Since ∆A′′(w) ∈ N, there is an accepting path π′′ for w in A′′ such that ∆(θ′′(π′′)) = ∆A′′(w).

By selecting the first components of the states in π′′, we obtain an accepting path π for w in A

such that θ′′(π′′) = θ(π). Hence, ∆A′′(w) ≥ ∆A(w).

Proof of Theorem 3.3. Decidability in PSPACE follows immediately from Lemma 4.1 and Theo-

rem 2.1. The problem is PSPACE-hard, since it is a generalization of the limitedness problem for

distance desert automata.

4.2 Limitedness and Substitutions

Let m,Γ, τ,B1, . . . ,Bm as in Section 3.2.5.

Proof of Proposition 3.4. At first, we deal with some preliminaries. We define a homomorphism

lift ℓ : V ∗
h → V ∗

h+1 by setting for every i ∈ {0, . . . , h+1}, ℓ(∠i) := ∠i+1 and for every i ∈ {0, . . . , h},

ℓ(gi) := gi+1. It is easy to verify that for every π ∈ V ∗
h , we have ∆(π) = ∆(ℓ(π)). Consequently,

the nested distance desert automata A and Aℓ = [Q,E, I, F, ℓ ◦ θ] are equivalent.

Let π ∈ V ∗
h+1 be some word such that ∠0 does not occur in π. We denote by π̄ ∈ V ∗

h+1 the

word obtained by erasing all letters g0 in π. We can easily verify that ∆(π) = ∆(π̄). Note that the

factors of π and the factors of π̄ are essentially the same up to the occurrences of g0.

To construct A′, we replace transitions in A by copies of Bi. Let q ∈ Q and i ∈ {1, . . . ,m} such

that there exists at least one transition of the form {q}×{bi}×Q in E. Let P be the states p ∈ Q

which admit a transition (q, bi, p) ∈ E. We create |P | copies of the accepting state of Bi. We insert

the new automaton B′
i into A and merge q and the initial state of B′

i and we merge each state in

P and one accepting state of B′
i.

The key idea of the transition marks in A′ is the following: For every (p, bi, q) ∈ E and every

word w ∈ τ(bi) there is some path π ∈ p
w
; q in A′ such that θ(π) = g

|w|−1
0 ℓ

(
θ((p, bi, q))

)
.
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q

p1

p2

p3

bi,g2

bi,g4

bi,∠5

a

c
. . .

Bi

q

p1

p2

p3

a,g3

c,g3

a,g5

c,g5

a,∠6

c,∠6

. . .

B′
i

We proceed this insertion for every q ∈ Q, i ∈ {1, . . . ,m} provided that there exists at least one

transition of the form {q} × {bi} × Q in E. One can easily verify that the constructed automaton

computes ∆′.

For every state of A, we insert at most one copy of each Bi. Since initial and accepting states

are unified, we insert at most nτ − 2m new states for each state of A. Thus, A′ has |Q| states from

A and at most |Q|(nτ − 2m) states due to insertion of Bi’s.

The reader should be aware that the above restriction ε /∈ τ(bi) is not just to simplify the proof

as the following example shows.

Example 4.2. Assume Σ = {a}, Γ = {b1} and τ(b1) = {ε, a}. Let A be some nested distance

desert automaton such that ∆A(b10
1 ) = 10 but ∆A(w) = ∞ for w ∈ Γ∗ \ {b10

1 }.

Let ∆′ be as above. For every w ∈ {ε, a, . . . , a10}, we have ∆′(w) = 10. However, for mappings

of nested distance desert automata, we have either 0 ≤ ∆′(w) ≤ |w| or ∆′(w) = ∞.

One can probably generalize the concept of nested distance desert automata by marking tran-

sitions with words or even subsets of V +
h to achieve a concept of automata which allow to compute

mappings like ∆′ from Example 4.2. However, such a generalization is not subject of the present

paper.

By arguing as for Proposition 3.4, we obtain:

Proposition 4.3. We can effectively construct an automaton A′ over Σ with at most |Q| · (nτ −

2m + 1) states which recognizes τ(L(A)).

Proof. The proof is similar but simpler than the proof of Proposition 3.4.

5 The Main Proofs

5.1 String Expressions

We recall the notion of a string expression from R.S. Cohen [4]. We define the notions of a string

expression, a single string expression and the degree in a simultaneous induction.

Every word w ∈ Σ∗ is a single string expression of star height sh(w) = 0 and degree dg(w) := |w|.

Let n ≥ 1 and r1, . . . , rn be single string expressions. We call r := r1 ∪ · · · ∪ rn a string expression

of star height sh(r) = max{sh(ri) | 1 ≤ i ≤ n} and degree dg(r) := max{dg(ri) | 1 ≤ i ≤ n}. The

empty set ∅ is a string expression of star height sh(∅) = 0 and degree dg(∅) := 0.
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Let n ≥ 2, a1, . . . , an ∈ Σ, and s1, . . . , sn−1 be string expressions. We call the expression

s := a1s
∗
1a2s

∗
2 . . . s∗n−1an a single string expression of star height sh(s) = 1+max{sh(si) | 1 ≤ i < n}

and degree dg(s) := max
(
{n} ∪ {dg(si) | 1 ≤ i < n}

)
.

String expressions define languages because they are particular rational expressions.

The following lemma is due to R.S. Cohen [4].

Lemma 5.1 ([4, 14, 16]). Let L ⊆ Σ∗ be a recognizable language. There is a string expression s

such that we have L = L(s) and sh(s) = sh(L).

We need another well-known lemma.

Lemma 5.2 ([14, 16]). Let L ⊆ Σ∗ be recognizable. We have sh(L) = sh(L \ {ε}).

5.2 We Fix an Instance

For the rest of Section 5, we fix an instance (K1,K2,m, σ) of the relative inclusion star height prob-

lem. We assume that K1 is given by some non-deterministic finite automaton A1 = [Q1, E1, I1, F1]

and denote n1 := |Q1|. Below, we will show that we can freely assume ε /∈ K1.

In the rest of Section 5, we distinguish various cases concerning the representation of K2.

Sometimes, we assume that K2 is given by some non-deterministic automaton A2 = [Q2, E2, I2, F2]

and denote n2 := |Q2|. We also deal with the case that Σ∗ \K2 is given by some non-deterministic

automaton A2 = [Q2, E2, I2, F2] and denote n2 := |Q2|.

