9 research outputs found

    Co-movement clustering: A novel approach for predicting inflation in the food and beverage industry

    Get PDF
    In the realm of food and beverage businesses, inflation poses a significant hurdle as it affects pricing, profitability, and consumer’s purchasing power, setting it apart from other industries. This study proposes a novel approach; co-movement clustering, to predict which items will be inflated together according to historical time-series data. Experiments were conducted to evaluate the proposed approach based on real-world data obtained from the UK Office for National Statistics. The predicted results of the proposed approach were compared against four classical methods (correlation, Euclidean distance, Cosine Similarity, and DTW). According to our experimental results, the accuracy of the proposed approach outperforms the above-mentioned classical methods. Moreover, the accuracy of the proposed approach is higher when an additional filter is applied. Our approach aids hospitality operators in accurately predicting food and beverage inflation, enabling the development of effective strategies to navigate the current challenging business environment in hospitality management. The lack of previous work has explored how time series clustering can be applied to support inflation prediction. This study opens a new research paradigm to the related field and this study can serve as a useful reference for future research in this emerging area. In addition, this study work contributes to the data analytics research stream in hospitality management literature

    Locality-Based Visual Outlier Detection Algorithm for Time Series

    Get PDF
    Physiological theories indicate that the deepest impression for time series data with respect to the human visual system is its extreme value. Based on this principle, by researching the strategies of extreme-point-based hierarchy segmentation, the hierarchy-segmentation-based data extraction method for time series, and the ideas of locality outlier, a novel outlier detection model and method for time series are proposed. The presented algorithm intuitively labels an outlier factor to each subsequence in time series such that the visual outlier detection gets relatively direct. The experimental results demonstrate the average advantage of the developed method over the compared methods and the efficient data reduction capability for time series, which indicates the promising performance of the proposed method and its practical application value

    A Novel Time Series Representation Approach for Dimensionality Reduction

    Get PDF
    With the growth of streaming data from many domains such as transportation, finance, weather, etc, there has been a surge in interest in time series data mining. With this growth and massive amounts of time series data, time series representation has become essential for reducing dimensionality to overcome the available memory constraints. Moreover, time series data mining processes include similarity search and learning of historical data tasks. These tasks require high computation time, which can be reduced by reducing the data dimensionality. This paper proposes a novel time series representation called Adaptive Simulated Annealing Representation (ASAR). ASAR considers the time series representation as an optimization problem with the objective of preserving the time series shape and reducing the dimensionality. ASAR looks for the instances in the raw time series that can represent the local trends and neglect the rest. The Simulated Annealing optimization algorithm is adapted in this paper to fulfill the objective mentioned above. We compare ASAR to three well-known representation approaches from the literature. The experimental results have shown that ASAR achieved the highest reduction in the dimensions. Moreover, it has been shown that using the ASAR representation, the data mining process is accelerated the most. The ASAR has also been tested in terms of preserving the shape and the information of the time series by performing One Nearest Neighbor (1-NN) classification and K-means clustering, which assures its ability to preserve them by outperforming the competing approaches in the K-means task and achieving close accuracy in the 1-NN classification task

    Eddy current defect response analysis using sum of Gaussian methods

    Get PDF
    This dissertation is a study of methods to automatedly detect and produce approximations of eddy current differential coil defect signatures in terms of a summed collection of Gaussian functions (SoG). Datasets consisting of varying material, defect size, inspection frequency, and coil diameter were investigated. Dimensionally reduced representations of the defect responses were obtained utilizing common existing reduction methods and novel enhancements to them utilizing SoG Representations. Efficacy of the SoG enhanced representations were studied utilizing common Machine Learning (ML) interpretable classifier designs with the SoG representations indicating significant improvement of common analysis metrics

