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Abstract 

In recent decades, operation and maintenance strategies for industrial applications have evolved from 

corrective maintenance and preventive maintenance, to condition-based monitoring and eventually 

predictive maintenance. High performance sensors and data logging technologies have enabled us to 

monitor the operational states of systems and predict fault occurrences.  

Several time series analysis methods have been proposed in the literature to classify system 

states via multi-sensor signals. Since the time series of sensor signals is often characterized as very-

short, intermittent, transient, highly nonlinear, and non-stationary random signals, they make time 

series analyses more complex. Therefore, time series discretization has been popularly applied to 

extract meaningful features from original complex signals. There are several important issues to be 

addressed in discretization for fault detection and prediction: (i) What is the fault pattern that 

represents a system’s faulty states, (ii) How can we effectively search for fault patterns, (iii) What is a 

symptom pattern to predict fault occurrences, and (iv) What is a systematic procedure for online fault 

detection and prediction. 

In this regard, this study proposes a fault detection and prediction framework that consists of 

(i) definition of system’s operational states, (ii) definitions of fault and symptom patterns, (iii) 

multivariate discretization, (iv) severity and criticality analyses, and (v) online detection and 

prediction procedures.  

Given the time markers of fault occurrences, we can divide a system’s operational states into 

fault and no-fault states. We postulate that a symptom state precedes the occurrence of a fault within a 

certain time period and hence a no-fault state consists of normal and symptom states. Fault patterns 

are therefore found only in fault states, whereas symptom patterns are either only found in the 

system’s symptom states (being absent in the normal states) or not found in the given time series, but 

similar to fault patterns. To determine the length of a symptom state, we present a symptom pattern-

based iterative search method. In order to identify the distinctive behaviors of multi-sensor signals, we 

propose a multivariate discretization approach that consists mainly of label definition, label 

specification, and event codification. Discretization parameters are delicately controlled by 

considering the key characteristics of multi-sensor signals. We discuss how to measure the severity 

degrees of fault and symptom patterns, and how to assess the criticalities of fault states. We apply the 

fault and symptom pattern extraction and severity assessment methods to online fault detection and 

prediction. 



 

Finally, we demonstrate the performance of the proposed framework through the following six 

case studies: abnormal cylinder temperature in a marine diesel engine, automotive gasoline engine 

knockings, laser weld defects, buzz, squeak, and rattle (BSR) noises from a car door trim (using a 

typical acoustic sensor array and using acoustic emission sensors respectively), and visual stimuli 

cognition tests by the P300 experiment. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

As new technology has been introduced and customer preferences have diverged, electromechanical 

systems have become more intelligent and have gained greater complexity and uncertainty (S. Khan, 

P. Phillips, I. Jennions, & C. Hockley, 2014; G. W. Vogl, B. A. Weiss, & M. A. Donmez, 2014). 

Failure to control a system correctly will lead to a fault occurrence, system downtime and 

consequently economic and social losses, including high warranty costs and a negative impact on 

consumer confidence (P. Sydor, R. Kavade, & C. J. Hockley, 2017).  

Unexpected faults have often occurred even when systems have passed all inspections during 

manufacturing. For example, Toyota vehicle recalls at the end of 2009 and the start of 2010 led to 

huge warranty costs including for the 4.3 million vehicles recalled, due to a defective accelerator in 

the United states, Europe, and Asia (Y. Kim, 2010). Nevertheless, even now after almost a decade 

since the issue, many accidents continue to be caused from various electromechanical system (see 

Figure 1.1)For example, in 2017 this year, several models, manufactured from Jaguar Land Rover, 

were recalled due to airbag defects (N/A, 2017b). In the case of the Korean airplane, Asiana, in 

addition to suffering more than 40 faults in the last three years, have recently been delayed three times 

since defective parts led to takeoffs errors (i.e., in June 2017 to Oct 2017) (Y. S. Kim, 2017b; N/A, 

2017a; E. G. Shim, 2017). In July 2017, the Korean high-speed train (KTX) even had three emergency 

stops at unplanned platforms for about 20 minutes, due to faults in a power unit and a damper (E. J. 

Choi, 2017; Y. S. Kim, 2017a; N/A, 2017c). Therefore, in order to operate the system reliably and to 

prevent unexpected fault occurrences, an appropriate operation and maintenance strategy is required.  

If a solid model is constructed clearly based on underlying mathematical or physical principles 

of the target system (P. M. Frank & X. Ding, 1997; I. Hwang, S. Kim, Y. Kim, & C. E. Seah, 2010; R. 

Isermann & P. Ballé, 1997), or corrective maintenance strategies such as a root cause of the current 
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fault and a way to diagnose/repair are already established for the system’s maintenance (S. 

Katipamula & M. R. Brambley, 2005; H. M. Tran, S. Nguyen, S. T. Le, & Q. T. Vu, 2015; V. 

Venkatasubramanian, R. Rengaswamy, & S. N. Kavuri, 2003), it is not necessary to analyze fault 

occurrences further. That is, information about fault occurrences in a target system is sufficiently 

investigated. For example, R. Isermann (1993) defined a dynamic behavior of each machinery 

element (e.g., D.C motor, shaft, belt-drive, gear-box, oil-bearing, and rolling-bearing) as the 

corresponding mathematic equations. S. Nandi, H. A. Toliyat, and X. Li (2005) also investigated 

significant vibration frequencies for detecting faults in typical machinery parts. However, it is not 

easy to obtain clear and sufficient information about a system model and fault occurrences in advance 

(J. Ahmet Erkoyuncu, S. Khan, S. M. F. Hussain, & R. Roy, 2016). In this case, we need to indirectly 

analyze related sensor signals for fault detection and prediction according to a condition-based 

maintenance strategy, which is also called as Predictive Maintenance strategy. It is performed to try to 

provide adequate and appropriate maintenance at the right time, after related indicators show a 

warning that a system is going to fail or its performance is deteriorating. The warning is given through 

real-time monitoring of the state of the target system (C. Park, D. Moon, N. Do, & S. M. Bae, 2016). 

Many researchers discussed which type of data to collect and how to analyze the data for 

predictive maintenance and demonstrated the developed methods through various electromechanical 

systems (J. Lee, H.-A. Kao, & S. Yang, 2014a) (A. Maier, S. Schriegel, & O. Niggemann, 2017). For 

Figure 1.1 Examples of electromechanical system's accidents during 2017: Thousands of car recall (N/A, 

2017b), Airplane takeoff delay (Y. S. Kim, 2017b; N/A, 2017a; E. G. Shim, 2017).and KTX emergency 

stop (E. J. Choi, 2017; Y. S. Kim, 2017a; N/A, 2017c) 
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example, J. Yan, Y. Meng, L. Lu, and L. Li (2017) applied the proposed big data analysis methods to 

estimate the remaining life of key components of a CNC machine. For effective condition-based 

maintenance, there are several commercial data analytics platforms for interpreting the system states 

via sensor signals such as Predix (General Electric), Bluemix (IBM), Lumada (Hitachi), and 

Mindsphere (Siemens). This strategy usually consists of four steps (as shown in Figure 1.2); data 

acquisition & manipulation, fault detection & diagnosis, fault prediction, and presentation & action (G. 

W. Vogl et al., 2014).   

 Data acquisition and manipulation; This step involves collecting relevant datasets in 

real-time which can comprehensively explain the state of a target system and then 

conducts the appropriate signal preprocessing. Since it is usually not straightforward to 

obtain exact and comprehensive state information of a system directly, sensor signals are 

usually acquired, in the form of a time series. For collecting the time series of sensor 

signals which represents the system’s state accurately, several studies have been 

investigated such as optimal sampling rate determination (S. Baek & D.-Y. Kim, 2015; J. 

Figure 1.2 Four main steps of Condition-Based Maintenance: Data acquisition & manipulating, 

fault detection & diagnosis, fault prediction, presentation & action, adopted from ISO 13374 

(Iso13374-1, 2015) 
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L. Durkin & J. P. Callaghan, 2005; F. Hupet & M. Vanclooster, 2001) and optimal sensor 

displacement/distribution (Y. Bi, W. Yan, & Y. Ke, 2017; M. Casillas, V. Puig, L. Garza-

Castañón, & A. Rosich, 2013; N. Shukla, D. Ceglarek, & M. K. Tiwari, 2015). 

Appropriate sensor data preprocessing such as de-noising (Y. Feng et al., 2015; R. 

Golafshan & K. Yuce Sanliturk, 2016; H. Sun, Y. Zi, & Z. He, 2014) and dimension 

reduction (G. Chandrashekar & F. Sahin, 2014; M. Lewandowski, D. Makris, S. A. 

Velastin, & J. C. Nebel, 2014; A. Malhi & R. X. Gao, 2004) is also conducted to 

represent the system’s state more clearly. In this paper, it is assumed that these required 

steps will already have been taken. 

 Fault detection & diagnosis: Fault detection is conducted to monitor system states in 

real-time to determine whether a fault occurs or not. Relevant fault information, 

including the root cause and severity of the detected fault, is then investigated in the fault 

diagnosis step (J. Gertler, 2015). 

 Fault prediction: Fault prediction means predicting a future state of a system for the 

early detection of potential fault occurrences or performance degradation. In particular, 

we can define two types of fault prediction: (i) to estimate remaining useful life (RUL), 

and (ii) to find out a significant precursor(s) (i.e., symptom(s)) of potential fault 

occurrences.  

Numerous studies have attempted to address how to develop an RUL model (K. 

Javed, R. Gouriveau, & N. Zerhouni, 2015; R. Kothamasu, S. H. Huang, & W. H. 

Verduin, 2006). For example, H. Li, D. Pan, and P. Chen (2015) developed a linear RUL 

model for individual momentum wheels in a satellite based on the Wiener degradation 

model by considering failure mode, mechanisms, and effects. The input sensor signal 

was the rate of lubricant loss because it showed an apparent increase over time and with 

aging. An expectation maximization algorithm updated the related model parameters for 

optimization.  

However, a sufficiently large amount of input datasets should be provided for 

accurate RUL estimation (B. Zhang et al., 2010). Continuous gradual changes in input 

data from a no-fault to a faulty state is required for accurate prediction (O. F. Eker et al., 

2011). In addition, an RUL model usually covers only one fault mode individually (X.-S. 

Si, W. Wang, C.-H. Hu, & D.-H. Zhou, 2011). Therefore, several RUL models have been  

developed for a single machinery component or for an electronic part (S. Cheng & M. 
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Pecht, 2009; M. Gašperin, Đ. Juričić, P. Boškoski, & J. Vižintin, 2011; H.-E. Kim, A. C. 

C. Tan, J. Mathew, & B.-K. Choi, 2012; J. Lee et al., 2014b; H. Qiu, J. Lee, J. Lin, & G. 

Yu, 2006; Q. Zhang, P. W.-T. Tse, X. Wan, & G. Xu, 2015).  

For large and complex systems which demand high safety and reliability, it is 

preferred that operations are halted immediately, rather than a remaining useful life time 

is given for preventing potential fault occurrences (V. Chandola, A. Banerjee, & V. 

Kumar, 2009). Therefore, we limit fault prediction to the second definition while RUL 

estimation is excluded.  “Symptom”, in this regard, is used as a term for an informative 

precursor discovered from the sensor signals before fault occurrences. 

 Troubleshooting and repair: Once we conducted fault detection, diagnosis and 

prediction, appropriate troubleshooting and repair approaches should be provided as a 

last presentation and action step of the condition-based maintenance. For example, R. C. 

M. Yam, P. W. Tse, L. Li, and P. Tu (2001) discussed the decision making process that 

took place after equipment deterioration was predicted, according to the following 

objectives: how to pre-plan and pro-schedule maintenance works, and to reduce the cost 

for spare parts. 

In particular, various detection and prediction methods have been proposed in the literature 

that use the time series data from sensor signals. The detailed methods for which will be described in 

Chapter 2. Since we focus on how to detect and predict unexpected faults using multi-sensor signals, 

data acquisition & manipulating and presentation and action steps are beyond the scope of the present 

study. 

1.2 Motivation  

There are several fault detection and prediction methods using univariate time series data from only 

one sensor. The typical analysis method is to use univariate Statistical Process Control charts 

(univariate SPC chart) (C. Yiakopoulos, M. Koutsoudaki, K. Gryllias, & I. Antoniadis, 2017). 

Univariate SPC charts are used to monitor a current signal’s state via distances from a representative 

normal state model of the system. If current data is outside of the developed model (e.g., pre-defined 

threshold), the current state of the system is considered to be one in which a fault has occurred. 

Therefore, these types of methods are called distance-based models (D. C. Montgomery, 2009). 

Univariate SPC charts are ideal for fault detection and prediction when a sufficient amount of time 

series data is given and the selected sensor signal solely represents the system’s state clearly (R. 
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Isermann, 1997). However, it is usually not simple to explain the system’s behavior through time 

series data because of the complexity and heterogeneity of subsystems (J. F. Macgregor & T. Kourti, 

1995). 

As illustrated in Figure 1.3, the signal was collected from a compressor in a heavy-oil-

upgrading unit of a Korean petroleum refinery. Experts wanted to detect or predict abnormal 

conditions of the compressor with respect to its vibration, but the signal was not statistically sufficient 

to distinguish the abnormal conditions from the normal conditions of the compressor. However, it is 

possible to observe some unique combinations of signal trends in several sensor signals at the same 

time or in a posterior relationship. Therefore, the experts decided to analyze all 169 sensor signals 

collected from the compressor itself, as well as related turbines, pumps, tanks, and condensers in the 

heavy-oil-upgrading unit. As shown in Figure 1.4, the type of the analyzed sensors is also added, such 

as temperature, pressure, and acceleration. 

Multivariate time series data are employed for fault detection and prediction for more 

comprehensive interpretation of the target system in consideration of correlations among sensor data 

(S. Baek, W. S. Baek, H. Y. Oh, & D.-Y. Kim, 2016; Y. A. Siddiqui, A.-W. A. Saif, L. Cheded, M. 

Elshafei, & A. Rahim, 2015). A typical example is multivariate Statistical Process Control 

(multivariate SPC), such as Hoteling’s T2 statistics and Q statistics calculated from Principal 

Component Analysis (PCA) (M. Mansouri et al., 2016). This type of fault detection and prediction 

method consists of two steps: (i) a normal-state model is constructed in reduced-dimensions using 

multivariate time series data, and then (ii)  residuals between the normal-state model and a current 

value of the model is  calculated (R. M. Penha & J. W. Hines, 2001). In other words, it determines the 

current state and further states according to how far away current data is from the system’s normal 

state, as identical principles to the univariate SPC chart.  

Figure 1.3 A vibration signal from a compressor in a heavy-oil-upgrading unit of the Korean 

petroleum refinery (155th sensor in Figure 1.4): The signal are not suitable for using the traditional 

univariate SPC chart 
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Although it considers correlations among multivariate time series data, the statistical distance 

model based approach cannot yet easily detect and/or predict various types of fault occurrences and 

discover a root-cause of corresponding fault occurrence (S. Verron, T. Tiplica, & A. Kobi, 2007), since 

it usually requires quite strict assumptions for accurate outcomes, including normally distributed 

sensor data, or independency among multivariate data (U. Kruger, Q. Chen, D. Sandoz, & R. 

Mcfarlane, 2001). That is, there are still major challenges in analyzing multivariate time series data 

for accurate fault detection and prediction, and thus this study will focus on overcoming the following 

challenges: 

 Massive amounts of sensor data (i.e., high dimensionality and long recording length) 

 Measurement-induced noise and redundancy in the sensor data, which are not easy to 

distinguish from a system’s original behavior 

 Conflicting information among multivariate data 

 Hidden meaningful signals’ changes such as collective, contextual anomalies 

 A rare fault occurrence which makes sound statistical analysis difficult 

Figure 1.4 The total 166 sensors which are located in the heavy-oil-upgrading unit of the Korean 

petroleum refinery(A: analysis, F: flow, H: hand, I: current, L: level, PD: pressure differential, P: 

pressure, S: speed, T: Temperature, V: vibration, X: acceleration X-axis, Y: acceleration y-axis, Z: 

position) 
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1.3 Objectives 

In this regard, the ultimate goal of this study is to develop a fault and symptom pattern extraction 

framework using multivariate time series sensor data via dynamic discretization for fault detection 

and prediction in eletromechanical systems. To analyze multivariate time series data for fault and 

symptom pattern extraction, the developed framework consists of five phases: sensor data acquisition, 

data cleaning (sensor data preprocessing), information amplification, fault and symptom pattern 

extraction, and online fault detection and prediction. In particular, this study focuses on multivariate 

time series data analysis for fault/symptom pattern extraction which is highlighted as blue in Figure 

1.5, and thus other phases are conducted according to typical methods. The proposed framework for 

fault detection and prediction by pattern analyses using the multivariate time series discretization is 

illustrated in Figure 1.6. 

Firstly, time series discretization (especially multivariate data discretization in this study) is 

used to convert continuous multivariate time series data into a series of contiguous discretized state 

vectors based on predefined discretization parameters, in order to reduce the amount of the original 

dataset while preserving meaningful behaviors from the input data. Consequently, the transformed 

discretized state vectors are again converted into corresponding event codes to represent the state of a 

given system for either short or long time periods.  

Fault pattern and symptom patterns are extracted from a set of event codes. To extract an 

informative pattern in terms of fault detection and prediction, a strict assumption is made as follows: 

extracted patterns should be discovered only during target states of the system (i.e., fault states for the 

Figure 1.5 General process for fault detection and prediction using multivariate time series data 
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Figure 1.6 The proposed framework for fault detection and prediction by the pattern analysis based 

on multivariate time series discretization  
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fault patterns, symptom states for symptom patterns). The statistical evidence for the extracted 

patterns and the analyzed fault states will also be assessed as the severity degree and criticality, 

respectively.  

Then, in order to obtain good/informative/significant patterns, we need to identify key 

characteristics of the given sensor data quantitatively with regard to fault detection and prediction, 

because discretization parameters and rules should be dynamically controlled according to the input 

data’s behavior, in order to discover an optimal set of discretization parameters and select an 

appropriate discretization rule. In this study, the relationships between the key characteristics of the 

given data and appropriate discretization parameters regarding fault pattern extraction, are 

investigated based on the sensitivity analysis. Especially experimental design of sensitivity analysis 

was conducted following Analysis of Variance (ANOVA). Therefore, the empirical analysis results 

will be provided as a guideline for appropriate discretization parameter choices when performing fault 

detection and prediction.  

In addition, for full-fledged fault and symptom pattern extraction, it is essential to define the search 

region of interests, as a target region/state. If the entire time range is a target region for fault and  

symptom pattern extraction, it is too computationally expensive and complicated to investigate the 

relationships/meanings between extracted patterns and fault occurrences because of large gaps 

between them. Therefore, an appropriate target state determination method is very much required for 

efficient fault detection and prediction using multivariate time series data.  

Finally, an online monitoring procedure is proposed that uses the analyzed patterns, statistical 

evidences, and the estimated state information in real-time fault detection and prediction. The main 

benefits of the developed fault and symptom pattern extraction frameworks can be summarized as 

follows: 

 To provide the guidelines for selecting appropriate discretization parameters, with 

respect to characteristics of the given input data 

 To give as the statistical evidence in fault diagnosis, a degree of severity for the extracted 

patterns and a criticality level of the analyzed system’s faulty states  

 To propose an online fault detection and prediction procedure using the extracted 

patterns, their severities, and an estimated symptom state length 
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1.4 Organization of the thesis 

The first chapter briefly introduces the need for fault and symptom pattern extraction using 

multivariate time series data. The remainder of this dissertation is organized as follows:  

 Chapter 2 gives a general summary of fault detection and prediction using multivariate 

time series data which is collected from sensors which monitor system states., A detailed 

survey of pattern extraction techniques from time series data for fault detection and 

prediction are also described in detail.  

 In Chapter 3, the operation states of a system will be defined according to the time 

marker of all fault occurrences (only for the supervised problem). The six 

electromechanical systems will be introduced for further fault and symptom analysis (i.e., 

automotive gasoline engine, marine diesel engine, laser welding monitoring, BSR noise 

monitoring using acoustic sensor array and acoustic emission sensors, and brain EEG 

P300 experiment respectively). 

 Chapter 4 describes a systematic procedure for multivariate time series discretization 

before extracting fault and symptom patterns. There are three main steps needed to 

transform the original continuous time series data into a contiguous series of discretized 

state vectors which can express a system’s state: (i) Label definition, (ii) Label 

specification, and (iii) event codification.  

 Chapter 5 describes how a fault pattern is extracted using the event codes obtained from 

Chapter 4. A fault pattern extraction searches the informative signals’ behaviors which 

are found in the fault state only, and not in other states as a final fault pattern. To obtain 

the informative/good patterns from the given multivariate time series data, the empirical 

sensitivity analysis is conducted using four real-world datasets. This provides a guideline 

of discretization parameter selection depending on the key characteristics of the given 

dataset. In addition, severity and criticality are analyzed for the extracted fault pattern 

and the corresponding fault state of the system. 

 Chapter 6 explains how to extract symptom patterns from the event codes transformed 

from the original multivariate time series data. Since a symptom pattern is defined as an 

event code found in the symptom state only. The severity degree of a symptom pattern is 

also assessed. To extract symptom patterns efficiently, here we define a symptom state 

and determine its length iteratively.  
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 Chapter 7 proposes using the extracted patterns, their severities and an estimated 

symptom state length, and an online monitoring procedure to detect and predict a future 

fault occurrence. The proposed procedure is examined with two real-world case studies 

for fault prediction: an abnormal cylinder temperature in a marine diesel engine, and a 

knocking in an automotive gasoline engine. Online fault detection was also demonstrated 

using one real-world case study: a BSR noise (defective car door trim) detection in a 

BSR noise monitoring system using acoustic sensor array.  

 Finally, concluding remarks and future research topics are summarized in Chapter 8. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Fault detection and prediction using multivariate time series 

Suppose that m sensor signals are collected simultaneously at a system. If they are statistically 

independent each other, then they can be monitored using the univariate analyses individually. 

Although the univariate time series data analysis is simple to apply in real-industry and its analysis 

result is reliable (P. Haves, 1999), it is not simple to select only one sensor data for representing the 

entire system’s state in large scale and complex engineering systems such as automotive, oil refinery, 

and power plants (S. Wang & J. Qin, 2005). For example, such strict statistical assumptions should be 

assumed including independent and identically (normally) distributed sensor data for input data, and 

an amount of input data is given statistically enough for reliable monitoring results (J.-H. Park & C.-H. 

Jun, 2012; S. Verron, J. Li, & T. Tiplica, 2010).  

Therefore, if the collected sensor signals are correlated each other, multivariate time series 

data analysis is introduced for fault detection and prediction (J. V. Kresta, J. F. Macgregor, & T. E. 

Marlin, 1991). Multivariate time series sensor data are mathematically expressed as 𝑚 × 𝑛 matrix, as 

follows: 

𝐗 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋱ 𝑥2𝑛
⋮ ⋱ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

]. 

where 𝑚 is a number of sensors which are measured at the same time from the system (𝑚 > 1), and 

𝑛 is equal to the number of monitored sensor values which are recommended to be larger than 𝑚 

( 𝑛 ≫ 𝑚) . Hereafter, a column signal vector collected at the jth time point 𝐗𝐣 =

(𝑥1𝑗, 𝑥2𝑗,…𝑥𝑖𝑗 , … , 𝑥𝑚𝑗)
T

 is considered as the jth state vector.  
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We categorize fault detection and prediction methods using multivariate time series data into 

four categories, as illustrated in Figure 2.1. If any state information of a system (called as class 

information, dependent variables) is not given, then unsupervised outlier detection and prediction. 

Figure 2.1 A decision tree for determining an appropriate fault detection and prediction method 

according to the given conditions 
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This idea is to consider the majority of the given measurements as a normal with respect to a 

neighborhood distance or a central density. A typical method is the unsupervised machine learning–

based clustering models. It is to infer a model which explains hidden behaviors from the given data 

without class information, 𝐗 = {𝑥}𝑖=1
N . Briefly, due to no given class information, groups are made 

considering distances and densities of the given measurements, then major groups are assumed as the 

system’s normal sates for fault detection and prediction.  

In this regard, this type of approaches has been popularly used such as a K-means clustering (S. 

Al-Dahidi, F. Di Maio, P. Baraldi, E. Zio, & R. Seraoui, 2015; K. Jyoti & S. Singh, 2011; I. Morgan, 

H. Liu, G. Turnbull, & D. Brown, 2008; C. T. Yiakopoulos, K. C. Gryllias, & I. A. Antoniadis, 2011), 

a one-class support vector machine (S. Mahadevan & S. L. Shah, 2009; A. Tabrizi, L. Garibaldi, A. 

Fasana, & S. Marchesiello, 2015; J. Yu, 2013), a self-organizing map (M. Du et al., 2016; Z. Fei, S. 

Tieiin, & H. Tao, 2005; L. F. Gonçalves et al., 2011; M. Svensson, S. Byttner, & T. Rognvaldsson, 

2008; N. Zhao, S. Li, Y. Cao, & M. Hui, 2014), and other unsupervised neural networks (J. F. Martins, 

V. F. Pires, & A. J. Pires, 2007; R. R. Schoen, B. K. Lin, T. G. Habetler, J. H. Schlag, & S. Farag, 

1995). However, since we focus on analyzing the system’s states with the given fault markers (e.g., 

class information), unsupervised outlier detection and prediction models are not covered in this 

Chapter. The remaining three models will be discussed in the following subsections. 

2.2 Distance based models 

‘Distance based models’ usually consists of two steps for fault detection and prediction, as depicted in 

Figure 2.2; (i) constructing a distance model(s), is which is(are) represented as aggregated index and 

threshold, using the given data and (ii) evaluating a distance from the model. These are re-illustrated 

as the distance models and the residual evaluator in Figure 2.2 respectively. If the current 

measurement(s) is sufficiently far from the normal states, then it is considered to be fault detected. It 

is usually applied to fault prediction by adjusting (usually lowering) the degree of the distance 

thresholds.  

When using the distance based models, the performance of fault detection and prediction is 

depending to how much accurate, solid, and clear model(s) is(are) developed, and how high/low the 

relevant control limits(s) is(are) (W. H. Woodall, D. J. Spitzner, D. C. Montgomery, & S. Gupta, 

2004). Therefore, we classified this approach into two types according to which model is used in this 

paper; (i) multivariate statistical process control models, and (ii) multivariate statistical projection 

models. Detailed information about each type will be explained following sections individually.  
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2.2.1 Multivariate statistical process control models 

 

In order to detect and predict unknown faults, the simplest way is Shewhart multivariate SPC charts 

(S. Bersimis, S. Psarakis, & J. Panaretos, 2007). Assume that the collected sensor signals are 

independently and identically distributed 𝐗 ~ Nm(𝛍0, Σ0) where 𝛍0 and Σ0 are the hypothesized 

mean vector and variance-covariance matrix respectively, then Hotelling’s T2 statistics are popularly 

monitored for controlling a mean value of the given multiple sensor signals. 

 Hotelling’s T2 statistic: It is one of Mahalanobis distances for detecting a relatively 

large change in one or several of the components of the current mean vector. Therefore, 

it measures between the current mean vector and the hypothesized mean vector, as the 

following equation. If the 𝑇𝑗
2 is larger than the predefined upper control limit, then it is 

considered to be fault detected (J. Park & C. Jeon, 2012).  

𝑇𝑗
2 = (𝐱𝒋 − 𝛍0)

𝑇
Σ0
−1(𝐱𝑗 − 𝛍0) ~ 𝜒𝑚

2  (𝐹𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑛) 

Assumption 

 𝐗𝐣 is serially independent (i.e., not dependent on the time scale) 

 𝐗𝐣 follows a multinomial distribution ~ 𝑁𝑚(𝝁0, 𝛴0) 

Figure 2.2 The general structure of 'the distance from the normal state' based approach 
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~ 𝑇𝑚,𝑛−𝑚
2 = 

𝑚(𝑛 − 1)

𝑛 −𝑚
𝐹 (𝐹𝑜𝑟 𝑠𝑎𝑚𝑙𝑙 𝑛) 

𝑇𝑈𝐶𝐿
2 =

𝑚(𝑛 − 1)

𝑛 −𝑚
𝐹𝛼,𝑚,𝑛−𝑚 

where 𝐱𝑗 is the jth time point vector of multivariate time series data matrix. If the given 

data have the large number of n, or are normally distributed, then Hotelling’s T2 is chi-

square distributed approximately with m degree of freedom. Otherwise, for the small 

number of n, the approximated chi-square distribution cannot sufficiently take into 

account variation in the estimating population variance-covariance matrix, therefore it 

follows a scaled F-distribution with n and n-m degrees of freedom.  

 |𝐒|
1

2: It is devised to control a process variability by detecting a change in one or several 

variances or correlations, where 𝐒 is the current variance-covariance matrix. The control 

limits are determined as follows: 

|𝐒|𝑈𝐶𝐿

1
2 = (𝑏3 + L√𝑏1 − 𝑏3

2) × |Σ0|
1
2 

|𝐒|𝐿𝐶𝐿

1
2 = (𝑏3 − L√𝑏1 − 𝑏3

2) × |Σ0|
1
2 

where 𝑏1 = (𝑛 − 1)
−𝑚∏ 𝑛 − 𝑖𝑚

𝑖=1 ,  𝑏3 = (
2

𝑛−𝑚
)

𝑚

2
×

Γ(
𝑛

2
)

Γ(
𝑛−𝑚

2
)

, and 𝐿  is a weight, 

typically set to 3. However, this type of a model is not usually guarantee a confidence 

region for a variance-covariance matrix. 

 In addition to control charts for controlling the process variability, there are also other 

statistics (S. Bersimis, J. Panaretos, & S. Psarakis, 2005): (i) the determinant of the 

sample generalized variance-covariance matrix |𝐒| , and (ii) the trace of the sample 

generalized variance-covariance matrix tr(𝐒) , where 𝐒  is the sample generalized 

variance-covariance matrix. 

These multivariate Shewhart SPC models provide detection and prediction results by 

calculating the distance based on the current measurements’ deviation(s), they easily detect a 

relatively large shift. However, they are subject to negatively result in being insensitive to small/subtle  

incremental/decremented signals’ changes in the target system (J. A. Romagnoli & A. Palazoglu, 
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2005). In order to employ some of previous measurements, multivariate cumulative sum (MCUSUM) 

and multivariate exponential weighted moving average control charts (MEWMA) are developed.  

 MCUSUM: Univariate cumulative sum chart (CUSUM) is originally devised for change 

point detection. Simply speaking, a detection result is determined by how big the total 

cumulative sum of values is, which is out of the predefined thresholds (called as the 

upper and lower cumulative sums) 

𝑡𝑠𝑖𝑗 = max(0, tsk−1 + 𝑥𝑖𝑗 −𝑤𝑛) 

where 𝑥𝑖𝑗 is a measurement for the ith sensor at the jth time point, 𝑡𝑠𝑖0 = 0 and 𝑤𝑛 is 

assigned weights such as a likelihood function. For applying CUSUM from the 

perspective of multivariate analysis, there are two different ways of MCUSUM, 

respectively: (i) use multiple univariate CUSUM charts, and (ii) the L2-norm of a vector 

of cumulative sums as a test statistic of the MCUSUM. That is, for the first case, we can 

use the total sum or the average of 𝑡𝑠𝑖𝑗 from the all the ith sensors. On the other hands, in 

the second case, 𝑥𝑖𝑗 will be replaced into |𝐱𝐣| =  √𝑥1𝑗
2 + 𝑥2𝑗

2 +⋯+ 𝑥𝑖𝑗
2 +⋯+ 𝑥𝑚𝑗

2 . 

For example, F. Attal, A. Boubezoul, L. Oukhellou, N. Cheifetz, and S. Espié 

(2014) wanted to early detect a rider’s fall from the motorcycle using the L2-norm type 

MCUSUM based on three accelerometer and three gyroscope sensor signals. The 

detection result from MCUSUM was accurate than using individual L2-norm chart in 

terms of both early detection time and detection rate.  

 MEWMA: It is also proposed as an extension version of the univariate EWMA control 

chart.  

𝐳𝒋 = 𝐑𝐱𝐣 + (𝐈 − 𝐑)𝐳𝐢−𝟏 

where R is a diagonal matrix for exponential smoothing of which elements are 

constrained from 0 to 1. An initial value of measurement (𝐳𝟎) is usually set to a in-

control mean vector of the target system. In addition, its variance-covariance matrix also 

can be evaluated (D. Moraes, F. Oliveira, & L. Duczmal, 2015). However, the charts of 

EWMA type can easily violate normality assumption than CUSUM type due to weighted 

mean (A. Cinar & C. Undey, 1999). 
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For monitoring a photovoltaic manufacturing process, the MEWMA chart with 

two sensor signals, in a form of time series, were applied, since their correlation is quite 

high (J. L. Coleman & J. Nickerson, 2005). They compared the MEWMA chart with 

other univariate charts (individual SPC and EWMA charts of the sensor signal). Whereas 

two univariate charts failed to detect a fault, the MEWMA chart succeeded in detecting 

fault, but three seconds after the fault occurrence.  

MCUSUM and MEWMA are individually conducted for detecting two different 

damages in Z24 Bridge in Switzerland (J. Kullaa, 2003). Four natural frequency changes 

over time were analyzed, after analyzing mode pairing from four sensors respectively as 

a pre-processing step. Finally, he investigated that Multivariate SPC charts gave usually 

accurate detection results than univariate SPC charts, but not in the case of small damage 

detection. 

Above traditional test statistics, such as mean and variance, do not always adequately account 

for the system’s faulty states clearly. For example, P. Zantek, S. Li, and Y. Chen (2007) investigated 

the effect of test statistics in MEWMA for fault detection. They selected three different test statistics: 

an estimated generalized least square, a mean value from four sensor signals and that from fifteen 

sensor signals respectively. A dataset was collected from a manufacturing process of two-panel-work-

piece assembly, and as a result, MEWMA charts using the generalized least square gave a better 

detection result than charts using the other statistics.  

Although several studies applied MCUSUM or MEWMA solely to detect/predict faults (D. 

Jung, D. Kang, J. Liu, & K. Lansey, 2013). This chart types of CUSUM and EWMA usually shows 

inertia when a violation with an opposite direction against to previous signals’ changes, thus it is not 

easy to react as fast as possible to the violation occurrences (F. Umit & A. Cigdem, 2000). Therefore, 

many researchers have paid much attention to investigate a new or novel feature(s) which is(are) 

appropriate to explain a system’s operational state with simple relationships by analyzing time and 

frequency domain analysis.  

Rather than original measurements, autoregressive measurements are alternatively applied to 

the MEWMA procedure (Z. Wang & K. C. G. Ong, 2009). After generating a revised measurement 

vector from autoregressive model and MEWMA, a final damage indicator is computed as the total 

number of outliers in the revised measurement vector. Multiple sensor signals were collected from a 

two-bay-and-two-story RC plane frame, and three faults with different defectiveness were 

successfully analyzed by the proposed index.  
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Similarly, A. Messaoud, C. Weihs, and F. Hering (2008) developed a new test statistics for the 

MEWMA chart. It was called as rank based MEWMA, since it used the sequential rank of a data-

depth. The data-depth indicates how much central the measurement is against to the reference 

distribution in multivariate sensor signals. In this paper, they calculated the data-depth of the residual 

vectors over time and it is subsequently transformed into the sequential rank. The performance of rank 

based MEWMA was validated using the dataset acquired from a real drilling process. 

Instead of MCUSUM or MEWMA, just simple control charts such as X-bar chart and an 

individual chart were also popularly employed after developing relevant test-statistics or features 

using the multivariate sensor signals. For example, the change point detection techniques based on 

linear trends was proposed (The real-time slope statistic profile method) to detect faults of a heating 

zone in a chemical reactor (T. Vafeiadis et al., 2016a; T. Vafeiadis et al., 2016b). They devised the test 

statistics (called as a parametric linear trend) for t-test which is computed by the estimated generalized 

least square divided by either auto-covariance or sample power spectrum. They detected negative and 

positive change points in two sensor signals respectively in the individual chart, then common points 

were determined as the fault detection points. The performance was verified with three datasets which 

contain a sudden and an abrupt change in each signal.  

R. K. Singleton, E. G. Strangas, and A. Aviyente (2014) proposed the Z-value based on 

principal eigenvectors to monitor the system’s state via temperature and vibration sensor signals. 

Eigen vectors are computed using six extracted features from time and frequency domains (i.e., 

entropy from two different frequency bands, mean, variance, skewness, and concentration of the 

decomposed time series at a specific frequency domain, respectively). Since Z-value was designed for 

detecting change points in multiple sensor signals, they defined high Z-value occurrences as the 

system’s state transition toward worse.  

Energy ratio was devised using a normalized summation of residuals of an autoregressive 

model for a gearbox’s fault detection and prediction (X. Zhang, J. Kang, J. Zhao, & D. Cao, 2013). 

They said that a fault will occur in the gearbox when the proposed index increases. Whereas the 

autoregressive model-based energy ratio when analyzing non-stationary time series data, the proposed 

index provided confused diagnosis results (e.g., detection and isolation), in the case of double fault 

occurrences in gear and bearing. 

Similarly, F. Wang, Y. Zhang, B. Zhang, and W. Su (2011) employed an Wavelet packet 

sample entropy for predicting future fault occurrences in rolling element bearing system. First, 

Wavelet packet sample entropies were computed from the decomposed multiple vibration sensor 

signals at the pre-selected frequency band. Sample entropies were then extracted by empirical mode 
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decomposition and the time series in the highest order is transformed into Wavelet packet sample 

entropy again for final predicting the system’s state. As the sample entropy decreased, the system’s 

state became worse.  

When multiple sensor signals have conflicting or partial information, a direct analysis can 

degrade the performance of fault detection and prediction. Therefore, several sensor data fusion 

methods have been paid attention with regard of how to combine relevant information in the 

conflicting or partial sensor signals at either data or feature levels for fault detection and prediction 

(M. Dong & D. He, 2007).  