For every i ∈ {1, . . . ,m}, we assume that σ(bi) is given by some normalized, non-deterministic

automaton Bi. We denote the sum of the number of states of all Bi for i ∈ {1, . . . ,m} by nσ.

The language L := {w ∈ Γ∗ |σ(w) ⊆ K2} will be of particular interest. For every language

L′ ⊆ Γ∗ satisfying σ(L′) ⊆ K2, we have L′ ⊆ L. In Section 5.4, we will construct automata which

recognize L and its complement.

5.3 On the Empty Word

In this section, we deal with some notions to reduce the technical overhead caused by the empty

word. The following lemma allows to restrict our proof to the particular case ε /∈ K1.

Lemma 5.3. We have sh(K1,K2,m, σ) = sh(K1 \ {ε},K2,m, σ).

Proof. If ε /∈ K1, then the claim is obvious. Hence, we assume ε ∈ K1. Thus, ε ∈ K2.

· · · ≥ · · · If r is a solution of (K1,K2,m, σ), then r is also a solution of (K1 \ {ε},K2,m, σ).

Hence, sh(K1,K2,m, σ) ≥ sh(K1 \ {ε},K2,m, σ).

· · · ≤ · · · If r is a solution of (K1 \ {ε},K2,m, σ), then r ∪ ε is a solution of (K1,K2,m, σ).

Hence, sh(K1,K2,m, σ) ≤ sh(K1 \ {ε},K2,m, σ).

If ε ∈ K1, then we rather examine the instance (K1 \ {ε},K2,m, σ)). Consequently, we assume

ε ∈ K1 for the rest of Section 5.

We define homomorphism σε : P(Γ∗) → P(Γ∗) and σ+ : P(Γ∗) → P(Σ∗) by setting for every

i ∈ {1, . . . ,m}

σε(bi) :=

{

{bi} if ε /∈ σ(bi)

{bi, ε} if ε ∈ σ(bi)
and σ+(bi) := σ(bi) \ {ε}.

We have σ = σ+ ◦ σε and σε = σε ◦ σε since σ(bi) = σ+(σε(bi)) and σε(bi) = σε(σε(bi)) for

i ∈ {1, . . . ,m}. Moreover, we have σ ◦ σε = σ+ ◦ σε ◦ σε = σ+ ◦ σε = σ.
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Lemma 5.4. The following assertions are equivalent:

1. The instance (K1,K2,m, σ) has a solution.

2. There exists a solution r of (K1,K2,m, σ) such that σ(L(r)) = σ+(L(r)).

Proof. (2) ⇒ (1) is clear.

(1) ⇒ (2) Let t be solution of (K1,K2,m, σ). The key idea is to replace in t every letter bi

satisfying ε ∈ σ(bi) by bi ∪ ε. Hence, we apply σε to t to construct some r ∈ REX(Γ) such that

sh(r) = sh(t) and L(r) = σε(L(t)). We have

σ(L(r)) = σ
(
σε(L(t))

)
= σ(L(t)) = σ+

(
σε(L(t))

)
= σ+(L(r)).

From σ(L(r)) = σ(L(t)) follows that r is a solution of (K1,K2,m, σ).

From (1) ⇒ (2) in the proof of Lemma 5.4, we get sh(K1,K2,m, σ) ≥ sh(K1,K2,m, σ+).

Indeed, if t is a solution of (K1,K2,m, σ), then r is a solution of (K1,K2,m, σ+). However, there

are instances satisfying sh(K1,K2,m, σ) > sh(K1,K2,m, σ+), as the following example shows.

Example 5.5. Let Σ = {a1, a2, a3} and L ∈ REC({a1, a2}
∗) be a language of large star height

satisfying ε /∈ L. It is easy to show that sh(L) = sh(L ∪ {a3}).

Let m := 4 and σ(bi) := {ai} for i ∈ {1, 2, 3}, and further, σ(b4) := L ∪ {a3, ε}.

Moreover, let K1 = K2 := L ∪ {a3}.

We have sh(K1,K2, 4, σ
+) = 0, since b4 is a solution.

Now, let r be a solution of (K1,K2, 4, σ). By contradiction, assume that b4 occurs in L(r). Let

u, v ∈ Γ∗ such that ub4v ∈ L(r). If u 6= ε, then some word of the form Σ+a3Σ
∗ occurs in σ(L(r)).

If v 6= ε then some word of the form Σ∗a3Σ
+ occurs in σ(L(r)). If u = ε and v = ε then b4 ∈ L(r),

and hence, ε ∈ σ(L(r)). Anyway, σ(L(r)) 6= L ∪ {a3}. Consequently, b4 does not occur in r.

Since σ is a bijection on {b1, b2, b3}
∗, we can transform r into a rational expression for L by

preserving the star height. Hence, sh(K1,K2, 4, σ) = sh(r) ≥ sh(L).

Conversely, we can transform every rational expression for L into a some r ∈ REX(Γ) by

preserving the star height such that σ(L(r)) = L ∪ {a3}, and hence, sh(K1,K2, 4, σ) ≤ sh(L).

To sum up, sh(K1,K2, 4, σ) = sh(L). �

5.4 Upper Bounds on the Relative Inclusion Star Height

In this section, we construct automata which recognize L = {w ∈ Γ∗ |σ(w) ⊆ K2} and the comple-

ment of L. We also construct an automaton for σ(L) and decide the existence of a solution.

Proposition 5.6. We can effectively construct a non-deterministic automaton AL̄ which recognizes

Γ∗ \ L. In particular, AL̄ has the same states, accepting and final states as some automaton A2

which recognizes Σ∗ \ K2.

Proof. We denote A2 = [Q2, E2, I2, F2]. We define a new set of transitions EL̄. For every p, q ∈

Q2, b ∈ Γ, the triple (p, b, q) belongs to EL̄ iff there exists some word w ∈ σ(b) such that A2

admits a path from p to q which is labeled with w. This condition is decidable in polynomial

time since it means to decide whether the language of [Q2, E2, p, q] and σ(b) are disjoint. Let

AL̄ = [Q2, EL̄, I2, F2].

Let w ∈ Γ∗ \ L. We denote w = c1 . . . c|w|. For i ∈ {1, . . . , |w|} there is some ui ∈ σ(ci) such

that u1 . . . u|w| /∈ K2. Hence, A2 accepts u1 . . . u|w|. For i ∈ {1, . . . , |w|}, there are qi−1, qi ∈ Q2
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such that A2 admits a path from qi−1 to qi which is labeled with ui whereas q0 ∈ I2, q|w| ∈ F2. The

transitions (qi−1, ci, qi) ∈ EL̄ form an accepting path for w in AL̄.