    Feature-based Time Series Analytics

    Get PDF
    Time series analytics is a fundamental prerequisite for decision-making as well as automation and occurs in several applications such as energy load control, weather research, and consumer behavior analysis. It encompasses time series engineering, i.e., the representation of time series exhibiting important characteristics, and data mining, i.e., the application of the representation to a specific task. Due to the exhaustive data gathering, which results from the ``Industry 4.0'' vision and its shift towards automation and digitalization, time series analytics is undergoing a revolution. Big datasets with very long time series are gathered, which is challenging for engineering techniques. Traditionally, one focus has been on raw-data-based or shape-based engineering. They assess the time series' similarity in shape, which is only suitable for short time series. Another focus has been on model-based engineering. It assesses the time series' similarity in structure, which is suitable for long time series but requires larger models or a time-consuming modeling. Feature-based engineering tackles these challenges by efficiently representing time series and comparing their similarity in structure. However, current feature-based techniques are unsatisfactory as they are designed for specific data-mining tasks. In this work, we introduce a novel feature-based engineering technique. It efficiently provides a short representation of time series, focusing on their structural similarity. Based on a design rationale, we derive important time series characteristics such as the long-term and cyclically repeated characteristics as well as distribution and correlation characteristics. Moreover, we define a feature-based distance measure for their comparison. Both the representation technique and the distance measure provide desirable properties regarding storage and runtime. Subsequently, we introduce techniques based on our feature-based engineering and apply them to important data-mining tasks such as time series generation, time series matching, time series classification, and time series clustering. First, our feature-based generation technique outperforms state-of-the-art techniques regarding the accuracy of evolved datasets. Second, with our features, a matching method retrieves a match for a time series query much faster than with current representations. Third, our features provide discriminative characteristics to classify datasets as accurately as state-of-the-art techniques, but orders of magnitude faster. Finally, our features recommend an appropriate clustering of time series which is crucial for subsequent data-mining tasks. All these techniques are assessed on datasets from the energy, weather, and economic domains, and thus, demonstrate the applicability to real-world use cases. The findings demonstrate the versatility of our feature-based engineering and suggest several courses of action in order to design and improve analytical systems for the paradigm shift of Industry 4.0

    Large-Scale Indexing, Discovery, and Ranking for the Internet of Things (IoT)

    Get PDF
    Network-enabled sensing and actuation devices are key enablers to connect real-world objects to the cyber world. The Internet of Things (IoT) consists of the network-enabled devices and communication technologies that allow connectivity and integration of physical objects (Things) into the digital world (Internet). Enormous amounts of dynamic IoT data are collected from Internet-connected devices. IoT data are usually multi-variant streams that are heterogeneous, sporadic, multi-modal, and spatio-temporal. IoT data can be disseminated with different granularities and have diverse structures, types, and qualities. Dealing with the data deluge from heterogeneous IoT resources and services imposes new challenges on indexing, discovery, and ranking mechanisms that will allow building applications that require on-line access and retrieval of ad-hoc IoT data. However, the existing IoT data indexing and discovery approaches are complex or centralised, which hinders their scalability. The primary objective of this article is to provide a holistic overview of the state-of-the-art on indexing, discovery, and ranking of IoT data. The article aims to pave the way for researchers to design, develop, implement, and evaluate techniques and approaches for on-line large-scale distributed IoT applications and services