For example, Y. Wang, F. Chu, Y. He, and D. Guo (2004) collected four sensor data from an 

automobile, and converted each sensor data to a set of basic statistical features (e.g., oxygen data 

converted into maximum, minimum, and mean voltage, and ignition data extracted as a puncture, a 

spark, and a minimum voltage). After reducing the feature dimension into two axes individually by 

Karhunen-Loeve transform, Dempster-Shafer (D-S) evidence theory was applied sequentially to two 

sensor data (totally three times repeated) for detecting and diagnosing faults.  

D-S evidence regression was also used for multi-step ahead prediction of the machinery 

system’s states (G. Niu & B.-S. Yang, 2009). After refining each sensor signals based on time series 

reconstruction techniques individually, iterated D-S evidence regression consisted of three procedures 

for 100-step ahead prediction. A one-step ahead prediction is firstly conducted with a sliding time 

segment, then one-step ahead prediction is repetitively conducted 99 times using a mixture of actual 

and predicted measurements. Finally, a 100-step ahead measurement is predicted only using predicted 

measurements in first and second procedures.   

Although each feature and method gave improved results, but there are still challenges in 

selecting appropriate regression types, features, and optimizing required parameters (H. Motulsky, 

1995). That is, the performance of these control charts are guaranteed when the input sensor data 

follow the assumed particular distribution, in particular, for high dimensional time series data, it is not 

easy to guarantee (V. Chandola et al., 2009). For example, J. Coble and J. W. Hines (2009) 

investigated the optimal feature for predicting the system’s healthy states with regard to monotonicity, 

prognosability, and trendability. They decided that the highest values of the proposed three metrics 

were the most appropriate features, and then applied the genetic algorithm (GA) based on a weighted 

sum of the three metrics to select the final optimal feature. However, they still depended on the user’s 

decision on how to determine the weight for GA’s fitness function.  

However, it is not simple to generalize the special cases to the overall fault detection and 
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prediction problems. Since a model is usually dependent on the given historical data (J. Coble, P. 

Ramuhalli, L. J. Bond, J. Hines, & B. Ipadhyaya, 2015), the special ones are usually too overfitting to 

given training dataset. M. Shewhart (1991) said that they used expert knowledge when selecting types 

of control charts. Therefore, M. M. Rahman, M. M. Islam, K. Murase, and X. Yao (2016) used 

ensemble method to analyze the optimum number of past measurements for predicting the future 

system’s state. Since the objective function of optimization was a prediction result, we cannot be sure 

if the selected optimum number will be maintained after the prediction model changes. Therefore, as 

several studies have already developed for method/feature/parameter selection for specific methods (G. 

Karakaya, S. Galelli, S. D. Ahipaşaoğlu, & R. Taormina, 2016; S. Li & D. Wei, 2014; G. A. 

Rovithakis, M. Maniadakis, & M. Zervakis, 2004; Z. Zhu, Y. S. Ong, & M. Dash, 2007), quantitative 

constraints or guidelines for applying the proposed method should be elaborately presented for next 

validation and verification. For example, GA is employed in order to search the global optimum 

parameter values of several EWMA control charts (F. Aparisi & J. Carlos Garcı́a-Dı́Az, 2004). 

2.2.2 Multivariate statistical projection models 

 

Suppose the large number of sensor signals is collected to detect and predict faults. The sensor signals 

are very likely to be correlated one another, and subsequently result in a large multi-collinearity (W. 

Ku, R. H. Storer, & C. Georgakis, 1995; D. C. Montgomery, 2009). It usually makes the calculation of 

a variance-covariance matrix more difficult, as the matrix becomes singular. A singular matrix is hard 

to invert. In this regard, developing the multivariate statistical projection model has been popularly 

introduced in order to more focus on covariances and correlations among the given multivariate time 

series data.  

Typical examples are PCA and partial least square (PLS, or called as project to latent 

structure). These types of multivariate model are originally developed as latent variable methods for 

dimension reduction by extracting hidden significant features (e.g., a large variance in a single sensor 

Assumption  

 𝐗𝐣 is serially independent (i.e., not dependent on the time scale) 

 𝐗𝐣 follows a multinomial distribution ~ 𝑁𝑚(𝝁0, 𝛴0) (but not a critical assumption) 

Preferred 

 𝒎 is too large to find significant changes from the original data 

 Need to interpret which signals (or variables) results in fault detection 
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data) (S. Bersimis et al., 2007). The above second assumption is not quite strict, therefore we can use 

this projection models when the process variability is not equally distributed among all sensor signals 

(E. Lazzarotto, L. M. Gramani, A. C. Neto, & L. A. T. Junior, 2016).   

 PCA: PCA reduces the dimensionality of the input data while persevering the maximum 

variance within the input data, by transforming a set of original coodinates into a new set 

of selected eigenvectors. 

𝐗 = 𝐓 × 𝐏𝑻 + 𝐄 

where 𝐓 indicates the original observations in the new eigenvector coordinate systems 

which is usually called as t-score matrix, 𝐏𝐓 is a matrix of eigenvectors which is called 

as a principle component coefficient, and 𝐄 is the error between the constructed PCA 

model and the original input data. 

 PLS: PLS projects the output data (i.e., 𝐘, called as a set of predictive variables or 

responses) and the input data to a new coordinate space in order to find a linear 

regression. 

𝐗 = 𝐓 × 𝐏𝑻 + 𝐄 

𝐘 = 𝐔 × 𝑸𝑻 + 𝐅  

where 𝐓 and 𝐔 are matrix of projected values of each input and output data individually, 

𝐏𝐓  and 𝐐𝐓  are orthogonal loading matrices, and 𝐄  and 𝐅  are error matrices, 

respectively. 

After decomposition, we will find a linear relationship between input and output 

data in order to maximize the covariance between two projection matrices and detail 

procedure is illustrated as Figure 2.3: 

𝐔 = 𝐓 × 𝐁𝐓 +𝐇 

where B is a coefficient matrix for regressing a matrix 𝐔 using the matrix 𝐓.  

Briefly, the difference between two methods are the characteristics of input dataset: supervised 

or unsupervised. While PCA just deals with observed data (i.e., X), PLS extracts latent variables the 

explain the high variation in the X, which is the most predictive of the decision variable (T. Kourti, 

2005). 
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For fault detection and prediction, the generated model in low (reduced) dimension is used as 

the normal state model. For example, T.-B. L. Nguyen et al. (2014) analyzed a set of principal 

components. They selected the first principal component (PC1) as a health indicator, since it has 

advantage to describe gradual degradation. They then calculated the PC1 in form of a moving average. 

Two threshold TN and TF are compared in order to warn/alarm and detect fault respectively, as shown 

in Figure 2.4. If the value exceeds the TN, it is considered to fault occur in the near future. In the given 

example, they started to predict a future fault about 250 time points, and detected the fault at 912 

point, where a fault actually occurred.  

The distance from the current time point to the inside or outside the model is also popularly 

employed as an indicator for an estimated state of the current system. Hoteling’s T2 and Q statistics 

are quantitative distance of multivariate statistic model (but in this study, the batch/subgroup is 

ignored, that is each measurement are considered as an individual group). After detecting a fault, the 

corresponding contribution values will infrom which sensor signals mostly affect to the 

abnormal/unusual behaviors.  

Figure 2.3 The relationship between PCA and PLS: where X and Y are the given independent 

/dependent data, T and U are the score matrices of X and Y, PT and QT are the loading matrices, B 

is the diagonal matrix of inner relationship between X and Y, and E, F, and H are residuals  
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 Hotelling’s T2 statistic: It measures the normalized inside distance from the center point 

of the constructed normal model (i.e., the hyperplane) to the projection of the current 

measurement to the model, as the blow arrow in Figure 2.5. Actually, it is computed by 

the identically same equation in the Section 2.2.1 as a Mahalanobis distance, or by 

summation of the normalized squared score when 𝐗  follows a multivariate normal 

distribution series expressed as 𝐗 ~ Nm(𝛍0, Σ0);  

Figure 2.5 The concept of Hotelling's T2 and Q statistics in the PCA model, adopted from (B. M. Wise 

& N. B. Gallagher, 1996) 

Figure 2.4 Online fault detection prediction using the 1st principal components in a wafer 

manufacturing process, adopted from T.-B. L. Nguyen, M. Djeziri, B. Ananou, M. Oulasine, and J. 

Pinaton (2014) 
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𝑇𝑗
2 = (𝐗𝑗 − 𝛍0)

𝑇
Σ0
−1(𝐗𝑗 − 𝛍0) = ∑

𝑡𝑝𝑐
2

𝜆𝑝𝑐

𝑛𝑝𝑐

𝑝𝑐=1

 

where 𝑛𝑝𝑐 is the number of selected new basis such as principal components, 𝑡𝑖 is a ith 

score, and 𝜆𝑖 is a ith eigenvalues (J. Schimert, 2008). The corresponding control limits 

are identically same as Hotelling’s T2 statistics in Section 2.2.1. As a different way, a 

bootstrap technique was also used to determine control limits for Hotelling’s T2 statistics 

(P. Phaladiganon, S. B. Kim, V. C. P. Chen, & W. Jiang, 2013) 

The contribution for 𝑇𝑗
2 is calculated by multiplying each original measurement 

of 𝐗𝑗 into the corresponding eigenvectors. 𝐶𝑖𝑗
𝑇2 indicates a contribution to Hotelling’s 

T2 statistics for the ith measurement at the jth time point. 

𝐶𝑖𝑗
𝑇2 = 𝑥𝑖𝑗 × 𝑝𝑖,𝑝𝑐  ∀ the selected PCs 

 Q statistic: Q statistic is also called as square prediction error (SPE) because it is 

Euclidean distance calculated by the square sum of projection residuals between the 

original data point and projected data point as below equation. Consequently, it means 

lack of model fitness for each data point (R. M. Penha & J. W. Hines, 2001) like the red 

arrow in Figure 2.5, and the corresponding equation is as follows: 

𝑄𝑗 = √𝑒𝑗
𝑇𝑒𝑗 

where 𝑒𝑗 =  𝐗𝑗 − 𝐗�̂�, called as the model error, and 𝐗�̂� is the projected value from 𝐗𝑗 

into the constructed normal model. Its corresponding control limit can be computed with 

a multivariate normal distribution assumption (P. Phaladiganon et al., 2013). 

𝑄𝑈𝐶𝐿 = 𝜃1 × [
𝑧𝛼 × √2𝜃2ℎ0

2

𝜃1
+
𝜃2 × ℎ0 × (ℎ0 − 1)

𝜃1
2 + 1]

1/ℎ0

 

where ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2 , 𝜃𝑖 = ∑ (𝜆𝑝𝑐)

𝑚
𝑝𝑐=𝑛𝑝𝑐+1

𝑖
 ∀𝑖 = 1, 2,3. In a different way, it can be 

calculated using an approximate value of the weighted chi-suqare distribution (G. E. P. 

Box, 1954). 

The contribution for 𝑄𝑗 is calculated by multiplying the squared value of the 
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model error into the sign of the model error, as follows: 

𝐶𝑖𝑗
𝑄
=  sign(𝑒𝑖𝑗) × 𝑒𝑖𝑗

2  

Much scholarly work has already investigated using multivariate statistical projection model 

for developing normal states of the target system. D. Antory (2007) developed a PCA model and 

calculated two statistical indexes to detect air leaks in automotive diesel engine with four cylinders. 

For further analyzing the effect of the fault occurrences, contribution plot of each index was plotted 

against to each original sensor signal. For detecting fault occurrences in nuclear reactor, a PCA model 

was also constructed based on five temperature sensors (R. M. Penha & J. W. Hines, 2001). 

Hotelling’s T2 and Q statistics were employed to check the current state of the target reactor. 

Specifically, Q statistic is able to investigate drifted (e.g., increasing) sensor data over time regardless 

of fault occurrences. Nine sensor signal’s behavior in continuous stirred-tank reactor were also 

transformed as PCA model to detecting three types of faults (i.e., a sensor bias, and complex biases, 

and process faults) (S. Yoon & J. F. Macgregor, 2000). In the case of detecting complex biases, 

further isolation is not much clear than others, so they suggested causal knowledge or past fault 

information for more accurate fault isolation.  

PLS was also used to detect and isolate two type of faults in a robotic manipulator; actuator 

malfunction and sensor bias (R. Muradore & P. Fiorini, 2012). Inverse dynamic model of the 

manipulator with a priori mechanical structure (e.g., kinematic parameters) was used as input 

information, and then a non-linear features of input data were PLS-based converted into a linear set of 

features. They investigated that Hotelling’s T2 statistic was less sensitive than Q statistic for the 

actuator malfunction because it is related to the measurement level. 

In the many cases, both Hotelling’s T2 and Q statistic are applied together in order to detect 

faults, but it is possible that only one index shows significant results compared to others. For example, 

Hotelling’s T2 statistic is strictly related to what happens at the measurement level, whereas SPE is 

affected by both input and output faults (T. Kourti, P. Nomikos, & J. F. Macgregor, 1995). Hotelling’s 

T2 and Q statistics are also independent/orthogonal to each other as in Figure 2.5 (S. Joe Qin, 2003), 

but there are several researches for developing a combined index in order to reduce the number of 

monitoring charts (A. Raich & A. Cinar, 1996; H. H. Yue & S. J. Qin, 2001).  

For example, Q. Chen, U. Kruger, M. Meronk, and A. Y. T. Leung (2004) fused Hotelling’s T2 

and Q statistics as a synthesized index using a kernel density estimation. In Fluid Catalytic Cracking 

Unit (FCCU) for a refining operation, it was verified that this index is better to early detect faults 
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rather than employing traditional two index individually. J. L. Godoy, J. R. Vega, and J. L. Marchetti 

(2013) analyzed relationships between fault types and residuals generated from a PLS model with 

quantitative indices. According to the residual characteristics, a combined detection index was defined 

to detect fault, and the corresponding four types of residuals were used for further fault isolation and 

identification. Their performances were verified using two simulated datasets which described a four-

state statistic chemical process and dynamic chemical process with feedback control.  

Fault detection through PCA and PLS has various advantages including no requirement for a 

priori knowledge about the target system (M. Kano & Y. Nakagawa, 2008), clear sensor data fusion, 

preparedness (e.g., extrapolation) for unexpected situations (S. Yoon, N. Kettaneh, S. Wold, J. Landry, 

& w. Pepe, 2003), and robustness to noisy, incomplete, and redundant dataset (B.-S. Jeon, D.-J. Lee, S. 

H. Lee, J.-W. Ryu, & M.-G. Chun, 2005). However, they showed more accurate results when the 

input sensor datasets are under strong linearity. In order to handle nonlinearity in the given of input 

sensor data, there are many types of PCA and PLS extensions were already investigated and applied 

for fault detection and prediction (S. J. Qin, 2012; C. Yoo, S. W. Choi, & I.-B. Lee, 2008), as 

illustrated Figure 2.6. 

 Dynamic PCA (DPCA) and PLS (DPLS): They are devised to represent dynamic 

sensor data’s behavior over time, to violate the major assumption of PCA and PLS, time-

independency (W. Ku et al., 1995). For considering highly auto-correlated or time-

dependent characteristics, the input data are transformed as follows, and then any 

original dimension reduction method is conducted. 

Figure 2.6 Extensions of multivariate statistical projection model for fault detection and prediction 

adopted from C. Aldrich and L. Auret (2013) 
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𝐙 = [𝐱𝒕 𝐱𝒕−𝟏 … 𝐱𝒕−𝒏] 

Tennessee Eastman (TE) process simulator consists of 12 control variables and 41 

measurements, and is operated under 6 operation modes. In order to monitor TE process 

simulator, DPCA showed excellent results with less than 1% detection errors (C. J. Lee, J. 

W. Ko, & G. Lee, 2008). They additionally investigated that the more sensor data were 

provided, the more accurate the PCA model was built. E. L. Russell, L. H. Chiang, and R. 

D. Braatz (2000) also applied DPCA to detect predefined 21 process faults in a TE 

process simulator. The residual-based Hotelling’s T2 statistics computed in the both 

selected and not selected principal components were newly introduced. DPCA showed 

more accurate detection results with small delay than traditional PCA.  

DPLS is also employed to detect the TE simulator’s faults (G. Lee, C. Han, & E. 

S. Yoon, 2004), In addition to single fault occurrence cases among eleven single faults, 

55 combinations of two single faults are detected by DPLS individually.  

 Moving PCA (MPCA): In a similar concept, in order to account for the sensor signal 

changes over time in normal states of the target, MPCA is introduced (M. Kano, S. 

Hasebe, I. Hashimoto, & H. Ohno, 2001). At first, construct the original PCA model, 

and select significant PCs as references for anomaly detection. Then, according to the 

pre-define length of time segments, we will recursively build PCA and calculate the 

proposed index A denoted as follows: 

𝐀 = 1 − |𝑤𝑖(𝑘)
𝑇𝑤𝑖0| 

where 𝑤𝑖(𝑘) indicates the ith PC at kth time segment, and 𝑤𝑖0 is the it reference PC. 

In M. Kano et al. (2001)’s research, MPCA easily distinguished between system’s 

actual abnormal states and signals’ drifts in normal states of TE simulator. However, due 

to time segmentation, time delay in online monitoring procedure was inevitably one of 

challenges in early fault detection. 

 Kernel PCA and PLS: Kernel PCA and PLS are other extension versions to deal with 

nonlinearity in input data. Each input measurement is transformed into a high 

dimensional feature space through kernel function, 𝑘(𝑥𝑖 , 𝑥𝑗). Famous kernel function is 

radial basis function and polynomial function. Original dimension reduction method is 

then conducted to find latent variables. 
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𝐊 =.[

𝑘(𝐱𝟏∗, 𝐱𝟏∗) 𝑘(𝐱𝟏∗, 𝐱𝟐∗) ⋯ 𝑘(𝐱𝟏∗, 𝐱𝐦∗)

𝑘(𝐱𝟐∗, 𝐱𝟏∗) 𝑘(𝐱𝟐∗, 𝐱𝟐∗) ⋱ 𝑘(𝐱𝟐∗, 𝐱𝐦∗)
⋮ ⋱ ⋱ ⋮

𝑘(𝐱𝐦∗, 𝐱𝟏∗) 𝑘(𝐱𝐦∗, 𝐱𝟐∗) ⋯ 𝑘(𝐱𝐦∗, 𝐱𝐦∗)

] 

where 𝐱𝐢∗ is a time series data of the ith sensor signal. 

When the amount of input sensor data in a training stage is larger, computation of 

KPCA easily becomes more complex (G. Baudat & F. Anouar, 2001). Therefore, P. Cui, J. 

Li, and G. Wang (2008) developed kernel PCA with a feature vector selection (FVS) to 

decrease computational costs of conventional KPCA. After extracting the optimal sample 

vector set, a polynomial kernel function was used to construct KPCA. When FVS was 

employed, the selected principal components were quite significantly reduced from 59 to 

11, but the detection performance was not significantly degraded.  

Gaussian KPCA was applied to detect anomalous states in TE process simulator 

(S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, & I.-B. Lee, 2005). For effective detection, 

new index was developed based on a traditional Hotelling’s T2 statistic, two Q statistics 

and the estimated sample distribution of input data. Although their detection results were 

quite accurate, they presented three further important issues; (i) the dimension of the 

feature space generated by kernel function, (ii) the number of principal component, and 

(ii) the width for Gaussian kernel function.  

 Nonlinear PCA and PLS: Nonlinear PCA and PLS are also suggested to consider 

nonlinearity within input data, as their names imply. Popular technique is locally 

weighted projection regression (LWPR) which is based on PLS. It divides the entire 

input data into a set of several time segments, linear regression is then conducted in each 

time segment. 

For example, G. Wang, S. Yin, and O. Kaynak (2014) and S. Yin, X. Xie, J. Lam, 

K. C. Cheung, and H. Gao (2016) conducted LWPR as a preprocessing procedure (e.g., 

de-noising, filtering, or smoothing) and then the projected denoised sensor signals into 

two orthogonal dimesions (e.g., KPI-related dimension and KPI-unrelated dimesion in S. 

Yin et al. (2016)) for constructing two PLS models. Finally Hotelling’s T2 and Q 

statistics from each PLS model were used to monitor the continuous stirred tank heater 

and the fuel cell system’s state respectively.  

 Multiscale PCA and PLS (MS-PCA/PLS): Since specific time segments or frequency 

ranges have only significant relationships with fault occurrences, decomposition 
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techniques regarding time and frequency domain is combined with PCA and PLS. For 

frequency decomposition, Wavelet transformation is usually employed and the combined 

method is called as MS-PCA or MS-PLS. This type of multiscale transformation has 

noticeable strengths when analyzing highly nonstationary input data (S. J. Qin, 2012). In 

detail, Figure 2.7 illustrates the MS-PCA procedure.  

M. Misra, H. H. Yue, S. J. Qin, and C. Ling (2002) proposed MS-PCA for 

considering not only cross-correlations among multiple signals but also auto-correlations 

within a sensor signal. If sensor signals are highly correlated with underlying physical 

and chemical principles, they conducted a basic PCA for considering data point itself as a 

fault occurrence, otherwise the original sensor signals were remained. Finally, clustered 

PCA results (e.g., the most informative principal components) and the remained sensor 

signals were decomposed by discrete wavelet transform. Several PCAs were again 

conducted using each decomposed signal. Q statistic from the final PCA models was 

used to predict a sudden pressure surge of tubular reactor. 

Since MPCA or DISSIM can detect abnormal state of the system elaborately by 

distinguishing signal changes in normal states, newly developed MS-MPCA and MS 

with a dissimilarity index (called as MS-DISSIM) (M. Kano et al., 2002). They evaluated 

the proposed method and compared their performance against to conventional MPCA 

and MS-PCA under 2 × 2  stimulated process data, but unfortunately, they cannot 

provide a better performance in an auto-correlated data analysis.  

 PCA and PLS for non-Gaussian and multimodal data: The main assumption of PCA 

and PLS is that input data are independently and identically distributed random variables. 

That is, for obtaining accurate fault detection results, input data should not violate a 

normality test (R. Luo, M. Misra, & D. M. Himmelblau, 1999). For non-Gaussian 

distributed data, multi-modal distribution is applied to PCA and PLS.  

Figure 2.7 MS-PCA procedure, adopted from B. R. Bakshi (1998) 
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For multimodal data, the most simple way of establishing appropriate PCA or 

PLS model is to build local PCA or PLS model for each partitioned unimodal distribution 

from the entire input sensor signals (Y.-H. Chu, S. J. Qin, & C. Han, 2004), when 

operation information of a system are provided such as the multiple operation level or the 

operation order. Otherwise, if input data is still either under non-Gaussian or described as  

multi-modal distributions, an suitable way is to employ a kernel density estimation (P. E. 

P. Odiowei & Y. Cao, 2010) or a mixed Gaussian distribution (J. Chen & J. Liu, 1999), 

instead of unimodal normal distribution.   

 Independent component analysis (ICA): In the case of only non-Gaussian distributed 

data, ICA is introduced. ICA transforms original data into linear combinations of 

statistically independent components (ICs). J. M. Lee, S. J. Qin, and I. B. Lee (2006) 

applied ICA for fault detection in a wastewater treatment, TE process simulator, and a 

semiconductor etch process individually. Since an original ICA does not rank ICs (e.g., 

which one is dominant ICs), and there are no guidelines to select the optimal number of 

ICs (M. Kermit & O. Tomic, 2003), they combined ICA and PCA to extract the most 

significant ICs.  

 There are many other extensions including robust PCA (J. Chen, A. Bandoni, & J. A. 

Romagnoli, 1996), multi-block, multi-way, multi-batch PCA/PLS (T. Kourti & J. F. 

Macgregor, 1995; T. Kourti et al., 1995; J. F. Macgregor, C. Jaeckle, C. Kiparissides, & 

M. Koutoudi, 1994), and a total and orthogonal-PLS (D. Zhou, G. Li, & S. J. Qin, 2010).  

In addition, for reducing dimensionality as well as considering previous measurements 

simultaneously, the combined method of multivariate statistical projection models and 

CSUM/MCSUM or EWMA/EWMA are developed to overcome weakness of two models; insensitive 

to a small amount of signal changes in the multivariate statistical projection models, whereas 

inappropriate to high-dimensional time series data, in the case of SPC models, because of high multi-

collinearity, heteroscedasticity, autocorrelation of error (S. Bersimis et al., 2005). 

For example, M. A. Bin Shams, H. M. Budman, and T. A. Duever (2011) introduced fault 

detection methods using CUSUM combined with PCA. After selecting significant time series data 

which were related with detected faults in advance, appropriate PCA models were developed. Then, 

CUSUM chart was also developed using Hotelling’s T2 statistic. They recommended to construct 

multiple PCA models and multiple CUSUM charts for multiple fault types, in addition to the 

contribution plots for each PCA model for effective fault identification and diagnosis.  
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Lamb-wave sensor data were collected for monitoring the system’s state (S. Mishra, O. A. 

Vanli, & C. Park, 2015). Since fatigues were accumulated relatively little by little and gradually in 

every operation cycle, CUSUM charts using residuals from PCA model were designed. The error 

between the current PC score and standard PC score (constructed using health data in advance) were 

applied to CUSUM charts. This method quite accurately detected damages on time or slightly later 

than damage occurrence, but this result was better than traditional Hotelling’s T2 test in fatigue and 

impact tests. 

MEWMA was also sequentially conducted, after PCA model construction in order to monitor 

the state of continuous stirred tank reactor using four sensor signals (F. Harrou, M. Nounou, & H. 

Nounou, 2013). Five residuals (four Hotelling’s T2 and one Q statistics) were input into each EWMA 

models. They detected a fault timely in terms of detection time and length of fault occurrences.  

PLS was also combined with EWMA to improve detection performance of small signals’ 

changes (F. Harrou, M. N. Nounou, H. N. Nounou, & M. Madakyaru, 2015). Every element of a 

residual vector generated from PLS model was used to individual EWMA charts, and outliers were 

considered as markers of fault occurrences. They demonstrated the performance their methodology in 

fault detection using distillation column data. In detail, they tried analyzing simulated distillation 

column data which consists of three input sensor signals and one output sensor signal. As a result, 

they detected two faults which are called as a bias and a slow drift sensor individually, but detection 

time was not satisfactory in three fault cases. They said that it could be improved when applying 

nonlinear model.  

Several preceding researches have showed that either CSUM/MCSUM or EWMA/EWMA is 

applied to the residual(s) of any constructed projection model. However, S. Lane, E. B. Martin, A. J. 

Morris, and P. Gower (2003) firstly generated the adjusted measurement vector from MEWMA chart, 

and then Hotelling’s T2 and Q statistics, and their control limits are updated according to updated 

variance-covariance matrix. Comparing the proposed recursive exponentially weighted PCA method 

with the standard one, 170 sensor signals were recorded at the sampling rate of 10Hz, respectively, 

such as temperature, pressure, speed and controller output of extruder, cooling, bubble rate. Since 

routine adjustment of process set-points had an influence on the monitored sensor data, a fraction set 

point deviation was conducted in advance as data preprocessing procedure. The proposed method 

successfully monitored a manufacturing process of a polymer film in terms of fault detection.  

There was a comparative study between PCA and PLS in terms of fault detection for a 

simulated plant and a chloro-carbon production plant (P. R. Goulding, B. Lennox, D. J. Sandoz, K. J. 

Smith, & O. Marjanovic, 2000). They constructed four multivariate statistical projection methods; 
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PCA with only input sensor signals (PCA-X), PCA with only output sensor signals (PCA-Y), PCA 

and PLS with both input and output sensor signals (PCA-XY, PLS) respectively. Then univariate 

EWMA was applied to Q statistics, only. First, they found Q statistics with EWMA was more accurate 

than conventional Hotelling’s T2 statistics. The performance of PLS and PCA-XY varied according to 

fault types or experimental datasets, but showed better detection results than PCA-X and PCA-Y.  

Several strong statistical assumptions can be violated in some extensions of PCA and PLS, but 

it is still better to check normality and independence (R. Luo et al., 1999). For example, traditional 

Hotelling’s T2 statistic usually does not give a clear classification between normal and abnormal states, 

when normality is violated (T. Lee & C. Kim, 2015). Another major drawback is that the optimal 

number of newly developed coordinates (e.g., PCs and ICs) should be appropriately selected (Kruger 

et al., 2001). In PCA, an improper number of PCs can generate auto-correlated residuals which exceed 

SPE’s control limits (Z. Haitoa, A. K. Tangirala, & S. I. Shah, 1999). Similarly, transformed sensor 

data in the reduced dimensionality are still significant to represent the system’s normal and fault states 

(U. Kruger et al., 2001). 

Of course, quantitative selecting methods, such as a scree plot, Kaiser’s rule, Horn’s procedure, 

a cumulative variance percent, and predicting residual sum of squares statistics, are developed, but 

they require another optimization of new parameters (G. Diana & C. Tommasi, 2002; P. H. 

Khwambala, 2013). Determining optimal confidence intervals or control limits is also difficult since it 

requires a large amount and clear historical data or expert knowledge (F. B. Alt, 2014). In addition, 

this type of fault detection and prediction has complexity in interpreting detection results for further 

diagnosis including investigating root causes. Contribution plot for statistical indexes are popularly 

used, their findings are not fully exploitable in the industry (Y. Bi et al., 2017; S. Verron et al., 2007). 

Specifically, in the case of PLS, there is a tradeoff between a regression power and an explanation 

power within input data (T. Kourti, 2005).  

2.3 Classification models 

 

Required 

 The input data are collected from both normal and fault states, respectively. 

Preferred 

 A gradient relationship is not observed between sensor values and system’s 

operational states (i.e., an outlier is not always considered as a fault) 
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The multivariate statistics based models, explained at above section 2.2.1 and 2.2.2, can be 

summarized as constructing the representative statistical distance(s) which represent(s) the normal 

operational states of a target system. As described in Figure 2.8-(a), in this model type, a new 

measurement is defined as fault when the measurement is considered as abnormal operations because 

it is not included in the normal model, from the perspective of statistical distance-based models. In 

other words, for detecting and predicting faults, there are some anomalies and outliers which are 

located out of the control limits when the system fails to normally operate (M. Shewhart, 1991). Here, 

an anomaly or an outlier means an unnatural/extraordinary/surprising measurement itself or its trend 

which is not observed within the expected/general/most of normal states (e.g., inside of the distance 

models) (V. Chandola et al., 2009; V. Hodge & J. Austin, 2004).  

However, we cannot always consider an outlier as a fault, when measurements collected from 

fault states of a system is scattered or the histogram of sensor values is hard to estimate as a unimodal 

distribution. For example, the measurements from the fault states of a system are expressed as certain 

subsets, not the entire abnormal operation, and in particular they can be very near to those from the 

normal states, as shown in Figure 2.8-(b). In this case, therefore, if sensor signals are collected from 

fault states of the system, the fault detection and prediction can be solved as follows, instead of only 

measuring a statistical distance(s) from the normal states: which state is more similar from the current 

measurement, either normal and fault states.  

For implementing this idea, machine learning has become more applied to fault detection and 

prediction, which are popularly used in classification and clustering problem. According to a survey in 

Figure 2.8 Normal, abnormal, and faulty operation conditions, adopted from N. H. W. Eklund (2009): 

(a) anomaly detection, and (b) fault detection 
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the IEEE Xplore digital library, several machine learning methods showed more sharp increasing 

trends against to the expert system (C. Aldrich & L. Auret, 2013). Machine learning is a method to 

infer unknowns from already known information. That is, it generalized previous experience in 

training data (i.e., the given input data) for predicting their population. If a dataset from system’s 

normal and fault states is given, then we develop representative models for each state. When an 

additional data point is newly introduced, we evaluate a distance from normal and fault states 

respectively for determining an appropriate state between two different states for the current 

measurements. Briefly, the different point of above statistic models is that: the former one (i.e., 

multivariate SPC and projection models) constructs the model for representing the system’s normal 

state, whereas the latter one (i.e., classification models) develops the models for the system’s normal 

and fault state. Machine learning can be categorized depending on the types of target data; (i) 

supervised learning, (ii) unsupervised learning, (iii) reinforcement learning, but in this paper, the 

supervised learning will be reviewed in following sections.  

In the case of the unsupervised learning, as already mentioned in Section 2.1, it is beyond the 

score of this paper, because we focus on analyzing the system’s states with the given fault states. 

Another one, the reinforcement learning is more appropriate for finding the best actions which allow 

to obtain maximum rewards or miinimum punishments such as an elevator scheduling and a robot 

action control (A. Gosavi, 2003). In this regard, it is also not covered in this paper. The supervised 

machine learning indicates input dataset with correct class labels (here, operational states of a system), 

denoted as 𝐗 = {𝑥, 𝑦}𝑖=1
N  where 𝑥  is a measurement from sensors and 𝑦  is a system’s state. 

Therefore, it is possible to validate or verify the developed model using test data which are subsets of 

given dataset. According to types of the class label, either there are two types of supervised machine 

learning: classification for a discrete class label such as binary information (e.g., normal or fault), and 

regression for continuous class labels such as a battery’s remaining capacity (C. Aldrich & L. Auret, 

2013). 

Many supervised machine learning methods are proposed for effective fault detection and 

prediction such as k-nearest neighbor (M. H. Chang, C. Chen, D. Das, & M. Pecht, 2014; Q. P. He & 

J. Wang, 2007; A. Nejadpak & C. X. Yang, 2017), hidden Markov models (J. Li, W. Pedrycz, & I. 

Jamal, 2017; W. Sun, A. Palazoğlu, & J. A. Romagnoli, 2003), and decision/regression trees (N. G. 

Nenadic, H. E. Bussey, P. A. Ardis, & M. G. Thurston, 2014; V. T. Tran, B.-S. Yang, M.-S. Oh, & A. 

C. C. Tan, 2008; Q. Yao, J. Wang, L. Yang, H. Su, & G. Zhang, 2016). In this paper, three famous 

methods will be explained as listed: artificial neural network, Naïve Bayes classifier, and support 

vector machine.  
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 Artificial neural network (ANN): ANN is a regression procedure which mimics the 

human brain’s neural network structures (A. K. Jardine et al., 2006). A typical example 

is multi-layer perceptron (MLP) (S. Omar et al., 2013). Since a single perceptron can 

only linearly distinguish the different class labels by computing an estimated output 

based on weighted sum and an activation function (i.e., a transfer function, 𝑓(𝑧)) (see 

Figure 2.9-(b)), MLP was introduced (D. E. Rumelhart, G. E. Hinton, & R. J. Williams, 

1985). 

z =  ∑𝑤𝑖𝑥𝑖

𝑚

𝑖=1

 

�̂� = 𝑓(𝑧) = 𝑘𝑧 

As Figure 2.9-(a) is illustrated, it consists of three processing elements in order to 

Figure 2.9 An example of ANN model. (a) a framework for ANN, and (b) a framework for a single 

perceptron adopted from (V. Venkatasubramanian, R. Vaidyanathan, & Y. Yamamoto, 1990) 
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find a (nonlinear) approximation which represents the system’s states with multiple input 

and output variables: (i) input layer, (ii) hidden layer, and (iii) output layer (M. Markou 

& S. Singh, 2003). 

The detail procedure is as follows (C. R. Farrar & K. Worden, 2012): the input 

measurements are given from the input layer, and then their weighted sum is calculated at 

a specific node in the 1st hidden layer. Each weighted sum is again input to a 

predetermined activation function in each node in a hidden layer. The main property of 

an activation function is monotonically increasing and differentiable (M. Y. Chow, R. N. 

Sharpe, & J. C. Hung, 1993b), and the most famous activation functions are a sigmoid 

and a radial basis function (i.e., Gaussian, RBF).  

The most popular training approach for each node’s weight is the 

backpropagation algorithm (J.-S. R. Jang, C.-T. Sun, & E. Mizutani, 1997; Y. Maki & K. 

A. Loparo, 1997). Briefly, the back propagation algorithm iteratively searches an optimal 

value of while minimizing the training error, and it is based on a steepest descent method 

as following equations shows (M. Y. Chow et al., 1993b) 

𝑤(𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1) = 𝑤(𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) − 𝜂
𝜕𝑒(𝑤)

𝜕𝑤
|
𝑤=𝑤(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

 

where iteration indicates the current index of training, 𝜂 is the learning rate, and 𝑒(𝑤) is 

the training terror.  

As computation in a single perceptron is conducted through every hidden layer, 

the final output is also computed following the same principle. It is also used for binary 

classification by further modification (S. B. Kotsiantis, 2007): If an output from 

activation function exceeds the predefined threshold, then assign a class label (usually 1). 

Otherwise, give another class label (usually 0). In particular, since ANN can generate 

multiple output variables simultaneously, it is frequently used for fault isolation or 

identification with detecting faults (S. T. A. Niaki & B. Abbasi, 2005; M. Saimurugan & 

R. Nithesh, 2016). In this case, each output node is related to different fault types, and 

activated output nodes will be determined as final fault isolation or identification results. 

Two ANN models were used to detect faults in a continuous stirred-tank reactor. 

Normalized sensor signals in a certain length of a time segment were firstly analyzed for 

discovering the extent of increasing, decreasing, and steadiness in the original signals. 
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The signals’ behavior information from 1st ANN model was then again analyzed in 2nd 

ANN for final fault detection. They focused on how to train ANN models for detecting 

unknown fault types in a training step by analyzing different noise levels in the given 

signals (Y. Maki & K. A. Loparo, 1997). 

Several studies conducted PCA before or after ANN classification to detect faults. 

In the case of conducting PCA before ANN based classification, PCA plays a role of 

feature extraction. M. Noruzi Nashalji, M. Aliyari Shoorehdeli, and M. Teshnehlab 

(2010) transformed multiple sensor signals into PCs and selected significant PCs using 

GA. ANN classifier was then applied to detect process faults in a TE process simulator. 

On the other hands, M. J. Fuente, D. Garcia-Alvarez, G. I. Sainz-Palmero, and P. Vega 

(2012) used individual ANN models as one-step ahead predictors for multi-sensor signals, 

respectively. After obtaining the actual values, the residuals were applied to PCA based 

Hotelling’s T2 and Q statistics control charts for fault detection. 

Since the selection of variables in an input layer is crucial, many statistical 

feature extraction methods are combined into ANN. For example, the popular mother 

wavelet were evaluated, which gives the most accurate results using two acceleration 

signals for a gearbox fault detection (Ł. Jedliński & J. Jonak, 2015). After conducting 

continuous wavelet transform, nine frequency scales were again selected because it made 

a normal and a fault state (i.e., maximum value of coefficient: 2500 and 4000 

respectively) more distinguishable. Finally, ANN with one hidden layer was applied to 

train and test the given gearbox dataset in terms of fault detection.  