Conversely, let w = c1 . . . c|w| ∈ L(AL̄). Let (q0, c1, q1) . . . (q|w|−1, c|w|, q|w|) be an accepting path

for w in AL̄. By the definition of EL̄, A2 admits for every i ∈ {1, . . . , |w|} a path from qi−1 to qi

which is labeled with some ui ∈ σ(ci). Thus, A2 accepts the word u1 . . . u|w| ∈ σ(w), i.e., w /∈ L.

If K2 = L(A2) for some non-deterministic automaton A2 = [Q2, E2, I2, F2], then we can com-

plement A2 and apply Proposition 5.6. However, the number of states of AL̄ is at most 2|Q2|.

For the rest of Section 5, we denote by AL̄ = [QL̄, EL̄, IL̄, FL̄] the non-deterministic automaton

which is either constructed by Proposition 5.6, or by a complementation of A2 and an application

of Proposition 5.6 depending how K2 is given.

Proposition 5.7. From (K1,K2,m, σ), we can effectively construct an non-deterministic automa-

ton AL which recognizes L. In this construction, we can bound the number of states of AL as

follows:

K2 Σ∗ \ K2

singular n2 2n2

arbitrary 22
n2

2n2

The columns of the table correspond to the representation of K2: In the column “K2”, we assume

that K2 is given by a non-deterministic automaton with n2 states. In the column “Σ∗ \ K2”, we

assume that the complement of K2 is given by a non-deterministic automaton with n2 states. The

rows of the table correspond to the case that σ is singular or not necessarily singular.

Proof. If Σ∗ \K2 is given by a non-deterministic automaton with n2 states, then we can utilize the

construction of AL̄ from Proposition 5.6 and apply a complementation. Hence, the entries in the

column “Σ∗ \ K2” are shown.

Assume that K2 is given by a non-deterministic automaton A2 = [Q2, E2, I2, F2] and σ is not

necessarily singular. We can complement A2, construct the automaton AL̄ from Proposition 5.6,

and complement AL̄. One can also construct AL directly, but this construction utilizes sets of sets

of states from A2, i.e., it gives the same bound on the number of states of AL̄.

Now, assume that K2 is given by a non-deterministic automaton A2 = [Q2, E2, I2, F2] and σ

is singular. We can construct AL directly by defining a new set of edges EL to A2. For every

p, q ∈ Q2, b ∈ Γ, the triple (p, b, q) belongs to EL iff there exists some word w ∈ σ(b) such that A2

admits a path from p to q which is labeled with w. It is easy to verify that AL = [Q2, EL, I2, F2]

recognizes L.

From now, we denote by AL = [QL, EL, IL, FL] the automaton constructed in Proposition 5.7.

We have σ(σε(L)) = σ(L) ⊆ K2, and hence, σε(L) ⊆ L, i.e., σε(L) = L.

Consequently, σ+(L) = σ+(σε(L)) = σ(L).

Lemma 5.8 ([12]). The instance (K1,K2,m, σ) has a solution iff K1 ⊆ σ(L) iff K1 ⊆ σ+(L).

In this case, we have sh(K1,K2,m, σ) ≤ sh(L).

Proof. The latter claim follows from σ(L) = σ+(L).

If (K1,K2,m, σ) has a solution r, then we have K1 ⊆ σ(L(r)) ⊆ K2, and hence, K1 ⊆ σ(L(r)) ⊆

σ(L) ⊆ K2. Consequently, K1 ⊆ σ(L).

Conversely, if K1 ⊆ σ(L), then the inclusion K1 ⊆ σ(L) ⊆ K2 implies the existence of a solution

of (K1,K2,m, σ), and moreover, sh(K1,K2,m, σ) ≤ sh(L).
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Since sh(L) ≤ |QL|, the table in Proposition 5.7 gives an upper bound on sh(K1,K2,m, σ).

Proposition 5.9. From (K1,K2,m, σ), we can effectively construct a non-deterministic automa-

ton which recognizes σ(L) and has at most |QL| · (nσ − 2m + 1) states.

Thus, we can effectively decide in space polynomial in O
(
n1 · |QL| · (nσ − 2m + 1)

)
whether

(K1,K2,m, σ) has a solution.

Proof. By Lemma 5.8, it suffices to decide whether K1 ⊆ σ+(L). By Proposition 4.3, we construct

a non-deterministic automaton which recognizes σ+(L). We can decide in O
(
n1 ·|QL|·(nσ−2m+1)

)

space whether K1 is a subset of σ+(L).

Due to the factor |QL|, the complexity in Proposition 5.9 crucially depends on the representation

of K2 and on whether σ is singular.

5.5 The Td,h(P, R)-hierarchy

Let AL̄ = [QL̄, EL̄, IL̄, FL̄] be the automaton recognizing Γ∗ \ L by Proposition 5.6.

Let δL̄ : P(QL̄) × Γ∗ → P(QL̄) be defined by δL̄(P,w) := {r ∈ QL̄ |P
w
; r 6= ∅} for every

P ⊆ QL̄, w ∈ Γ∗. For every P,R ⊆ QL̄ let T (P,R) := {w ∈ Γ+ | δL̄(P,w) ⊆ R}. Consequently,

T
(
IL̄, QL̄ \ FL̄

)
= Γ+ \ L(AL̄) = L \ {ε}.

Let d ≥ 1 and P,R ⊆ QL̄. We define Td,0(P,R) :=
{
w ∈ Γ+

∣
∣ δL̄(P,w) ⊆ R, |w| ≤ d

}
. We have

Td,0(P,R) =
⋃

1≤ c≤ d,

P0,...,Pc ⊆QL̄,

P =P0, Pc ⊆R

T1,0

(
P0, P1

)
T1,0

(
P1, P2

)
. . . T1,0

(
Pc−1, Pc

)
.

It is easy to see that T (P,R) =
⋃

d≥1 Td,0(P,R).

Now, let h ∈ N, and assume by induction that for every P,R ⊆ QL̄, Td,h(P,R) is already

defined. We define

Td, h+1(P,R) :=
⋃

1≤ c≤ d,

P0,...,Pc ⊆QL̄,

P = P0, Pc ⊆R

T1,0(P0, P1)
(

Td,h(P1, P1)
)∗

T1,0(P1, P2)
(

Td,h(P2, P2)
)∗

. . . T1,0(Pc−1, Pc).