    Features Extraction from Time Series

    Get PDF
    Time series can be found in various domains like medicine, engineering, and finance. Generally speaking, a time series is a sequence of data that represents recorded values of a phenomenon over time. This thesis studies time series mining, including transformation and distance measure, anomaly or anomalies detection, clustering and remaining useful life estimation. In the course of the first mining task (transformation and distance measure), in order to increase the accuracy of distance measure between transformed series (symbolic series), we introduce a novel calculation of distance between symbols. By integrating this newly defined method to symbolic aggregate approximation and its extensions, the experimental results show this proposed method is promising. During the process of the second mining task (anomaly or anomalies detection), for the purpose of improving the accuracy of anomaly or anomalies detection, we propose a distance measure method and an anomalies detection calculation. These proposed methods, together with previous published anomaly detection methods, are applied to real ECG data selected from MIT-BIH database. The experimental results show that our proposed outperforms other methods. During the course of the third mining task (clustering), we present an automatic clustering method, called AT-means, which can automatically carry out clustering for a given time series dataset: from the calculation of global average time series to the setting of initial centres and the determination of the number of clusters. The performance of the proposed method was tested on 10 benchmark time series datasets obtained from UCR database. For comparison, the K-means method with three different conditions are also applied to the same datasets. The experimental results show the proposed method outperforms the compared K-means approaches. During the process of the fourth mining task (remaining useful life estimation), all the original data are transformed into low-dimensional space through principal components analysis. We then proposed a novel multidimensional time series distance measure method, called as multivariate time series warping distance (MTWD), for remaining useful life estimation. This whole process is tested on the CMAPSS (Commercial Modular Aero Propulsion System Simulation) datasets and the performance is compared with two existing methods. The experimental results show that the estimated remaining useful life (RUL) values are closer to real RUL values when compared with the comparison methods. Our work contributes to the time series mining by introducing novel approaches to distance measure, anomalies detection, clustering and RUL estimation. We furthermore apply our proposed methods and related methods to benchmark datasets. The experimental results show that our methods are better than previously published methods in terms of accuracy and efficiency

    FAULT DETECTION AND PREDICTION IN ELECTROMECHANICAL SYSTEMS VIA THE DISCRETIZED STATE VECTOR-BASED PATTERN ANALYSIS OF MULTI-SENSOR SIGNALS

    Get PDF
    Department of System Design and Control EngineeringIn recent decades, operation and maintenance strategies for industrial applications have evolved from corrective maintenance and preventive maintenance, to condition-based monitoring and eventually predictive maintenance. High performance sensors and data logging technologies have enabled us to monitor the operational states of systems and predict fault occurrences. Several time series analysis methods have been proposed in the literature to classify system states via multi-sensor signals. Since the time series of sensor signals is often characterized as very-short, intermittent, transient, highly nonlinear, and non-stationary random signals, they make time series analyses more complex. Therefore, time series discretization has been popularly applied to extract meaningful features from original complex signals. There are several important issues to be addressed in discretization for fault detection and prediction: (i) What is the fault pattern that represents a system???s faulty states, (ii) How can we effectively search for fault patterns, (iii) What is a symptom pattern to predict fault occurrences, and (iv) What is a systematic procedure for online fault detection and prediction. In this regard, this study proposes a fault detection and prediction framework that consists of (i) definition of system???s operational states, (ii) definitions of fault and symptom patterns, (iii) multivariate discretization, (iv) severity and criticality analyses, and (v) online detection and prediction procedures. Given the time markers of fault occurrences, we can divide a system???s operational states into fault and no-fault states. We postulate that a symptom state precedes the occurrence of a fault within a certain time period and hence a no-fault state consists of normal and symptom states. Fault patterns are therefore found only in fault states, whereas symptom patterns are either only found in the system???s symptom states (being absent in the normal states) or not found in the given time series, but similar to fault patterns. To determine the length of a symptom state, we present a symptom pattern-based iterative search method. In order to identify the distinctive behaviors of multi-sensor signals, we propose a multivariate discretization approach that consists mainly of label definition, label specification, and event codification. Discretization parameters are delicately controlled by considering the key characteristics of multi-sensor signals. We discuss how to measure the severity degrees of fault and symptom patterns, and how to assess the criticalities of fault states. We apply the fault and symptom pattern extraction and severity assessment methods to online fault detection and prediction. Finally, we demonstrate the performance of the proposed framework through the following six case studies: abnormal cylinder temperature in a marine diesel engine, automotive gasoline engine knockings, laser weld defects, buzz, squeak, and rattle (BSR) noises from a car door trim (using a typical acoustic sensor array and using acoustic emission sensors respectively), and visual stimuli cognition tests by the P300 experiment.ope
    corecore