In this wise, various extensions of ANN such as wavelet ANN (H. R. Berenji & 

W. Yan, 2006; G. Vachtsevanos & P. Wang, 2001), Probabilistic ANN (J. Seshadrinath, B. 

Singh, & B. K. Panigrahi, 2014), extension NN (M. H. Wang & C. P. Hung, 2003), 

learning vector quantization (A. Rasaienia, B. Moshiri, & M. Moezzi, 2013), and 

extreme learning machines (J. W. D. Groenewald & C. Aldrich, 2015) were widely 

developed and applied for fault detection and prediction. All extensions maintain the 

most noticeable advantage of original ANN: to approximate complex and nonlinear 

behaviors of the given sensor signals comprehensively (Dai & Gao, 2013). By adjusting 

activation functions, ANN easily allows to provide continuous as well as discrete output 

variables. In addition, it is not sensitive to imprecise or uncertain information in the 

given data (S. Omar et al., 2013). For example, V. Venkatasubramanian et al. (1990) said 

a noticeable ANN strength is robust to noises in input sensor data.  



40 

However, each repetition in a node requires 𝑂(𝑛𝑤) computation time, but the 

number of computation time is exponential to the number of sensor signals (i.e., input 

dimensionality) (S. B. Kotsiantis, 2007). Therefore, computation cost can be easily much 

more expensive in analyzing multivariate time series. Specifically, in the case of back 

propagation, for avoiding a local optimum, a large amount of training dataset is usually 

required (D.-J. Lee, J.-P. Lee, P.-S. Ji, & J.-Y. Lim, 2009). That is, there might be a 

trade-off due to the size of the given input sensor data. Therefore, there are several 

researches to extract significant features for ANN based fault detection and prediction 

while reducing the size of input dataset (H. Chun-Nan, H. Hung-Ju, & S. Dietrich, 2002; 

G. Hong, L. B. Jack, & A. K. Nandi, 2005; Y. Zhang, X. Ding, Y. Liu, & P. J. Griffin, 

1996). 

The size of hidden layers and the number of nodes should be carefully determined, 

since too small and large size negatively affects to detection and prediction results in a 

test step (Y. Chetouani, 2014; M. Y. Chow, R. N. Sharpe, & J. C. Hung, 1993a; J. 

Seshadrinath et al., 2014). In detail, the small number of nodes in hidden layers and layer 

itself approximates final output poorly, whereas the large number of those allows 

overfitting to the given data which makes global optimum search difficult (X. Dai & Z. 

Gao, 2013). For example, V. Venkatasubramanian et al. (1990) applied two hidden layers 

for a reactor-distillation column, whereas one hidden layer for a reactor itself, because 

fault detection problem of a reactor-distillation was more complex. However, they did 

not quantitatively discuss further how much complex the problem is. Similarly, A. A. 

Jaber and R. Bicker (2016) found an optimum number of nodes, by increasing the 

number until no significant error decreases. In addition, a set of related parameters such 

as activation functions was also appropriated selected (C. R. Farrar & K. Worden, 2012). 

Several studies have still empirically or experimentally optimized their ANN for fault 

detection and prediction (B. Samanta & K. R. Al-Balushi, 2003). 

 Naïve Bayesian classifier (NB classifier): A Bayesian networks are referred as a belief 

or a causal network. It is usually introduced as a powerful tool to deal with uncertainty, 

representing a probability distribution by using a graphical model of a directed, acyclic 

graph (G. Nunnari, F. Cannavó, & R. Vrânceanu, 2006). Among various Bayesian 

networks, a Naïve Bayes classifier is one of the simplest versions. That is, its noticeable 

features are easy and simple compared to applying complex Bayes' theorem. On the 

other hands, it is under a strong assumption that all parameters are conditional 

statistically independent (V. Sylvain, T. Teodor, & K. Abdessamad, 2008).  
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This classifier first estimates the posterior probability P(𝑐|𝑥) with conditional 

probabilities of each class (e.g., operational states of a system in fault detection and 

prediction) of given the dataset, and then classifies the data to a more appropriate class 

relying on posterior probability as following equations: 

𝑦𝑛𝑒�̂� = argmax
𝑘∈[1,2,…𝑘′]

P(𝑐𝑘) ×∏P(𝑥𝑖,𝑛𝑒𝑤|𝑐𝑘)

𝑚

𝑖=1

 

P(𝑐𝑘|𝑥) =
P(𝑥|𝑐𝑘) × P(𝑐𝑘)

P(𝑥)
=  

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝐶𝑙𝑎𝑠𝑠 𝑃𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

where 𝑐𝑘 is the kth class label, 𝑘′ is the number of the class labels. 

For example, Z. Yong-Li, W. Fang, and G. Lan-Qin (2006) diagnosed faults in a 

transformer. If input sensor data with some missing measurements are provided into a 

classifier, the detection results can be inaccurate, therefore the missing measurements 

should be estimated in advance. In Z. Yong-Li et al. (2006)’s study, they estimated the 

missing measurements in 13 sensor signals using a support vector regression technique, 

then detected faults using NB classifier.  

The augmented Naïve Bayes Network based on Association rule data mining was 

applied for fault detection in a power system model (N. Qianwen & W. Youyuan, 2011). 

For dimension reduction, an association rule was firstly applied to remove the redundant 

in the given data. After refining the given input data, a Naïve Bayes classifier was 

employed to detect and diagnose faults in a power system. For identifying faults in a 

rolling-element bearing, 288 features were extracted from 4 accelerometer signals and 

then input to a Naïve Bayes classifier (A. J. Bayba, D. N. Siegel, K. Tom, & D. 

Washington, 2012). Since fault identification was conducted for each discernible fault 

type such as inner/outer race faults and ball faults, multiple NB models developed for 

different fault types. For each NB model, a set of five features was selected by a forward 

selection wrapper method. A Naïve Bayes classifier was combined with Multivariate 

SPC and projection models such as Hotelling’s T2 statistics and MEMWA (V. Sylvain et 

al., 2008), and many different extensions based on Bayesian networks were developed 

for effective fault detection, isolation, and prediction (J. P. Matsuura & T. Yoneyama, 

2004; G. Nunnari et al., 2006). 

Unlike the already mentioned ANN models, NB classifier was developed using 
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an explicit underlying probability model, which has less chance to over-fitting to the 

given dataset (S. B. Kotsiantis, 2007). In addition, a test phase for a new dataset is also 

quite simple and straightforward. It also requires a small amount of training dataset to 

develop a training model. By assuming independency among multiple sensor signals, 

every variance is only calculated, consequently it allows not to compute the entire 

variance-covariance matrix for multivariate time series data (K. Sankar, S. Kannan, & P. 

Jennifer, 2014). The short computation time for training is considered as one noticeable 

advantage derived from a simple training model (S. B. Kotsiantis, 2007). Due to the 

strong independence assumption, fault detection with NB classifier can achieve not only 

the lowest classification error rate, but also in a linear computational time (Y. Yang & G. I. 

Webb, 2002). In addition, it has low sensitivity to the noises or outliers which are not 

usually informative to fault detection and prediction, but different to faulty measurements 

NB classifiers can result in high classification performance when a small amount of input 

sensor data is given (A. S. Abdel-Aziz, A. E. Hassanien, A. T. Azar, & S. E.-O. Hanafi, 

2013; G. Hamerly & C. Elkan, 2001).  

Although high detection and prediction results are usually given under 

independency assumptions are valid (Y. Yang & G. I. Webb, 2002), it is not always easy 

to valid strong assumption of independence for multivariate time series data. NB 

classifier can be poorly calibrated when there are strong dependencies between the 

sensor signals (H. Wettig, A. Pernestal, T. Silander, & M. Nyberg), This disadvantage is 

noticeably investigated, specifically, once a large amount and high dimensional input 

sensor data are used (H. Zhang, 2004). For example, N. Friedman, D. Geiger, and M. 

Goldszmidt (1997) tried to add dependencies between input data. As other attempts to 

overcome the independency assumption, various feature extraction and selection 

methods are usually co-conducted for guaranteeing independency in newly developed 

feature spaces of the input data. 

For example, in the case of a Naive Bayesian Network in Space of Discriminants 

Factor method (T. Tiplica, S. Verron, A. Kobi, & I. Nastac, 2006), at first they 

transformed the original input sensor signals into discriminating factorial variables in the  

𝑘′ − 1  sub-dimensions, then conducted NB classification. Computation time was 

reduced, but the detection results was not superior than the traditional ANN. Therefore, 

they argued that it should be carefully decided because the detection and prediction 

performance of NB classifier is easily subjected to input features (V. Muralidharan & V. 

Sugumaran, 2012).  
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 Support vector machine (SVM): SVM is typically employed in order to detect and 

predict faults because it optimizes a boundary curve in the sense that the distance of the 

closet points to the boundary curve is maximized (A. K. Jardine et al., 2006). In order to 

separate the dataset dichotomously such as either a fault or a normal state, it is necessary 

to find an optimal hyperplane and support vectors which are the closet measurements to 

the defined hyperplane, as illustrated in Figure 2.10. A detail procedure for training and 

test steps is expressed as follows: 

min‖𝐰‖  such that y𝑗(𝑥𝑗 ∙ 𝐰 + b) − 1, ∀ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

𝑦𝑛𝑒�̂� = 𝑠𝑖𝑔𝑛(𝐰 ∙ 𝑥𝑛𝑒𝑤 + 𝑏) 

where 𝑥𝑗 ∙ 𝒘 + 𝑏 =  +1 𝑓𝑜𝑟 𝐶1  or 𝑥𝑗 ∙ 𝒘 + 𝑏 =  −1 𝑓𝑜𝑟 𝐶2, 𝐶1  and 𝐶2  are binary 

class labels which can be interpreted as a normal and fault state in fault detection and 

prediction problems.  

 For example, radial, angular shaft misalignment, mechanical looseness, and rotor 

unbalance related faults in a squirrel-cage induction motor was analyzed by SVM 

classification model (L. M. R. Baccarini, V. V. Rocha E Silva, B. R. De Menezes, & W. 

M. Caminhas, 2011). They calculated a magnitude of the specific frequencies of 

vibration signals and then constructed four SVM model to detect each fault individually.  

Figure 2.10 An example of the typical binary SVM for classifying two classes, adopted from A. K. 

Jardine, D. Lin, and D. Banjevic (2006) 
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If input sensor data cannot be linearly separable in terms of operational states, 

kernel functions 𝑘(𝑥𝑖, 𝑥𝑗)  are used to transform the original data into a higher 

dimensionality where the transformed input data can be linearly distinguished (V. 

Vapnik, 1999). There are popularly employed kernel functions such as polynomials, RBF, 

multilayer perceptron and sigmoid function. For example, Y. Weiwu and S. Huihe 

(2002) applied RBF-based kernel SVM to detect faults in a set of rolling bearings.  

When a kernel function is used to distinguish binary classes, complex 

computation techniques such as quadratic or linear programming are consequently 

required, and it makes computational cost much more expensive. By adapting soft 

margins, a nonlinear proximal SVM was developed for a kernel SVM to reduce 

computational loads. Since soft margins is under a single system of linear equation, it 

require less computational costs rather than rather than linear or quadratic programing (L. 

H. Chiang, M. E. Kotanchek, & A. K. Kordon, 2004). They verified RBF kernel based 

proximal SVM to detect faults in the TE process simulator. In particular, for auto-

correlated sensor data, the proximal SVM with autoregressive input data with a certain 

time lag are recommended.  

For classifying more than two classes, S.-F. Yuan and F.-L. Chu (2006) proposed 

‘one to other’ (i.e., one against all) algorithm. If the number of class was 𝑘 in the given 

sensor data, the 𝑘 − 1 binary number of SVM models were constructed to classify the 

defined class at once (See the Figure 2.11-(a)). Since this algorithm recursively 

distinguished class information from unclassified remaining dataset at a previous SVM 

model, there is no reject region that no class label will be given, as shown in Figure 2.11-

(b). Thanks to no reject regions, it was possible to assign the most appropriate labels to 

each measurement. SVM with independent features were used to detect faults in 

induction motors (A. Widodo, B.-S. Yang, & T. Han, 2007). 78 statistical features in time 

and frequency domain from six vibration sensor signals were firstly converted into 24 

ICs by ICA. Whereas PCA showed overlap area among difference fault types in new axes 

constructing by the selected PCs, different fault types are visually distinguishable in new 

ICs’ dimension. Finally, a ‘one to other’ SVM was conducted to detect faults and identify 

fault types.  

In addition to ‘one to others’, there are other multi-class SVM algorithms (A. 

Widodo & B.-S. Yang, 2007): one against one and direct acyclic graph. However, when 

applying extended SVM classifier for multiple class classification, computation complex 
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and classification results are still relatively poor. Therefore, combinations with various 

ensemble techniques, such as bagging and boosting, were also proposed (Q. Hu, Z. He, Z. 

Zhang, & Y. Zi, 2007; H.-C. Kim, S. Pang, H.-M. Je, D. Kim, & S. Yang Bang, 2003).  

Since SVM classifies the given dataset using a linear and a binary rule in once, it 

usually obtains accurate detection and prediction superior results against to overfitting, 

local optimal, and low convergence (V. Vapnik, 1999). Rather than other learning 

algorithms based on empirical risk minimization, it is better to get a well-classified 

solution (S.-J. Kim, 2008; Y. S. Kim, D. H. Lee, & S. K. Kim, 2010). It is also likely to 

be less to be influenced by noises and outliers because SVM classifier is based on 

structural risk minimization (C. R. Farrar & K. Worden, 2012).  

After putting kernel function to SVM, the performance of SVM is easily 

subjected to selected kernel functions and their required parameters. For example, the 

performance of SVM based fault detection with an appropriate feature selection through 

GA was higher (93.1%) than that of without feature selection (88.9%) (B. Samanta, K. 

Al-Balushi, & S. Al-Araimi, 2003). Similarly, there are several researches to find optimal 

kernel functions and their corresponding parameters, but usually analyzed by empirical 

selection/optimization experiments in a certain dataset (Y. Zhan, Z. Shi, & M. Liu, 2007).  

Although a lot of the given dataset is used to construct SVM classifier, it is 

Figure 2.11 'One to other' SVM method adopted from Yuan and Chu (2006a). (a) a framework to 

classify the k number of classes, and (b) a classification for three labels 
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difficult to detect or predict faults via multiple sensor signals because of a huge amount, 

noise, null and redundant information. Therefore, it is also required to extract an 

appropriate set of features or select more meaningful/informative/significant sensor data 

for the target objectives in advance (K. Z. Mao, 2004; P. Shahidi, D. Maraini, & B. 

Hopkins). In particular, for multi-class SVM, it was observed that the number of SVM 

models were also crucial to detect/predict faults (S. Yuan & F. Chu, 2007). 

As already mentioned, for each machine learning algorithm, it is necessary to select 

appropriate features and optimize the required parameters during the training phase (C. Catal & B. 

Diri, 2009; S. Hou & Y. Li, 2009; L. B. Jack & A. K. Nandi, 2002; G. V. Lashkia & L. Anthony, 2004). 

In addition, there are several important issues to discuss, when the conventional machine learning 

based classification models are used for fault detection and prediction.  

 Overfitting to the given data: Since any machine learning model is trained by the given 

datasets in the training phase, overfitting to the given input data can be easily generated. 

Although a complex model describes the given dataset very well, but too complex model 

is easily overfitting to the given data, and consequently, higher performance in training 

data, but lower performance in test data can be resulted. On the other hands, too simple 

model cannot represent the system’s state appropriately. One solution for relaxing a 

overfitting problem is to add a model complexity as a penalty to a final objective 

function when developing fault detection and prediction model (J. Sanz, R. Perera, & C. 

Huerta, 2007). It is also called as bias-variance trade off. Then, as a simple model(s) as 

possible will be selected with feasible accuracy. 

Alternatively, we can split the given dataset into subgroups with different 

objectives. The k-fold cross validation is a famous approach to divide the given dataset 

into training and test group. It divides the entire input dataset into k groups, and then k-1 

groups are used to develop a model, and finally the other is used for evaluating the 

developed model. For example, 10-fold cross validation was employed to evaluate the 

performance of each classifier for detecting bearing’s faults (P. K. Kankar, S. C. Sharma, 

& S. P. Harsha, 2011).  

We can add more procedure to the k-fold validation in order to build a 

classification model more reasonably and concretely as follows: to build the model, 

calibrate it, and then evaluate its performance. Accordingly, the given dataset is divided 

into three groups: training, validation, and test (B. Samanta et al., 2003; L. Zhang, L. B. 

Jack, & A. K. Nandi, 2005). During developing a model, validation data is iteratively 
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applied to the model developed in the training phase. When the error of validation data 

becomes larger than the previous validation error, model construction will be terminated 

because it can be considered as an optimal model considering both prediction accuracy 

and model complexity as shown in Figure 2.12. 

 Appropriate algorithm selection: The choice of the most suitable machine learning 

based classification algorithm is dominantly correlated to the performance of fault 

detection and prediction. The classifier is commonly selected by evaluating the 

prediction accuracy, and therefore general advantages and disadvantages are usually 

given with respect to the given input sensor signals and class information, as listed in 

Table 2.1 (of which the most of contents are summarized and adopted from S. B. 

Kotsiantis (2007) and S. Omar et al. (2013)).  

Sometimes, it was better to unify a set of individual decisions which are made 

from individual sensor signals in terms of computational costs (H. Pan, Z. P. Liang, T. J. 

Anastasio, & T. S. Huang, 1998). Therefore, several researches have paid a considerable 

attention on using multiple classifiers with decision-level fusion, and it is called as a 

distributed fusion approach (J. A. Rodger, 2012). For example, W.-T. Sung (2010) 

developed a multivariate fault detection approach via back-propagation ANN using 24 

sensor groups (e.g., nodes). Each sensor node consisted of four major sensors such as 

temperature, humidity, ultraviolet and illumination of a target factory, and four 

multivariate sensor data provide one detection result computed from a ANN classifier. 

Figure 2.12 Scheme for the prediction error function of the model development using training and 

validation datasets 
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According to the analysis order of pre-defined sequential classification, the pervious 

analysis results were used as an input again in the next classification node. As a final 

result, and an ultimate decision was made based on the original sensor signals and 

multiple decisions at every node. 

 

Table 2.1 A comparison of machine learning algorithms for fault detection and prediction adapted 

from S. B. Kotsiantis (2007) and S. Omar, A. Ngadi, and H. H. Jebur (2013) 

 

Evaluation ANN NB SVM 
Decision 

Tree 

k-nearest 

neighbor 

General 

prediction 

accuracy 

+++ + ++++ ++ ++ 

Speed of 

training 

depending on 

the size of the 

given datasets 

+ ++++ + +++ ++++ 

Speed of new 

measurement 

classification 

++++ ++++ ++++ ++++ + 

Robustness to 

noise 
++ +++ ++ ++ + 

Dealing with 

overfitting 
+ +++ ++ ++ +++ 

Parameter 

tuning 
+ ++++ + +++ +++ 

Advantages 

 Accurate result 

in spite of high 

multi-

collinearity  

 Possible to 

nonlinear 

classification 

 Relatively 

small input 

required 

 Robust to 

missing time 

points 

 Accurate 

results when a 

high 

dimensional 

input data is 

given 

 Simple to 

prevent 

overfitting 

 Simple to and 

interpret model  

 Possible to 

analyze both 

numerical and 

categorical 

data 

 Easy to 

understand 

with few 

sensor signals  

 Only a single 

parameter for 

tuning 

Disadvantages 

 Vulnerable to 

overfitting 

 Too many 

parameters for 

model 

optimization 

 Not able to 

analyze 

continuous 

time series data 

 Vulnerable to 

redundant 

features  

 At least two 

class labels 

required 

 Only binary 

classification at 

once 

 Hard to 

generalize the 

complex tree 

 NP-complete 

for learning 

optimal model 

 Sensitive to 

irrelevant 

features 

 Expensive 

computation 

costs  
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H. Zhong-Hui, C. Yun-Zu, L. Yuan-Gui, and X. Xiao-Ming (2005) discussed 

which level is appropriate to consider multiple information, either feature-level or 

decision-level. From this point of view, they compared the performance between a multi-

class SVM classifier for all sensor data and multiple SVM classifiers for each sensor data 

in fault detection of a diesel engine. Except a specific decision fusion method (i.e., max-

distance strategy), multiple SVM classifiers, which consider multivariate information at 

decision-level, provided better results than a classifier at feature-level analysis. 

For detecting faults in an induction motor system of an elevator, stator currents 

are monitored and converted into meaningful features in time domain and frequency 

domain (G. Niu, B.-S. Yang, & M. Pecht, 2010). Popular four machine learning 

classifiers including of SVM, linear discriminant analysis (LDA), random forest 

algorithm, and adaptive resonance theory-Kohonen neural network were employed to 

determine a state of the current motor system individually, then a Bayesian belief method 

fused four states as a final detection result. 

D-S evidence theory was also used in order to determine the final outcome using 

multiple classifiers. For example, L. Zhang and Y. Dong (2012) detected and identify 

faults in AC Engine using several SVM classifiers. At first, they developed each local 

SVM classifier using each sensor group such as ferrography, grain pollution, physical 

and chemical. Each decision was then fused based on D-S evidence theory. For 

interpreting D-S fusion results quantitatively, a final SVM classifier was developed to 

identify fault types. ANN was also used as a local classifier which gives input to D-S 

fusion (M. Khazaee, H. Ahmadi, M. Omid, A. Moosavian, & M. Khazaee, 2014).  

For detecting defects in planetary gears, vibration and acoustic signals were 

transformed into several features in time and frequency domain, and they were used as 

inputs of ANN classifier. ANN was employed to classify the operational conditions of the 

gear, and it has four output nodes. Finally, four ANN output variables were analyzed to 

obtain fault diagnosis results according to D-S evidence theory. Z. Dou, X. Xu, Y. Lin, 

and R. Zhou (2014) also used ANN and D-S evidence theory for fault detection of 

temperature sensors. They obtained healthy condition of each sensor derived from each 

ANN classifier, then D-S evidence was applied to determine which sensor are in faulty 

condition now.  

There are also decision fusion approaches between the unsupervised and the 

supervised machine learning algorithms; such as decision fusion among SVM, self-
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organizing map, and hidden Markov model (S. Dong, S. Yin, B. Tang, L. Chen, & T. Luo, 

2014), or between SVM and PCA (M. Grbovic, W. Li, N. A. Subrahmanya, A. K. Usadi, 

& S. Vucetic, 2013). However, it is not still clear to select an appropriate algorithm type, 

proper fusion method, and an optimal number of classifiers (K. Ghosh, Y. S. Ng, & R. 

Srinivasan, 2011; M. Xia, F. Kong, & F. Hu, 2011). For example, G. Niu, S.-S. Lee, B.-S. 

Yang, and S.-J. Lee (2008) compared that which method is suitable for dealing with 

multiple decision from multivariate sensor data at decision-level, either majority voting, 

Bayesian belief, multi-agent, or modified Borda count. As a result, Bayesian belief model 

with five different classifiers gave the most accurate detection results for an individual 

pre-known one healthy state and nine faulty states of the induction motor.  

 Faulty data acquisition: In several algorithms, at least two class labels are required 

with respect to normal and fault states of a system. Therefore, how to obtain multivariate 

time series data during any fault state is one of crucial issues in fault detection and 

prediction. If real-world datasets from both healthy/normal and faulty states are hard, 

experimental or artificial datasets are alternatively analyzed (C. R. Farrar & K. Worden, 

2012). However, artificial datasets have some difficulties to represent actual fault states, 

when the faulty measurements are too scatted which makes fault localization hard. 

 Imbalance between health and faulty state: In real-world datasets, the number of 

measurements collected from healthy/normal states are usually much larger than that 

from faulty states. In this case, traditional classification and detection accuracy indexes 

do not give informative results, since standard machine leaning algorithms easily biased 

toward majority-class information. According to C. Yiakopoulous, K. Gryllias, M. 

Chioua, M. Hollender, and I. Antoniadis (2016) ‘s research, fault detection and 

prediction methods based on the distance from the normal states did not always provide a 

sound analysis result when a fault had occurred rarely. That is, the high number of Type 

II error will be generated and it is called as an accuracy paradox (T. Lee, K. B. Lee, & C. 

O. Kim, 2016).  

For dealing with the imbalance dataset, there are several solutions: defining 

appropriate loss function or optimal objective function with accuracy indices; 

determining proper weights for each class; upsampling or downsampling measurements 

from the states of which amount is smaller or larger, and artificially generation for the 

states which has less measurements. 



51 

2.3.1 Pattern extraction models 

 

Assume a fault has occurred from 250 seconds to the end of the system’s operation as Figure 2.13, 

and develop a distance model using three sensor signals collected during the system’s healthy states. 

From the perspective of classification, it is not easy for distance models to classify the measurements 

in the given fault state as faulty, since there are no noticeable differences between two states in terms 

of the given sensor signals. Similarly, V. Chandola et al. (2009) said that the measurements from the 

fault states cannot be easily distinguishable from those from the normal states, when similarity 

concept (usually Euclidean distance based) is not guaranteed. For example, as shown in Figure 2.14, 

increasing/decreasing, shift up/down, cycle, and run are famous faulty trends, but not simply detected 

by the control limits, when multivariate distance models, in particular, SPC models, are employed in 

fault detection and prediction.   

In addition, several unique signal behaviors over time are found and will be considered as 

markers of fault occurrences in literature. Those are a collective and contextual anomaly. The 

Preferred 

 A fault occurs very rarely, which hinders a sound statistical or similarity analysis 

 The time series data are characterized as very-short, intermittent, transient, highly 

nonlinear and non-stationary random signals 

Figure 2.13 Three sensor signals collected from the system’s healthy and fault states 
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collective anomaly is defined as a series of consecutive exceptional measurements during a certain 

time period. For example, in the case of a human electrocardiogram signal introduced by A. L. 

Goldberger et al. (2000), only when anomalies were observed more than few times consecutively over 

a period of time (called as collective anomalies), it was determined as a sleep or an epilepsy (e.g., 

faulty operation), not individual anomalies. Contextual anomaly is explained as a specific context 

(e.g., spatial area, graphs, sequences) over a certain time period (V. Chandola et al., 2009).  

As shown in Figure 2.13, spikes are generated three times for about 50 seconds in the #1 

injector signal, and a sudden decline in the knocking sensor signal is also observed with the last spike, 

after two spikes appeared in the #1 injector signal. Each situation is corresponding to collective and 

contextual anomalies respectively, and it can be meaningful behaviors for representing the system’s 

state. Even if a fault occurs rarely, the performance of statistical analyses or similarity measures does 

not always provide sound detection and prediction results. 

In summary, when the given time series of sensor data is characterized as very-short, 

intermittent, transient, highly nonlinear and non-stationary random signals, then we cannot ensure that 

the measurements from fault states are much far from those from normal states of a system (S. Baek et 

al., 2016). In other words, it is not always true that the father away the measurement is from normal 

states, the grater the probability of a fault is. In this regard, it is necessary to amplify the significant 

information in the given sensor signals through appropriate data preprocessing. Therefore, we need to 

further analyze the given multi-sensor signals to extract the informative signal behaviors, and then to 

classify them into the system’s normal and the fault states. The fault detection and prediction problem 

Figure 2.14 Examples of unnatural behaviors which are found during the system's fault states, but not 

out the control limits in control charts 
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can be addressed as follows: given a time series X, and some signal model for normal states of a 

system, find all (sub)sequences of X which contain anomalies, or unexpected behaviors as faults (J. 

Lin, E. Keogh, S. Lonardi, & B. Chiu, 2003a). In order to find unexpected behaviors, there are two 

ways in pattern extraction models:  

(i) Novelty detection: It means to find dissimilar or different signals’ behaviors (e.g., 

subsequences) than expected normal ones (L. Karamitopoulos & G. Evangelidis, 2007). That 

is, we need to extract the representative signal changes over time, which represent the 

system’s fault states, for considering an identically same (or most similar) changes in online 

monitoring to be considered as a fault or a fault symptom  

(ii) Motif discovery: It indicates to detect repetitive/most common signals’ behaviors in the 

given fault states. The detected motif will be used to represent the system’s faulty states. As a 

result, the objective of motif discovery in the online monitoring is set as to find the most 

similar behavior as a fault or a fault symptom.  

However, it is not simple to find fault patterns directly using the original multivariate time 

series data. There are many hurdles in the raw sensor signals such as a large size of the given data, 

high dimensionality, induced-noises, redundant and conflicting information among multiple sensors 

(V. Bettaiah & H. S. Ranganath, 2014; D. Cheboli, 2010; A. Mueen, 2014). Since these characteristics 

derive high complexity, large required memory, and unclear results (S. Zolhavarieh, S. Aghabozorgi, 

& Y. W. Teh, 2014), there are various data preprocessing methods such as data cleaning, missing data 

estimation, noise removal, normalization (T. Mitsa, 2010a).  

Among them, time series representation methods are popularly and extensively applied in 

order to extract significant sensor signal behaviors from the original time series data, since it required 

relatively inexpensive computational costs as compared to similarity measure in the original 

dimensions (D. Cheboli, 2010; E. Keogh, J. Lin, S.-H. Lee, & H. V. Herle, 2007). That is, it is defined 

as a time series transformation for reducing the original dimensions intrinsically, but retaining the 

essential signals’ characteristics or behaviors (P. Esling & C. Agon, 2012):  

 A given time series X can be represented as �̅� with reduced dimensions in either time 

axis and value axis, so that �̅� approximate X (I. Alles, 2013). 

T. Mitsa (2010a) categorized various time series representation methods into data-adaptive and 

data non-adaptive. Data adaptive representations is to convert the given time series data into 

corresponding features which minimized the global reconstruction error by controlling their 
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parameters accordingly and considering underlying the given entire data, for example, singular value 

decomposition and shape definition language (C. Kleist, 2015). On the other hands, data non-adaptive 

representation transforms the original datasets with constant parameters, and the discretized Fourier or 

Wavelet transform are commonly used as a data-non adaptive representation (C. Kleist, 2015). 

Nevertheless, since most data non-adaptive algorithms can be converted into data-adaptive ones if 

conducting parameter selection (P. Esling & C. Agon, 2012), we do not distinguish two types of time 

series representation methods 

Time series representation methods can also be categorized into a time series aggregation and 

a discretization. Whereas the time series aggregation is to transform the original time series into a set 

of consecutive and continuous values as illustrated in Figure 2.16, the time series discretization 

(called as temporal discretization (R. Moskovitch & Y. Shahar, 2015)) is to convert the original ones 

into a set of discrete features (e.g., alphabet symbols), as illustrated in Figure 2.15. The aggregation 

methods are not easily applied to non-uniform time series (D. Cheboli, 2010) and real-valued data are 

Figure 2.16 The common aggregation methods for time series representation (B. Hu et al., 2011) 

Figure 2.15 A example of the time series discretization: (a) the original time series data of four 

sensors and (b) the corresponding discretized time series data 
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sometime challenges in selecting appropriate algorithms (J. Lin et al., 2007).  

On the other hands, the time series discretization reduces the size of the time series in both 

time axis and value axes more (E. Keogh et al., 2007). In addition, discretization methods (also called 

as symbolizing, tokenizing, or quantizing) are frequently used in fault detection and prediction (P. 

Chaudhari, D. P. Rana, R. G. Mehta, N. Mistry, & M. M. Raghuwanshi, 2014; E. Keogh, S. Lonardi, 

& B. Y.-c. Chiu, 2002; J. Lin, E. Keogh, S. Lonardi, & B. Chiu, 2003b).Therefore, we focus on time 

series discretization for describing time series more informatively, because discrete features (hereafter 

called as labels) are usually more appropriate to provide representation for either quantitative or 

qualitative knowledge than continues ones (H. A. Simon, 1981). For extracting the underlying 

information in the given time series data, it transforms the original data into a series of the 

corresponding labels after segmentation in order to take into consideration the temporal nature of the 

given data. 

2.3.1.1 Time segmentation 

Time segmentation indicates to divide the n-length time series into s piecewise time segment (𝑠 ≪ 𝑛) 

such that the segmented time series closely approximates the original ones (E. Keogh & S. Kasetty, 

2003). After segmenting time axis of the given dataset, the original measurement in each time 

segment is converted to the corresponding label according to pre-defined transformation rules, and it 

will be discussed in the next sections, i.e., Section 2.3.2. In several researches, a time segment is 

alternatively called as a window or a fragment (Y. Zhang & Y. M. Cheung, 2014).  

For segmentation for the given dataset, two types of time segment can be used: the fixed 

length and the dynamic length. The fixed length time segment is the simplest way to divide time 

series into a series of adjacent time segments, therefore it can easily miss the significant pattern 

because of the fixed length (T.-C. Fu, 2011). For example, too short length time segment can split the 

meaningful patterns, as illustrated in Figure 2.17. In order to catch any time series behaviors, dynamic 

time segmentation is devised. Whereas the fixed length is to the selected appropriate length before 

segmentation, the dynamic length of time segment is to control its length according to pre-defined 

criteria such as sliding windows, top-down, and bottom up approaches (E. Keogh, S. Chu, D. Hart, & 

M. Pazzani, 2001). Quantization is a way for adopting the dynamic time segmentation. It first splits 

the value axis, and time segmentation is automatically done when the measurements move to the 

different labels (A. Sant'anna & N. Wickström, 2011).  
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Sliding windows increased the length of time segments until the pre-defined terminate criteria 

is satisfied. Whereas top-down approach recursively divides the entire time series, bottom-up 

approach recursively merges adjacent time points into a time segment until the pre-defined terminate 

criteria is satisfied. For time segment’s length determination, change points and perceptually 

important points (PIPs) are usually analyzed (T.-C. Fu, 2011). For example, PIPs are applied to 

segment a time axis of the given stock data (T.-C. Fu, F.-l. Chung, V. Ng, & R. Luk, 2001). After 

finding nine PIPs, they transformed the original data into a linear regression data between two 

adjacent time points.  

In another research, piecewise linear regression was used to split the time segment of the given 

data with the top-down approach (J.-L. Wu & P.-C. Chang, 2012). They first conducted linear 

regression for the entire time series data, then find out the point with the maximum distance of the 

regression line. The data were subsequently divided by the point, and recursively conducted it until 

the error will be negligibly small.  

Figure 2.17 Two approaches for time segmentation to the throttle position signals: (a) the fixed length, 

and (b) the dynamic length segementation depending on the change points 
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 Among three types of the dynamic time segment, bottom-up approach showed better 

performance than others (E. Keogh & S. Kasetty, 2003). In addition, Top-down approach is hard to be 

used in online monitoring, because the entire dataset is not obtained in advance. Sliding window looks 

attractive in online monitoring, but poor performances are shown from several researches since it 

cannot forecast next measurement (E. Keogh, S. Chu, D. Hart, & M. Pazzani, 2004; H. Shatkay & S. 

B. Zdonik, 1996). E. Keogh et al. (2004) found that the sliding window approach did not give a 

satisfied performance when analyzing a large amount of the input data, but a relatively better result 

with such a noisy dataset (E. Keogh et al., 2001). Therefore, they proposed a combined algorithm of 

sliding window and bottom up approaches. 

2.3.1.2 Partitioning and labelling 

As already mentioned, instead of original measurements or interpolation/regression outputs in every 

time segment (E. Keogh et al., 2001), discrete and contiguous values is assigned to represent the 

original time series data. To do this, partitioning and labelling are conducted. The partitioning means 

to divide the value axis into a set of contiguous labels in the time series discretization according to the 

evaluation criteria (S. Kotsiantis & D. Kanellopoulos, 2006). Here, the label is a representative value 

for signals’ behaviors in a specific time segment. In other words, this step is to represent the original 

datasets, which contains significant information but removing irrelevant information for the final 

objective (A. J. Ferreira & M. A. T. Figueiredo, 2015). Whereas segmentation maintain the 

chronological order in time axis, partitioning does not have any chronological information.  

Labelling is to specify the corresponding labels into each time segment, after partitioning. If it 

is conducted in an offline analysis (e.g., to extract patterns), this step is called as labelling. Unless it is 

performed in online monitoring (e.g., to find the predefined patterns in the current signals), then it is 

re-called as pattern matching (Section 2.3.4). Therefore, the detail method to labelling will be 

explained in Section 2.3.4. 

There are various portioning techniques, such as adaptive piecewise constant approximation, 

and segmented sum of variation features (S. J. Wilson, 2017). We classify popularly used techniques, 

for fault detection and prediction, into two types: Representation by (i) the statistical features in each 

time segment, and (ii) the primitives in each time segment.  

 Representation by the statistical features in each time segment: This type of 

partitioning transforms the original data in every time segment into a corresponding 

discrete label in the pre-defined rules by using one or several representative values, and 
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the label indicates the selected statistical feature value. The most famous one is symbolic 

aggregate approximation (SAX) (J. Lin et al., 2007). SAX is devised to convert the 

piecewise aggregate approximation to a series of symbolic labels (P. Chaudhari et al., 

2014).  

As depicted in Figure 2.18, it consists of three main steps: At first, split the given 

time series data into the same length of time segments (without overlapping), and 

calculate mean values in every time segment. This step is identically same with the 

Piecewise Aggregate Approximation (PAA) representation. According to the underlying 

Gaussian distribution estimated by the sample mean and standard deviation, the cut-

points are determined where each bin (sometime it is called as an interval, a cluster or an 

arity in several articles) has equal proportion in the Gaussian distribution, and then the 

mean values are transformed into the labels depending on the corresponding bins.  

Figure 2.18 An example of SAX transformation to the fuel pump relay control signal 
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Traditional symbolic time series analysis usually is to divide the entire time series 

data into two bins, but too much information loss can be (E. S. Dimitrova, M. P. V. 

Licona, J. Mcgee, & R. Laubenbacher, 2010). Similarly, when partitioning the bins so 

that each bin has same number of values (i.e., equal frequency binning) or same interval 

length (i.e., equal width binning), it is observed to generate less accurate results where 

the distribution of values in the given time series data is not uniform (H. Liu et al., 2002). 

Therefore, SAX has been popularly applied in fault detection and prediction.  