Let d ≥ 1, h ∈ N, and P,R ⊆ QL̄ be arbitrary. We have ε /∈ Td,h(P,R).

Lemma 5.10. Let d ≥ 1, h ∈ N, and P,R ⊆ QL̄. We have

(
Td,h(P,P )

)∗
T1,0(P,P )

(
Td,h(P,P )

)∗
⊆

(
Td,h(P,P )

)∗
.

Proof. The assertion follows, because T1,0(P,P ) ⊆ Td,h(P,P ) and
(
Td,h(P,P )

)∗
is closed under

concatenation.

From the definition, it follows immediately for every R ⊆ R′ ⊆ QL̄, Td,h(P,R) ⊆ Td,h(P,R′).

It is easy to show by an induction on h that for every d′ ≥ d, Td,h(P,R) ⊆ Td′,h(P,R).

Moreover, for every h′ ≥ h, we have Td,h(P,R) ⊆ Td,h′(P,R). To sum up, for every d′ ≥ d and

h′ ≥ h, Td,h(P,R) ⊆ Td′,h′(P,R). For fixed P,R ⊆ QL̄, the sets Td,h(P,R) form a two-dimensional

hierarchy. Whenever we use the notion Td,h(P,R)-hierarchy, we regard P,R ⊆ QL̄ and h ∈ N as

fixed, i.e., it is a one-dimensional hierarchy w.r.t. the parameter d ≥ 1.
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By induction, we can easily construct a string expression r with L(r) = Td,h(P,R) such that

sh(r) ≤ h and dg(r) ≤ d, and hence, sh
(
Td,h(P,R)

)
≤ h. However, we cannot assume that there is

a string expression r with L(r) = Td,h(P,R) such that sh(r) = h and dg(r) = d. In the inductive

construction of r, several sets T1,0(Pi−1, Pi) may be empty, and then, the star-height (resp. degree)

of r is possibly smaller than h (resp. d). Just consider the case Td,h(P,R) = {a} but h > 1, d > 1.

Lemma 5.11. Let d ≥ 1, h ∈ N, and P,R ⊆ QL̄. We have Td,h(P,R) ⊆ T (P,R).

Proof. We fix some arbitrary d ≥ 1 for the entire proof.

For h = 0, the claim follows directly from the definitions of Td,0(P,R) and T (P,R).

Let h ∈ N and assume by induction that the claim is true for h. Consequently, for every

P ′ ⊆ QL̄ and u ∈
(
Td,h(P ′, P ′)

)∗
, the inclusion δ(P ′, u) ⊆ P ′ holds.

Let P,R ⊆ QL̄ and w ∈ Td,h+1(P,R) be arbitrary. We show δ(P,w) ⊆ R. According to the

definition of Td, h+1(P,R) there are some 1 ≤ c ≤ d and P = P0, . . . , Pc ⊆ R with the following

property: there are a1, . . . , ac ∈ Γ and w1, . . . , wc−1 ∈ Γ∗ such that w = a1w1a2w2 . . . wc−1ac and

1. for every 1 ≤ i ≤ c, we have ai ∈ T1,0(Pi−1, Pi), and

2. for every 1 ≤ i < c, we have wi ∈
(
Td,h(Pi, Pi)

)∗
.

By the definition of T1,0, we have for every 1 ≤ i ≤ c, δ(Pi−1, ai) ⊆ Pi. As seen above, we have for

every 1 ≤ i < c, δ(Pi, wi) ⊆ Pi. Consequently, δ(P0, w) ⊆ Pc, i.e., δ(P,w) ⊆ R.

We have for every h ∈ N and P,R ⊆ QL̄:

T (P,R) =
⋃

d≥1

Td,0(P,R) ⊆
⋃

d≥1

Td,h(P,R) ⊆ T (P,R).

5.6 The Collapse of the Td,h(P, R)-hierarchy

We say that the Td,h(P,R)-hierarchy collapses for some h ∈ N if there is some d ≥ 1 such that

Td,h(P,R) = T (P,R). Below, we will observe that the Td,h(P,R)-hierarchy collapses for some h iff

h ≥ sh
(
T (P,R)

)
.

For the relative inclusion star height problem, we are rather interested in σ+
(
Td,h(IL̄, QL̄ \FL̄)

)

than in Td,h(P,R). In particular, it is interesting whether for some given h ∈ N, there exists some

d such that K1 ⊆ σ+
(
Td,h(IL̄, QL̄ \ FL̄)

)
. For this, the following lemma will be very useful.

Lemma 5.12. Let r be a string expression, d ≥ dg(r), and h ≥ sh(r). Let P,R ⊆ QL̄ such that

L(r) ⊆ T (P,R). We have L(r) ⊆ Td,h(P,R).

Proof. We assume L(r) 6= ∅. By L(r) ⊆ T (P,R), we have ε /∈ L(r).

Assume sh(r) = 0. There are some k ≥ 1 and w1, . . . , wk ∈ Γ+ such that r = w1 ∪ · · · ∪wk and

for every 1 ≤ i ≤ k, we have |wi| ≤ d, and moreover, δ(P,wi) ⊆ R. By the definition of Td,0(P,R),

we have wi ∈ Td,0(P,R), i.e., L(r) ⊆ Td,0(P,R) ⊆ Td,h(P,R).

Now, let sh(r) ≥ 1, and assume that the claim is true for every string expression r′ with

sh(r′) < sh(r).

Clearly, it suffices to consider the case that r is a single string expression. Let c ≥ 2 and

a1, . . . , ac ∈ Γ and r1, . . . , rc−1 be string expressions of a star height less that sh(r) such that

r = a1r
∗
1a2r

∗
2 . . . r∗c−1ac. Let d ≥ dg(r) and h ≥ sh(r). Let P,R ⊆ QL̄ such that L(r) ⊆ T (P,R).

Let P0 := P , and for 1 ≤ i < c, let Pi := δ
(
Pi−1, aiL(r∗i )

)
. Finally, let Pc := δ(Pc−1, ac). To

show L(r) ⊆ Td,h(P,R), we apply the definition of Td,h(P,R) with P0, . . . , Pc. We defined P0 = P ,
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and we can easily show Pc = δ
(
P0, L(r)

)
⊆ R. Clearly, c ≤ d. To complete the proof, we show the

following two assertions:

1. for every 1 ≤ i ≤ d′, we have ai ∈ T1,0(Pi−1, Pi), and

2. for every 1 ≤ i < d′, we have L(ri) ⊆ Td,h−1(Pi, Pi).