For example, SAX was used to convert the given injection quantity, instant and 

average fuel efficiency data over time (T. Ko, J. Lee, H. Cho, & S. Cho, 2015). After 

obtaining a three vectors consisting of labels, a faulty automotive engine was detected by 

Gaussian Mixture Model. Z. Othman and H. F. Eshames (2012) compared the 

performance of five traditional classifiers for detecting the fault patterns in control charts, 

when a series of labels are given. The original data were first converted to principal 

components using PCA, and then subsequently to discrete labels using SAX. Similarly, 

for multivariate time series data, first fused the three axis movement signals into a vector, 

then conducted SAX and SVM classification (J. Wang et al., 2013).   

In order to early detect Parkinson’s disease patients against normal persons, the 

movement symmetry is monitored using inertial sensor signals collected from left and 

right sides (A. Sant’anna, A. Salarian, & N. Wickstrom, 2011)). After these signals were 

converted using SAX, the symbolic symmetry index was calculated by comparing 

histograms between left and right sides. For identifying medical conditions of patients, 

each sensor signals including heart rate, respiratory rate, CO2 rate and temperature during 

a relatively small length of time period were transformed to the corresponding labels 

respectively. Each label is plotted on a radial representation, and consequently, the area 

in the radial representation was used to detect a patient’s medical condition.  

The transformed SAX labels were used to classify the signals’ behavior in the 

control chart (K. Lavangnananda & P. Sawasdimongkol, 2012a). The measurements 

during the certain time period were transformed into a series of symbolic labels and 

applied to training ANN classifier. In online monitoring, the trained ANN classifier 

provided more accurate detection results than ANN with the original time series data. As 

further works, they investigated that the combination of multiple ANN classifiers gave 

superior than the best recurrent ANN classifier in the same fault detection problem (K. 

Lavangnananda & P. Sawasdimongkol, 2012b). 
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Unfortunately, when the standard deviation is too small, then the generated labels 

by SAX will be highly likely to be identically same (J. Lin et al., 2003b). In addition, 

there are some convincing examples which provides relatively poor performances when 

the signals are not following the Gaussian assumption (F. Mörchen & A. Ultsch, 2005). 

To overcome the original limitations, various extensions of SAX have been developed 

for increasing computation speed (e.g., Fast SAX (M. M. M. Fuad & P.-F. Marteau, 

2013), adaptive segmentation based symbolic representation (B. Hugueney, 2006)), 

comparing different lengths of signals (e.g., HOT SAX (E. Keogh, J. Lin, & A. Fu, 

2005)), dealing with a large amount of data (e.g., iSAX (J. Shieh & E. Keogh, 2008)), 

and including more features for a label (e.g., 1d-SAX (S. Malinowski, T. Guyet, R. 

Quiniou, & R. Tavenard, 2013), SAX-TD (Y. Sun, J. Li, J. Liu, B. Sun, & C. Chow, 

2014), trend-based approximation (B. Esmael, A. Arnaout, R. K. Fruhwirth, & G. 

Thonhauser, 2012), eSAX (B. Lkhagva, S. Yu, & K. Kawagoe, 2006), the modified-

eSAX (W. Zalewski, F. Silva, H. D. Lee, A. G. Maletzke, & F. C. Wu, 2012; W. Zalewski, 

F. Silva, F. C. Wu, H. D. Lee, & A. G. Maletzke, 2012)).  

For example, P. M. Barnaghi, A. A. Bakar, and Z. A. Othman (2012) added the 

minimum and maximum values in each time segment when adopting the SAX 

transformation, since the SAX transformation easily remove the impulsive changes in the 

given data as depicted in Figure 2.19. A. M. Canelas, R. F. Neves, and N. C. Horta 

(2012) observed that representing the original time series using a series of segmented 

mean values plays a same role of the conventional data smoothing algorithms. 

Consequently, they compared the label vector of which elements are three, using the 

cosine similarity.  

In the original SAX transformation, a series of symbolic label is generated using 

the average value of each time segment, but based on the cut-point obtained from the 

original time series data. However, since the data converted to the average value (through 

the PAA) is generally less dispersed than the original ones, the SAX method was 

modified by re-normalizing the PAA data (M. Butler & D. Kazakov, 2015). 

In order to detect semiconductor’s defects in a wafer manufacturing process, they 

transformed a set of the different length of sensor signals using HOT SAX (W.-K. Loh & 

S. J. Hong, 2009). They found the different sensor signals by computing distance 

between the target and the representative normal signal, and considered them as defective 

semiconductors. Cluster analysis is conducted based on measured distances and grouped 
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clusters can be described by similar root causes of detected defects.  

X. Bai, Y. Xiong, Y. Zhu, Q. Liu, and Z. Chen (2013) investigated that the 

Gaussian distribution makes mcuh coarser cut-points than Uniform distribution, therefore 

the transformed labels become difficult to observe than the original measurement in the 

case of extreme values. B. Kulahcioglu, S. Ozdemir, and B. Kumova (2008) compared 

the performance of piecewise linear approximation (PLA), PAA, and SAX when 

detecting faults in the given electrocardiogram (ECG) data. SAX and PAA based 

transformation cannot find the fault patterns which are not periodic as rotating 

machinery’s signals.  

On the other hands, PLA succeeded to catch fault patterns in the given time series 

data, but easily be affected by induced noises. On the other hands, the partitioning for 

label generation is carefully selected with regard of the characteristics of the given data 

set. Therefore, by applying different label generation algorithms such as maximum 

entropy based (M. Makki Alamdari, B. Samali, & J. Li, 2015) and a change magnitude 

based discretization (D. Cysarz et al., 2013), there are various time-series discretization 

for fault detection and prediction. 

Multiple features are also analyzed to generate labels, because it will give more 

information than a single feature (T.-C. Fu, 2011). M. Krawczak and G. Szkatuła (2014) 

proposed envelop based time series discretization algorithm, which is called as ‘symbolic 

essential attributes approximation’. First, the upper and lower envelopes are respectively 

approximated. The time axis was divided according to change points in any envelopes, 

and the envelope values in each time segment is transformed into the 

Figure 2.19 The SAX transformed time series data collected from a throttle position sensor. 
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maximum/minimum values in upper and lower envelopes, as a final label. The same 

values can be considered as differently depending on the recorded time points (M. G. 

Baydogan & G. Runger, 2015). They generated a label using a mean value and a 

difference, and the recorded time for multivariate time series data in robot fault detection.  

SAX was usually conducted with the fixed length, but in this research, a dynamic 

length was applied. (J. Leitão, R. F. Neves, & N. Horta, 2016). Particular, PIP algorithms 

are adopted. A sliding window technique was also used to detect the relatively small 

change more sensitively in the SAX (R. N. Hartono, R. Pears, N. Kasabov, & S. P. 

Worner, 2014). P. Geurts (2001) converted the given time series data into a series of 

mean values, with variance based time segmentation (i.e., maximization of the variance 

reduction). He stopped enlarging the length of the current time segment when the 

variance in the segment is minimized.   

 Representation by the primitives in each time segment: Instead of representative 

statistical features in a specific time segment, we can map the signals’ behaviors by 

evaluating the similarity of the pre-defined basis. The representative method by 

identifying the primitives is Qualitative trend analysis (QTA). QTA consists of two steps: 

(i) representing qualitative information, and (ii) give quantitative information. In the first 

step, QTA describe the signals’ behavior in a specific time segment as a one of a set of 

pre-defined primitives, as illustrated in Figure 2.20 (M. E. Janusz & V. 

Venkatasubramanian, 1991).  

Primitives play a role as a qualitative basis to capture the underlying signals’ 

changes and usually consists of nine depending on its first and second derivatives. 

Specifically, J. T. Y. Cheung and G. Stephanopoulos (1990) employed a set of triangular 

basis as primitives for representing the given time series data.. Triangular primitives are 

distinguished by its initial, final, and critical points’ slopes. On the other hands, more 

expandable primitives with four signs was analyzed to investigate the appropriate 

behavior of the given time series data at once (K. B. Konstantinov & T. Yoshida, 1992).  

Among the various identification methods, a polynomial fitting is one of the 

famous methods for primitive identification. Interval halving was also developed based 

on the polynomial fitting (S. Dash, M. R. Maurya, V. Venkatasubramanian, & R. 

Rengaswamy, 2004). If the original is determined as a unimodal by checking the F-test’s 

error between the estimated polynomial function and the original signal, then assign the 

primitive to the signal. Otherwise, recursively split the time segment until the error is 



63 

small enough to be ignored from the perspective of the dynamic time segmentation.  

After transforming into the corresponding primitives, quantitative information is 

added as the second step. First, the adjacent same primitives are combined and the time 

segment information which is called as episode and trend, in the QTA process. Finally, 

Figure 2.20 An example of QTA transformation to the fuel pump relay control signal 
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the initial and final value in the original data is provided together, a profile as depicted in 

Figure 2.21. By describing the original complex time series data into a set of simple 

behaviors, this type of time series discretization is needed for qualitative and temporal 

reasoning, and a compact and natural knowledge representation (F. Gamero Argüello, 

2012).  

Since the primitives include both contextual and non-contextual information, R. 

Rengaswamy and V. Venkatasubramanian (1995) said it can be used for appropriate 

control actions by drawing conclusions which take in the near future of the target system. 

They analyzed the collected time series data based on QTA for detecting faults in a fluid 

catalytic cracking unit. They mapped the generated profile and the induced practical 

situations in the system as knowledge based tree and used it for determining optimal 

maintenance actions. QTA was also applied into the principal components of the given 

sensor signals (M. R. Maurya, R. Rengaswamy, & V. Venkatasubramanian, 2005). After 

detecting faults using the original PCA, then QTA was employed as further isolation and 

identification of the detected fault. 

QTA was employed with a signed directed graph (SDG) for detecting and 

Figure 2.21 The additional QTA procedures for quantitative information, after covnerting the original 

signal into a set of primitives (continues to the Figure 2.20) 
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isolating the faults in a TE process. (M. R. Maurya, R. Rengaswamy, & V. 

Venkatasubramanian, 2007). In detail, the SDG determined the possible faults (i.e., 

candidate faults), and then QTA compared the given time series and candidate faults to 

find out the most appropriate fault case. However, it can be applied in the same length of 

time series data, only.  

Since this type is sensitive to the length of a time segment as the previous 

partitioning type, it is crucial to balance the trade-off between detail representation and 

information loss. Therefore, R. Rengaswamy, T. Hägglund, and V. Venkatasubramanian 

(2001) developed Qualitative Shape Analysis (QSA), as an extension of QTA, which 

used only three linear primitives (e.g., increasing, decreasing, and constant) and verified 

QSA in oscillation detection of pulp concentration control in a paper mill. They 

converted the given time series data into the corresponding linear primitives using ANN 

classifier as a local behavior. Subsequently, a global behavior is again determined using 

the local behaviors by the predefined six significant changes (e.g., constant to 

increasing/decreasing, increasing to constant/decreasing, and decreasing to 

constant/increasing), and further qualitative shapes (e.g., oscillation, monotonically 

increasing, monotonically decreasing, and steady). In addition, for the time axis 

segmentation, a cumulative sum was alternative used instead of the fixed length (S. 

Charbonnier, C. Garcia-Beltan, C. Cadet, & S. Gentil, 2005; S. Charbonnier & S. Gentil, 

2007; H. Yin, S.-q. Yang, X.-q. Zhu, S.-d. Ma, & L.-m. Zhang, 2015) 

 Data discretization: Partitioning in the time series discretization can be re-called as a 

data discretization, since it is under the identically same principles: to represent the 

original datasets which contains significant information but removing irrelevant 

information for the final objective (A. J. Ferreira & M. A. T. Figueiredo, 2015). Since its 

input data does not have chronological order, a trend information is not used as a label. 

Alternatively, it usually more focus on statistical, probability, information features to 

decide a set of labels.  

Here, the most famous example is equal frequency binning algorithm. The 

measurements in value axes are first sorted according to their amplitude. Then cut-points 

are determined so that the measurements are included in the same number in each bin (as 

illustrated in Figure 2.22. Before splitting the entire dataset, the number of bins are 

already selected and consequently the number of measurement in data too. Finally, each 

value is transformed into the corresponding representative value (i.e., a label). It is very 
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simple methods to transform continuous values into the labels, however it is very 

vulnerable to outliers in the given data (J. Catlett, 1991; H. Liu et al., 2002) It can assign 

same values as different labels (H. Liu et al., 2002).  

Various data discretization can be classified according to six categories: (i) class 

information (supervised or unsupervised), (ii) the number of sensor signals (univariate or 

multivariate), (iii) the direction of cut-point generation (splitting, merging, or hybrid), 

(iv) determination of the final number of cut-points (direct or incremental), (v) the search 

Figure 2.22 An example of equal width binning to the single sensor data 
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range at once (global or local), (vi) the requirement of final objectives (static or dynamic), 

and (vii) type of evaluation. Among various data discretization algorithms, Famous ones 

are categorized in Table 2.2. 

 

Table 2.2 Categorization for data discretization methods adapted from H. Liu, F. Hussain, C. L. 

Tan, and M. Dash (2002) and (S. García, J. Luengo, J. A. Sáez, V. López, & F. Herrera, 2013) 

 

 
Equal width 

binning 

Equal/fixed 

frequency 

binning 

Proportional 

binning 
RUDE 1R CAIM 

(i) Unsupervised Unsupervised Unsupervised Unsupervised Supervised Supervised 

(ii) Univariate Univariate Univariate Univariate Univariate Univariate 

(iii) Splitting Splitting Splitting Hybrid Splitting Splitting 

(iv) Direct Direct Direct Incremental Direct Incremental 

(v) Global Global Global Global Global Global 

(vi) Static Static Static Static Static Static 

(vii) Binning Binning Binning Statistical Binning Statistical 

 

 ID3 D2 
Chi2 

/ChiMerge 
MVD ConMerge 

Multi-

Bayesian 

(i) Supervised Supervised Supervised Unsupervised Supervised Supervised 

(ii) Univariate Univariate Univariate Multivariate Multivariate Multivariate 

(iii) Splitting Splitting Merging Hybrid Merging Merging 

(iv) Incremental Incremental Incremental Incremental Incremental Incremental 

(v) Local Local Global Global Global Local 

(vi) Dynamic Static Static Static Static Dynamic 

(vii) Information Information Statistical Information Statistical Statistical 

(i) class information (supervised / unsupervised), (ii) the number of sensor signals (univariate / 

multivariate), (iii) the direction of cut-point generation (splitting / merging / hybrid), (iv) 

determination of the final number of cut-points (direct / incremental), (v) the search range at once 

(global / local), (vi) the requirement of final objectives (static / dynamic), and (vii) type of 

evaluation criteria (binning, statistical, or information) 
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 Class information (supervised or unsupervised): As machine learning 

algorithms are classified, data discretization algorithms are distinguished by 

class information usage. If class information is employed to generate a set of cut 

points, the method is called as supervised, otherwise unsupervised data 

discretization. In classification problem (e.g., fault detection or prediction), 

supervised usually provides better performance than unsupervised (J. Dougherty, 

R. Kohavi, & M. Sahami, 1995). However, there are also counterexample; 

investigate that cluster based data discretization provides more accurate results 

than the minimal class entropy discretizer (M. R. Chmielewski & J. W. 

Grzymala-Busse, 1996). 

 The number of sensor signals (univariate or multivariate): The data 

discretization algorithms can be classified according to the number of sensor 

signals to be transformed at the same time. Whereas univariate data 

discretization aims to convert one sensor signals at once, multivariate data 

discretization is devised to transform multiple sensor signals simultaneously (L. 

Karamitopoulos & G. Evangelidis, 2007). For example, multivariate data 

discretization approaches are usually based on PCA for dimension reduction as 

well as hidden meaningful variable discovery (O. C. Jenkins & M. J. Mataric, 

2003; S. Papadimitriou, J. Sun, & C. Faloutsos, 2005; Y. Tanaka, K. Iwamoto, 

& K. Uehara, 2005). Multivariate data discretization can be further classified 

according to cut-point determination, either in consideration of correlations 

among the sensor signals (Y. Sang et al., 2014) or find optimal cut-points from 

individual sensor signals (S. D. Bay, 2000). In addition, the transformed data by 

each univariate data discretization individually can be merged for multivariate 

time series data.  

 Direction of cut-point generation (splitting, merging, or hybrid): There are 

opposite two directions in determining the final cut-points. Until terminating 

criteria is satisfied, splitting algorithms generates cut-points from previous large 

bins. On the other hands, merging algorithms combines adjacent bins to 

determine final set of cut-points. Many data discretization algorithms are based 

on splitting (H. Liu et al., 2002). If both splitting and margining are performed 

in a data discretization algorithm, it is called as hybrid (J. L. Flores, I. Inza, & P. 

Larrañaga, 2007).  
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 Determination of the final number of cut-points (direct or incremental): If 

the final number of cut-points are already decided as a constant before data 

discretization, these types of algorithms are called as direct data discretization. 

Otherwise, it the number is determined after finishing data discretization by the 

evaluation criteria, these are incremental ones (T. Elomaa & J. Rousu, 2004). In 

the case of incremental algorithms, there are also two ways to generate cut-

points, either top-down or bottom-up. 

 The search range at once (global or local): The required search space for 

determining cut--points can be another standard to classify data discretization 

algorithms. Global algorithms generate cut-points using the entire or all 

available given data, whereas local algorithms use contiguous data to determine 

cut-points. Several researches indicated the global data discretization algorithms 

often provides better performance since local ones are hard to look ahead than 

global ones (R. Dash, R. L. Paramguru, & R. Dash, 2011). 

 Requirement of final objectives (static or dynamic): Most of data 

discretization algorithms are classified as static algorithms (F. Berzal, J.-C. 

Cubero, N. Marı́N, & D. Sánchez, 2004) which are conducted independently to 

the final objectives or the model learning such as classification. Dynamic data 

discretization means that data discretization is performed as sub-stages of final 

model learning. This category is also called as eager or lazy (Y. Yang, G. I. 

Webb, & X. Wu, 2010).  

 Type of evaluation criteria: The evaluation measure for terminating data 

discretization is one guideline for selecting optimal algorithms. Unlike above 

six categories, this category is not binary classified. Among various evaluation 

criteria, binning (F. J. Ruiz, C. Angulo, & N. Agell, 2008), statistical (D. Yan, D. 

Liu, & Y. Sang, 2014), information (e.g., entropy) (A. J. Ferreira & M. A. T. 

Figueiredo, 2012), rough sets (R. Ali, M. H. Siddiqi, & S. Lee, 2015), and 

wrapper (S. Ramírez-Gallego, S. García, J. M. Benítez, & F. Herrera, 2016) five 

major evaluation types. Data discretization algorithms with statistical or 

information criteria for evaluation can be further characterized as supervised 

one (Y. Yang et al., 2010).  

There are additional criteria for evaluating data discretization 

algorithms including sensitivity to outlier, likelihood of the same value being 
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converted to different labels (i.e., disjointing) parameter requirement, 

hierarchical structure, stationary to time, and consideration of uncertainty in the 

given data (S. García, J. Luengo, & F. Herrera, 2015). In addition to the 

introduced data discretization algorithms listed in Table 2.2, various data 

discretization algorithms have been developed until now (S. García et al., 2015), 

such as Omega based on inconsistency in each bin (M. X. Ribeiro, M. R. P. 

Ferreira, J. Caetano Traina, & A. J. M. Traina, 2008), Z-DISC using z-score of 

the given data (G. Madhu, T. V. Rajinikanth, & A. Govardhan, 2014), cost-

based discretization with minimizing miss classification rates (D. Janssens, T. 

Brijs, K. Vanhoof, & G. Wets, 2006), fuzzy entropy based fuzzy partitioning 

including fuzzy membership functions to cut-point generation (M. Zeinalkhani 

& M. Eftekhari, 2014). That is because it is also necessary to select an 

appropriate discretization algorithms based on the given dataset’ characteristics 

and the final objective (L. Peng, W. Qing, & G. Yujia, 2009).  

Although, a guideline is given for selecting optimal data discretization 

algorithms, S. García et al. (2015) said that it is still a NP-complete problem to 

find the optimal data discretization algorithms. For example, CAIM, ChiMerge, 

and modified Chi2 usually provides excellent performance regardless types of 

classifiers (S. García et al., 2013), On the other hands, fixed frequency data 

discretization or non-disjoint discretization are appropriate when a Naïve-Bayes 

classifier is used (Y. Yang et al., 2010).  

To summarize if following two primarily properties are maintained, any method for cut-point 

determination in a value axis can be considered as the partitioning of the time series discretization (T. 

Mitsa, 2010a):  

(i) Lower bounding property – if two time series data are determined as similar ones in the 

original dimensions, they should be similar in the transformed dimensions 

(ii) The original dimensions are reduced in the transformed spaces.  

However, there is a major drawback in the partitioning methods including the equal frequency 

binning; called as birthday paradox because of employing a label for several measurements in each 

bin: the probability of finding similar time series are significantly increased in the given dataset (A. 

Mueen, 2014). Although several researches have highlighted the role of discretization parameters and 

their importance, except the result of simple trial-and-error experiments from the target datasets, there 
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is no widely accepted guideline for the choice of appropriate discretization parameters, and 

interactions among the parameters that may also affect the performance of finding patterns have not 

been sufficiently explored, as follows:  

 How to select relevant discretization parameters appropriately: The performance of 

fault detection and prediction using a pattern analysis can be dependent on which time 

series representation is used ((S. J. Wilson, 2017). In other words, the performance using 

the transformed signals by any time series discretization is guaranteed when every 

significant pattern is caught with the minimum false detection (L. Karamitopoulos & G. 

Evangelidis, 2007).  

For example, for the SAX transformation, it is agreed that the corresponding 

discretization parameters play a significant role in pattern extraction using the given time 

series, such as the number of bins, the number of time segments, and the sliding windows 

for controlling the sensitivity of change point detection. Here, the number of bins 

indicates the number of divided intervals in the value axis by the cut-points and it is 

called as the number of clusters, cluster diameter, or alphabet size. In the case of the 

number of time segments, it is called as the number of time segments, or defined in 

different way, such as the length of time and PAA segments. In addition to the SAX 

transformation, there are the large number of control parameters in the temporal 

discretization algorithms in order to obtain more clear transformed time series data (P. 

Esling & C. Agon, 2012). Therefore, such relevant temporal discretization parameters 

should be controlled delicately. 

Many researchers have conducted a trial-and-error approach to find out the 

effects of the discretization parameters, but the approach usually needs a sufficient 

amount of experiments with different parameter settings (B. Liu et al., 2015). For 

example, the effect of each parameter is evaluated by a domain dependent greedy search, 

and eventually optimal values are obtained (Y. Xiao, H. Wang, & W. Xu, 2015). In 

addition, there are some criteria to evaluate the performance of the discretization and 

quantitative measures are widely examined such as the number of intervals, 

inconsistency, predictive classification (accuracy), and computation time (R. Ali et al., 

2015; S. García et al., 2015; S. Kotsiantis & D. Kanellopoulos, 2006; H. Liu et al., 2002). 

However, it is not easy to evaluate the qualitative measures including understandability 

of the discretized time series.  

By conducting trial-and-error experiments, J. T. Y. Cheung and G. 
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Stephanopoulos (1990)observed that a relatively small length of time segments is 

recommended to catch short changes in the given time series data. In the QTA type 

(which evaluates the original signals’ behavior in each time segment for time series 

discretization), the length of time segment is also crucial to identifying the underlying 

signal’s changes (R. Rengaswamy et al., 2001). S. Dash and V. Venkatasubramanian 

(2000) argued that the length should be large enough to capturing the behaviors 

insensitively to the noise.  

However, a too short or long length for the time segment is not appropriate to 

explicitly capture the original signals’ behaviors (Y. Zhang & Y. M. Cheung, 2014). In 

order to identifying both the fast and slow time scale together, this type usually generate 

episode and trend using a series of assigned labels to the very short length of time 

segments, which combine consecutive time segments assigned as the same labels into 

one combined label with time information (R. Rengaswamy & V. Venkatasubramanian, 

1995). Similarly, for efficient and fast computation for the temporal discretization, too 

small or large size should not be selected for the length of a time segment (Y. Zhang & Y. 

M. Cheung, 2014). Accordingly, the B. Liu et al. (2015) had a strategy to select a 

relatively small length of a time segment, then to concatenate them if possible. It is more 

difficult, as many sensor signals are analyzed.  

The number of assigned labels is also a crucial parameter which should be 

carefully determined. It is usually associated with the number of cut-points, the number 

of bins and another label definition rules. Sometimes, controlling the number of labels is 

considered as more significant in discovering meaningful and interpretable signals’ 

changes, rather than the length of time segment (G. Das, K.-I. Lin, H. Mannila, G. 

Renganathan, & P. Smyth, 1998). In particular, G. Das et al. (1998) argued that the length 

of a time segment can be selected based on the user’s particular bias and the type of final 

application field, but the number of labels cannot. The effects of the number of bins is 

usually reported as follows: As the number of bins increases, the inconsistencies in the 

transformed data increase (H. Liu et al., 2002), and thus the large number of bins can be 

preferred for detail representation for obtaining the better classification accuracy since 

the large number of bins enables more detail representation of the given data (D. 

Janssens et al., 2006). 

However, increasing the number of bins also enlarges the effects of the 

measurement-induced noise, too (Catlett, 1991; Graben, 2001). Of course, It increases 
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the amount of generated labels and words, consequently, easily results in expensive 

computational costs and common meaningful fault patterns. Therefore, S. Kotsiantis and 

Kanellopoulos (2006) investigated that the number of bins should be less than the 

number of inconsistencies of the given original datasets, for easy understanding of the 

given signals’ behaviors. In other words, since there are tradeoffs, it is necessary to 

consider the computational complexity, an induced noise level, and information loss by 

the discretization, for determining the optimal number of bins (S. Gupta, A. Ray, & E. 

Keller, 2007).  

In addition to providing the effects of the number of labels (including the number 

of bins and cut-points), many studies conducted deeper analyses for generalizing the 

results of discretization parameter control. For example, the optimal length of time 

segments is selected in proportional to the fault states (D. Cheboli, 2010). However, Y. 

Zhang and Y. M. Cheung (2014) used the dynamic length in order to use short the time 

segment for splitting impulsive values (which are usually considered as noises) from the 

given entire time series. 

As the conflicting information for selecting the length of time segments, there are 

various guidelines for adjusting the number of bins. For example, through a trial and 

error study, J. Catlett (1991) found five or six is optimal for the number of cut-points 

when analyzing vital signals in predicting patient outcomes. The histogram of the 

original data set is alternatively recommended as a useful method to determine the cut-

points (B. Kulahcioglu et al., 2008).  

For example, ten bins in value axis are the typical value for both equal width and 

frequency binning  (M. Boulle, 2005). There is one rule of thumbs called as Sturges’ 

rule (H. A. Sturges, 1926):  

1 + log2(𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠). 

If the given data is normally distributed, then Scott’s rule can be applied to calculate the 

number of bins as follows: 

3.49σ × n−1/3 

where n is the number of the given time series, and σ is the standard deviation of 

descriptive attribute (D. W. Scott, 1985).  
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Instead of histogram methods, K. J. Cios, W. Pedrycz, R. W. Swiniarski, and L. 

Kurgan (2007) suggested the following equation to determine the number of bins, when 

the number of measurement is not smaller than the number of classes in supervised 

algorithms: 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑡 − 𝑝𝑜𝑖𝑛𝑡𝑠 =  
𝑛

3 × (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)
− 1 

where n is the size of data set. On the other hands, for the unsupervised equal width 

binning, M. Boulle (2005) argued the number of bins will be appropriately computed 

according to the following equation in equal width discretization. 

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠 =  max (1,2 log(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑣𝑙𝑎𝑢𝑒𝑠)) 

In case of approximate equal frequency discretization, the number of divided 

intervals (e.g., alphabet size) is recommended to be selected between 𝑙𝑜𝑔 (𝑛)  and 

𝑙𝑜𝑔(𝑛) − 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑛)) + 1  (S. Y. Jiang, X. Li, Q. Zheng, & L. X. Wang, 2009).  

However, the effectiveness of these guidelines are easily limited depending on the 

employed temporal discretization. It is also not possible to limit the problem to the best 

discretization methods, since there is no clear representation methods which is superior 

than others in all tasks, and datasets (C. A. Ralanamahatana et al., 2005). In order to 

overcome these properties and speed-up the optimization procedure, several optimization 

algorithms based on evolutionary search have been used (D.-A. García-López & H.-G. 

Acosta-Mesa, 2009). For example, Bayesian theory was used to optimize the number of 

bins in equal frequency discretization (M. Boulle, 2005). In addition, there is a penalized 

maximum likelihood based determination for choosing the number of bins (D) (L. Birgé 

& Y. Rozenholc, 2006): 

argmax
𝐼

𝐿𝑛(𝐷) − 𝑝𝑒𝑛(𝐷)  𝑓𝑜𝑟 1 ≤ 𝐷 ≤
𝑛

log(𝑛)
 

𝐿𝑛(𝐷) =  ∑ 𝑛𝑖 × 𝑙𝑜𝑔(
𝑛𝑖𝐷

𝑛
)𝐷

𝑖=1 , 𝑝𝑒𝑛(𝐷) = 𝐷 − 1 + log(𝐷)2.5 

Unfortunately, for such optimization procedures, prior knowledge is inevitably 

required to define an objective function and other optimization procedure parameters 

such as a threshold or a stopping parameter (H.-G. Acosta-Mesa, F. Rechy-Ramírez, E. 

Mezura-Montes, N. Cruz-Ramírez, & R. Hernández Jiménez, 2014; M. L. Raymer, T. E. 
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Doom, L. A. Kuhn, & W. F. Punch, 2003). That is, if a specific objective is adopted for 

determining cut-points, such as the maximum entropy and the minimum correlation, the 

optimal number of cut-points are automatically selected, but the required parameters are 

still chosen (M. Makki Alamdari et al., 2015). 

Persist is the typical temporal discretization algorithms which is combined time 

series discretization and parameter optimization procedure(F. Mörchen & A. Ultsch, 

2005). It was devised to consider the given signals’ characteristics when determining the 

cut-points. They proposed the persistence score for determining the cut-points. The 

higher value indicates that the system’s states in the previous and current time point are 

same. In other words, the time series data in a label is more stable in terms of the 

system’s state. Consequently, they determined the number of cut-points as optimal one, 

which has the maximum persistence score before the discretization.  

In addition, a new index was proposed to test whether the SAX transformation is 

appropriate to the given time series data. (W. Song, Z. Wang, F. Zhang, Y. Ye, & M. Fan, 

2017) while G. Das et al. (1998) used the J-measure to compare the discretization rules 

quantitatively, which one is more appropriate (includes more significant signals’ 

changes) for the given time series data. 

However, there is still no statistically sound evidence to select appropriate 

discretization parameters, although some studies have paid much attention to give 

general comments for the choice of discretization parameters (H. T. Kruitbosch, I. Giotis, 

M. Biehl, & M. Verleysen, 2014). That is, there is no widely accepted guideline for the 

choice of appropriate discretization parameters, and interactions among the parameters 

that may also affect the performance of finding patterns have not been sufficiently 

explored.  

In this regard, this paper aims to tackle this issue by considering key 

characteristics of raw sensor signals. In addition, B. Kulahcioglu et al. (2008) said that 

the performances of the discretized time series are dependent on the given data, not 

discretization parameters, since any clear and general relationship was not observed in 

some datasets. Therefore, it is necessary to provide guideline to control the temporal 

discretization parameters depending on the characteristics of the given time series data. 
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2.3.1.3 Pattern extraction 

After obtaining the discrete feature series by conducting discretization to the given time series, we 

will extract a significant pattern to represent the system’s certain states. To do this, as already 

explained in Section 2.3.2., a set of individual label can be considered as candidates of patterns. 

However, such temporal (sub)sequence can also be extracted or captured by the similarity measure to 

reflect various time scales, since fault-related signals’ behaviors can be detected over both a fast scale 

and a slow scale (Y. Li & A. Ray, 2017). The fast scale in time axis is defined as a time scale which 

remains invariant such as one label. On the other hands, the slow scale is defined as a time scale 

which is time-variant, such as gradually evolving, in the process dynamics, and it can be represented 

as a series of labels (Y. Li & A. Ray, 2017). In order to investigate signals’ behaviors in both time 

scales, we need to further make the ‘word’ which are a sub-matrix of transformed labels in time series 

(K. Mukherjee & A. Ray, 2014; A. Ray, 2004). The simple way to generate words are to combine the 

adjacent labels within the pre-defined word length (Y. Li & A. Ray, 2017).  

Many researches discretized phase trajectories or divided the original time series as contiguous 

binary bins (i.e., 0 or 1), the discretized labels in the given time series data are used to determine the 

system’s state by a finite state automata or a Markov model (P. b. Graben, 2001; A. Ray, 2004).. For 

example, C. S. Daw, C. E. A. Finney, and E. R. Tracy (2003) assigned binary labels to the original 

signals using a threshold. The assigned labels within the pre-defined length (k-step template in this 

paper) were again converted to the corresponding number according to the binary digit.  

 As another example, for identifying broken rotor bars in an induction motor, discrete wavelet 

transformation is used for the current signal approximation and time-series discretization was applied 

to the transformed signal (G. Georgoulas et al., 2015; P. Karvelis et al., 2015). The given time series 

data was discretized by the original SAX, which is based on PAA rule and the maximum entropy 

partitioning for time-axis and value-axis respectively. Based on pre-defined word length, they 

generated the words using the adjacent discretized label, and then calculated the number of each 

word’s occurrences. For example, if the time series data is given and discretized as shown in  Figure 

2.24–(a). and the word length is set to two, then the total nine words are generated and their 

occurrences are computed as following Figure 2.24–(b).  

After, word occurrences in the given time series data were represented a heat map (called as a 

bit map or an intelligent icon) and a k-nearest neighbor classifier is used to find out the broken rotor 

bars. Similarly, L. Duan et al. (2016) analyzed faults in a reciprocating compressor using SAX and 

heat map representation. They first conduct SAX to each dataset, and then counted the occurrences of 

adjacent labels within the predefined time ranges individually as shown in Figure 2.23. 
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By considering each heat map as a replication, they computed eigenvectors and eigenvalues 

according to each condition such as a normal, a spring fault, and a value fracture. Finally, they used 

two statistics diagnosing the compressor’s current status. J. Lin, E. Keogh, F. Ada, and H. V. Herle 

(2005) converted the ECG data into a series SAX labels, then again generated word sets of which the 

length is equally pre-defined. Words were considered as faults that are found the least as well as do 

not have any similar words (as little as possible) in the given data. 

In the case of multivariate time series data, individual SAX was employed to each single 

sensor signals, and words were also made respectively (P. Ordonez, T. Armstrong, T. Oates, & J. 

Figure 2.23 The four heat maps for each system condition: (a) a normal condition, (b) a spring fault, 

and (c) a valve fracture, adopted from L. Duan et al. (2016) 

Figure 2.24 The discretized time series data and the corresponding word generation 
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Fackler, 2011). After SAX and word transformation, the words generated from multiple sensor signals 

were combined as one vector. Finally, a series of the merged vector was given to one nearest neighbor 

classifier for predicting fault patterns in physiological data (i.e., acute hypotensive episodes). 

In addition to counting the number of word occurrences, statistical comparison using the P-

value can be used for fault detection and prediction using multivariate time series data. X. Bai et al. 

(2013) transformed multiple temperature signals into a series of symbolic labels according to either 

Gaussian or Uniform distribution for value axis, then generate a series of word individually. When the 

P-value of the current words’ occurrences in all multivariate time series data is significantly greater 

than the pre-defined critical value, then it is considered as a fault (i.e., co-anomaly).  

Alternatively to the full-word matching, a partial matching (called as a projection or a collision 

matrix) is also applied after the word generation (D. Yankov, E. Keogh, J. Medina, B. Chiu, & V. 

Zordan, 2007). They selected a part of two words and compared it in turns. For example, if the length 

of words is three, then first and second, first and third, and second and third labels is compared in 

order. If the parts are identically same, assign one point to the set of two words. Finally, the two words 

are considered as same when the assigned score exceeds the pre-defined threshold.  

Similarly, B. Liu et al. (2015) also adopted SAX and the partial matching for classifying faults 

in ECG time series data. They compared the target signals with both fault and normal reference 

signals, and then selected more similar one’s class information for the target. If it is not reasonable, 

they remained the target as unclassified one. P. Senin and S. Malinchik (2013) classify the given time 

series data with regard to the weighted occurrences of the data in the training stage. The weight is 

defined as the logarithm of the number of the corresponding label’s occurrences. If the target data did 

not appear before, then find the most similar known signal in training by cosine similarity, and use its 

weighted occurrences alternatively.  

Instead of the above distance-based matching, there are several algorithms for the discretized 

time series data, such as Suffix array, Tarzan tree, non-parametric matching, probability-based 

Markov chain (E. Keogh et al., 2002; S. Lonardi, J. Lin, E. Keogh, & B. Y.-c. Chiu, 2006; M. 

Zoumboulakis & G. Roussos, 2009). For example, considered the two time series to be similar by 

extending search space, such as different time positions but a same value change, and a same time 

point and an amount of change but in different value (A. Schweier & F. Höppner, 2014).  

Sometimes, it is more efficient to find common and frequent temporal (sub)sequences, instead 

of the continuous sequence and subsequence matching, when several fault patterns are given (V. 

Chandola, A. Banerjee, & V. Kumar, 2012). Therefore, sequence mining algorithms are implemented 
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to discover (discontinuous) frequent temporal patterns of interest chronologically in the given time 

series data (T. Mitsa, 2010b).  

One of famous sequence mining is Sequential PAttern Discovery using Equivalence classes 

(SPADE) (M. J. Zaki, 2001). It was proposed to minimize the repeated search in the given dataset. It 

is categorized as vertical format-based mining, since it re-writes the given label’s location as sequence 

identifier (SID) and event identifier (EID). In fault detection and prediction problem, SID and EID 

can be considered as a number (ID) of the system’s faulty state, and a relative time point of each 

discretized label in the faulty state, as shown in Figure 2.25. After searching 1-length (sub) sequences 

and their SIDs and EIDs, 2-length sequences are discovered using the 1-length information. For 

example, ‘ab’ in the 2-length sequence, the EID of the former label ‘a’ is first identified and then the 

EID of latter label ‘b’ is checked. Among the same SID values in two labels, ‘ab’ sequence is selected 

when the EID of ‘a’ is faster (small) than the EID of ‘b’. This search procedure is recursively 

conducted when the number of any sequence’s occurrence is smaller than the predefined threshold 

(i.e., the minimum support). In order to localize the faults in bug revealing process of a software, 

SPADE is used to find the meaningful line sequences of a given debugging code (Z. Gao, Z. Chen, Y. 