(1) Clearly, δ(Pi−1, ai) ⊆ δ
(
Pi−1, aiL(ri)

∗
)

= Pi. Hence, ai ∈ T1,0(Pi−1, Pi) follows from the

definition of T1,0(Pi−1, Pi).

(2) We have sh(ri) < h and dg(ri) ≤ d. In order to apply the inductive hypothesis, we still have

to show δ(Pi, L(ri)) ⊆ Pi. We have aiL(ri)
∗L(ri) ⊆ aiL(ri)

∗. Thus, we obtain

δ(Pi, L(ri)) = δ
(

δ
(
Pi−1, aiL(ri)

∗
)
, L(ri)

)

= δ
(
Pi−1, aiL(ri)

∗L(ri)
)
⊆ δ

(
Pi−1, aiL(ri)

∗
)

= Pi.

Let P,R ⊆ QL̄ and h ≥ sh
(
T (P,R)

)
. By Lemma 5.1, there is a string expression r such that

L(r) = T (P,R) and h ≥ sh(r). Let d := dg(r). We have

T (P,R) = L(r)
Lemma 5.12

⊆ Td,h(P,R)
Lemma 5.11

⊆ T (P,R),

i.e., the Td,h(P,R)-hierarchy collapses for h.

Conversely, let h ∈ N, P,R ⊆ QL̄ and assume that the Td,h(P,R)-hierarchy collapses for h. Let

d ≥ 1 such that Td,h(P,R) = T (P,R). As already seen, we can construct a string expression r such

that L(r) = Td,h(P,R), sh(r) ≤ h, and dg(r) ≤ d. Thus, h ≥ sh
(
T (P,R)

)
.

To sum up, the Td,h(P,R)-hierarchy collapses for h iff h ≥ sh
(
T (P,R)

)
.

Proposition 5.13. Let h ∈ N. There exists some d ≥ 1 such that K1 ⊆ σ+
(
Td,h(IL̄, QL̄ \ FL̄)

)
iff

sh(K1,K2,m, σ) ≤ h.

Proof. · · · ⇒ · · · Let r be a string expression such that L(r) = Td,h(IL̄, QL̄ \ FL̄), sh(r) ≤ h, and

dg(r) ≤ d. From L(r) ⊆ T (IL̄, QL̄ \ FL̄) = L \ {ε}, it follows σ(L(r)) ⊆ σ(L) ⊆ K2.

Moreover, we have K1 ⊆ σ+(L(r)) ⊆ σ(L(r)). Consequently, h ≥ sh(r) ≥ sh(K1,K2,m, σ).

· · · ⇐ · · · Let s be a solution of (K1,K2,m, σ). By Lemma 5.4, we can assume σ(L(s)) =

σ+(L(s)). Thus,

K1 ⊆ σ+(L(s)) ⊆ K2.

Our aim is to apply Lemma 5.12 to show that L(s) is subsumed by the set Td,h(IL̄, QL̄ \ FL̄) for

some d ≥ 1. However, the empty word causes some trouble. Since ε /∈ K1, we obtain

K1 ⊆ σ+
(
L(s) \ {ε}

)
⊆ K2.

By Lemmas 5.1 and 5.2, we can transform s into a string expression r by preserving the star height

such that L(r) = L(s) \ {ε}. Thus,

K1 ⊆ σ+(L(r)) ⊆ K2.

From L(r) ⊆ L(s) ⊆ L and ε /∈ L(r), it follows L(r) ⊆ L \ {ε} = T (IL̄, QL̄ \ FL̄).

Let d := dg(r). Since h ≥ sh(r), we can apply Lemma 5.12 and get L(r) ⊆ Td,h(IL̄, QL̄ \ FL̄),

i.e.,

K1 ⊆ σ+(L(r)) ⊆ σ+
(
Td,h(IL̄, QL̄ \ FL̄)

)
.
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5.7 A Reduction to Limitedness

In this section, we construct for given h ∈ N and P,R ⊆ QL̄ a (h + 1)-nested distance desert

automaton Ah(P,R) over the alphabet Γ. This automaton associates to each word w ∈ Γ+ the

least integer d such that w ∈ Td+1, h(P,R). It computes ∞ if such an integer d does not exists, i.e.,

if w /∈ T (P,R).

The automaton Ah(IL̄, QL̄ \ FL̄) will be of particular interest. By applying the construction

from Section 4.2, we transform Ah(IL̄, QL̄ \ FL̄) to a distance desert automaton which associates

to each word w ∈ Σ∗ the least integer d such that w ∈ σ+
(
Td+1,h(IL̄, QL̄ \ FL̄)

)
.

In combination with Proposition 5.13 and the decidability of limitedness (Theorem 3.3), this

construction allows to decide whether sh(K1,K2,m, σ) ≤ h.

Proposition 5.14. Let h ∈ N and P,R ⊆ QL̄. We can construct a (h + 1)-nested distance desert

automaton Ah(P,R) = [Q,E, qI , qF , θ] with the following properties:

1. E ⊆ (Q \ {qF }) × Γ × (Q \ {qI}),

2. |Q| ≤ kh+1 + kh − 1
k − 1

+ 1 whereas k = 2|QL̄|,

3. for every (p, a, q) ∈ E, we have θ((p, a, q)) = gh if p = qI , and

θ((p, a, q)) ∈ {g0, . . . ,gh−1,∠0, . . . ,∠h} if p 6= qI ,

4. for every w ∈ Γ∗, ∆A(w) + 1 = min
{
d ≥ 1

∣
∣ w ∈ Td,h(P,R)

}
.

Proof. We require the mapping δL̄ from the beginning of Section 5.5. We proceed by induction on

h. Let P,R ⊆ QL̄ be arbitrary.

Let h = 0. At first, we construct an automaton which accepts every word w with δ(P,w) ⊆ R.

We use P(QL̄) as states. For every S, T ⊆ QL̄, b ∈ Γ, we set a transition (S, b, T ) iff δL̄(S, b) ⊆ T .

The initial state is P , every non-empty subset of R is an accepting state. We apply to this

automaton a standard construction to get an automaton [Q,E, qI , qF ] which satisfies (1) whereas

Q = P(QL̄) .∪ {q′I , q
′
F }. Hence, |Q| = |P(QL̄)|+ 2 = k + 2, i.e., (2) is satisfied. For every transition

(qI , b, q) ∈ E, we set θ((qI , b, q)) = g0. For every transition (p, b, q) ∈ E with p 6= qI , we set

θ((p, b, q)) = ∠0. This completes the construction of A0(P,R) = [Q,E, qI , qF , θ], and (3) is satisfied.

We show (4). For every w ∈ Γ∗ with w /∈ T (P,R), the equation in (4) comes up to ∞ = ∞ by

the construction of A0(P,R) and Lemma 5.11. For w ∈ T (P,R), the equation in (4) comes up to

|w| = |w| by the construction of A0(P,R) and the definition of Td,0(P,R).

Now, let h ∈ N. We assume that the claim is true for h and show the claim for h + 1. At first,

we construct an automaton A′ := [Q′, E′, qI , qF ]. Let Q′ := P(QL̄) .∪ {qI , qF }.

Let b ∈ Γ and S, T ⊆ QL̄ be arbitrary. If S 6= T and δ(S, b) ⊆ T , then we put the transition

(S, b, T ) into E′. If δ(P, b) ⊆ T , then we put the transition (qI , b, T ) into E′. If δ(S, b) ⊆ R, then we

put the transition (S, b, qF ) into E′. Finally, if δL̄(P, b) ⊆ R, then we put the transition (qI , b, qF )

into E′. For every word w which A′ accepts, we have w ∈ T (P,R).

We define θ′ : E′ → {gh+1,∠h+1}. For every transition (qI , b, q) ∈ E′, let θ′((q′I , b, q)) = gh+1.

For every transition (p, b, q) ∈ E′ with p 6= qI , we set θ′((p, b, q)) = ∠h+1.

We construct Ah+1(P,R). For every S ⊆ QL̄, we assume by induction an automaton Ah(S, S)

which satisfies (1, . . . , 4). We assume that the sets of states of the automata Ah(S, S) are mutually

disjoint. We construct Ah+1(P,R) = [Q,E, qI , qF , θ] as a disjoint union of A′ and the automata

Ah(S, S) for every S ⊆ QL̄ and unifying both the initial and accepting state of Ah(S, S) with

the state S in A′. Because we did not allow self loops in A′, the union of the transitions is
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disjoint, and hence, θ arises in a natural way as union of θ′ and the corresponding mappings of the

automata Ah(S, S). If θ(t) ∈ {gh+1,∠h+1} for some t ∈ E, then t stems from A′. Conversely, if

θ(t) ∈ {g0, . . . ,gh,∠0, . . . ,∠h} for some t ∈ E, then t stems from some automaton Ah(S, S).

Let π be some path in Ah+1(P,R) and assume that for every transition t in π, we have θ(t) ∈

{g0, . . . ,gh,∠0, . . . ,∠h}. Then, the entire path π stems from some automaton Ah(S, S), i.e., π

cannot visit states in P(QL̄) \ {S}. Conversely, if π is a path in Ah+1(P,R), and two states

S, T ⊆ QL̄ with S 6= T occur in π, then π contains some transition t with θ(t) = ∠h+1.

Clearly, Ah+1(P,R) satisfies (1) and (3). We show (2). The states of Ah+1(P,R) are qI , qF , k

states from P(QL̄), and the states of the k inserted automata Ah(S, S). We obtain

|Q| ≤ 2 + k + k
(

kh+1 +
kh − 1

k − 1
− 1

︸ ︷︷ ︸

(*)

)

= · · ·

(*) is the bound on the number of states of one Ah(S, S) by the inductive hypothesis (2) by taking

into account that two states are lost by the identification of the initial and accepting state of

Ah(S, S) with S.

· · · = 2 + k + kh+2 +
kh+1 − k

k − 1
− k = kh+2 +

kh+1 − k

k − 1
+ 1 + 1 = · · ·

· · · = kh+2 +
kh+1 − k

k − 1
+

k − 1

k − 1
+ 1 = kh+2 +

kh+1 − 1

k − 1
+ 1

Thus, we have shown (2).

To prove (4), we show the following two claims:

4a Let d ≥ 1. For every w ∈ Td,h+1(P,R), there is a successful path π in Ah+1(P,R) with the

label w and ∆(θ(π)) + 1 ≤ d.

4b Let π be a successful path in Ah+1(P,R) with the label w. We have w ∈ T∆(θ(π))+1, h+1(P,R).

Claim (4a) (resp. 4b) proves “. . . ≤ . . . ” (resp. “. . . ≥ . . . ”) in (4). Thus, (4) is a conclusion from

(4a) and (4b).

We show (4a). We decompose w according to the definition of Td,h+1(P,R). There are some

1 ≤ c ≤ d and P0, . . . , Pc ⊆ QL̄ with P0 = P and Pc ⊆ R. For every 1 ≤ i ≤ c, there is

some ai ∈ T1,0(Pi−1, Pi), and for every 1 ≤ i < c there is some wi ∈
(
Td,h(Pi, Pi)

)∗
such that

w = a1w1a2w2 . . . ac. By Lemma 5.10, we can assume Pi−1 6= Pi for every 2 ≤ i < c.

If c = 1, then w is a letter. We set π := (qI , w, qF ). Then, θ(π) = ∠h+1 and ∆(θ(π)) = 0 which

proves (4a). We assume c ≥ 2 in the rest of the proof of (4a).

Let t1 := (qI , a1, P1) and tc := (Pc−1, ac, qF ). For every 2 ≤ i < c, let ti := (Pi−1, ai, Pi).

Clearly, t1, . . . , tc are transitions in Ah+1(P,R), θ(t1) = ∠h+1, and for 2 ≤ i ≤ c, θ(ti) = ∠h+1.

Let 1 ≤ i < c. We decompose wi. There is some ni ∈ N and wi,1, . . . , wi,ni
∈ Td,h(Pi, Pi) such

that wi = wi,1, . . . , wi,ni
.

Let 1 ≤ i < c and 1 ≤ j ≤ ni. Then, wi,j ∈ Td,h(Pi, Pi). By the inductive hypothesis, there is a

path π̃i,j in Ah(Pi, Pi) with the label wi,j and ∆(θ(π̃i,j)) + 1 ≤ d. The first transition of this path

is marked ∠h, any other transition is marked by some member in {∠0, . . . ,∠h−1,∠0, . . . ,∠h}. We

rename the first and the last state in π̃i,j to Pi and call the resulting path πi,j. Since Ah+1(P,R)

contains Ah(Pi, Pi), πi,j is a path in Ah+1(P,R). Let πi := πi,1 . . . πi,ni
. Clearly, πi is a path



5.7 A Reduction to Limitedness 19

in Ah+1(P,R) from Pi to Pi with the label wi. The transitions of πi are marked by members in

{∠0, . . . ,∠h,∠0, . . . ,∠h}. In the particular case wi = ε, πi is simply the empty path from Pi to Pi.