Feng, & B. Luo, 2013). After searching a frequent pattern for pass and fail cases in the debugging, 

they removed the common lines between pass and fail cases, and obtained final line sequences when 

debugging is failed. 

There are various sequence mining algorithms, including the Apriori-based mining types (e.g., 

AprioriAll and AprioriSome (R. Agrawal & R. Srikant, 1995), and Generalized Sequential Patterns (R. 

Srikant & R. Agrawal, 1996)), the pattern-growth mining type (e.g., Prefixspan (J. Pei et al., 2001), 

and I-Prefixspan (D. Saputra, D. R. Rambli, & O. M. Foong, 2007). To predict the performance of a 

wafer fabrication process, the tool usage sequences were investigated (K. Kerdprasop & N. 

Kerdprasop, 2013; K. Kerdprasop & N. Kerdprasop, 2014). They classified the event logs of tool 

usages into low, median, and high groups according to the measured performance. Then conventional 

sequential mining was applied to discover the frequent tool usage sequences when the performance is 

high or lower. Finally, they could identify which the tools to be used and which the process orders to 

be conducted for obtaining the higher performance in the process.  

A. Palacios, A. Martínez, L. Sánchez, and I. Couso (2015) used fuzzified labels for each time 

point for considering uncertainties in the given turbine gas temperature and fuel flow signals. Then, 

they applied the Prefixspan to extract the frequent sequential rules for fault states in an aero-engine. T. 

Yairi, Y. Kato, and K. Hori (2001) searched sequential patterns in the output and acceleration signals 

from three thrusters (e.g., a roll, a pitch, and a yaw) for fault detection. Representative signal behavior 
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 Figure 2.25 Example of SPADE for frequent signal's behaviors in the system's faulty states 
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was generated by a clustering for six individual signals. Using the representative behaviors, the 

sequential mining was applied to identify when a fault will occur. 

J. Rabatel, S. Bringay, and P. Poncelet (2009) discretized the given data and extracted the 

frequent temporal rules of the normal state. For representing the normal state clearly, operation 

duration, the exterior temperature, and the corresponding travel route information were only analyzed 

when the velocity signal is within the steady-state period. After searching frequent sequences in the 

normal states of the train operation, the proposed conformity score for the normal state was calculated 

between the extracted temporal sequences and current signals. In order to monitor the energy 

consumption of a building, each sub-module’s energy consumption is analyzed (C. Fan, F. Xiao, H. 

Madsen, & D. Wang, 2015). They transformed each time series data into a series of symbolic label by 

SAX individually, then investigated representative univariate and multivariate motifs in the 

transformed data. Temporal sequential mining was applied to find frequent rules between antecedent 

and consequent signals’ behaviors within 15 minutes. 

More than simple precedence orders, more detailed temporal dependencies, such as overlap 

and contain, can be obtained by other time series discretization and time-interval mining (R. 

Moskovitch & Y. Shahar, 2015; G. Tatavarty, R. Bhatnagar, & B. Young, 2007). Rather than 

analyzing the original sensor signals, many researchers analyzed qualitative information using 

sequential mining algorithms. For example, in order to predict the quality of the product, J. 

Buddhakulsomsiri and A. Zakarian (2009) developed a new sequential mining algorithms and verified 

it using the automotive warranty datasets including the labor information, and the consumed costs. 

Discrete events such as the target part size, the length of a delay, and the dysfunction which causes the 

delay, which are translated from the Gantt charts of process scheduling, were also analyzed to extract 

frequent temporal sequences (B. Kamsu-Foguem, F. Rigal, & F. Mauget, 2013). Using the extracted 

rule of the process, for example drilling pipes, they could predict the future coming delays from the 

current state, and analyze which dysfunction is most critical to the process. In addition, any 

dependence graph or graph mining is also frequently used to investigate principal signals’ components 

in the system’s fault states (A. Teixeira, I. Shames, H. Sandberg, & K. H. Johansson, 2014). 

There is also an empirical study about the effects of the discretization parameters using a word 

generation in fault detection and prediction (W. O. Wilson, J. Feyereisl, & U. Aickelin, 2007). In the 

case of the binary data discretization, there is a relationship between the number of cut-points and the 

word length (F. Luo et al., 2015). There is also a multidimensional trial-and-error method to consider 

multiple discretization parameters simultaneously. For example, DIRECT is the multidimensional 

method and narrows down the search space until finding optimal hyper rectangles. P. Senin and S. 
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Malinchik (2013) used this method to investigate the optimal sliding window, the length of a time 

segment, and the number of cut-points at once. In addition to how to extract good patterns, it is also 

crucially determined which one should be extracted as a pattern for detecting and predicting faults as 

follow.  

 What is a “pattern” which represent the system’s faulty status: Many researches 

usually extracted the most different pattern(s) from the given time series data during the 

system’s fault states. For example, the subsequence ‘A’, as shown in Figure 2.26, is 

considered as a fault pattern since it shows the most difference among the others. J. Lin 

et al. (2005) introduced ‘discords’ in fault detection and prediction. The term indicates a 

subsequence in the given time series data, which are the most distant (or different) to the 

rest of data without the time series data including the fault states.  

It is applied to detect anomalies in ECGs data (E. Keogh et al., 2007). To give an 

assurance for considering the detected discords as faults, the corresponding score is given. 

In addition, less frequent signal behaviors were also extracted as faults (F. Rasheed & R. 

Alhajj, 2014). However, they are observed in the normal states, in spite of the difference 

to the other major behaviors in the normal states. That is, as illustrated in Figure 2.8-(b), 

we cannot always ensure that signals’ behaviors which represent the fault states are 

statistically different enough to those from the normal states of the system.  

On the other hand, we can also consider the most similar behaviors among the 

given data of the fault states. However, it is also still not guaranteed that the signal 

behaviors which are frequently observed can represent the system’s fault state. For 

example, C. Kamath and Y. J. Fan (2012) converted the original wind power signals to 

the corresponding symbolic labels. They then conducted cluster analysis for creating 

groups which includes similar signals. However, they were not able to give more 

information about groups. 

Figure 2.26 Fault patterns which are the most different to others in terms by measuring subsequence 

similarity in the given data set, adopted from J. Lin, E. Keogh, L. Wei, and S. Lonardi (2007) 
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Since we constraint our research area to the supervised problem, we can obtain 

the time markers of all fault information. For definite representation, therefore, we need 

to define a fault pattern which represents the system’s fault state clearly. The procedure 

which typical machine learning algorithms classifies the normal and fault states can be 

adopted when a fault pattern is extracted.  

For example, D. Cheboli (2010) conduct appropriate time series representation 

and similarity measure for fault detection, using the pre-classified time series which are 

collected during the normal and faulty system states. Similarly, artificial faults were 

added in the given time series data, and then validate and verified their algorithms by 

extracting fault pattern from the artificial ones (J. Lin & Y. Li, 2009). 

 Which time periods to be analyzed for fault prediction: In the case of fault detection, 

we can find a fault pattern which describe the systems’ fault state. However, it is still not 

clear which signals’ behaviors are appropriate to predict fault. It can be reserved to 

which time period is extracted for representing the signal behavior as a precursor of the 

future faults for fault prediction. Similarity measure is popularly used to compare the 

current signals to the predefined pattern. In such fault prediction using statistical distance 

from the normal model, the control limits or threshold can be controlled weakly than 

fault detection (J. Yu, 2012) (Y. Xu, Y. Liu, & Q. Zhu, 2016) (W. Q. Wang, M. F. 

Golnaraghi, & F. Ismail, 2004).  

However, if we use similar behaviors to ‘A’, in Figure 2.26, for predicting a 

unknown future fault, we should ensure that the similar behavior is really discovered 

before fault occurrences only. Again, we cannot always ensure that signals’ behaviors 

which represent the fault states are statistically different enough to those from normal 

states of the system. Therefore, the length and location of the time period to extract such 

patterns in time series for fault prediction should be carefully determined according to 

the characteristics of the given datasets and the system.  

2.3.1.4 Pattern matching 

After extracting a pattern, the final step is to compare the current signals with the extracted pattern for 

alarming and warning the unexpected fault occurrence. The simplest way is to search the identically 

same patterns in the current signals. If it is not straightforward to find exactly same ones, a similarity 

measure is employed for find similar or dissimilar time series with the given target patterns, 
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alternatively discovering the most similar or different signal behaviors. It is a function for calculating 

the quantitative distance between the given two time series datasets (I. Alles, 2013).  

There are two types to measure a similarity between the given time series, either the entire or 

subsequence matching. Following similarity measures are typically used: distance-based similarity, 

dynamic time wrapping (DWT), and the longest common subsequence (LCSS) (C. A. 

Ralanamahatana et al., 2005). Absolute difference and maximum distance are also employed but most 

general distance for the similarity measure is Euclidean distance. DWT measure a nonlinear distance 

since it can be applied into time series which have different lengths. LCSS is devised to be tolerant to 

gaps in the two time series data (T. Mitsa, 2010a), by finding the identical items in the given two data 

which also discovered in the same order.  

For example, M. Á . Bautista et al. (2016) investigated abnormal behavior patterns (i.e., fault 

patterns), such as hand turning, torso in table, classmate’s desk invasion and inattentive, hyperactive, 

impulsive movement using DWT. Each of them has different advantages and disadvantages, and thus 

they give different performance depending on the given datasets and objective to solve. In the case of 

Euclidean distance, it is only applicable when the two time series data have a same length, baseline, 

and scale This matrix is also sensitive to the noise (D. Cheboli, 2010). In the case of DWT, it is easily 

to conduct overfitting and spend expensive computation costs (T. Mitsa, 2010a). DWT was developed 

for multivariate time series data (H. Li, 2015). E. Keogh and S. Kasetty (2003) compared the 

performance of various similarity measure when two different time series data are given. In this 

research, Euclidean distance provided the best performance in finding similar time series data which 

are described as cylinder-bell-funnel and control-chart respectively.  

In finding the energy consumption patterns of a building, clustering analysis using Euclidean 

distance showed the best performance (F. Iglesias & W. Kastner, 2013). However, DWT was also 

determined as an alternative measure, since it generates better representation without losing 

significant information in the given time series. In addition, different similarity measures are often 

fused to obtain more accurate results in pattern discovery, for example Mahalanobis distance-based 

DWT (J. Mei, M. Liu, Y. F. Wang, & H. Gao, 2016) and fusion among Pearson’s correlation and 

mutual information (S. Charaniya, W.-S. Hu, & G. Karypis, 2008). 

The above similarity measure is originally devised to the original continuous time series data, 

not adopted for the discretized time series data. However, it is sometime not appropriate to the 

conventional measures, since the discretized time series are composed of the contiguous labels. D. 

Cheboli (2010) investigated that some distance measures should be re-defined for a series of symbolic 

labels because these measures ds not correlate well with the distance measures of the original time 
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series. Therefore, several researches developed a distance or probability matrix for each defined label. 

For example, SAX also have a lookup table for measuring distance between two SAX words. The 

following Table 2.3 is an example when the number of bins is set to 4. Similarly, S. Dash, R. 

Rengaswamy, and V. Venkatasubramanian (2003) first determine primitives with uncertainty using the 

combined version of QTA with Fuzzy-logic, since the signals’ behavior is not always easily and 

clearly decided into one primitive.  

The induced noise makes different results in spite of the same underlying signals’ behavior, in 

primitive matching. Therefore, many methods are devised for dealing with such noisy data, for 

example, discrete filtering, auto-regression, and various classifiers (R. Rengaswamy & V. 

Venkatasubramanian, 1995). Online monitoring technique using QTA is developed and validated in 

fault detection of a TE process (M. R. Maurya, P. K. Paritosh, R. Rengaswamy, & V. 

Venkatasubramanian, 2010).They first smoothed the given time series data by Wavelet-based de-

noising, and then estimate the B-spline curve for primitive matching. In the case of linear primitives, 

such as g, h, and i in Figure 2.21, repetitively conduct identification process to check whether they can 

be evolved to non-linear primitives or not.   

W. W. Melek, Z. Lu, A. Kapps, and W. D. Fraser (2005) compared several matching methods 

for signal behaviors such as fuzzy noise rejection, fuzzy course, Trigg’s statistical, temporal reasoning, 

and wavelet decomposition with regard to the identification performance, robustness to the noise, and 

computation time. For example, the time series data which vary in higher frequency components can 

be appropriately analyzed by fuzzy-based methods or temporal reasoning because of their low 

susceptibility to the fluctuations. In order to consider the uncertainties, fuzzified triangular primitives 

are applied, which consisted of the original label for the triangular primitives, and size and duration of 

the signals’ behavior (J. C. Wong, K. A. Mcdonald, & A. Palazoglu, 2001) in the partitioning. For 

example, although the identically same ‘a’ primitives in two time segments, they additionally assign 

‘ll’ into a larger and longer change, whereas ‘ss’ into a smaller and shorter change. The fuzzified 

Table 2.3 An example of a lookup table for SAX word matching when the number of bins is set to 

4: a, b, c, and d is each label for a sensor signal 

 

 a b c d 

a 0 0 0.67 1.34 

b 0 0 0 0.67 

c 0.67 0 0 0 

d 1.34 0.67 0 0 
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primitives are then input to either hidden Markov model or a ANN classifier in the online primitive 

matching step. ANN classifier provided more accurate detection results, but required twice the 

computation time than the hidden Markov model.  

However, there are still open discussion how to detect and predict faults using the extracted 

pattern and the discretized time series data, as follows: 

 How to employ the extracted pattern and related scores for online monitoring: 

Suppose we extract meaningful patterns, and the corresponding scores as statistical 

evidences, how can we use the output for online fault detection and prediction in the 

real-time. Several researches have paid much attention to decide the appropriate label or 

identify the signals’ behavior more accurately, during a new measurement is 

continuously collected.  

For example, S. Dash et al. (2004) proposed an interval-halving algorithm which 

is a kind of dynamic length segmentation to minimize the given signal’s distortion. To do 

this, they partitioned the input data by considering the measurement, which showed 

significant error in the least-square polynomial fitting, as a segmenting point. Similar, 

there is a discuss on relationships between linear primitives and non-linear primitives 

which has identically the 1st order linear slope (M. R. Maurya et al., 2010). Since a linear 

primitive can evolve to a non-linear primitive, when new measurements are considered 

together in a time segment, they further estimate the B-spline curve in order to re-divide 

time segments.  

In addition, classification the detected fault into the detailed fault modes is also 

widely studied from the perspectives of fault isolation and identification. M. R. Maurya 

et al. (2007) only classified the fault modes using the predefined fault patterns after 

detecting the faults using the signed directed graph. Although they provided the two most 

probable candidates which have the most higher similarity, but they recommended a 

manual diagnosis as a final inspection, since the pattern of which similarity is 0 to the 

current signal is sometimes selected.  

However, it is still not yet extensively addressed to discuss how the extract 

patterns are employed for early alarming or warning to the system. For example, the 

discretized labels were applied to ANN to predict blast furnaces (J. Chen, 2001). The 

given signal was converted to the two features, a relative magnitude and a linear slope, 

and ANN predicts the silicon content of the next heat quantitatively. However, it is hard 
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to consider this research as a case of direct use of fault patterns. It is more reasonable that 

the discretization was used as a feature selection in terms of the fault prediction.  

 How to give statistical evidences to the extracted pattern: We want to detect more 

than one fault mode for covering an entire system (H. Zhong-Hui et al., 2005). 

Unfortunately, it is not easy to obtain sufficient information for every possible fault state 

of the system in advance, it is necessary to provide supplemental evidences for the 

detected faults. In traditional approaches by constructing a representative distance model 

based on the given datasets, some statistical probabilities or intensities are introduced. 

For example, a hybrid model of ANN and SVM classifiers was developed to diagnose 

seven different defects in a gas turbine engine (D.-H. Seo, T.-S. Roh, & D.-W. Choi, 

2009).  

Once a fault is identified by the SVM, the degree of defect magnitude is further 

trained and evaluated by ANN. For diagnosing stator faults in a squirrel cage, they 

monitored the significant changes at a double supply frequency which is called as the 

disturbance frequency (M. Drif & A. J. M. Cardoso, 2014). Fast Fourier transform was 

applied to analyze the behaviors in frequency domain, and the magnitude at the 

disturbance frequency. The normalized percentage of magnitude was used as an indicator 

of defectiveness in the squirrel cage.  

In addition, similarity measure has been analyzed for the evaluation of the 

corresponding fault probabilities (H. Al-Atat, D. Siegel, & J. Lee, 2011). They first 

constructed the optimal baseline of the normal states and then compute the modified 

Euclidean distance between the current state and the baseline. Larger distances indicate 

higher probabilities of fault occurrences. The proposed distance was verified for five 

different defects in a gearbox. However, after identifying fault-related signals’ behaviors 

from the discretized time series data, it is still necessary to provide key statistical 

evidences, such as which pattern indicates a more severe defect in the product or which 

product is more defective than others.  

2.4 Summary  

Fault detection and prediction by analyzing multiple sensor signals aiming to determine when a fault 

will occur in a system have been given considerable attention in the literature. According to the 

corresponding assumptions, requirement, and preferences, we classify the methods into four 
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categories, when the state information of a system is given: (i) multivariate SPC models, (ii) 

multivariate statistical projection models, (iii) machine learning-based models, and (iv) pattern 

extraction models. 

Time series discretization is widely used to analyze to unexpected or anomalous behaviors of a 

system as a pattern extraction model, due to the main common challenges in the given multiple sensor 

signals: (i) the sensor data to be analyzed are too large and they have high dimensionality in general, 

(ii) they usually contain measurement-induced noise and redundant information that makes precise 

analysis difficult, (iii) interpretation of conflicting information from multiple sensors is not 

straightforward, and further (iv) faults in a recent robust system occur very rarely which hinders a 

sound statistical analysis.  

There are noticeable benefits in fault detection and prediction by a pattern analysis using 

multivariate time series data, to reveal the fundamental or hidden signal trends, to make induced-

information more concise, to reduce high dimensionality of the given datasets, to spend inexpensive 

computation cost, and to be robust to noise (I. Alles, 2013; P. Esling & C. Agon, 2012; S. García et al., 

2013). However, there are several important issues to be addressed in discretization for fault detection 

and prediction when the multivariate time series of sensor data is characterized as very-short, 

intermittent, transient, highly nonlinear and non-stationary random signals: 

 What is a fault pattern to represent system’s faulty states? 

 How can we effectively search for fault patterns? 

 What is a symptom pattern to predict fault occurrences? 

 What is a systematic procedure for online fault detection and prediction? 

Therefore, this study proposes a fault detection and prediction framework that consists of (i) 

definition of system’s operational states, (ii) definitions of fault and symptom patterns, (iii) 

multivariate discretization, (iv) severity and criticality analyses, and (v) online detection and 

prediction procedures. 
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CHAPTER 3 

OPERATIONAL STATES 

3.1 Fault, no-fault, normal, and symptom states* 

As already mentioned, this paper will be limited to consideration of supervised problems, the 

corresponding class information of the system’s state is already provided with the original 

multivariate time series data. Given the time markers of all fault occurrences, the system’s state can be 

dichotomously divided into fault and no-fault states, as illustrated in Figure 3.1-(a). The fault state and 

the no-fault state are defined as the time interval during which a fault has occurred and not occurred.  

Abnormal values and unusual trends of sensor signals in the no-fault states can be considered 

as the symptoms of fault occurrences. It is obviously better to search the entire no-fault states for 

symptoms of every fault occurrence, but it will be computationally expensive. In addition, 

measurement-induced noises and changes can be extracted as symptoms, which are irrelevant to the 

system’s fault states and are too far from the faults. These symptoms eventually produce a lot of false 

alarm to the system. Therefore, symptoms should be found in a certain amount of time prior to a fault 

occurrence to be informative in predicting faults, as depicted in Figure 3.1-(b). That is, it is much 

reasonable to identify an appropriate symptom period in the no-fault state. We define the state of a 

system during this time period of interest as the ‘symptom state’. If the system is running neither in 

the fault nor symptom states, it can be said that the system is operating normally.  

For determining a meaningful time period for the system’s symptom state, it can be relied on 

expert knowledge or other experience-based specification. For example, a few minute length of a 

symptom state for the engine knocking prediction, and few days for predicting a faulty compressor 

operation in the heavy-oil-upgrading unit of a petroleum refinery. Since such engineering knowledge 

is not generally simple to obtain, we will propose a symptom state length determination in Section VI. 

                                                      
* This section 3.1 is the same as that partially contained in the published journal written by S. Baek and D.-Y. Kim (2017b). 
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Figure 3.1 No-fault, normal, symptom, and fault states of an automotive gasoline engine. (a) No-

fault and fault states classified according to the given the time markers of a fault occurrence, and 

(b) a normal and a symptom state in a no-fault state. 

(a) 

(b) 
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3.2 Condition monitoring and multiple sensor signals* 

For validate and verify the proposed frameworks including the multivariate time series discretization 

and fault and symptom pattern extraction, and online monitoring procedure, the real-world datasets 

from actual electromechanical systems or the experimental-setups. The total six datasets will be 

described in the following subsections. 

3.2.1 Abnormal cylinder temperature in a marine diesel engine  

Dataset is obtained from the results of a two-months-test-run of a marine diesel engine by a 

shipbuilding company. To monitor the health states of the eight marine diesel engine (Type 9H32/30, 

Hyundai Heavy Industries), We first defined the abnormal combustion as the fault state of the engine.  

If any engine cylinder temperature exceeds the predefined control limit, the engine is considered to be 

under a fault state. A dataset among the nine engines is employed for both fault and symptom pattern 

extraction. It was detected when any cylinder’s outlet temperature showed alarm (which generated 

when a temperature of a cylinder exceeds predefined control limits) among nine cylinders in each 

engine. They have 30 fault states respectively, and the average length is 1577 seconds (equal to the 

number of data points). Figure 3.2 shows a drastic change in the turbocharger inlet temperature and 

lube oil inlet temperature between the no-fault and fault states. 

The sensor data are collected during about two months, i.e. from April 15th. 2013 to June 18th. 

2013, respectively. The system collected the data at a sampling rate of 1Hz. Sensor signals during the 

30 minutes, after each fault state is over, is omitted in the pattern analysis since they are considered as 

transient states to preparation for normal operation. In the case of the no-fault states, too long periods 

are sometime observed. Therefore, we only use about two hours before the start point of the 

corresponding fault states as each no-fault state. If two adjacent fault states are observed with a very 

small time gap (i.e., two faults have occurred at very close time points), then the no-fault state for the 

later fault state is not sufficient for pattern analysis. Therefore, the fault that occurred later is omitted 

in this case.  

The total 462 sensors are attached to monitor each engine’s states indirectly from a common 

controller and an engine, as follows:  

                                                      
* This section 3.2 is the same as that partially contained in the published journals written by S. Baek and D.-Y. Kim (2017a), 

S. Baek, W. S. Baek, D. Kwon, and D.-Y. Kim (2017a), and S. Baek and D.-Y. Kim (2017b). 
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 From a common controller: 350 sensor data, i.e., 179 binary tags and 171 analog signals 

 From an individual engine: 174 sensor data, i.e., 124 binary tags and 50 analog singles. 

 

 

Table 3.1 Summarized description of the marine diesel engine data 

 

 
Fault detection Fault prediction 

Sensors in the feed 

system 

Air cooler pressure, 

Turbocharger inlet temperature 

(T/C inlet temp), 

Lube oil inlet temperature, 

Turbocharger speed, 

Current for ignition, Power factor 

Air cooler pressure,  

Turbocharger inlet temperature 

(T/C inlet temp),  

Turbocharger outlet temperature 

(T/C outlet temp), 

Turbocharger speed, 

Current for ignition, Power factor 

The total number of 

fault states 
30 

The total monitoring 

period 

2 months 

(from April 15th 2013 to June 18th 2013) 

The no-fault state 

length 
2 hours per before the fault states 

Sampling rate 1 Hz 

The average length 

of fault states 
26 minutes 

Figure 3.2 Sensor signals discovered in the no-fault and fault states in the marine diesel engine 
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We neglect the sensor data collected from the common controller since it is hard to map the 

signal’s’ behavior to the corresponding engine system. More 39 sensor signals from an individual 

engine are also eliminated to analyze the fault and symptom patterns based on expert knowledge. In 

addition, using expert knowledge, we categorize the remaining 135 sensor signals into 66 groups. 

Then, we applied to the traditional feature selection and extraction methods (e.g., PCA, auto and cross 

correlation) to find out the significant sensor data. In addition, the variance changes over time is 

observed to analyze the effects between the sensor signals’ behavior and fault occurrences. Finally, we 

selected seven major sensors in the modularized feed system as follow. 

 For fault detection: Air cooler pressure, turbocharger (T/C) inlet temperature, lube oil 

inlet temperature, T/C speed, current for ignition, and power factor sensors 

 For fault prediction: Air cooler pressure, turbocharger (T/C) inlet temperature, T/C 

outlet temperature, T/C speed, current for ignition, and power factor sensors.  

3.2.2 Automotive gasoline engine knockings 

For analyzing the root-causes of engine knockings in an automotive gasoline engine, the vehicle 

diagnostic simulator is designed as depicted in Figure 3.3. The system consists of a SIRIUS-II engine 

manufactured by HYUNDAI MOTORS, 40 analog sensors and 8 variable voltage generators. For 

collecting sensor signals in real-time, a data acquisition device (i.e., NI-cDAQ-9178 with four NI 

9221-9 slots manufactured by National Instruments) is installed. The collected datasets are 

automatically recorded and exported into the database (i.e., Maria DB) by parametric programming 

(i.e., LABVIEW Vis). The dataset was acquired at a sampling rate of 2Hz.  

We generate fault states, i.e., abnormal engine RPM or intermittent engine knocking, 

artificially resulting from decreasing the intake airflow to the fuel injection system. To obtain the fault 

states, the experimental procedure is as follows:  

 Step 1: Turn on the engine 

 Step 2: Stay without any control, for simulating a normal state 

 Step 3: Artificially decrease the airflow by controlling the corresponding variable voltage 

(until an engine knocking occurs) 

 Step 4: Stay without any control after an engine knocking occurs (at the end of Step3), 
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for simulating a fault state. 

 Step 5: Turn off the engine, in order to finish the datasets for a set of a no-fault and a 

fault state. 

The no fault state corresponds the time period from Step 1 to Step 3, whereas the fault state is 

Step 4. Note that, the fault state is different to the catastrophic failure in an engine such as turning off 

the engine. During 28 hours, total 338 fault states were generated for predicting engine knockings. For 

extracting fault patterns, 52, 72, 78 fault states are analyzed respectively, and they are divided 

according to the date of experiment. The average length of the fault states and the no-fault states is 

about 66 seconds (standard deviation: 4.8 seconds), and 154 seconds (standard deviation 6.6 seconds).  

Figure 3.4 plots throttle position and manifold absolute pressure sensor data measured in a no-

fault and a fault state. According to our previous research (S. Baek & D.-Y. Kim, 2013), sensor signals 

collected from the automotive gasoline engine are not appropriate for PCA-based fault detection, 

since they do not follow any Gaussian distribution, and not show time independence and 

autocorrelation. As a result, a relatively large type I error and type II error (45.3% and 20.0% in 

Figure 3.3 The vehicle diagnostic simulator for collecting gasoline engine knocking datasets and the 

corresponding system configuration diagram 
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Hotelling’s T2 statistics, 91.6% and 74.8% in Q statistics, respectively) were computed as a final result 

in PCA-based fault detection. 

Unfortunately, it was relatively rare data points to investigate symptoms of faults in the no-

fault states (about 300 data points for each no-fault state), therefore the 2Hz dataset was resampled 

into 10Hz by an interpolation (about 1540 data points for each no-fault state). Among the sensors, we 

selected the different six major sensors for fault detection and prediction, respectively.  

 For fault detection: # 1 injector, #2 injector, #3 injector, crank position, manifold 

absolute pressure, and throttle position.  

 For fault prediction: Radiator fan at a low speed, Water temperature, Ignition, Manifold 

absolute sensor, O2 ratio, Vehicle speed 

Figure 3.4 Throttle position (TP) and manifold absolute pressure (MAP) signals measured in a no-

fault and a fault state 

Table 3.2 Summarized description of the automotive gasoline engine data 

 

 
Fault detection Fault prediction 

Sensors in the fuel 

injection system 

Crank position,  

Manifold absolute pressure (MAP), 

Throttle position,  

#1 injector, #2 injector, #3 injector 

Radiator fan at a low speed (RF low), 

Water temperature (WT), Ignition, 

Manifold absolute sensor (MAP),  

O2 ratio, Vehicle speed (VS) 

The total number 

of fault states 
50 338 

The total 

monitoring period 
3.5 hours 23.9 hours 

Sampling rate 2 Hz 10Hz 

The average length 

of fault states 
65 seconds 

 



96 

3.2.3 Laser weld defects 

The dataset is collected from the fiber laser welding monitoring system, as shown in Figure 3.5. The 

system used an IPG YLS 2000 AC fiber laser source (IPG Photonics) with a maximum output 

discharge of 2 kW in the TEM01 mode of laser radiation. The system is originally designed to 

investigate the relationship between the part-to-part gap of two galvanized steel sheets and the 

weldment quality of a joint.  

We generate five defects, such as a spatter, a penetration hole and an undercut at the target 

galvanized steel sheets during the laser welding process by controlling the gap using a conventional 

metal and 0.5mm-thickness gauge, and 45normal weldments without any intentioned gap. An example 

of normal and defective weld seams with corresponding signals is given in Figure 3.6. Consequently, 

a no-fault state and a fault state accordingly indicate the sensor signals while a defective and normal 

weld seam is generated during the laser welding process. Due to a real-time data acquisition system 

(i.e., PRECITEC LWMTM), we can collect three types of sensor signals in the form of time series at a 

sampling rate of 1kHz, and the monitoring time period for each no-fault and fault state is 0.4 seconds.  

 Plasma intensity, weld pool temperature, and back-reflection  

According to previous research (S. Baek, R. Oh, & D.-Y. Kim, 2015b), it was a challenge to 

detect defect using very limited sensor signals which are characterized as intermittent, discontinuous, 

very short, and non-stationary random signals. For example, both the combination of traditional 

univariate SPC models (i.e., limit checking in the individual chart) and the multivariate statistical 

projection models (i.e., Hotelling’s T2 and Q statistics from a PCA model) showed lower performance 

in terms of sensitivity and specificity (H0: The current weldment is normal, H1: The current weldment 

is defective), because these signals has regular/periodic up and down in a cycle. 

Figure 3.5 Laser welding monitoring system 
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Table 3.3 Summarized description of the laser welding process 

 

 
Fault detection 

Applied sensor signals  Plasma, Temperature, Back reflection 

The total number of fault states 
5 weld defects 

(among 50 welding stiches) 

Sampling rate 1 kHz 

The average length of each stiches 

(The average length of fault states) 
0.4 seconds 

 

3.2.4 Buzz, squeak, and rattle (BSR) noises from a car door trim I (using a 

typical acoustic sensor array) 

BSR is a phenomenon of a defective car door trims, which generate relatively quiet but annoying 

noises (V. G. C. Cook & A. Ali, 2012). According to F. Chen and M. Trapp (2012),, it is usually 

caused by unexpected contacts between car parts due to an incomplete assembly or poor geometrical 

design. These noises can be characterized as intermittent, considerably short, and nonstationary 

random signals that feature small changes.  

The system shown in Figure 3.7 was developed to detect a defective car door trim during an 

Figure 3.6 Normal and defective weld seams with the corresponding weld pool temperature signals 
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assembly process that has a potential to generate BSR noises. The in-process BSR noise detection 

system consists of a typical sensor array of nine microphones (i.e., acoustic sensors), four parabolic 

microphones, a pneumatic pusher controlled by a gantry robot, a data acquisition system. The system 

structure was adopted from a general fixed noise evaluation test, and was modified for the in-process 

BSR noise detection. A pneumatic pusher applied pressure to a car door trim lying on the system with 

a pressure of 10 kgf/cm2, and 13 acoustic signals were recorded using micro-phones. The array of nine 

acoustic sensors was mounted inside the system to measure the internal noise, and four parabolic 

sensors were located at four locations outside the system to obtain external environmental noises, such 

as shop floor noises.  

If the pusher applies pressure to the target car door trim and an unexpected sound occurs that 

is sufficiently loud to be detected by the experimental system, the tar-get is treated as a product with 

defect. If no abnormal sound is heard, the dataset for the door trim is assumed to be defect-free. The 

sensor signals recorded from a defective door trim is considered as a fault state, whereas those from a 

defect-free door trim is considered as a normal state. 

The sensor signals were recorded from the time the pusher began pressurization for 

approximately two seconds and had a sampling rate of 32,768 Hz. A total of 60 normal states and 40 

defect states were obtained respectively. Because sound signals oscillated up and down quite 

symmetrically, the absolute values of the original sensor signals were recorded to investigate their 

change in magnitudes over time, as depicted in Figure 3.8. In this paper, we only use nine sensor 

signals collected from the insider sensor array to focus on the BSR noise rather than environmental 

noises (i.e., collected from four parabolic external acoustic sensors) 

Figure 3.7 The in-process BSR noise detection system for collecting BSR noise datasets and the 

corresponding system configuration diagram 
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Table 3.4 Summarized description of the in-process BSR noise detection system using a typical 

acoustic sensor array 

 

 
Fault detection 

Applied sensor signals  
The array of nine acoustic sensors right 

above the car door trim 

The total number of fault states 
40 

(40 BSR defects among 100 door trims) 

Sampling rate 32,768 Hz 

The average length of each stiches 

(The average length of fault states) 
2 seconds 

 

 

Figure 3.8 Acoustic sensor signals monitored at four positions during the defect-free (at the left side) 

and defect (at the right side) product: (a) at the inside (i.e., top center corner) and (b) at the left 

(outside the system) 
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3.2.5 BSR noises from a car door trim II (using acoustic emission sensors) 

According to Y. Qu, E. Bechhoefer, D. He, and J. Zhu (2013), vibration-based sensor signals, 

collected from such accelerometers or microphones, have difficulties in detecting incipient anomalies 

with low-frequency content. The authors suggested the use of acoustic emission sensor signals, which 

are used to measure internal stress of target products, is more applicable to detecting collisions, cracks 

and closures (Z. A. Halim, N. Jamaludin, S. Junaidi, & S. Y. S. Yahya, 2015; Jing Li et al., 2017; S. A. 

Niknam, T. Thomas, J. W. Hines, & R. Sawhney, 2013).  

Considering these characteristics, the environmental setup for data collection is designed as 

follows: a target car door trim is laid on the test bench, and four acoustic emission sensors are 

attached to the target. The background noise is always played toward the target door trim, as 

illustrated in Figure 3.9. Defects were artificially caused by improperly assembling the screws 

because incomplete fastener assembly is a major root cause of the BSR noise (F. Chen & M. Trapp, 

2012).  

The original acoustic emission signals were collected at a sampling rate of 100 Hz and then 

converted into time-based features (i.e., average signal level, root mean square, and absolute energy). 

In other words, three signals from each sensor were obtained, and the total number of monitored fea-

tures was 12 per product. Ultimately, 24 normal states and 24 defect states from eight types of car 

door trims with different screw points (two car door trims × four screw points) were finally collected.  

Despite the environmental noise, the acoustic emission signals show more clear behaviors than 

the conventional sound signals as shown in Figure 3.10. However, every signal changed as if there 

was a regular cycle, and the behaviors of the three signals were dynamic and nonstationary, regardless 

of whether the state was a normal state or a fault state. For example, in the case of RMS and absolute 

energy of the acoustic emission sensor signals, it shows a regular up-and-down cycle in both normal  

Figure 3.9 A system configuration diagram for collecting BSR noise datasets using four acoustic 

emission sensors 
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Figure 3.10 Three signals from acoustic emission sensor at the 3rd point during normal (at the left 

side) and defective (at the right side) states: (a) root mean square (RMS), (b) average signal level 

(ASL), and (c) absolute energy. 
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and fault states, with slightly different time points to up and down. On the other hands, two different 

signal’s behaviors are observed regardless of the states. Even experts said the signals are hard to 

classify into normal and fault states without any more information, since it is considered to be a very-

short, intermittent, transient, highly nonlinear and non-stationary random signal. Therefore, Therefore, 

it was also necessary to conduct pattern analysis for classifying the normal and defect states. 

Table 3.5 Summarized description of the in-process BSR noise detection using acoustic emission 

sensors 

 

 
Fault detection 

Applied sensor signals  
4 average signal levels, 

4 root mean square, 4 absolute energy 

The total number of fault states 
24  

(24 BSR defects among 48 door trims) 

The total monitoring period 135 seconds 

Sampling rate 0.1 kHz 

The average length of each stiches 

(The average length of fault states) 
3 seconds 

3.2.6 Visual stimuli cognition tests by theP300 experiment  

Although the experiment datasets are not collected from an electromechanical system, they are 

analyzed from the perspective of detecting a specific target state. The dataset is collected from the 

P300 experimental results of total 20 volunteers (eleven males, nine females, university students, and 

aged 20-27). Participants report no history of neurological disorders with normal or corrected-to-

normal vision. They informed written consent prior to the main experiment according to the approval 

obtained from the Institutional Review Board of the Ulsan National Institute of Science and 

Technology (UNISTIRB-15-04-C). The experiment followed the conventional steps of P300 

experiment. The experiment was conducted as the following steps.  

 Step 1. Participants take a rest about 35 seconds.  

 Step 2. Target visual stimulus is presented on the screen. The task for a participant is to 

watch the screen to recognize whether the target stimuli appear or not.  

 Step 3. Four stimuli (including target stimuli) are presented on the screen in random order. 
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During presenting the stimuli, a participant is supposed to focus on the given target 

stimuli. (the flashing time: about 120ms per a stimulus) 

 Step 4. The stimulation ended. 

During Step 3, the time, which the target stimulus is given to the participant, is considered as 

target event state. In addition, by considering the  latency  (delay between a  physical  stimulus,  

i.e.,  an  event  and  human response) of the P300 brain response (J. Polich, 2007), the length of 

event state is defined from the time of flash presentation to the brain response time (i.e., 500ms). As 

shown in Figure 3.11, a target event state is longer than the flashing presentation period. If a target 

stimulus is again given to the participant within the target event state, we merge the two target event 

state. In this paper, the target event state hereafter considered as the fault state.  

Total 80 normal and fault states are collected at a sampling rate of 500Hz. A total of 31 

electroencephalography (EEG) electrodes are attached to the scalp of the participants. Through the 

conventional feature extraction and selection methods, the five electrodes are selected. 

 Frontal-Zero (FZ), Frontal-left-3 (F3), Frontal-right-4 (F4), Central-Zero (CZ), and 

Parietal-Zero (PZ) 

 

 
 

Figure 3.11 EEG sensor signals collected from parietal-zero and central-zero location during a non-

target (i.e., a no-fault state), and a target event state (i.e., a fault state) 
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Table 3.6 Summarized description of the P300 experiment for visual stimuli cognition detection 

 

 
Fault detection 

EEG electrode placements F3, FZ, F4, CZ, PZ 

The total number of fault states 57 / 72 / 78 

The total monitoring period 20 minutes 

Sampling rate 500 Hz 

The average length of fault states 0.5 seconds 
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CHAPTER 4 

MULTIVARIATE TIME SEIRES 

DISCRETIZATION* 

4.1 Overview 

The main barriers to effective pattern extraction for fault detection and prediction are: (i) the sensor 

data to be analyzed are too large and they have high dimensionality in general, (ii) they usually 

contain measurement-induced noise and redundant information that makes precise analysis difficult, 

(iii) interpretation of conflicting information from multiple sensors is not straightforward, and further 

(iv) faults in a Today’s robust system occur very rarely which hinders a sound statistical analysis. 

Finding patterns in a time series of sensor data, relating with anomalous behaviors of a system is a 

good alternative approach from the practical aspect of fault detection and prediction from large 

datasets (V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, & K. Yin, 2003), and in general, it 

requires the following main tasks: (i) appropriate representation of time series as an input data (e.g., 

transforming time interval signal information to a symbol), (ii) similarity measurement between time 

series, and (iii) suitable pattern recognition. Shannon’s entropy or Kullback–Leibler divergence could 

be used as a similarity measure (F. Mörchen & A. Ultsch, 2005).  

Since it is usually not straightforward to discover meaningful features and rules directly from 

complex time series, time series discretization is made in order to extract meaningful patterns from a 

large amou(B. Esmael et al., 2012)nt of sensor data in pattern extraction (S. H. Nguyen & H. S. 

Nguyen, 1998), motif discovery (J. Lin, E. Keogh, S. Lonardi, & P. Patel, 2002; D. Minnen, C. Isbell, 

I. Essa, & T. Starner, 2007), and trend analysis (J. Lin et al., 2007). Note that time series discretization 

                                                      
* This CHAPTER 4 is the identically same as that contained in the published journal written by S. Baek and D.-Y. Kim 

(2017a), and partially contained in the published journals written by S. Baek et al. (2017a) and S. Baek and D.-Y. Kim 

(2017b). 
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has been widely used to reduce the size of the given data by transforming continuous features into a 

set of discrete labels, while preserving meaningful behaviors of original multivariate signals (B. 

Esmael et al., 2012; R. Pensa, C. Leschi, J. Besson, & J. Boulicaut, 2004). Therefore, the 

discretization procedure for multivariate time series data is proposed in the previous study (S. Baek & 

D.-Y. Kim, 2017a), as illustrated in Figure 4.1 

Let 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑚} be a set of m sensors whose values represent a system’s state at 

specific time, and 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) be the time series of ith sensor data that is collected from 1 

to n time points , in which 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛 , is a finite sequence of measured sensor values. If we 

further express the time series of each sensor data as a row vector in the matrix form, then we can 

formally represent multivariate time series data as a 𝑚 × 𝑛 matrix 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛
𝑥21 ⋱ ⋱ 𝑥2𝑛
⋮ ⋱ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] 

where m-entries of a column vector, e.g., (𝑥11, 𝑥21, … , 𝑥𝑚1)
𝑇, can be considered as a state vector. 

To simplify the given time series data thereby accelerating pattern mining, real numbers of 

Figure 4.1 Label definition and specification by the multivariate discretization of two sensor data: 

Manifold Absolute Pressure (MAP) and Throttle Position (TP). 
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sensor data are discretized into a finite number of labels (e.g., classes, bins) through label definition 

step. This step consists of the following two main steps: (i) to partition continuous features of time 

series data into a set of contiguous bins in sensor value axes, and then (ii) to specify relevant labels to 

the discrete bins (R. Dash et al., 2011). Label is a feature of given time series for representing a 

system’s states within a time segment, in this paper, a mean value and a linear slope are applied. For 

considering a mean value, we first use maximum likelihood estimation to estimate a histogram of the 

original sensor data as a parametric probability density function (i.e., the estimated distribution). 

Based on the discretization parameters, the estimated distribution is divided into a set of contiguous 

bins (“cut-points”). In addition, the slope of the 1st regression line and its statistical significance is 

used to include linear slope information in a set of label. This procedure is performed for each 

individual sensor signal.  

For further data reduction in the time axis, time series discretization can be made based on 

time segment information of sensor data. For example, given a time series 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖9) of 

sensor ‘i’ having a set of two labels 𝐿𝑖 = (𝑙𝑖1, 𝑙𝑖2), suppose that the length of time segment is ‘3’, we 

first need to specify an appropriate label of each time segment that pertains to sensor values in the 

time segment. The original multivariate time series data, 𝑋𝑖 , are then converted into discretized 

multivariate time series, 𝐷(𝑋𝑖), as follows: 

 

If the number of time segments is set as ‘s’ in a general context, the discretized multivariate 

time series data in the matrix form can be denoted as: 

𝐃(𝐗) =  [

𝐷(𝑥11) 𝐷(𝑥12) ⋯ 𝐷(𝑥1𝑠)

𝐷(𝑥21) ⋱ ⋱ 𝐷(𝑥𝑚𝑠)
⋮ ⋱ ⋱ ⋮

𝐷(𝑥𝑚1) 𝐷(𝑥𝑚2) ⋯ 𝐷(𝑥𝑚𝑠)

] 

where m-entries of a column vector, (𝐷(𝑥1𝑘), 𝐷(𝑥2𝑘),… , 𝐷(𝑥𝑚𝑘))
𝑇 , will be called hereafter a 

“discretized state vector (DSV)” that describes the behavior of a given system for a specific time 

segment. It is important to note that both a discretized times series and the series of event codes still 

contain temporal information of the original sensor signals. In other words, the system’s states will be 

determined by DSVs.  

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5, 𝑥𝑖6, 𝑥𝑖7, 𝑥𝑖8, 𝑥𝑖9) 

 

𝑙𝑖2        𝑙𝑖1       𝑙𝑖2 

𝐷(𝑋𝑖) = (𝑙𝑖2, 𝑙𝑖1, 𝑙𝑖2) 
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Finally, by interpreting the signals’ behaviors in both fast and slow time scales, we will 

express the system’s state for a DSV or a sub-matrix of DSVs as an event code, denoted by 𝑒𝑟 (𝑟 =

1,2,… , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑛𝑐𝑡 𝑒𝑣𝑒𝑛𝑡 𝑐𝑜𝑑𝑒) . In the next sections, we give a more detailed 

description of the proposed discretization procedure. 

4.2 Label definition 

The first step of the proposed multivariate time series discretization is to partition continuous features 

of a time series to a finite number of bins (classes) and then to assign an appropriate label for each bin. 

Therefore, this step is called as ‘partitioning.’ Since a label symbolizes signal patterns during a 

specific time segment in accordance with the assumption of time-varying quantities of sensor data, the 

key characteristics of signals must be taken into account such as amplitude, frequency, and signal 

trend.  

As shown in Algorithm 4.1, we consider a mean value and a slope of a 1st regression, but 

different statistical features can be used for label definition. For example, a dominant frequency 

calculated from short-time Fourier transformation was used to define a set of labels, since it describes 

the frequency variation in a system (W. S. Baek, S. Baek, & D.-Y. Kim, 2016; W. S. Baek, S. Baek, & 

D.-Y. Kim, 2017).  

Algorithm 4.1 Generation of a set of labels - partitioning 

Require: 𝑋𝑖 (a time series of ith sensor data), 𝐿 (the number of labels for all sensor data), 𝑏 (the 

number of bins),  𝑏𝑤 (bin width threshold), 𝑙𝑖𝑛𝑒𝑎𝑟𝑇(Boolean), 𝑷𝑫𝑭 = {𝑃𝐷𝐹1, … , 𝑃𝐷𝐹𝑧} (a set 

of PDF candidates) 

1: for (𝒊 = 𝟏; 𝒊 < 𝒎+ 𝟏; 𝒊 + +) do 

2:   𝑃𝐷𝐹𝑜𝑝𝑡 ← 𝑃𝐷𝐹_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝑋𝑖 , 𝑷𝑫𝑭) // Fit the measured sensor data to a PDF model 

3:   𝐶𝑃𝑖 ← 𝐶𝑢𝑡𝑃𝑜𝑖𝑛𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑋𝑖 , 𝑃𝐷𝐹𝑜𝑝𝑡 , 𝑏, 𝑏𝑤)  

4:   𝐿𝑖 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐿𝑎𝑏𝑒𝑙𝑠(𝐶𝑃𝑖 , 𝑙𝑖𝑛𝑒𝑎𝑟𝑇)  

5: end for 

4.2.1 Step A1: Estimation of the distribution models for sensor signals 

In order to quantify the randomness of sensor data, we parametrically estimate the Probability Density 
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Function (PDF) of each sensor signal by (i) selecting the most appropriate distribution model from a 

set of pre-defined PDF models, so-called “PDF library” and (ii) optimizing its distribution parameters 

by maximum likelihood estimation (I. J. Myung, 2003). 

In other words, given a PDF library containing ‘z’ number of PDF models, 𝑷𝑫𝑭 =

{𝑃𝐷𝐹1, 𝑃𝐷𝐹2, … , 𝑃𝐷𝐹𝑝, … , 𝑃𝐷𝐹𝑧} and measured sensor data, we first compute the optimum likelihood 

values between every sensor data and all 𝑃𝐷𝐹𝑝, such that optimum likelihood values for all 𝑃𝐷𝐹𝑝 are 

estimated. In this paper, 17 continuous PDF are included in the PDF library: Beta, Birnbaum-

Saunders, Exponential, Extreme Value, Gamma, Generalized Extreme Value, Generalized Pareto, 

Inverse Gaussian, Logistic, Log-Logistic, Lognormal, Nakagami, Normal, Rayleigh, T-Location-Scale, 

And Weibull. We then select the best PDF, 𝑃𝐷𝐹𝑜𝑝𝑡 that has the maximum likelihood value for 

representing measured sensor data (line 2 in Algorithm 4.1) (A. Fischer & C. Igel, 2012) 

4.2.2 Step A2: Cut-point determination 

To transform a time series 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)  into the discretized time series 𝐷(𝑋𝑖)  that is 

expressed as a series of labels, it is necessary to first define a set of contiguous labels 𝑳𝒊 =

(𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝐿) for all sensor data (i = 1, 2, … , m), where the number of labels L must be carefully 

pre-defined. The prerequisite for defining the labels that will symbolize system’s states is to determine 

the cut-points for classification (S. Ramírez-Gallego et al., 2016).   

Corresponding discretization parameters are the number of bins ‘b’ and bin width threshold 

‘bw’ that are closely correlated with the number of labels ‘L’. It is worthy to note that the number of 

bins and the alphabet size for the SAX approach, in the J. Lin et al. (2007)’s research, play a similar 

role in determining how many bins are required to classify sensor values. Bin width threshold implies 

the probability that a sensor value falls in the center bin that includes the centroid of a distribution, so 

that if the number of bins is odd, then the remaining bins have the same probability, (1 − 𝑏𝑤)/(𝑏 −

1), where b > 1. For this reason, in this study, we use odd bin numbers (e.g., 3, 5, or 7) to include the 

centroid of a distribution in the center bin. For example, if b and bw are set to 3 and 33.3% 

respectively, it is equivalent to equal frequency binning (H. Liu et al., 2002). Figure 4.2 shows an 

example of cut-points determination for partitioning the original sensor data where b and bw are set to 

3 and 80% respectively. 

In practice, bin width threshold must be controlled as a very critical discretization parameter 

and it is usually recommended to be larger than 100/𝑏 (%) in order to ensure the discrimination of 
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abnormal sensor values from normal ones. For the sake of simplicity, we use the same parameter 

values, b, bw and L for all sensors. Once these values are specified, a set of cut-points for the ith 

sensor, 𝐶𝑃𝑖 can be determined and denoted as 𝐶𝑃𝑖 = [𝑐𝑝𝑖1 𝑐𝑝𝑖2…𝑐𝑝𝑖(𝑏−1)]
𝑇
. 

The performance of cut-points determination using the estimated PDF was examined in 

automotive gasoline engine knocking detection, compared to conventional data discretization, such as 

equal frequency binning and entropy discretization (S. Baek, Y. J. Lee, & D.-Y. Kim, 2012). Equal 

frequency binning is unsupervised data discretization which divides the bins so that all bins contain 

the same number of measurement, whereas entropy discretization partition the bins so that the entropy 

of every bin is minimized. The proposed one requires more expensive computation costs than equal 

frequency binning, but similar to entropy binning. In the case of detection results, the performance is 

better than other two methods regardless the parameter setting, even it does not use any class 

information obtained from the supervised problem.  

Figure 4.2 An example of distribution model estimation of sensor data and the original sensor data over 

time: the PDFs of three sensor signals (crank position, manifold absolute pressure, and throttle 

position) are estimated as generalized extreme value, t-location-scale, and normal distribution 

respectively, where b =3 bins and bw = 80% are given 
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4.2.3 Step A3: Consideration of the linear trend in the time segment 

In general, a representative quantity of sensor data (e.g., a mean) in a bin, or its coded value can be 

used as a label for the bin. In order to further take account into the linear trend of sensor data, we refer 

to the slope of the regression line in a time segment. In other words, a label for a bin can be further 

detailed into three sub-labels depending on the sign of the slope, so that we can constitute a more 

detailed set of labels considering the linear trend in a time segment. 

Sub-labels can be obtained with respect to whether the sign of the slope is positive/negative 

and statistically significant (e.g., significance level of 0.05). We use a Boolean, linearT, whether to 

include the linear trend for label definition, which is also considered to be a discretization parameter. 

If the more trend information is necessary to convert the original time series into discretized one, then 

this step can be modified to compute 1st and 2nd slope of the 2nd order regression line or more.  

4.2.4 Step A4: Generation of a set of labels 

The number of labels L is calculated according to a set of cut-points and linear trend consideration. If 

we do not include the linear trend for label definition (i.e., linearT = false), then L is equal to the 

number of bins b. For example, suppose that b is 3, linearT = true, and the corresponding cut-points 

are computed as 𝐶𝑃𝑖 = [𝑐𝑝𝑖1 𝑐𝑝𝑖2]
𝑇, then a set of nine labels for the ith sensor 𝐿𝑖 can be generated as 

follows. 

𝐿𝑖 =

{
 
 
 
 
 

 
 
 
 
 
𝑙𝑖9 𝑖𝑓  �̅�𝑖𝑘 > 𝑐𝑝𝑖2 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒                

𝑙𝑖8 𝑖𝑓  �̅�𝑖𝑘 > 𝑐𝑝𝑖2 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑜𝑟 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑙𝑜𝑝𝑒      

𝑙𝑖7 𝑖𝑓  �̅�𝑖𝑘 > 𝑐𝑝𝑖2  𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒              

𝑙𝑖6 𝑖𝑓 𝑐𝑝𝑖1 < �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖2  𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒          

𝑙𝑖5 𝑖𝑓 𝑐𝑝𝑖1 < �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖2  𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑜𝑟 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑙𝑜𝑝𝑒

𝑙𝑖4 𝑖𝑓 𝑐𝑝𝑖1 < �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖2  𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒         

𝑙𝑖3 𝑖𝑓  �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖1 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒                

𝑙𝑖2 𝑖𝑓  �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖1 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑜𝑟 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑠𝑙𝑜𝑝𝑒      

𝑙𝑖1 𝑖𝑓  �̅�𝑖𝑘 ≤ 𝑐𝑝𝑖1 𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑙𝑜𝑝𝑒               

 

where �̅�𝑖𝑘 is the mean value of ith sensor data in a kth time segment 𝑋𝑖(𝑤×(𝑘−1)+1:𝑤×𝑘), given w as 

the length of time segment. 

One the other hand, suppose that b is 3, linearT = false and the corresponding cut-points are 

identically computed as 𝐶𝑃𝑖 = [𝑐𝑝𝑖1 𝑐𝑝𝑖2]
𝑇, then a set of three labels for the ith sensor 𝐿𝑖 can be 

generated as being identically same the set of cut-points, as the following equation. 
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𝐿𝑖 = {

𝑙𝑖3 𝑖𝑓 �̅�𝑖𝑘 > 𝑐𝑝i2     

𝑙𝑖2 𝑖𝑓 𝑐𝑝𝑖1 < �̅�𝑖𝑘 ≤ 𝑐𝑝i2
𝑙𝑖1 𝑖𝑓 𝑐𝑝𝑖1 < �̅�𝑖𝑘       

 

We use contiguous integers (i.e., coded value of the representative quantity of sensor data in each bin) 

for label definition in order to adopt a Euclidean distance-based similarity measure between 

discretized state vectors. 

4.3 Label specification 

Second step for the multivariate time series discretization is to convert the original features of the 

sensor signals into a series of DSVs with respect to a set of labels defined in Section 4.2. 

4.3.1 Step B1: Time segmentation  

In addition to partitioning real numbers of sensor data into a finite number of discrete bins, by time 

segmentation, we can not only further reduce the original data but also take into account the linear 

trend of signal (see (b) in Figure 4.3). Let 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) be the time series of ith sensor data 

and w be the length of time segment(1 < 𝑤 ≪ 𝑛) that must be carefully pre-determined as yet 

another important discretization parameter. Suppose that w = 3 as an illustration, time segmentation 

can be made by the following two ways:  

 

 Type A: exclusive points 

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5, 𝑥𝑖6, 𝑥𝑖7, 𝑥𝑖8, 𝑥𝑖9, … , 𝑥𝑖𝑛) 

𝐷(𝑥𝑖1)     𝐷(𝑥𝑖2)    𝐷(𝑥𝑖3) 

 → 𝐷(𝑋𝑖) = (𝐷(𝑥𝑖1), 𝐷(𝑥𝑖2), 𝐷(𝑥𝑖3), … , 𝐷(𝑥𝑖𝑠)) 

 Type B: nested points 

                     𝐷(𝑥𝑖2)      𝐷(𝑥𝑖4)   

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑥𝑖4, 𝑥𝑖5, 𝑥𝑖6, 𝑥𝑖7, 𝑥𝑖8, 𝑥𝑖9, … , 𝑥𝑖𝑛) 

𝐷(𝑥𝑖1)       𝐷(𝑥𝑖3)   

 → 𝐷(𝑋𝑖) = (𝐷(𝑥𝑖1), 𝐷(𝑥𝑖2), 𝐷(𝑥𝑖3), … , 𝐷(𝑥𝑖𝑠) 
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For Type A, the number of time segments s is then equivalent to ⌈
𝑛

𝑤
⌉ which is the smallest 

integer not less than 
𝑛

𝑤
 and ⌈

𝑛

𝑤
⌉ = 𝑠 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑠 − 1 <

𝑛

𝑤
≤ 𝑠 , whereas for Type B, s is 

calculated by ⌈
𝑛−1

𝑤−1
⌉ . For the sake of simplicity, we adopt only Type A for time segmentation, 

understanding that meaningful signal trends may be missed by a fixed length of time segment (T.-C. 

Fu, 2011). 

Instead of fixed length of time segment, but dynamic length of time segment can be applied as 

explained in Section 2.3.3.1. Dynamic length for time segmentation is preferred to sliding window 

with a fixed length, since it generates a relatively small amount time segments ((U. Appel & A. Brandt, 

1983). This procedure of dynamic time segmentation is as follows.  

Figure 4.3 Time segmentation and labeling for two sensor signals with respect to a mean value 
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 Step 1: Assign the corresponding label to the initial time segment of which length is 

equal to 𝑤. 

 Step2: Assign the corresponding label to the additional time segment of which length is 

equal to 𝑤 + 𝑤′ (where 𝑤′ is called as the length of additional time segment) and start 

point is set as the right next point of the previous time segment (i.e., following time 

segmentation Type A: exclusive points). 

 Step 3-1: If two labels are same, do Step 2 again. 

 Step 3-2: If two label are different, do Step 1 again from right next point of current time 

segment.  

For example, as illustrated in Figure 4.4, after the initial time segment is assigned as 𝑙2 

subsequent four more time segments are also converted as 𝑙2. At the fifth time segment, different 

label 𝑙2 is generated, time segment 1 to 4 is merged as one relatively large segment. Recursively, 

sixth time segment is different to fifth segment, fifth segment keeps its length. 

4.3.2 Step B2: Labelling 

From the pre-defined set of labels 𝐿𝑖, we need to select an appropriate label of each time segment 

with respect to the mean value of sensor data and the linear trend in the time segment as described in 

Algorithm 4.1 (see from (c) to (d) in Figure 4.3). By specifying a label to each time segment, we can 

discretize the original time series of 𝑋𝑖 into 𝐷(𝑋𝑖) as follows: 

𝐷(𝑋𝑖) = (𝐷(𝑥𝑖1), 𝐷(𝑥𝑖2), … , 𝐷(𝑥𝑖3), … , 𝐷(𝑥𝑖𝑠)) 

Figure 4.4 An example of dynamic length for time segmentation 
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where the label 𝐷(𝑥𝑖𝑘) for the sensor data 𝑥𝑖(𝑤×(𝑘−1)+1:𝑤×𝑘) in the kth time segment is selected from 

𝐿𝑖 = (𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝐿). By expressing each 𝐷(𝑋𝑖) as a row vector in the matrix form, we can represent 

the discretized multivariate time series as a 𝑚 × 𝑛 matrix as follow: 

𝐃(𝐗) =  [

𝐷(𝑥11) 𝐷(𝑥12) ⋯ 𝐷(𝑥1𝑠)

𝐷(𝑥21) ⋱ ⋱ 𝐷(𝑥𝑚𝑠)
⋮ ⋱ ⋱ ⋮

𝐷(𝑥𝑚1) 𝐷(𝑥𝑚2) ⋯ 𝐷(𝑥𝑚𝑠)

] 

 

Algorithm 4.2 Assign a relevant label to a time segment 

Require: 𝑋𝑖  (the time series of ith sensor data), 𝑤 (the length of time segment), 𝐿i  (a set of 

labels)  

1: 𝑠 ← ⌈
𝑛

𝑤
⌉  

2: : for (𝒌 = 𝟏; 𝒌 < 𝒔 + 𝟏; 𝒌 + +) do 

3:    𝐷(𝑥𝑖𝑘) ← 𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝐿𝑎𝑏𝑒𝑙𝑠(𝑋𝑖(𝑤×(𝑘−1)+1:𝑤×𝑘), 𝐿𝑖) 

4: end for 

 

The state of a given system for a specific time segment can be described by the discretized 

state vector, (𝐷(𝑥1𝑘), 𝐷(𝑥2𝑘), … , 𝐷(𝑥𝑚𝑘))
𝑇 .  It is very important to note that a mapping function 

from discretized state vectors to events codes must be carefully developed from the perspective of 

multiple sensor data. In practice, for meaningful event codification, an important sensor selection step 

should be conducted a priori. In this study, however, we assume that all sensors are the key 

characteristic indicators related to system’s states. 

4.4 Event codification 

The information loss of the transformed DSVs compared to the original time series data is dependent 

to the discretization parameters. In particular, signals’ behaviors can be discovered within a short time 

interval, but also within a large interval, such as impulsive drops, or for a relatively long period (J. B. 

Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, & F. Fnaiech, 2015). Therefore, we generate a series 

of DSVs using a relatively short length of a time segment, but consider sub-matrices of DSVs to 

express the system’s state.  
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There are two types of a sub-matrix of DSVs, considering only adjacent ones or adjacent and 

separated ones together, as depicted in Figure 4.5. In the case of a set of adjacent DSVs, we can obtain 

them by sliding a window of a pre-defined number of time segment from the discretized multivariate 

time series data. The DSVs [
𝑙12 𝑙12
𝑙22 𝑙22

],  of which time segments are 8 and 9 in Figure 4.6 is an 

example of a sub-matrix of adjacent DSVs with two time segments. 

If we want to consider not only adjacent but also separated DSVs for a sub-matrix, we can 

employ various sequential pattern mining techniques such as Apriori (R. Agrawal & R. Srikant, 1995), 

SPADE (M. J. Zaki, 2001) and PrefixSpan (J. Pei et al., 2001), which are described in Section 2.3.3.4. 

As illustrated in Figure 4.6-(a), sequential relationships in the given multivariate discretized time 

series data are considered as a sub-matrix of adjacent and separated DSVs 

However, the occurrence of DSV2 5 minutes after DSV1 occurs and DSV2 occurring 10 seconds 

after DSV1 occurs may be considered as different situations in fault detection and prediction. 

Therefore, in order to employ these sub-matrices of DSVs in fault detection and prediction, it is 

further necessary to analysis the time gap between DSVs in a sequential relationship.  

To do this, we develop a DSV occurrence analysis over time interval to obtain the time gap 

information between DSVs (S. Baek & D.-Y. Kim, 2016), as illustrated in Figure 4.6-(b). At first, 

sequential relationships are generated from the given multivariate time series data using any 

Figure 4.5 An example of a sub-matrix of DSVs using individual DSVs 

Figure 4.6 Generation of a sub-matrix considering adjacent and separated DSVs by using (a) a 

conventional sequential mining and (b) DSV occurrence analysis over time interval. 
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conventional sequential mining. In this paper, SPACE is employed since it is not computationally 

expensive relatively and insensitive to a mount of the input dataset (N. Brover, 2014). A terminate 

code is additionally added for representing a time gap information between DSV elements in a 

sequential relationship. If a time gap between two nearest DSVs in sequential relationship is shorter 

than or equal to a predefined time threshold, ‘1’ is assigned as the terminate code. Suppose the time 

threshold is one-length time segment.  

In the case of a relationship <DSV1→DSV2 →DSV2> of which each time segment is first, 

second, and fourth in Figure 4.6-(b), a time gap between DSV1 and DSV2 is equal to the time 

threshold (= 1), therefore ‘1’ is firstly specified as the terminate code. Next time gap between former 

DSV2 and later DSV2 is larger than the time threshold (= 2 > 1), therefore ‘2’ is given and the final 

terminate code is ‘12’.  

Hereafter, a set of individual DSVs and a set of sub-matrices of DSVs are called as event code, 

𝑒𝑟 (𝑟 = 1, 2, … , 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑣𝑒𝑛𝑡 𝑐𝑜𝑑𝑒𝑠) . It is important to note that both a 

discretized times series and the series of event codes still contain temporal information of the original 

sensor signals.  
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CHAPTER 5 

FAULT PATTERN EXTRACTION* 

5.1 Definition of fault pattern 

Recall that a set of event codes 𝑒𝑟, generated from a matrix of discretized time series data 𝐃(𝐗), 

describes the state of a given system for the kth time segment. Given the information of the start and 

end times of all fault states, every event code is then classified into two types of sets:  

 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭: a set of all distinct event codes (i.e., a set of individual DSVs or a set of 

a sub-matrices of DSVs) discovered during the fault states of the system. 

 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭: a set of all distinct event codes discovered during the no-fault states 

of the system. 

For fault detection, it is necessary to classify the system’s state through event codes. As 

explained in Algorithm 5.1, therefore we need to identify the specific event codes that occur only 

during the system’s fault state In other words, Since 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭and 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭are not 

mutually exclusive in general, as illustrated in Figure 5.1, it is reasonable to consider the event codes 

that exist only in 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭and not in 𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒏𝒐−𝒇𝒂𝒖𝒍𝒕as the fault patterns 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭of 

the given system, and it is mathematically defined as follows (Definition 1). 

Figure 5.2 illustrates classified the event codes from the time series of three sensors data. For 

simplicity, suppose that we generate event codes by only considering a set of individual DSVs (i.e., a 

set of sub-matrix of DSVs is excluded). To simply notation, represent an event code by the second 

sub-index of each label in a discretized state vector. For example, the event code of the first time 

segment is (𝑙11, 𝑙22, 𝑙31)
𝑇, and its event code will be re-called as ‘121’. The event codes are classified  

                                                      
* This CHAPTER 5 is the identically same as that contained in the published journal written by S. Baek and D.-Y. Kim 

(2017a).  
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Algorithm 5.1 Fault pattern extraction 

Require: 𝐄(𝐗) (a set of event codes), 𝐅𝐭𝐢𝐦𝐞 (information of the start and end times of fault states) 

1: {𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭} ← 𝐸𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐄(𝐗), 𝐅𝐭𝐢𝐦𝐞)  

2: for (𝒑 = 𝟏;𝒑 < |𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭| + 𝟏; 𝒑 + +) do // |𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭| is the number of event 

codes discovered in fault states 

3:   If 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑓𝑎𝑢𝑙𝑡

∉ 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐥𝐮𝐭 // 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑓𝑎𝑢𝑙𝑡

 is an element of 

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭 

4:       𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 ← 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑓𝑎𝑢𝑙𝑡

 

5:   End if 

6: End for 

 

Definition 1 (Fault pattern): a set of event codes (which are a set of individual DSVs or a set of 

sub-matrices of DSVs) that are only found in the system’s fault states, but not in the no-fault 

states. 
 

𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 =  𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭 ∩ (𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭)
𝐜

= 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭 − 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭 
 

where  

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭: a set of all distinct event codes during the fault states of the system; 

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭: a set of all distinct event codes discovered during the no-fault states of the 

system. 

 

Figure 5.1 The sets of eventcodefault, eventcodeno-fault, and Patternfault: (a) A set of event codes found 

in the no-fault (eventcodeno-fault) and the fault states (eventcodefault), and (b) a set of fault pattern 

(Patternfault) 
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and the fault pattern are then obtained as follows: 

 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = {121, 122, 212, 213, 311, 312} 

 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭 = {111, 121, 122, 131, 211, 212, 311} 

 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 =  𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭 − 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨−𝐟𝐚𝐮𝐥𝐭 = {213, 312} 

 

According to Definition 1, the event code ‘213’ and ‘312’ are finally extracted as a set of fault 

patterns, because they are only found in the given two fault states, but not in the given no-fault states, 

in Figure 5.2. Note that the event code ‘213’ has occurred in all fault states, and thus it might be 

considered to be a stronger evidence of fault occurrence. However, it is also reasonable to consider the 

both event codes ‘213’ and ‘312’ as fault patterns since faults can occur due to different root causes, 

since The extracted fault pattern should play a role of detecting every fault occurrence, even it is a 

minor fault. 

For effect fault detection, we therefore need to find informative fault patterns for every fault 

state. Let us consider a fault state is ‘discernible’ if at least one fault pattern is found in the state, since 

the fault pattern is a unique signals’ change only discvoered in the fault states, as expalined by 

Definition 1. Algorithm 5.2 is the procedure how to identify the number of discernible states among 

the given fault states.  

Finally, in order to extract a set of fault patterns that should be found in the fault states but not 

Figure 5.2 An example of fault pattern extraction (where m = 3, s = 20, and only considering a set 

of individual DSVs as event codes ) 
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in the no-fault states, while at least one pattern among the set must be found in each fault state, the 

objective of fault detection using fault pattern is as follow (Definition 2) 

 

Definition 2 (Fault detection using the fault pattern): to extract a set of fault patterns that are 

found in the fault sates but not in the no-fault states,, and at least one pattern among the set 

should be found in each fault state. 

 

𝐦𝐢𝐧𝑓𝑠𝑛𝑢𝑚 − 𝑑𝑓𝑛𝑢𝑚 
 

where  

𝑓𝑠𝑛𝑢𝑚: the total number of the given fault states; 

𝑑𝑓𝑛𝑢𝑚: the number of discernible fault states obtained by Algorithm 5.2. 

 

Algorithm 5.2 Discernible fault states 

Require: 𝐄(𝐗)  (a set of event codes), 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 (the pth fault pattern), 𝑓𝑠𝑛𝑢𝑚  (the total 

number of the given fault states) 

 

1: 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒_𝑓𝑎𝑢𝑙𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 ←  0  

2: for (𝒒 = 𝟏; 𝒒 < 𝑓𝑠𝑛𝑢𝑚 + 𝟏;𝒒 + +) do // For all fault states 

3:   If there exists any 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 ∀ for any 𝑝 such that it is found in the qth fault state  

4:       𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒_𝑓𝑎𝑢𝑙𝑡_𝑠𝑡𝑎𝑡𝑒𝑠 + +  

5:   End if 

6: End for 

 

5.2 The severity of a fault pattern and the criticality of a fault state* 

After finding meaningful fault patterns as a fault detection, it is still necessary to provide key 

statistical evidences for the extracted pattern, such as which pattern indicates a more severe to the 

system and which fault states is more critical than others. Therefore, two indicators are proposed for 

analyzing the extracted fault patterns and the given fault states with regard to the fault pattern 

occurrences: (i) a severity degree of a fault pattern, and (ii) a criticality of a fault state. 

                                                      
* This Section 5.2 is the identically same as that contained in the published journal written by S. Baek et al. (2017a) 
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5.2.1 The severity degree of a fault pattern 

In terms of online fault detection, the extracted fault patterns will be compared with the event codes of 

the current time segment of the monitored sensor signals. In this procedure, we want to know how 

severe the monitored pattern is. If a specific fault pattern is discovered in every fault state, it is 

reasonable to define it as a strongest reference for online fault detection. Unfortunately, if a certain 

pattern is found from an individual state, it is not reasonable to employ it as only one reference pattern 

for detecting every fault occurrence. However, it should not be neglected because a fault can be 

caused by various root causes, and the weak pattern can represent a minor root cause of a fault state.  

Therefore, it is reasonable to employ a set of all extracted fault patterns for online detection, 

and provide a commensurate score with its frequency of the corresponding pattern’s occurrence as a 

weight. That is, a severity degree of a fault pattern is assessed in proportional to the found number of 

the fault pattern, and consequently it will be used to quantitatively estimate the effect of the fault 

pattern.  

Algorithm 5.3 explains how to calculate the severity degree of each fault pattern. Because the 

severity degree is calculated based on the number of the corresponding pattern occurrences in every 

fault state, a higher value indicates that the fault pattern is found in many fault states and can therefore 

be considered as significant. If the same fault pattern is discovered multiple times in a single fault 

Algorithm 5.3 A severity degree of a fault pattern 

Require: 𝐄(𝐗) (a set of event codes), 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 (fault patterns), 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 (the pth fault 

pattern), 𝑓𝑠𝑛𝑢𝑚 (the total number of the given fault states) 

 

1: for (𝒑 = 𝟏;𝒑 < |𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭| + 𝟏; 𝒑 + +) do 

2:   𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑓𝑎𝑢𝑙𝑡

) ← 0 // 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 is the pth element of 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 

3:   for (𝒒 = 𝟏; 𝒒 < 𝒇𝒔𝒏𝒖𝒎 + 𝟏; 𝒒 + +) do 

4:       If there exists 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 that it is found in the qth fault state  

5:         𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑓𝑎𝑢𝑙𝑡

) + +  

6:       End if5 

7:   End for 

8:   𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

) ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑓𝑎𝑢𝑙𝑡

), 𝑓𝑠𝑛𝑢𝑚) 

9: End for 
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state, it is only counted once because it describes only one fault state. After counting the number of 

the fault pattern occurrence, then the occurrence number is divided by the total number of the given 

fault state as a normalization step. 

For example, Figure 5.2-(b) shows the computational procedure for calculating the severity 

degree of the extracted fault patterns. The first fault pattern ‘211’ (i.e., [𝒍𝟏𝟐 𝒍𝟐𝟏 𝒍𝟑𝟏]
𝑻) has the highest 

severity degree (= 1.00) because it is found in every fault state. The other two patterns, ‘312’ and 

‘231’, have smaller severity degrees (0.25) in the example, however, the degrees are larger than 0 

because a pattern should correspond to at least one defect state according to Definition 1.  

5.2.2 The criticality of a fault state 

Although multiple fault states are given to analyze, each fault state can show different hazardous level 

to the system, such as critical, major, minor, warning, or indeterminate. This is because the current 

dangerous degree is an important factor for finding optimal maintenance actions, scheduling repair 

procedure, and further analyzing root causes of defects (D. Goyal & B. S. Pabla, 2015). Therefore, we 

also introduce a method to identify the criticality of a fault state quantitatively to answer how critical 

the current fault state is to the system. 

Figure 5.3 Examples of the defect pattern’s degree of severity and the criticality of the defect states: 

(a) a matrix of discretized state vectors, D(X), in which the number of sensors is 3 and the recording 

time is 1–33, (b) the procedure for the severity degree of defect patterns, and (c) the computation of 

the criticality of each defect state (the weight of the most severe pattern is 0.8). 
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 If multiple patterns are identified in a fault state, it is reasonable to classify the target system 

as more dangerous than those with fewer patterns. Similarly, if a more severe pattern (i.e., a fault 

pattern which shows high severity) is identified in a fault state, the state can be classified as more 

dangerous than other states with a less severe pattern. Considering both the characteristics, the 

criticality of a fault state is assessed by an exponentially weighted average of the severity of extracted 

defect patterns, as the following equation: 

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦(𝑭𝑺𝒒) = 𝛼 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑃𝑎𝑡𝑡𝑒𝑛𝑞,1
𝑓𝑎𝑢𝑙𝑡

) +∑(1 − 𝛼)𝑟−1 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑞,𝑟
𝑓𝑎𝑢𝑙𝑡

)

𝑘𝑞

𝑟=2

 

where 𝑘𝑞 is the total number of extracted fault patterns in the qth fault state, 𝑃𝑎𝑡𝑡𝑒𝑛𝑞,𝑟
𝑓𝑎𝑢𝑙𝑡

 is the rth 

severe pattern in the qth state, and 𝛼 is a user-defined weight for the most severe pattern. 