Clearly, π := t1π1t2π2 . . . tc is a successful path in Ah+1(P,R) with the label w. It remains to

show ∆(θ(π)) + 1 ≤ d. We apply the definition of ∆ from Section 2.2. Let π′ be an arbitrary

factor of θ(π). We have |π′|h+1 + 1 ≤ |θ(π)|h+1 + 1 = c ≤ d. Let 0 ≤ g ≤ h, and assume

π′ ∈ {∠0, . . . ,∠g−1,∠0, . . . ,∠g}
∗. Then, π′ is a factor of θ(πi,j) for some 1 ≤ i < c, 1 ≤ j ≤ ni.

Since ∆(θ(π̃i,j)) + 1 ≤ d, we have |π′|g + 1 ≤ d. Consequently, ∆(θ(π)) + 1 ≤ d.

We show (4b). Let π be a successful path in Ah+1(P,R) with the label w. The first transition of

π is marked ∠h+1, any other transitions are marked by some member of {∠0, . . . ,∠h,∠0, . . . ,∠h+1}.

Let c ≥ 1 and factorize π into π = t1π1t2π2 . . . tc such that t2, . . . , tc are the transitions in π which

are marked by ∠h+1. We have ∆(θ(π)) ≥ c − 1, i.e., c ≤ ∆(θ(π)) + 1.

We denote the labels of t1, . . . , tc and π1, . . . , πc−1 by a1, . . . , ac and w1, . . . , wc−1, resp., i.e.,

w = a1w1a2w2 . . . ac. Every transition t1, . . . , tc starts and ends at some state in P(QL̄) except t1
which starts in qI and tc which ends in qF .

Let 1 ≤ i < c. Let Pi be the state in which πi starts. Since the transitions of πi are marked by

members in {∠0, . . . ,∠h,∠0, . . . ,∠h}, πi is a path inside Ah(Pi, Pi). Clearly, πi ends in the same

state in which ti+1 starts, i.e., πi ends in some state in P(QL̄). To sum up, πi ends in Pi.

Let P0 := P and Pc := R. By the construction of Ah+1(P,R), (in particular by the definition

of E′), we have for every 1 ≤ i ≤ c, δ(Pi−1, ai) ⊆ Pi, and thus, ai ∈ T1,0(Pi−1, Pi).

To show w ∈ T∆(θ(π))+1, h+1(P,R), we show for every 1 ≤ i < c, wi ∈
(
T∆(θ(π))+1,h(Pi, Pi)

)∗
.

Let 1 ≤ i < c. We decompose πi into cycles. There are some ni ∈ N, and non-empty paths

πi,1, . . . , πi,ni
such that πi = πi,1 . . . πi,ni

and every path among πi,1, . . . , πi,ni
starts and ends at Pi,

but none of the paths πi,1, . . . , πi,ni
contains the state Pi inside.

Let 1 ≤ j ≤ ni. We denote the label of πi,j by wi,j . In order to show wi ∈
(
T∆(θ(π))+1,h(Pi, Pi)

)∗
,

we show wi,j ∈ T∆(θ(π))+1,h(Pi, Pi). We rename the first (resp. last) state of πi,j to qI (resp. qF ) and

obtain a path which we call π̃i,j. Clearly, π̃i,j is an accepting path in Ah(Pi, Pi) with the label wi,j.

Let d be the weight which Ah(Pi, Pi) computes on wi,j. We have d ≤ ∆(θ(π̃i,j)) = ∆(θ(πi,j)) ≤

∆(θ(π)). By induction, or more precisely, by (4) for Ah(Pi, Pi), we have wi,j ∈ Td+1,h(Pi, Pi), and

thus, wi,j ∈ T∆(θ(π))+1, h(Pi, Pi).

Proposition 5.15. Let h ∈ N. We can construct a (h + 2)-nested distance desert automaton A

over Σ such that for every w ∈ Σ∗

∆A(w) + 1 = min
{
d ≥ 1

∣
∣ w ∈ σ+(Td,h(IL̄, QL̄ \ FL̄))

}
.

In particular, A has at most

(

kh+1 +
kh − 1

k − 1
+ 1

)

(nσ − 2m + 1)

states whereas k = 2|QL̄|.

Proof. The initial point of our construction is the automaton Ah(IL̄, QL̄\FL̄) from Proposition 5.14.

We denote its mapping by ∆Ah
.

We consider the following mapping ∆′ : Σ∗ → N ∪ {∞}

∆′(w) := min
{
∆Ah

(u)
∣
∣ u ∈ Γ∗, w ∈ σ+(u)

}
.
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If ∆′(w) ∈ N, then there exists some u ∈ Γ∗ such that w ∈ σ+(u) and ∆Ah
(u) = ∆′(w).

By Proposition 5.14(4), we have u ∈ T∆A(u)+1, h(IL̄, QL̄ \ FL̄) ⊆ T∆′(w)+1,h(IL̄, QL̄ \ FL̄). Thus,

w ∈ σ+
(
T∆′(w)+1, h(IL̄, QL̄ \ FL̄)

)
.

Conversely, let d ≥ 1 and assume w ∈ σ+
(
Td,h(IL̄, QL̄\FL̄)

)
. There is some u ∈ Td,h(IL̄, QL̄\FL̄)

such that w ∈ σ+(u). By Proposition 5.14(4), we have ∆Ah
(u) + 1 ≤ d, and hence, ∆′(w) + 1 ≤ d.

To prove the proposition, we just need an (h + 2)-nested distance desert automaton A which

computes ∆. We can construct such an automaton by Proposition 3.4. The bound on the number

of states follows from Propositions 3.4 and 5.14(2).

5.8 Decidability and Complexity

In this section, we show the decidability of the relative inclusion star height problem and we prove

the complexity bounds stated in Section 3.2.

Given h ∈ N, an algorithm can decide whether sh(K1,K2,m, σ) ≤ h as follows.

At first, the algorithm decides by Proposition 5.9 whether sh(K1,K2,m, σ) has a solution. More

precisely, it constructs the automaton AL which recognizes L = {w ∈ Γ∗ |σ(w) ⊆ K2}. From AL,

it constructs an automaton which recognizes σ(L) and decides whether K1 ⊆ σ(L). If K1 6⊆ σ(L),

then the algorithm answers “no”.