Assume that the weight for the most severe pattern is set to 0.8 and the matrix of discretized 

state vectors is given as shown in Figure 5.3-(a). For the first fault state which is from time segment 5 

to 10, ‘211’ is only found, therefore, the criticality of the first fault state is calculated as 0.8 × 1 = 0.8. 

In contrast, the largest number of fault patterns, ‘211’, ‘322’, ‘312’. ‘231’, is extracted in the third 

fault state. The weights of the four patterns are assigned to be 0.8, 0.2, 0.04, and 0.008 respectively (as 

exponential decreasing), and then, the final criticality of the third state is 0.912, as shown in Figure 

5.3-(c). 

5.3 Empirical sensitivity analysis for multivariate discretization 

parameters 

After extracting fault patterns, we want to know how to extract good fault patterns with regard to fault 

detection. Here, we consider that fault detection focuses on not only it does take more interest in from 

how many fault states the fault pattern has been found by following Definition 1, but also on how 

many times the most severe fault pattern occurs in a specific fault state. Therefore, the objective of 

pattern extraction for fault detection can be explained in two different folds: 

(iii) To extract a pattern(s) that is found in every (or as many as possible) fault state but not in the 

no-fault states 

(iv) To extract a set of patterns that are found in the fault states but not in the no-fault states, and 

at least one pattern among the set must be found in each fault state, so that the  
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occurrences of all faults must be identified.  

Hereafter, two problems are called as to extract (i) the most severe fault pattern and (ii) a set of total 

fault patterns.  

There is no doubt that discretization parameters play a very critical role in the proposed fault 

pattern extraction. The discretization problem from the perspective of the above two different 

objectives can be formalized by the following Definition 3: 

Definition 3 (Discretization problem for fault detection): to find out a set of discretization 

parameters which yields good fault patterns 
  

(i) 𝐚𝐫𝐠 𝐦𝐢𝐧
[𝑤,𝑏,𝑏𝑤,𝑙𝑖𝑛𝑒𝑎𝑟𝑇]

𝐦𝐢𝐧[𝑓𝑠𝑛𝑢𝑚 − 𝑑𝑓𝑛𝑢𝑚
𝑝

|∀𝑝] 

(ii) 𝐚𝐫𝐠 𝐦𝐢𝐧
[𝑤,𝑏,𝑏𝑤,𝑙𝑖𝑛𝑒𝑎𝑟𝑇]

𝑓𝑠𝑛𝑢𝑚 − 𝑑𝑓𝑛𝑢𝑚  

 

where  

𝑑𝑓𝑛𝑢𝑚
𝑝

: the number of fault states where the pth fault pattern 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑓𝑎𝑢𝑙𝑡

 has been found. 

5.3.1 Experimental design  

In order to facilitate appropriate discretization parameter setting for fault pattern extraction 

from the given multivariate time series, it is first necessary to identify the significant relationship 

between the discretization parameters and the Key Characteristic Indicators (KCIs) of sensor signals. 

This section aims to investigate their relationship by empirical sensitivity analysis. The required 

statistical inference is made by the Analysis of Variance (ANOVA) by assuming that the 

computational experiments have been completely randomized. 

The independent variables of the experiments are the four discretization parameters: (i) b - the 

number of bins at three levels (3, 5, 7), (ii) bw - bin width threshold at four levels (20%, 40%, 60%, 

80%), (iii) w - the length of time segment at six levels, and (iv) LinearT at two levels whether to 

include the linear trend for label definition. The 3 × 4 × 6 × 2 level combinations can be displayed 

geometrically as a cube, as shown in Figure 5.4. The six levels of the length of time segment are 

designed with respect to the average length of fault states. Since the length of time segment should be 

less than the length of fault state for fault pattern extraction, the proportion of each length of time 

segment to the average length of fault states w’ is used for the time segment length as follows: (2%, 

5%, 10%, 25%, 50%, 100%). 
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The response variable of the experiments, namely, the performance of fault pattern extraction 

by an appropriate discretization parameter setting is measured by the minimization results as 

formulated in Definition 3. Notice that since the computational result of fault pattern extraction by a 

parameter setting is always same and deterministic without involving randomness across replica runs, 

ANOVA without replica is conducted.  

5.3.2 Key characteristic indicators of sensor signals 

The main features of the input data for the experiments of fault pattern extraction can be described by 

the key characteristics of the given sensor signals. The underlying information of those characteristics 

are obtained mainly from the amplitude and frequency of a signal. By analyzing the estimated PDF of 

a signal, we can also consider kurtosis, skewness, the size of maxima, and the estimated variance over 

the entire time span (B. G. Tabachnick & L. S. Fidell, 2006). By considering the nature of pattern 

extraction from random signals and through the sufficient pre-tests, the following two KCIs are 

identified as the best classifiers of the sensor signals of the experiments. (i) abrupt Variance (aVar), 

and (ii) Discernibility Index (DI). 

 Abrupt variance (aVar): Figure 5.5 provides an example in which the normalized 

variances of the two time series are equal, but their signal trends are quite different. In 

general, highly fluctuated sensor signals imply very unstable system’s states, and hence 

the extraction of meaningful fault patterns could be more difficult. In order to overcome 

the limitation of the conventional statistical variance, aVar is defined to differentiate 

Figure 5.4 Cube plots for the empirical sensitivity analysis of discretization parameters in fault pattern 

extraction 
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between abrupt and steady changes in a time series by adding a square sum of differences 

between adjacent measurements, and it is formalized by the following Definition 4:    

The normalization can be made by dividing aVari into a range of 𝑥i
𝑓
, then the 

first term, variance, would be between 0 to 1. Therefore, a larger aVar indicates a more 

fluctuation will be lying in fault states, otherwise gradual/steady signal change will be 

mainly included in fault states, such as sudden rise and drop.  

Definition 4 (aVar): Abrupt variance of a multivariate time series 
 

𝑎𝑉𝑎𝑟(𝑋) = Normalize(
1

𝑚
∑𝑎𝑉𝑎𝑟𝑖

𝑚

𝑖=1

) 

𝑎𝑉𝑎𝑟𝑖 =
∑(𝑥𝑖𝑗

𝑓
− �̅�𝑖

𝑓
)
2
 

𝑛
×

∑((𝑥𝑖𝑗+1
𝑓

− 𝑥𝑖𝑗
𝑓
) − (𝑥𝑖𝑗+1

𝑓
− 𝑥𝑖𝑗

𝑓
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2

𝑛 − 1
 

 

where  

𝑥𝑖𝑗
𝑓

: the jth measurement in ith sensor data in the fault states; 

�̅�𝑖
𝑓
: the mean value of the ith sensor data in the fault states; 

𝑥𝑖𝑗+1
𝑓

− 𝑥𝑖𝑗
𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

: the mean of the gap between adjacent measurement, 𝑥𝑖,𝑗
𝑓

 and 𝑥𝑖,𝑗+1
𝑓

, of the ith sensor 

data in the fault states  

 

 

 Discernibility index (DI): DI is devised to measure the overlap area between sensor data 

in the fault and no-fault states. It plays a similar role of the sensitivity index used in 

signal detection theory, which estimates the separation between two means 𝜇𝑠 and 𝜇𝑛of 

signal and noise distributions (D. Mcnicol, 2005). Suppose two distributions are 

Figure 5.5 Two time series data of which the normalized variances are equal (=0.160) but aVars of (a) 

and (b) are 0.036 and 0.012 respectively 
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normally distributed and their variances, 𝜎𝑠
2 and 𝜎𝑛

2 are given, then the sensitivity index 

𝑑′ is formulated as the following equation:  

𝑑′ =
𝜇𝑠 − 𝜇𝑛

√1
2
(𝜎𝑠

2 + 𝜎𝑛
2)

 

Since the above sensitivity index is valid when two distributions are normally distributed 

(D. Mcnicol, 2005), DI is thus formulated by the overlap area between the two 

distributions, and it is given by :  

Definition 5 (DI): Discernibility index of a multivariate time series 
 

𝐷𝐼(𝑋) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (
1

𝑚
∑𝐷𝐼𝑖

𝑚

𝑖=1

) 

𝐷𝐼𝑖 = ∫𝑚𝑖 𝑛{𝐏𝐃𝐅
𝐧𝐨−𝐟𝐚𝐮𝐥𝐭(𝑋𝑖), 𝐏𝐃𝐅

𝐟𝐚𝐮𝐥𝐭(𝑋𝑖)} 𝑑𝑥 

 

where  

𝐏𝐃𝐅𝐧𝐨−𝐟𝐚𝐮𝐥𝐭(𝑋𝑖) and 𝐏𝐃𝐅𝐟𝐚𝐮𝐥𝐭(𝑋𝑖): the estimated PDFs for the ith sensor data in the fault and no-

fault states respectively.  

 

The basic idea is that if the sensor data in the fault states are sufficiently 

discernable from the one in the no-fault states, then it can be presumed to extract fault 

patterns more efficiently. Notice that DI is normalized the range between 0 to 1 and a 

lower DI indicates a more discernable sensor signal, as depicted in Figure 5.6.  

 Other KCIs to describe the sensor signals’ behavior in the fault state: In this research, 

features in the time domain is considered as key characteristics, since we did not 

discretize multivariate time series data in frequency-domain. However, we can further 

employ other features in the frequency domain. For example, aVar and DI can be applied 

in the frequency domain, such as dominant frequency instead of measurements in 

multivariate time series data (W. S. Baek et al., 2017).Power spectrum density is another 

candidate KCIs in the frequency domain. Power spectrum density connotes the average 

power of a time series distributed over the different frequencies, obtained by the Fourier 

Transform of the autocorrelation function of a time series (R. Martin, 2001). If a time 

series has a specific peak in this distribution, it can then be interpreted as that the time 

series data lie in a certain frequency range. Otherwise, it can be said that there is no 
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principal frequency range. In this study, we use the average value of the PSD of each 

sensor data.  

𝑃𝑆𝐷(𝑋) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (
1

𝑚
∑𝑃𝑆𝐷𝑖

𝑚

𝑖=1

) ,𝑤ℎ𝑒𝑟𝑒 𝑃𝑆𝐷𝑖 = ∫𝑅𝑥𝑖(𝜏)𝑒
−𝑗2𝜋𝑓𝑡𝑑𝑡 

where 𝑅𝑥𝑖(𝜏) is the auto-correlation function of the time series 𝑥𝑖. 

5.3.3 Computational results 

 Automotive gasoline engine - high aVar (0.035) and high DI (0.232): In the case of 

discretization problem (i) which is to extract the most sever fault pattern(s) that is found 

in every fault state, the ANOVA result in Table 5.1 shows that the length of time segment, 

bin width threshold, and linearT have significant differences in fault pattern extraction. 

There are significant interactions between the length of time segment and bin width 

threshold, and between the length of time segment and linearT. A relatively higher bin 

width threshold (e.g. 80%) has generated a good outcome due to less discernable sensor 

data (i.e. high DI).  

Figure 5.6 Two PDFs of a time series data in the fault and the no-fault states: (a) large overlap area 

between the two PDFs makes a relatively high DI (=0.761), (b) very small overlap area induces a 

low DI (=0.099) 



131 

Table 5.1 ANOVA result of the automotive gasoline engine data (discretization problem (i): to extract 

the most severe fault pattern(s)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 8458 1692 90.97 0.00 

b 2 7 3 0.17 0.84 

bw 3 3565 1188 63.90 0.00 

linearT 1 613 613 32.94 0.00 

w× b 10 184 18 0.99 0.47 

w×bw 15 2488 166 8.92 0.00 

w×linearT 5 1078 216 11.60 0.00 

b× bw 6 212 35 1.90 0.11 

b× linearT 2 104 52 2.80 0.08 

bw× linearT 3 86 29 1.54 0.23 

w× b× bw 30 561 19 1.00 0.50 

w× b× linearT 10 107 11 0.58 0.82 

w× bw× linearT 15 379 25 1.36 0.23 

b× bw× linearT 6 175 29 1.56 0.19 

Error 30 558 19   

Total 143 18574    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 
 

Table 5.2 ANOVA result of the automotive gasoline engine data (discretization problem (ii): to extract 

a set of total fault patters) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 1260 252 7.48 0.00 

b 2 1547 773 22.96 0.00 

bw 3 169 56 1.67 0.19 

linearT 1 1921 1921 57.05 0.00 

w× b 10 448 45 1.33 0.26 

w×bw 15 1033 69 2.04 0.05 

w×linearT 5 1260 252 7.48 0.00 

b× bw 6 334 56 1.65 0.17 

b×linearT 2 1547 773 22.96 0.00 

bw× linearT 3 169 56 1.67 0.19 

w× b× bw 30 1010 34 1.00 0.50 

w× b× linearT 10 448 45 1.33 0.26 

w×bw×linearT 15 1033 69 2.04 0.05 

b× bw× linearT 6 334 56 1.65 0.17 

Error 30 1010 34   

Total 143 13523    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 
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In the case of discretization problem (ii), which is to extract a set of total fault 

patterns are found in the fault states, the main effects of the length of time segment, the 

number of bins, and linearT are significant as shown in Table 5.2. Three bins have made 

a poorer outcome, however, the consideration of linear trend (i.e. linearT is ‘on’) could 

mitigate the limitation in the small number of bins. 

As shown in Figure 5.7, a relatively longer time segment has commonly made a 

poor performance in fault pattern extraction because it seems to fail in screening short-

term changes in highly fluctuating signals (i.e. high aVar).  

It is quite conflicting to consider LinearT, depending on the two discretization 

problems, as shown in Figure 5.7 and Figure 5.8. In case of the first discretization 

Figure 5.7 The main effects plots for the automotive gasoline engine data (discretization problem (i): 

to extract a pattern(s) that is found in every fault state). 

Figure 5.8 The main effects plots for the automotive gasoline engine data (discretization problem (ii): 

to extract a set of patterns that are found in the fault state) 
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problem, the consideration of linearT makes poor results, since it usually generates more 

candidates in a set of all distinct event codes discovered in the fault states, so that it is not 

easy to find the common event codes in every fault state. On the other hand, it is much 

better to consider LinearT in the second discretization problem, because any fault pattern 

which is found only in a specific fault state will eventually help to constitute a set of fault 

patterns.  

In addition, there are other related parameters to extract fault patterns. Fist one is 

the length of additional time segment. To compare the performance between a fixed 

length and a dynamic length in multivariate time series discretization for fault pattern 

extraction, multi-parametric sensitivity analysis (MPSA) is conducted (S. Baek, W. S. 

Baek, & D.-Y. Kim, 2015a).  

MSPA is to identify the effect of each parameter to the developed model. It 

originally required the uniformly random distributed levels of parameters, but here we 

just used pre-defined 1, 2, 5 and 10 points. MPSA plots a cumulative sum of good and 

bad cases in terms of fault pattern extraction with respect to the parameter, and the 

average distance between two cases is obtained by Kolmogorov-Smirnov (KS) distance 

(C. Tiemann et al., 2013). The larger KS distance is a sensitivity parameter to the model. 

As a result, the length of additional time segment is not significant parameters in 

multivariate time series discretization for fault pattern extraction (see Figure 5.9). Rather, 

as similar to the previous ANOVA results, bin width threshold shows most sensitivity 

results depending on its level setting, since its KS distance is the most large ( = 0.67), as 

shown in Figure 5.9. It is also observed that large value for bin width threshold (e.g., 

80%) usually generated a good fault pattern in detecting knockings of the automotive 

engine knocking. 

Figure 5.9 The MPSA results of four discretization parameters (the length of additional time segment, 

the number of bins, bin width threshold, and linearT) and the corresponding KS distances 



134 

Second one is sampling rate. In order to record the continuous analog sensor 

signal, we need to conduct sampling. If sampling rate is too small (i.e., too large gap 

between two adjacent measurement), it is easy to miss the informative signal’s behavior 

and cause some distortion such as aliasing and folding. On the other hands, too frequent 

sampling within a relatively small time period (i.e., large sampling rate) requires more 

expensive computation costs. Therefore, it is also necessary to determine the optimal 

sampling rate, but in the proposed multivariate time series discretization, there are some 

relationships between the sampling rate and the length of time segment. 

Nyquist sampling theorem is widely used to find the minimum sampling rate (H. 

J. Landau, 1967). However, it is not straightforward to search the optimal value for the 

sampling rate, there are quantitative ways to analyze the effect of the sampling rate and 

final performance (F. Hupet & M. Vanclooster, 2001; P. G. Ryan, S. L. Petersen, G. 

Peters, & D. Grémillet, 2004). We conduct another ANOVA to identify the effect of 

sampling rate to the fault pattern extraction (S. Baek & D.-Y. Kim, 2015) 

The 10 levels are set, 0.004, 0.008, 0.016, 0.031, 0.063, 0.125, 0.25, 0.5, 1, and 2 

Hz. The dependent variable is the sum of type I error and type II error (H0: the current 

system’s state is considered as a fault state, H1: the current system’s state is considered as 

normal). As summarized in Table 5.3, since the sampling rate has statistically significant 

effect (p-value <0.05). 

Consequently, we additionally conduct Tukey honestly significant different 

(HSD) test. Tukey HSD test make groups of which differences are statically significant 

one another. For example, in Figure 5.10, the 0.25 Hz and 0.5 Hz is assigned as same 

group G, and the groups which name is the later alphabet provide more accurate fault 

detection result using fault pattern extraction. 

 

Table 5.3 ANOVA result for identifying the effect of the sampling rate in the automotive gasoline 

engine data 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

Sampling rate 9 1386233 154026 1690528 0.00 

Error 90 8 0     

Total 99 1386241       



135 

 The minimum sampling rate 0.46Hz, calculated by Nyquist sampling is also 

included in group G and it can be considered as a good sampling rate to extract fault 

patterns. When the sampling rate is 0.031, 10 times less than 0.46Hz (group D), the error 

rate increases more than four times. Since the time segmentation in the multivariate time 

series discretization plays a similar role of a small sampling rate, the error rate was 

rapidly increased.  

In addition, the average length of fault sate is about 1 minute, so the sampling rate 

which collects a measurement per a larger than 1 minute cannot give reasonable fault 

pattern extraction. As a result, we can conclude that the sampling rate is set larger than 

0.063 in the automotive gasoline engine, and it corresponds to a fourth part of the 

average length of the fault states. 

The last considerable parameter is a time gap threshold when generating a sub-

matrix of DSVs with both adjacent and separate DSVs for event codes. In order to 

examine the performance of fault patterns with or  without a set of sub-matrices of 

DSVs and the effect of the time gap parameters, we count the number of discernible fault 

state in terms of two different fault pattern extraction objective, respectively (S. Baek & 

D.-Y. Kim, 2016).  

As illustrated in Figure 5.11, the number of discernible fault state increases 6% 

when considering a sub-matrix of DSVs, but there is no statistical significance between 

Figure 5.10 Grouping results of Tukey HSD test for identifying the effects of the sampling rate  
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the value of time gap threshold. When the time gap threshold is set to more than 50 

seconds, the performance has dropped back to the its original performance (without 

considering a set of sub-matrices of DSVs in fault pattern extraction). We do not analyze 

more than 50 seconds, since the average length of the given fault states is about 1 minute.  

 P300 experiment for visual stimuli cognition detection - high aVar (0.028) and high 

DI (0.125): In both cases of discretization problems, the ANOVA results, summarized in 

Table 5.4 and Table 5.5, show that most discretization parameters and their interactions 

are quite sensitive in target state pattern extraction.  

In fact, in terms of discretization problem (i), the performance of pattern 

extraction from the brain EEG data is relatively poorer that other data sets (see Figure 

5.13). For example, the most severe pattern can explain the only 75% of the given fault 

states. For this reason, more refined definition of parameter levels in the vicinity of the 

performance optimum is further necessary for making the fault pattern more severe in the 

given data set.  

However, in the case of discretization problem (ii), better pattern extraction 

results are quite obtained where the length of time segment is relatively shorter, and 

linear trend is included to generate labels, as illustrated in Figure 5.14. In addition, it 

shows relatively lower severities, but successfully extract the set of fault patterns of 

which any pattern is found in a given fault state. It can be interpreted that there are 

several unique signal changes in the fault sates, but observed very rarely such as outliers. 

Figure 5.11 The number of discernible fault states according to the time gap threshold for generating a 

sub-matrix of DSVs 
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Table 5.4 ANOVA result of the P300 experiment data (discretization problem (i)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 9778 1956 1397.80 0.00 

b 2 59 29 20.99 0.00 

bw 3 494 165 117.68 0.00 

linearT 1 568 568 406.00 0.00 

w× b 10 21 2 1.53 0.18 

w×bw 15 527 35 25.12 0.00 

w×linearT 5 70 14 9.93 0.00 

b×bw 6 50 8 5.92 0.00 

b×linearT 2 12 6 4.43 0.02 

bw×linearT 3 2444 814 582.16 0.00 

w× b× bw 30 66 2 1.57 0.11 

w× b× linearT 10 21 2 1.49 0.19 

w×bw×linearT 15 150 10 7.13 0.00 

b× bw× linearT 6 19 3 2.28 0.06 

Error 30 42 1   

Total 143 14320    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 

 

Table 5.5 ANOVA result of the P300 experiment data (discretization problem (ii)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 5289 1058 656.04 0.00 

b 2 591 296 183.26 0.00 

bw 3 6349 2116 1312.38 0.00 

linearT 1 10730 10730 6653.96 0.00 

w×b 10 107 11 6.64 0.00 

w×bw 15 2912 194 120.38 0.00 

w×linearT 5 2828 566 350.80 0.00 

b×bw 6 217 36 22.42 0.00 

b×linearT 2 477 238 147.86 0.00 

bw×linearT 3 4642 1547 959.49 0.00 

w×b×bw 30 113 4 2.34 0.01 

w×b×linearT 10 39 4 2.43 0.03 

w×bw×linearT 15 1587 106 65.59 0.00 

b×bw×linearT 6 155 26 16.04 0.00 

Error 30 48 2   

Total 143 36084    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 
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Figure 5.12 Main effect plots of the P300 experiment data (discretization problem (i)) 

Figure 5.13 Main effect plots of the P300 experiment data (discretization problem (ii)) 
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 Marine diesel engine - low aVar (0.010) and low DI (0.042): In both cases of 

discretization problems, the ANOVA results summarized in Table 5.6 and Table 5.7 show 

that main effects except the length of time segment are significant. In other words, 

controlling of the length of time segment has no significant effect on the performance of 

fault pattern extraction. This means that for extracting patterns from relatively small 

varying and discernible signals to some extent, other discretization parameters such as 

the number of bins, bin width threshold and linearT must be more carefully determined. 

Nevertheless, too long time segment affects negatively in the performance of fault 

pattern extraction.  

The bin width threshold, 60% was a reasonable setting to extract fault patterns 

from the marine diesel engine data, where signal values in the fault states are not 

necessarily located in the extreme tails of the estimated distribution (see Figure 5.14 and 

Figure 5.15). However, in terms of discretization problem (ii), the performance of fault 

pattern extraction is usually good than above mentioned data sets regardless of 

discretization parameter setting 

 

Table 5.6 ANOVA result of the marine diesel engine data (discretization problem (i)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 388 78 12.33 0.00 

b 2 298 149 23.66 0.00 

bw 3 88 29 4.67 0.01 

linearT 1 434 434 68.95 0.00 

w× b 10 103 10 1.63 0.15 

w× bw 15 98 7 1.04 0.45 

w× linearT 5 73 15 2.31 0.07 

b×bw 6 851 142 22.53 0.00 

b×linearT 2 1064 532 84.48 0.00 

bw×linearT 3 622 207 32.93 0.00 

w× b× bw 30 142 5 0.75 0.78 

w× b× linearT 10 41 4 0.66 0.75 

w× bw× linearT 15 76 5 0.80 0.67 

b×bw×linearT 6 876 146 23.19 0.00 

Error 30 189 6   

Total 143 5342    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 
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Table 5.7 ANOVA result of marine diesel engine data (discretization problem (ii)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 8 2 0.41 0.84 

b 2 682 341 93.09 0.00 

bw 3 229 76 20.85 0.00 

linearT 1 413 413 112.91 0.00 

w× b 10 11 1 0.31 0.97 

w× bw 15 85 6 1.54 0.15 

w× linearT 5 8 2 0.41 0.84 

b×bw 6 550 92 25.06 0.00 

b×linearT 2 682 341 93.09 0.00 

bw×linearT 3 229 76 20.85 0.00 

w× b× bw 30 110 4 1.00 0.50 

w× b× linearT 10 11 1 0.31 0.97 

w× bw× linearT 15 85 6 1.54 0.15 

b×bw×linearT 6 550 92 25.06 0.00 

Error 30 110 4   

Total 143 3763    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 
 

Figure 5.14 Main effect plots of the marine diesel engine data (discretization problem (i)) 
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 Laser welding monitoring data - low aVar (0.004) and low DI (0.028): Table 5.8 

shows that the length of time segment and linearT and corresponding interactions such as 

w× b, w× linearT, and b× linearT have significant differences in fault pattern extraction in 

case of the first discretization problem, whereas the main effects of the number of bins 

and linearT and their interactions are significant in case of the second discretization 

problem as summarized in Table 5.9. 

Table 5.8 ANOVA result of the laser welding monitoring data (discretization problem (i)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 112 22 34.58 0.00 

b 2 4 2 2.77 0.08 

bw 3 4 1 1.92 0.15 

linearT 1 21 21 32.30 0.00 

w×b 10 20 2 3.01 0.01 

w× bw 15 13 1 1.38 0.22 

w×linearT 5 20 4 6.03 0.00 

b× bw 6 5 1 1.21 0.33 

b×linearT 2 16 8 12.18 0.00 

bw× linearT 3 3 1 1.32 0.29 

w× b× bw 30 21 1 1.10 0.40 

w× b× linearT 10 7 1 1.10 0.39 

w× bw× linearT 15 8 1 0.82 0.65 

b× bw× linearT 6 7 1 1.75 0.14 

Error 30 20 1   

Total 143 279    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 

Figure 5.15 Main effect plots of the marine diesel engine data (discretization problem (ii)) 
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As shown in Figure 5.16, a relatively longer time segment has commonly made a 

poor performance. Since a defective component is made in a short time period, not the 

entire monitoring period, it is considered to a short time segment be appropriate. On the 

other hands, as illustrated in Figure 5.17, it is better to consider linearT for the second 

discretization problem in the laser welding process monitoring data.  

 

Table 5.9 ANOVA result of laser welding monitoring data (discretization problem (ii)) 

 

Source 
Degree of 

freedom 

Sum of 

squares 
Mean square F p-value 

w 5 3 1 1.14 0.36 

b 2 17 8 17.42 0.00 

bw 3 3 1 1.90 0.15 

linearT 1 12 12 25.42 0.00 

w× b 10 5 1 1.08 0.41 

w× bw 15 11 1 1.46 0.18 

w× linearT 5 3 1 1.14 0.36 

b× bw 6 6 1 2.15 0.08 

b×linearT 2 17 8 17.42 0.00 

bw× linearT 3 3 1 1.90 0.15 

w× b× bw 30 14 0 1.00 0.50 

w× b× linearT 10 5 1 1.08 0.41 

w× bw× linearT 15 11 1 1.46 0.18 

b× bw× linearT 6 6 1 2.15 0.08 

Error 30 14 0   

Total 143 130    

w: length of time segment, b: number of bins, bw: bin width threshold,  

linearT: Boolean whether to include the linear trend for label definition 

 

 
Figure 5.16 Main effect plots of the laser welding monitoring data (discretization problem (i)) 
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5.3.4 Discretization parameter selection 

It is self-evident that the length of time segment should be shorter than the lengths of fault states in 

order to extract fault patterns in the fault states. In particular, for the case of discretization problem (i), 

the result of computational experiments shows that when the proportion of the length of time segment 

to the average length of fault states is not greater than 10%, a good performance of fault pattern 

extraction is expected, as summarized in Table 5.10.  

Laser welding monitoring data also provide a getter result when the length of time segment is 

not greater than 2%. Although the length of each fault state is about 0.4 seconds, it is not considered 

to an entire defect seam be defective. Actual defective part is a relatively small portion as shown in 

Figure 5.18.  

Especially, in cases of the P300 cognition detection using brain EEG, a relatively small value 

of w’, i.e. not greater than 2% of the proportion of the length of time segment to the average length of 

event states has yielded a better performance. The reason for this is that although the length of event 

changes happens in a very short period of 250 to 500 milliseconds, according the analysis of the states  

Figure 5.18 A defective weld seam which consists of two spatters and four humping 

Figure 5.17 Main effect plots of the laser welding monitoring data (discretization problem (ii)) 
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Table 5.10 Discretization parameter levels that yield a good performance* of fault pattern extraction 

 

Discretization Sensor data (aVar, DI) 

Parameter Problem 

Automotive 

gasoline engine 

(0.035, 0.232) 

P300 

experiment 

(0.028, 0.125) 

Marine diesel 

engine 

(0.010, 0.042) 

Laser 

welding 

(0.004, 0.028) 

w’ 

(i) 
2%, 5%, 10% 2%, 5% 2%, 5% 2%, 5% 

(ii) 
All levels All All All 

b 

(i) 
All All All All 

(ii) 
All All All All 

bw 

(i) 
80% 80% All All 

(ii) 
All All All All 

linearT 

(i) 
All True False All 

(ii) 
All True All All 

* w ’ (2%, 5%, 10%, 25%, 50%, 100%), b (3, 5, 7), bw (20%, 40%, 60%, 80%), linearT (true, false) 

*The extraction performance is measured by the ratio of the number of fault states where a fault 

pattern has been found to the total number of fault states, and the pass marks for extraction 

performance are predefined as follows: automotive gasoline engine (i) 90% / (ii) 100%; brain EEG 

(i) 70% / (ii) 100%; marine diesel engine (i) 90% / (ii) 100%; laser welding (i) 90% / (ii) 100%. 

 
in the brain EEG signals is 0.5 seconds in the traditional P300 analysis, significant signal traditional 

P300 experiment (J. Polich, 2007). As a result, smaller length of time segment makes performance of 

fault pattern extraction higher.  

The linear trend consideration for label definition is originally intended to include more 

information when generating a discretized time series. However, its effects are fairly small except the 

brain EEG data. This seems to be because it is very hard to discover common linear trends in a 

relatively short time segment from different fault states. In case of the brain EEG data, by the nature 

of the P300 experiment, it is required to identify a positive deflection (i.e. upright change relative to 

the baseline) in the sensor data in consideration of the brain response time to stimuli (250~500ms), 

and thus it is better to include the linear trend for label definition.  

The number of bins is closely related with the bin width threshold, but the ANOVA results 

show that the effects of the number of bins are not so significant as long as it is greater than or equal 
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to 3. The linear trend consideration and the number of bins is related to an amount of information loss: 

not consideration of linear trend and the small number of bins reduce more information in the given 

sensor signals. They result in inconsistency in a label and time segment (e.g., a same label for 

different operational states), and consequently unavoidable errors. On the other hands, the large 

number of bins and the consideration of linear trend can make learning slower and more complex, and 

be easily sensitive to noise. Therefore, several researchers recommended a desired inconsistency level 

of represented signals to be less than 0.01 (S. García et al., 2013). In this study, we do not estimate 

inconsistency level of the matrix of discretized state vectors, but use seven bins in order to maintain 

the desired level. In the case of linear trend, we do not consider linear trend for label definition as 

much as possible, in order to not only reduce the amount of information but also employ Euclidean 

distance based similarity measure.  

However, we see that the bin width threshold must be carefully determined in accordance 

with the two KCIs of sensor signals: aVar and DI, particularly for the case of discretization problem 

(i). Figure 5.19 provides the bubble plot of bw values in terms of aVar and DI where the size of 

bubble is proportional to the total number of discretization parameter settings which yield the best 

performance for the discretization problem (i), such that a bigger size. 

Figure 5.19 Bubble plot of bw values in terms of aVar and DI; the size of bubble are proportional to 

the total number of discretization parameter settings which yield the best performance for the 

discretization problem (i) 
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A large aVar, by definition, implies that sensor values in the fault states are highly fluctuating 

in a very short period. For this reason, the system’s state can be expressed by many combinations of 

different labels, so that it is not so easy to extract the best fault pattern from many pattern alternatives. 

For example, in case of the automotive gasoline engine data, aVar is relatively large, such that a high 

bin width threshold (80%) gives the best result since highly fluctuating sensor values are usually 

distributed in a wide range of levels.  

By definition, a high DI (e.g. automotive gasoline engine and brain EEG data) implies that 

sensor values in the fault and no-fault states are not so discernible, such that it also entails a high bin 

width threshold in order to be able to classify intermittent sensor data effectively.  

In short, the performance summary in Table 5.10 shows that the proposed fault pattern 

extraction procedure is very effective to extract a set of patterns that are found only in the fault states. 

By using the formulation of Definition 2-(ii) and the proposed extraction procedure, we could 

successfully find appropriate discretization parameters to extract a set fault patterns, by which the 

fault detection decision will be made. If we want to extract a pattern(s) that is found in every (or as 

many as possible) fault state but not in the no-fault states, it is recommended that (i) the length of time 

segment is not greater than 10% of the average length of fault states, and (ii) the bin width threshold 

should be set to high as 80% for the sensor data having a large aVar and a high DI (e.g. automotive 

gasoline engine and brain EEG data). It is obvious that the above selection guideline should be re-

analyzed using more datasets (test data) from different eletromechanical systems, in order to 

generalize the guideline, summarized in Table 5.11.  

In order to use the guideline, we need to compare each KCI computed from different datasets. 

Whereas DI has a crisp range, from 0 to 1, we cannot guarantee the minimum and maximum value of 

the original aVar. Therefore, we modify the aVar (called as modified aVar), by computing the original 

one from the normalized sensor signals, as shown in Definition 6. Here, min-max normalization is 

applied, the range of the signal becomes 0 to 1. Taking into account the significant digits, as a results 

we calibrate the range of modified aVar between 0 to 1 by multiplying a constant (e.g., α which is set 

to 10,000).  

The four datasets from different electromechanical systems, modified aVar is computed as 

summarized in Table 5.11, and the relationship between two KCIs and bin width threshold can be 

illustrated as Figure 5.20. As shown in Figure 5.20, we again observe that the bin width threshold 

should be set to high as 80% for the sensor data having a large aVar and a high DI. The threshold for 

larger aVar and higher DI can be controlled as a user-defined parameters, in this study, we used 8.0 

and 0.1 as a decision threshold for whether a data set has large aVar and high DI, respectively.  
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Definition 6 (modified aVar): Abrupt variance of min-max normalized sensor signals  
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where  

𝑥𝑖𝑗
𝑓

: the jth measurement in ith sensor data in the fault states; 

𝑧𝑖𝑗
𝑓

: the min-max normalized jth measurement in ith sensor data in the fault states; 

𝑧�̅�
𝑓
: the mean value of the min-max normalized ith sensor data in the fault states; 

𝑧𝑖𝑗+1
𝑓

− 𝑧𝑖𝑗
𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

: the mean of the gap between adjacent measurements, 𝑥𝑖,𝑗
𝑓

 and 𝑥𝑖,𝑗+1
𝑓

, of the min-max 

normalized ith sensor data in the fault states  
α: an arbitrary constant (e.g., 10,000 

 

Table 5.11 The fault pattern extraction result using the proposed guideline to select appropriate 

multivariate time series discretization parameters 

 

Electromechanical 

system 

Laser 

Welding 

Marine diesel 

engine 

P300 experiment 

using brain EEG 

Automotive 

gasoline engine 

(aVar, DI) (0.004, 0.028) (0.010, 0.042) (0.028 0.125) (0.035, 0.232) 

Modified aVar 0.2 3.8 8.2 18.9 

Fault detection 

performance 
100% 100% 100% 100% 

Maximum severity 1.00 0.93 0.63 0.92 

Average criticality 

[min max] 

1.05 

[1.05 1.05] 

0.76 

[0.08 0.86] 

0.64 

[0.21 1.05] 

0.87 

[0.30 0.93] 

 

After conducting the empirical sensitivity analysis, we select appropriate bin width threshold 

for fault detection in two newly added electromecahcnial systems, i.e., BSR detection using acoustic 

emission sensors and BSR detection using an acoustic sensor array (test datasets), which are not 

analyzed in the empirical sensitivity for discretization parameter selection. The test datasets show 

small aVar but large DI, and it is quite different condition to the previous analyzed datasets. As a 
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result, it is recommended to use more than 80% levels for bin width threshold, in terms of DI, 

although any level of bin width threshold is suggested from the perspective of modified aVar, as 

shown in red line in Figure 5.20.  

Finally we can extract a set of total fault patterns which make every fault state discernible 

using the selected discretization parameter (100%), as listed in Table 5.12. The severity degree of the 

most severe pattern is also obtained when the parameter is selected adopted from the proposed 

guidelines. 

Table 5.12 The fault pattern extraction result using the proposed guideline to select appropriate 

multivariate time series discretization parameters for new test datasets 

 

Electromechanical system 
BSR detection using acoustic 

emission sensors 

BSR detection using an acoustic 

sensor array 

(aVar, DI) (0.004, 0.323) (0.005, 0.456) 

Modified aVar 0.7 0.2 

Fault detection performance 100% 100% 

Maximum severity 0.29 0.82 

Average criticality 

[min max] 

0.13 

[0.03 0.25] 

0.63 

[0.17 0.73] 

Figure 5.20 Scatter plots for relationship between bin width threshold and the corresponding KCIs: 

(a) modified aVar and (b) DI, respectively 
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5.4 Discussion 

5.4.1 Comparison of the proposed fault pattern extraction with the 

conventional detection models 

This study tries to focus on fault detection and prediction when it is hard to localize sensor signals 

discovered in system’s fault states, since measurements are too scattered or faults have very rarely 

occurred. We argue that it is hard for traditional statistical distance based models or supervised 

classification models to directly detect faults, in this case. Therefore, in order to identify the argument, 

we examine the performance of the extracted fault pattern by comparing with traditional tow detection 

models: PCA based multivariate SPC model, and SVM model. 