If K1 ⊆ σ(L), then the algorithm constructs AL̄. From AL̄, it constructs the automaton A in

Proposition 5.15. Then, it decides by Theorem 3.3 whether A is limited on K1. If so, the algorithm

answers “yes”, otherwise the algorithm answers “no”.

Assume sh(K1,K2,m, σ) ≤ h. By Proposition 5.13, there is some d ∈ N such that K1 ⊆

σ+
(
Td,h(IL̄, QL̄ \ FL̄)

)
. By Proposition 5.15, the output of A on words in K1 is less than d, i.e., A

is limited on K1.

Conversely, assume that A is limited on K1 and let d be the largest output of A on K1. We have

d ∈ N since K1 ⊆ σ(L) = L(A). From Proposition 5.15, it follows K1 ⊆ σ+
(
Td+1,h(IL̄, QL̄ \ FL̄)

)
,

and by Proposition 5.13, sh(K1,K2,m, σ) ≤ h.

The reader should be aware that A might be limited even if (K1,K2,m, σ) has no solution. Just

consider the extremal case that L = ∅ but K1 6= ∅. Then, (K1,K2,m, σ) has no solution. However,

A is limited on K1 since A does not accept any word.

5.8.1 On the Relative Inclusion Star Height Problem

To prove the bounds on the space complexity of the relative inclusion star height problem shown

in Table 1 in Section 3.2.1, we summarize the results from Section 5 in the following table:

Table 5:

σ |QL| |QL̄| Ah(IL̄, QL̄ \ FL̄)

K2
sing. n2 2n2 2h2n2

arb. 22
n2

2n2 2h2n2

Σ∗ \ K2 arb. 2n2 n2 2hn2

both sing. n2 n2 2hn2
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In the lines of the table we consider the same cases as in Table 1.

In the column |QL| resp. |QL̄|, we state the bounds on the number of states of AL resp. AL̄

as shown in Propositions 5.6 and 5.7. In the case “both sing.”, we just choose the minimum from

the more general cases. If (K1,K2,m, σ) has a solution r, then sh(r) ≤ sh(L). From any proof of

Kleene’s theorem, we get sh(L) ≤ |QL|. Hence, the entries in the column “bound” in Table 1 are

the entries in column |QL| in Table 5.

According to Proposition 5.9, we can decide in O
(
n1 · |QL| · (nσ − 2m + 1)

)
space whether

(K1,K2,m, σ) has a solution. We can estimate (nσ − 2m + 1) by nσ. In this way, we achieve the

entries in the column “existence” in Table 1.

The column “Ah(IL̄, QL̄ \ FL̄)” gives up to a constant factor an upper bound to the number of

states of the automaton Ah(IL̄, QL̄ \ FL̄) according to Proposition 5.14(2). We have to multiply

this bound by nσ to get an upper bound for the number of states of A in Proposition 5.15. Then,

we multiply the bound by n1 (the number of states of A1) to decide whether A is limited on K1 (cf.

Theorem 3.3). In this way, we achieve the entries in the column “sh(K1,K2,m, σ) ≤ h” in Table 1.

If h is larger than or equal to the entry in the column “bound”, then sh(K1,K2,m, σ) ≤

h iff (K1,K2,m, σ) has a solution. Thus, we can assume that h is less than the entry in the

column “bound” in our analysis of the space complexity of the test whether “sh(K1,K2,m, σ) ≤ h”.

Consequently, we can absorb the factor h into 2O(n2) in the line “K1 sing.” as follows: h2n2 ≤

n22
n2 = 2ld(n2)+n2 ∈ 2O(n2). In the other three lines, such an absorption just worsens the bounds.

We already explained the entries in the column “sh(K1,K2,m, σ) =?” in Section 3.2.1.

5.8.2 On the Relative Star Height Problem

We show the complexity bounds for the relative star height problem given in Table 2.

Table 6:

σ |QL| |QL̄| Ah(IL̄, QL̄ \ FL̄)

K
sing. n 2n 2h2n

arb. 22
n

2n 2h2n

both
sing. n n 2hn

arb. 2n n 2hn

The entries in Table 6 are essentially taken from Table 5. The entries in line “both arb.” are

taken from line “Σ∗ \ K2 arb.” in Table 5.

As for the relative inclusion star height problem, the complexity to decide the existence of a

solution is the product |QL| and nnσ. In line 2 and 4 in the column “existence” in Table 2, the

factor n is absorbed by 2O(n) resp. 22O(n)
.

Since K1 = K2, the automaton A in Proposition 5.15 recognizes K \ {ε}. Hence, the algorithm

has just to decide whether A is limited rather than whether A is limited on K. Consequently, we can

omit the factor n1 in the complexity in the two right columns. Hence, the space complexity of the

problem to decide “sh(K,m, σ) ≤ h” is determined by the number of states of A in Proposition 5.15,

i.e., the product of the number of states of Ah(IL̄, QL̄ \ FL̄) and nσ.
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5.8.3 On the Inclusion Star Height Problem

Let (K1,K2) be an instance of the relative inclusion star height problem. To consider (K1,K2) as

a an instance of the relative inclusion star height problem, we set m := |Σ|. We can freely assume

Γ = Σ and set σ(b) := {b} for every b ∈ Γ.

Table 7:

|QL| |QL̄| Ah(IL̄, QL̄ \ FL̄)

K2 n2 2n2 2h2n2

Σ∗ \ K2 2n2 n2 2hn2

both n2 n2 2hn2

Since L = K2 in this approach, we can use the automaton A2 resp. its complementation its to

construct AL and AL̄.

In our approach to the relative inclusion star height problem, we replaced transitions by au-

tomata which recognize σ+(b) for some b ∈ Γ. The factor (nσ − 2m + 1) in Proposition 5.15 arose

due to this replacement. For the inclusion star height problem, we do not need this replacement.

Indeed, the factor (nσ − 2m + 1) reduces to 1 since nσ = 2|Σ|. Consequently, the space complexity

to decide sh(K1,K2) ≤ h is the product of the number of states of Ah(IL̄, QL̄ \ FL̄) and n1.

5.8.4 On the Star Height Problem

For a summary, we can essentially use Table 7 by setting n := n2.

As for the relative star height problem, we have to decide whether A in Proposition 5.15 is

limited rather than whether A is limited on K1. Hence, the space complexity to decide whether

sh(K) ≤ h is polynomial in the number of states of Ah(IL̄, QL̄ \ FL̄).
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nationale supérieure des télécommunications, Paris, 2001.
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