For all of detection models, at first, we analyze two thirds of the given datasets to calculate 

control limits, hyperplanes, and extract fault pattern, as a training phase. In a test phase, every dataset 

is used to detect fault occurrences. To examine the performance of online fault detection, we 

determine Null Hypothesis as follows:  

 H0: The current measurement is found under the system’s no-fault state. 

 H1: The current measurement is found under the system’s fault state. 

Then, we calculate the number of the Type I errors and Type II errors to quantitatively 

compare the performance of each model.  

 Type I error (called as false alarm): If current measurement is out of control limits, 

inside of regions of fault states (according to hyperplanes), or identical with any 

extracted fault pattern in a no-fault state  

 Type II error (called as miss): If current measurement is inside of control limits, inside 

of regions of no-fault states (according to hyperplanes), or different from the extracted 

fault patterns in a fault state 

As summarized in Table 5.13, the proposed fault pattern extraction provides superior detection 

results with respect to Type I error and Type II error. A small amount of Type I error is introduced, but 

the amount of improvement is statistically significant, and it can be improved by applying the severity 

degree of fault patterns when detecting faults (e.g., a fault is detected when the total severity degree in 

a current monitoring window is larger than a certain amount). We observe that it is not straightforward 
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Table 5.13 Comparison of the pattern extraction performance in weld defect detection among PCA 

based multivariate SPC model, SVM model, and the proposed fault pattern extraction 

 

Detection method Type I error* Type II error ** 

PCA-based Hotelling’s T2 statistics 1.00 0.52 

PCA-based Hotelling’s T2 and Q statistics 1.00 0.00 

A SVM model with linear kernel 0.94 0.02 

A SVM model with RBF kernel 0.98 0.00 

The proposed fault pattern extraction 0.10 0.00 

* no. of false detections / no. of no-fault state (= fault state = fault occurrences) 

** no. of missed detections / no. of fault state  
 

to obtain statistical sound results when analyzing scattered and not discernible measurements via 

directly conventional detection models. 

5.4.2 Multi-sensor signal selection for fault pattern extraction 

From Chapter Introduction, analyzing multi-sensor signals is emphasized, rather than a univariate 

analysis, in order to discover significant patterns by considering not only single signal behaviors but 

also combinations of signal behaviors. In order to identify whether multi-sensor signals produce better 

detection results than an individual signal, we compare the performances of fault pattern extraction 

using between multiple sensors and an individual one.  

To most appropriate individual sensor signals, we select ‘#1 injector’, which shows the 

smallest aVar (0.014) and lowest DI (0.007), among the used six sensor signals to detect automotive 

gasoline engine knocking. Regardless of the number of analyzed sensors, it is expected that fault 

patterns extracted from only ‘#1 injector’ will provide better extraction results than those from six 

sensor signals, because of small aVar and low DI, as summarized in Table 5.14. However, no fault 

pattern is extracted when #1 injector is solely applied, whereas 100% fault states are discernible by a 

set of fault patterns when six sensor signals are used. Therefore, we can conclude that multi-sensor 

signals are appropriate to extract significant patterns considering not only single signal behaviors but 

also combinations of multi-signal behaviors. 



151 

Table 5.14 Comparison of the fault pattern extraction performance from only one sensor signals and 

six sensor signals ,  

 

Electromechanical 

system 

Automotive gasoline engine 

#1 injector 
Crank position, MAP, Throttle position,  

#1 injector, #2 injector, #3 injector 

(aVar, DI) (0.014, 0.007) (0.035, 0.232) 

Fault detection 

performance 
0% 100% 

Maximum severity 0 0.92 

Average criticality 

[min max] 

0 

[0 0] 

0.87 

[0.30 0.93] 

 

Unfortunately, if we analyze the entire sensor signals which are monitored the system’s states, 

for example total 462 sensors in the marine diesel engine, a curse of dimensionality can occur: when 

the dimensionality (i.e., the number of sensors) increases, the volume of the entire space increases and 

subsequently available data become sparse. A. Zimek, E. Schubert, and H. P. Kriegel (2012) reported 

that several problems can be subsequently identified when detecting a fault in a high dimension such 

as concertation of the values and distances, irrelevant clusters, incomparable score in different 

subspace, data snooping and exponential search. Therefore, we need to discuss how to select 

significant sensor signals among the huge number of sensors in an electromechanical system, in order 

to avoid several problems caused by a curse of dimensionality 

Significant sensor signal can be defined as an informative time series data in fault detection 

and prediction, by showing different behaviors among normal, symptom, and fault states in order to 

differentiate different operational states as much as possible. Expert knowledge can be applied to 

making a more or less significant groups, and to determine the most relevant sensor signals to fault 

occurrences. Traditional statistical approach can be employed to select significant sensors, such as 

PCA, and cross correlation analysis (Y.-J. Lee, 2013). As already mentioned, PCA is originally 

devised to dimension reduction by finding hidden latent variables which maximize the variance 

account for, but we can adapt PCA to select a set of original sensor signals which are closet to the 

individual highest PCs or the corresponding PC-space. On the other hands, cross correlation is 

analyzed to eliminate the redundant signals regardless of a short time gap. ANOVA can also be 

employed to find out the statistical significances between a set of used sensor signals and the 

performance of fault pattern extraction. 
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Two proposed KCIs, aVar and DI, have some relationships with the performance of fault 

pattern extraction: small aVar is more appropriate to detect faults, rather than large aVar, and low DI 

is more appropriate to detect faults, rather than high DI. Therefore, it is possible to rank the 

significant/importance of sensor signals, with regard to fault pattern extraction. We can further 

develop a quantitative sensor selection/elimination or dimension reduction techniques by combining 

the traditional statistical analysis and the KCIs.   

5.4.3 Performance improvement plan through conventional machine 

learning models 

Since this study follows a quite stick crisp set theory, less considering the uncertainty, or 

generalization or estimation to the not discovered parts, there are several rooms for applying the 

conventional machine learning algorithms to improve the either computational costs or inferring the 

unknowns from the already known information, as follows:  

 Cut-point determination using SVM: Originally, we determine the cut-points using the 

estimated optimal PDFs of the given sensor data, in forms of unsupervised problem. As 

shown in Figure 5.21-(a) the original cut-point determination is one of the Boolean 

reasoning methods without class information. However, we have a class information on 

normal, symptom and fault states of the system, and thus we can employ the SVM so that 

the measurements form the three differential states being to as many different bins as 

possible. In addition, the research conducts the cut-point determination for each sensor 

signal individually, but it is possible to partition the multivariate sensor signals at the 

Figure 5.21 Cut-point determination: (a) the original method explained in Section 5.2, and (b) the 

proposed SVM-based method 
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same time by applying SVM. 

For example, one-against-SVM will partition the cut-points of two sensor signals, 

as illustrated in Figure 5.21-(b). Due to the class information, they will split the bins so 

that the measurements from different classes belong to the different bins as much as 

possible. This concept consequently helps to extract significant pattern in the fault 

pattern extraction. 

 Similarity measure for the event codes by ANN or clustering algorithm: The research 

uses arbitrary contiguous integers, such as coded value of the representative the quantity 

of sensor data in each bin, in order to adopt a Euclidean distance-based similarity 

measure between event codes. However, it is not always guaranteed that Euclidean 

distance is appropriate to measure the similarities of event codes. For example, suppose 

that b is 3, linearT = true, and the corresponding cut-points are computed as 𝐶𝑃𝑖 =

[𝑐𝑝𝑖1 𝑐𝑝𝑖2]
𝑇, then a set of nine labels for the ith sensor 𝐿𝑖 is made. Here, 𝑙𝑖7 indicate the 

relatively large magnitude with negative slope, then we cannot easy answer which one is 

more similar to this 𝑙𝑖7, between 𝑙𝑖4 (i.e., a negative slope but medium magnitude), 𝑙𝑖6 

(i.e., medium magnitude with positive slope, but the most close code number). In 

addition, it is also hard to compare the event codes which have different number of 

columns.  

Therefore, ANN can be adopted as a mapping function to calculate a distance 

between two event codes by considering DSVs in event codes, from the perspective of 

multi-feature and multi-sensor fusion. If we train the ANN with DSVs and arbitrary 

assigned event codes, then it gives an approximated event code number of the new event 

codes, and we can consider to be the similar number be similar signals’ behavior. In the 

case of clustering algorithm, they will make several clusters using the label information, 

not the arbitrary code number. If an unknown event code is found, then the clustering 

algorithms will tell you which cluster it belongs to.  

 Online monitoring by NB classifier: When we monitoring the sensor signal in real time, 

we search an exactly identical event code to the extracted pattern. However, we can 

consider uncertainty to the extracted pattern by adopting NB classifier. After obtaining 

event codes, NB classifier can be trained using the fault pattern and symptom pattern 

with their severities, and DSVs which are found in the normal states, and the posterior 

probability of a fault state and a normal state will be calculated. When the posterior 
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probability exceeds the predefined threshold, the it is considered to be fault detected or 

predicted. We can use posterior probability of either normal states, fault state, or ratio of 

them. As shown in Figure 5.22, we conducted this concept to detect defective weldment 

(S. Baek et al., 2015b), and automotive gasoline engine knocking (S. Baek & D.-Y. Kim, 

2013), and it showed reasonable classification/detection results.  

For detecting weld defects, DSVs which have 12 columns were only analyzed, 

whereas individual DSVs were only applied. As illustrated in Figure 5.23, we 

transformed the given monitoring sensor signals into a matrix of DSVs, assigned 

arbitrary number for each DSV, and then train NB classifier. The performance was 

Figure 5.22 The multivariate discretization and the Naive Bayes classifier for fault detection 

Figure 5.23 An example of multivariate discretization using laser welding monitoring sensor signals: 

(a) three original sensor signals, and (b) the corrsponding matrix of DSVs 
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compared with a set of three univariate SPC models and a set of PCA-based Hotelling’s 

T2 and Q statistics with regard of sensitivity and specificity. Sensitivity (also called 

the true positive rate or the recall) measures the proportion of positives that are correctly 

identified, whereas specificity (also called the true negative rate) measures the proportion 

of negatives that are correctly identified. As a result summarized in Table 5.15, fault 

pattern extraction via multivariate discretization and NB classifier showed better 

performance in detecting defects and not providing any false alarm.  

In this case, we can use DSVs from the normal states by differentiating them 

whether it is found in the normal states only or not. Then, the DSVs which are found any 

system’s states can be considered as less informative since it has a large uncertainty than 

others, when training the NB classifier. It is also possible to adopt other supervised 

machine learning algorithms for system’s state classification.  

Table 5.15 Comparison of the pattern extraction performance in weld defect detection among 

univariate SPC charts, multivariate statistical projection, and the proposed fault pattern extraction 

  

Detection method Sensitivity* Specificity** 

Three univariate SPC models 0.60 0.84 

PCA-based Hotelling’s T2 and Q statistics 1.00 0.13 

Multivariate discretization and NB classifier 1.00 0.98 

* Sensitivity (also called the true positive rate, the recall) measures the proportion of positives that are 

correctly identified 

** Specificity (also called the true negative rate) measures the proportion of negatives that are 

correctly identified 
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CHAPTER 6 

SYMPTOM PATTERN EXTRACTION* 

6.1 Symptom pattern and its severity  

In the previous subsection 3.1, we defined the symptom state for a certain amount of time prior to 

fault occurrence (i.e., the fault state) among the no-fault state. In a similar way to fault patterns, if a 

DSV or a sub-matrix of DSVs is only observed in the symptom state, it can be then considered as a 

clear symptom pattern. It is mathematically defined as the following Definition 7. 

Definition 7 (Symptom pattern): a set of event codes (which are a set of individual DSVs or a set 

of sub-matrices of DSVs) that are only found in the system’s symptom states, but not in the 

normal states. 

 

𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 = 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦 ∩ (𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥)
𝐜

= 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦 − 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥 
 

where  

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦: a set of all distinct event codes during the symptom states of the system; 

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥: a set of all distinct event codes discovered during the normal states of the 

system. 

 

Algorithm 6.1 explains how to extract symptom patterns from the event codes, which includes 

the set of individual DSVs and the set of sub-matrices of DSVs, of the given time series data. By 

definition, faults occur right after symptom states as depicted in Figure 3.1-(b) and hence it does not 

consider whether symptom patterns are found in the fault states or not.  

We classified the system’s state into normal, symptom, and fault ones. Accordingly, a DSV or 

a sub-matrix of DSVs found in each state can be considered as a pattern of each state. The set of all 

                                                      
* This CHAPTER 6 is the identically same as that contained in the published journal written by S. Baek and D.-Y. Kim 

(2017b). 
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patterns of each state is illustrated as a Venn diagram in Figure 6.1-(a), the symptom pattern as Figure 

6.1-(b), respectively 

Note that different combinations of the defined labels for each sensor determine all possible 

patterns as shown in Fig. 4. It is very likely that some combinations of labels, i.e., event codes do not 

exist in any system’s state. For example, the following five event codes ‘11’, ‘13’, ‘21’, ’31’, ’33’ (the 

last number of each element in a DSV is written for simplicity) do not exist in the given time series, 

suppose symptom patterns are extracted form a set of individual DSVs following Definition 7. It is re-

illustrated as shown in Figure 6.2-(a).  

 

 

Algorithm 6.1 Symptom pattern extraction according to Definition 7 

Require: 𝐄(𝐗) (a set of event codes), 𝐅𝐭𝐢𝐦𝐞 (information of the start and end times of fault states), 

𝐒𝐭𝐢𝐦𝐞 (information of the start times of the symptom states) 

 

1: 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 ← {} 

2: {𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦} ← 𝐷𝑆𝑉_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐄(𝐗), 𝐅𝐭𝐢𝐦𝐞, 𝐒𝐭𝐢𝐦𝐞) 

3: For (𝒑 = 𝟏; 𝒑 < |𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦| + 𝟏; 𝒑 + +) do 

4:   If 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

 ∉ 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥 

5:       Add 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

𝑡𝑜 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 

6:  End if 

7: End for 

 

Figure 6.1 The sets of normal, symptom, and fault patterns: (a) A set of event codes found in the 

normal (eventcodenormal), symptom (eventcodesymptom), and fault states (eventcodefault), (b) A set of 

symptom patterns (Patternsymptom) according to Definition 7, and (c) Definition 8 
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These non-existing event codes, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐧−𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠  belong to the complement of the 

three sets of patterns as shown in Figure 6.1. However, in practices, it is reasonable to consider some 

similar event codes to fault patterns as symptoms. These similar event codes will be formed in the 

vicinity of fault patterns, for example, ‘11’ and ‘13’ represented by diagonal stripes in Figure 6.2-(b).  

This concept can be schematically presented as a Venn diagram in Figure 6.1-(b). We therefore 

extend the previous symptom pattern definition with Definition 8 and Algorithm 6.2 explains a 

modified extraction procedure for new symptom patterns. 

Definition 8 (Symptom pattern+): a set of event codes (which are a set of individual DSVs or a set 

of sub-matrices of DSVs) that are only found in the system’s symptom states, but not in the normal 

states, or that are not found in the given time series, but similar to fault patterns. 

 

𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦

= {𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦 ∩ (𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥)
𝐜
}     ∪ {𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒏𝒐𝒏−𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈

∩ 𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝑷𝒂𝒕𝒕𝒆𝒓𝒏
𝒇𝒂𝒖𝒍𝒕∗} 

 

 

where  

𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒏𝒐𝒏−𝒆𝒙𝒊𝒔𝒕𝒊𝒏𝒈 = (𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒔𝒚𝒎𝒑𝒕𝒐𝒎 ∪ 𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒏𝒐𝒓𝒎𝒂𝒍 ∪ 𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝒇𝒂𝒖𝒍𝒕)
𝒄
 

: A set of event codes which do not exist in any system’s state of the given time series data; 

𝒆𝒗𝒆𝒏𝒕𝒄𝒐𝒅𝒆𝑷𝒂𝒕𝒕𝒆𝒓𝒏
𝒇𝒂𝒖𝒍𝒕∗: A set of event codes which are similar to fault patterns with respect to the 

predefined degree of similarity.  

Figure 6.2 Combinations of the defined labels for MAP and TP sensors, and symptom patterns 

according to (a) Definition 7 and (b) Definition 8 (yellow diagonal dash indicates additionally 

extracted symptom patterns) 
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The extracted symptom patterns should play a role of precursors to predict all fault 

occurrences. For fault prognosis, we therefore need to find meaningful patterns for every symptom 

state. Let us consider a symptom state is ‘discernible’ if at least one symptom pattern is found in the 

state, such that the related fault can be alarmed before it occurs.  

For fault prognosis, the extracted symptom patterns will be compared with the DSVs of the 

current time segment of the monitored sensor signals. The question here arises how severe the 

monitored symptom pattern is for further optimal maintenance actions (D. Goyal & B. S. Pabla, 2015). 

 If a particular symptom pattern is found in multiple symptom states, the pattern can be treated 

as severe. Therefore, we define the severity of a symptom pattern by the ratio of the number of 

symptom states where the particular pattern is found to the total number of symptom states. The 

procedure is identically same to that of a specific fault pattern’s severity degree as follows:   

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

)

=
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑙𝑒 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑠𝑡𝑎𝑡𝑒𝑠 𝑏𝑦 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑞

𝑠𝑦𝑚𝑡𝑝𝑜𝑚

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑠𝑡𝑎𝑡𝑒𝑠
  

where 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

 indicates the qth symptom pattern. 

Algorithm 6.2 Symptom pattern extraction according to Definition 8 

Require: 𝐄(𝐗) (a set of event codes), 𝐅𝐭𝐢𝐦𝐞 (information of the start and end times of fault states), 

𝐒𝐭𝐢𝐦𝐞 (information of the start times of the symptom states) 

 

1: 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 ← {} 

2: {𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐫𝐦𝐚𝐥, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐬𝐲𝐦𝐩𝐭𝐨𝐦, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐟𝐚𝐮𝐥𝐭, 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐧−𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠} ←  

𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐄(𝐗), 𝐅𝐭𝐢𝐦𝐞, 𝐒𝐭𝐢𝐦𝐞) 

3: 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭 by Algorithm 5.1 

4: 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝒔𝒚𝒎𝒑𝒕𝒐𝒎 by Algorithm 6.2 

5:  For (𝒑 = 𝟏; 𝒑 < |𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐧−𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠| + 𝟏; 𝒑 + +) do 

6:   If 𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦(𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑛𝑜𝑛−𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

,  𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐟𝐚𝐮𝐥𝐭)  

7:       Add 𝑒𝑣𝑒𝑛𝑡𝑐𝑜𝑑𝑒𝑝
𝑛𝑜𝑛−𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

𝑡𝑜 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 

8:  End if 

9: End for 
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It is open to discussion how to measure the severities of the similar event codes to fault 

patterns, i.e. the additional symptom patterns by Definition 8 that have never occurred in any 

symptom states. The detailed computation procedure for the severity is described in Algorithm 6.3 

 

Algorithm 6.3 A severity degree of a symptom pattern 

Require: 𝐄(𝐗) (a set of event codes), 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦  (symptom patterns), 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

 

(the pth symptom pattern), 𝑠𝑠𝑛𝑢𝑚 (the total number of the given symptom states) 

 

1: for (𝒑 = 𝟏;𝒑 < |𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦| + 𝟏; 𝒑 + +) do 

2:   𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

) ← 0 

3:   for (𝒒 = 𝟏; 𝒒 < 𝒔𝒔𝒏𝒖𝒎 + 𝟏;𝒒 + +) do 

4:       If there exists 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

that it is found in the qth symptom state  

5:         𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

) + +  

6:       End if 

7:   End for 

8:   𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑝
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

) ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑐𝑛𝑒𝑠(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑞
𝑠𝑦𝑚𝑝𝑡𝑜𝑚

), 𝑠𝑠𝑛𝑢𝑚) 

9: End for 

6.2 Symptom state length determination 

It is challenging to determine a meaningful time period for the symptom state. It has usually relied on 

expert knowledge or other experience-based specification. For example, a few minute length of a 

symptom state for the engine knocking prediction, and few days for predicting a faulty compressor 

operation in the heavy-oil-upgrading unit of a petroleum refinery.  

In the literature of anomaly detection, statistical control approaches have been widely used to 

isolate the signal range for the abnormal state of a system (K. K. Tha et al., 2005), (O. Commowick, P. 

Fillard, O. Clatz, & S. K. Warfield, 2008). By controlling the range limits, the length of a symptom 

state can be specified as shown in Figure 6.3. For example, assuming that the sensor data in the no-

fault state is normally distributed, we can then specify the upper and lower control limits of sensor 

signals for the no-fault state. The search for the symptom state begins just before the corresponding 

fault state and proceeds backward in time until the sensor signal reaches in the range of limits and 

stays there for a predefined duration. The length of a symptom state can vary with respect to the 
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responses of different sensors for the same fault state. In order not to lose any important sensor 

information, the above search procedure should be performed for all sensors, and it is reasonable to 

choose the longest period as the length of the symptom state. 

The above approach, however, has its limitation when there is no significant variation in the 

sensor signals, or continuous long-term periodic changes are observed as depicted in Figure 3.1. In 

order to identify meaningful increasing or decreasing trends of sensor signals. Furthermore, it is 

challenging to classify the signals if continuous long-term periodic changes are observed (O. E. 

Dragomir, R. Gouriveau, F. Dragomir, E. Minca, & N. Zerhouni, 2009). Conflicting sensor 

information and many measurement-induced noises also make the symptom state determination 

difficult (J. R. Beattie, 2014; C. H. Fontes & O. Pereira, 2016) In these cases, single predictor or 

threshold-based methods may not be sufficient for predicting the system’s behaviors (V. Chandola et 

al., 2009) 

If we search the entire no-fault state to extract informative symptom patterns, the computation 

cost of pattern analysis is exponentially expensive with respect to the length of search space (K.-J. 

Park & C.-H. Choi, 2001; S. Sengupta & S. Bandyopadhyay, 2010). Therefore, it is necessary to 

reduce a search space for symptom pattern extraction. This study discusses how to define the search 

space as a symptom state by searching symptom patterns iteratively, as described in Algorithm 6.4. 

Suppose we set sliding window length, settling time, and severity threshold for identify a new 

symptom pattern as 3 time segment, 5 time segment, and 0.15, respectively. The symptom pattern 

search starts from just before the corresponding fault state (e.g., time segment 25 in Figure 6.4). The 

search proceeds backward in time by sliding the time window of a pre-defined length (e.g., three time  

Figure 6.3 The discernible signal of a low reverse solenoid sensor that determines a symptom state 

clearly prior to engine knocking. 
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Algorithm 6.4 Determination of a symptom state length 

Require: 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦  (symptom patterns), 𝑠𝑇 (settling time), 𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (severity 

threshold for search termination), 𝑠𝑒𝑣𝑒𝑟𝑡𝑖𝑒𝑠 (the severity degrees of symptom patterns), 

𝑠𝑤  (sliding window length), 𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡  (the weight for a symptom pattern with 

respect to its occurrence time), 𝑠𝑓 (The start time of a fault state) 

 

1:  For (𝒌 = 𝒔𝒇; 𝒌 > 𝟎; 𝒌 = 𝒌 − 𝒔𝒘;) do // search patterns by sliding a window of the length sw 

from the time segment just before the fault state 

2:   Extract 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 by Algorithm 6.2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤  

3:   If 𝑆𝑒𝑎𝑟𝑐ℎ_𝑠𝑡𝑜𝑝(𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡) 

4:      Extract 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 by Algorithm 6.2 𝑓𝑢𝑟𝑡𝑒ℎ𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑠𝑇  

5:      If 𝑆𝑒𝑎𝑟𝑐ℎ_𝑠𝑡𝑜𝑝(𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡) 

6:         𝑆𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡_𝑆𝑦𝑚𝑝𝑡𝑜𝑚_𝑆𝑡𝑎𝑡𝑒 ← k+1 

7:         break; 

8:      End if 

9:    End if 

10: End for 

11: If 𝑘 ≤ 0 // symptom patterns were found in the entire no-fault state  

12:   𝑆𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡_𝑆𝑦𝑚𝑝𝑡𝑜𝑚_𝑆𝑡𝑎𝑡𝑒 ← 1 

13: End If 

 

 

Procedure 𝑆𝑒𝑎𝑟𝑐ℎ_𝑠𝑡𝑜𝑝(𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡) 

1: 𝑠𝑒𝑣𝑒𝑟𝑡𝑖𝑒𝑠 ← Algorithm 6.3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠, 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 

2: 𝑠𝑒𝑣𝑒𝑟𝑡𝑖𝑒𝑠 ← 𝑠𝑒𝑣𝑒𝑟𝑡𝑖𝑒𝑠 × 𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡 

3: If 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬𝐲𝐦𝐩𝐭𝐨𝐦 = ∅ 𝐨𝐫 𝑚𝑖𝑛(𝑠𝑒𝑣𝑒𝑟𝑡𝑖𝑒𝑠)  ≤ 𝑠_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

4:    return true  

5: Else 

6:    return false 

7: End if 
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segments in Figure 6.4), until no further new symptom pattern is found. If we fail to find a new 

symptom pattern or the total of severity degrees is smaller than the pre-defined threshold in the 

current time window (e.g., from time segment 14 to 16 in Figure 6.4), we slide the time window by a 

Figure 6.4 An example of symptom state determination using two sensor signals (Fuel Pump Relay 

Control (FPRC) and MAP). (a) a set of DSVs transformed from the given original sensor signals, 

and (b) the procedure for determining the length of a symptom state (A set of sub-matrices of DSVs 

is omitted for simple explanation) 
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pre-defined settling time (e.g., five time segments from 9 to 13 in Figure 6.4), and search a new 

pattern again. We stop the search unless (a) new symptom pattern(s) is(are) found, and specify the 

start of a symptom state at the start of the time window of a previous iteration in which we found (a) 

new symptom pattern(s). For example, in Figure 6.4, we can consider the symptom state from time 

segment 17 to 25, for the fault occurring from time segment 26 to 30. 

Very sparsely can new patterns be found in the entire no-fault states. However, we may want 

to exclude some patterns found too far prior to a fault for symptoms according to prior engineering 

knowledge. For this case, we can use a time-based weight function that decreases exponentially over 

time as illustrated in Figure 6.4. This weight function sets an additional stopping condition for the 

search procedure of Algorithm 6.4.  



166 



167 

CHAPTER 7 

ONLINE FAULT DETECTION AND 

PREDICTION* 

7.1 Detection and prediction procedures 

This section discusses how to predict faults by real-time monitoring of multiple system’s signals using 

the extracted patterns, their severities, and the estimated length of symptom state. The prediction 

procedure is illustrated using gasoline engine knocking data as an example. We first extracted 9 

symptom patterns in total for gasoline engine knocking following Definition 8, and their severities 

were computed as shown in Figure 7.1-(a). For the severities of the additional symptom patterns 

which are similar to fault patterns, but have never occurred in any symptom state, 

𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐧𝐨𝐧−𝐞𝐱𝐢𝐬𝐭𝐢𝐧𝐠 ∩ 𝐞𝐯𝐞𝐧𝐭𝐜𝐨𝐝𝐞𝐏𝐚𝐭𝐭𝐞𝐫𝐧
𝒇𝒂𝒖𝒍𝒕∗, we used the minimum value of the severities of all 

the extracted symptom patterns. The symptom state length of 65 seconds was estimated by the 

procedure in Section 6.2.    

We monitored multiple sensor signals from a gasoline engine, and obtained the DSVs by 

transforming the sensor signals in the current monitoring window. We compared the current DSVs 

with the 9 extracted symptom and 2 fault patterns, and then summed up the severities of the patterns 

found in the current monitoring window. The monitoring window size was here set to equal the 

symptom state length. For example, in Fig. 7-(b), two symptom patterns ‘24’ and ‘63’ were extracted 

at 234 and 250 seconds respectively in a monitoring window, and thus, the total cumulative severity at 

250 seconds was computed by the sum of the severities of the two symptom patterns (= 0.50).  

We considered a fault to be occurred in the near future, if the total cumulative severity in the 

                                                      
* This CHAPTER 7 is the identically same as that contained in the published journal written by S. Baek and D.-Y. Kim 

(2017b). 
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current monitoring window is larger than the user-defined warning threshold. We set a warning 

threshold proportional to the mean value of the total severity of the extracted symptom patterns in 

each symptom state, e.g., 90% of the mean value of the total severity.  

Suppose the nine symptom patterns in Figure 7.1-(a) are extracted from four symptom states, 

then we can compute the total severities for each symptom state as explained in Table 7.1. that is, we 

calculated the total severities for four symptom states respectively, i.e., 0.12, 0.92, 0.24, and 0.94 for 

1st, 2nd, 3rd, and 4th symptom states, and then obtained the average value of four total severities, 0.56. 

We set a warning threshold of 0.50 by considering 90% of the average of total severities.  

In the case of fault patterns, a severity of each fault pattern is positive infinite in fault 

prediction problem. On the other hands, if we conduct the online fault detection for a product or a 

(inspection/measurement) cycle such as laser welding process monitoring and BSR noise detection, it 

is not possible to determine symptom states of the system and extract the corresponding symptom 

pattern. Therefore, in this case, we calculate the severities of the extracted pattern and the criticality of 

the current state.  

Figure 7.1 An example of fault prediction by symptom patterns for the gasoline engine knocking: (a) 

The results of the fault and symptom pattern analysis, (b) The fault prediction procedure for first 

pattern matching of the event codes in the current monitoring window and the two fault and nine 

extracted symptom patterns, and then summing up the severities of the patterns found in the current 

monitoring window 
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  The performance of fault prediction is demonstrated with the case studies of a marine diesel 

engine and an automotive gasoline engine. In the case of fault detection, its performance is examined 

using the case study of a BSR defect in in-process noise detection system using a typical acoustic 

sensor array. Two thirds of the given dataset were analyzed to extract patterns, and the rest for online 

fault detection and prediction (hereafter called as training and test respectively).  

For examining the performance of online fault prediction, we divided a no-fault state into a 

normal state and a symptom state. If any symptom pattern is found in a normal state, it is considered 

as ‘type I error (false alarm).’ On the other hands, if any symptom pattern is not found in a symptom 

state, it is considered as ‘type II error (miss).’ In the case of fault detection problem, type I error and 

type II error are defined as follows: type I error when any fault pattern is found in a no-fault state, and 

type II error when no fault pattern is found in a fault state.  

In order to extract symptom patterns for predicting each fault states, six sensor signals for each 

engine were analyzed. Discretization parameters for patter extraction are as follows: the length of time 

segments: less than 10% of the average length of the given fault states, the number of bins: 7 bins, bin 

width threshold: 80%. For making a sub-matrix of adjacent DSVs, we considered four maximum 

number of columns in a matrix. For determining the symptom state length, the settling time was set to 

20% of the average length of no-fault states. Finally, a truncated exponential function was employed 

for a time-based weight function 

Table 7.1 An example of warning threshold setting when the extracted symptom pattern is 

identical to Figure 7.1 

 

Symptom state 
Symptom patterns 

(no. of occurrences in a state) 
Total severity 

1st  [
𝑙12
𝑙22
] (3) 0.04 × 3 = 0.12 

2nd  [
𝑙12
𝑙24
] (1), [

𝑙14
𝑙21
] (1) [

𝑙12
𝑙22
] (1) 0.46 × 1 + 0.42 × 1 + 0.04 × 1 = 0.92 

3rd  [
𝑙14
𝑙26
] (1) 0.24 × 1 = 0.24 

4th  [
𝑙12
𝑙24
] (1), [

𝑙12
𝑙22
] (1) 0.30 × 3 + 0.04 × 1 = 0.94 

Average of total severities 
0.12+0.92+0.24+0.94

4
= 0.56 

Warning threshold 

(e.g., 90% of the average of total severities) 
0.56 × 0.9 = 0.50 
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7.2 Abnormal cylinder temperature prediction 

Table 7.2 summarizes 562 extracted symptom patterns and corresponding severities from the all fault 

occurrences. The most severe symptom pattern has occurred in 13 different 20 symptom states, 

whereas the weakest pattern has only occurred in one symptom state. In addition, the length of 

symptom state was determined as 22 minutes.  

Table 7.2 The symptom patterns (according to Definition 7) and their severities for predicting 

abnormal cylinder temperatures in the marine diesel engine 

 

No. columns in a 

sub-matrix of DSVs 
Pattern ID Symptom patterns Severity 

1 

1 [𝑙11, 𝑙21, 𝑙37, 𝑙41, 𝑙51, 𝑙61]
T 0.650 

2 [𝑙11, 𝑙22, 𝑙37, 𝑙41, 𝑙51, 𝑙61]
T 0.550 

⋮ 

41 [𝑙14, 𝑙24, 𝑙34, 𝑙42, 𝑙51, 𝑙67]
T 0.050 

2 

42 [
𝑙11 𝑙22 𝑙37 𝑙41 𝑙51 𝑙61
𝑙11 𝑙21 𝑙37 𝑙41 𝑙51 𝑙61

]
T

 0.300 

43 [
𝑙11 𝑙21 𝑙37 𝑙41 𝑙51 𝑙61
𝑙11 𝑙21 𝑙37 𝑙41 𝑙51 𝑙61

]
T

 0.300 

⋮ 

150 [
𝑙12 𝑙24 𝑙34 𝑙42 𝑙52 𝑙64
𝑙13 𝑙23 𝑙34 𝑙42 𝑙53 𝑙64

]
T

 0.050 

3 

151 [

𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙62
𝑙11 𝑙23 𝑙37 𝑙41 𝑙51 𝑙61

]

T

 0.200 

152 [

𝑙11 𝑙24 𝑙36 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64

]

T

 0.200 

⋮ 

324 [

𝑙15 𝑙24 𝑙34 𝑙44 𝑙56 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙56 𝑙64
𝑙14 𝑙24 𝑙33 𝑙43 𝑙54 𝑙64

]

T

 0.050 

4 

325 [

𝑙11 𝑙24 𝑙36 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64

]

T

 0.200 

326 [

𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙64
𝑙11 𝑙24 𝑙37 𝑙41 𝑙51 𝑙62
𝑙11 𝑙23 𝑙37 𝑙41 𝑙51 𝑙61
𝑙11 𝑙21 𝑙37 𝑙41 𝑙51 𝑙61

]

T

 0.150 

⋮ 

562 [

𝑙16 𝑙24 𝑙32 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙32 𝑙44 𝑙53 𝑙64
𝑙14 𝑙23 𝑙32 𝑙42 𝑙51 𝑙64
𝑙11 𝑙22 𝑙33 𝑙41 𝑙51 𝑙64

]

T

 0.050 
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Additional symptom patterns according to Definition 8 can be also included for fault 

prediction. The extracted symptom patterns successfully provided early alarms of all the 10 fault 

occurrences in the test dataset. Figure 7.2 shows the 1st and 3rd set of normal and symptom state case 

to predict a fault occurrence. In the case, we can predict a future fault occurrence about 381 to 397, 

and 290 seconds earlier than the actual fault occurrence, using the extracted symptom pattern, 

respectively. The severities suddenly increased by a relatively severe symptom pattern(s), in the most 

cases, before calculating the total cumulative severity as the monitoring window progressed.  

It is observed that any time makers for finding symptom patterns did not exist before 

predicting faults as shown in Figure 7.2. It is important to examine how early detect the faults by the 

proposed prediction procedure. The average time-to-fault after alarm (called hereafter prediction 

earliness) varies from 3 to 5 minutes before the fault occurrence. The larger the user-defined warning 

threshold is used, the later the fault was predicted, as listed in Table 7.3.  

By investigating the discretized state vectors in the extracted symptom pattern from the 

training and test datasets, we observe the common sequences of the signals’ changes before a fault 

occurred, as follows: 

Table 7.3 The prediction summary of abnormal cylinder temperatures in the marine diesel engine 

 

User-defined warning 

threshold 
Type I error** Type II error*** Average prediction earliness 

10% (0.405)* 20% (2/10) 0% 5 minutes 53 seconds 

20% (0.811) 10% (1/10) 0% 3 minutes 49 seconds 

30% (1.216) 10% 0% 3 minutes 49 seconds 

40% (1.621) 10% 0% 3 minutes 49 seconds 

50% (2.026) 10% 0% 3 minutes 48 seconds 

60% (2.432) 10% 0% 3 minutes 48 seconds 

70% (2.837) 0% 0% 3 minutes 48 seconds 

80% (3.242) 0% 0% 3 minutes 48 seconds 

90% (3.647) 0% 0% 3 minutes 48 seconds 

* % of the average of the total severities (e.g. 10% of 4.053= 0.405)  

** no. of false predictions / no. of normal state (=symptom state = fault state = fault occurrences) 

*** no. of missed predictions / no. of symptom state  
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Figure 7.2 The results of the 1st and 3rd set of abnormal cylinder temperature prediction (blue: original 

sensor signal, green dash dot: the corresponding label, vertical yellow dot: the time point where a 

symptom pattern(s) is(are) found, and vertical red: the time point where a fault is predicted) 
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(i) Reduce an amount of the inlet air to the turbocharger (i.e., a decrease of the turbocharger 

speed) 

(ii) Reduce the pressure in the turbocharger (i.e., a decrease of the air cooler pressure) 

(iii) Irregular Piston drive of the marine diesel engine (i.e., a decrease of the power factor and 

the current) 

(iv) Increase the temperature of exhaust gas from the turbocharger (i.e., an increase of the 

turbocharger outlet temperature)  

(v) The combustion without a fuel supply due to irregular piston drive 

(vi) Increase the temperature of the inlet air to the turbocharger, due to temperature rise of 

the internal (turbocharger itself), rather than the inflow of outside high temperature-air 

(i.e., an increase of the turbocharger inlet temperature) 

7.3 Gasoline engine knocking prediction 

Table 7.4 summarizes 859 extracted symptom patterns and corresponding severities from 221 out of 

225 fault occurrences. The most severe symptom pattern has occurred in 162 different 339 symptom 

states, whereas the weakest pattern has only occurred in one symptom state. In addition, the length of 

symptom state was determined as 44 seconds. Using the extracted patterns and related parameters, the 

Figure 7.3 A major/typical (sub)sequence of multi-sensor signal behaviors in a set of  symptom 

patterns before a fault occurrence 
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online fault prediction is conducted as illustrated in Figure 7.4. For example, in the 37th set of normal 

and symptom state case, we successfully predict an unknown engine knocking about 1.0 second 

earlier (standard deviation = 0.1 seconds) than the actual knocking occurs. It was suddenly predicted 

Table 7.4 The symptom patterns (according to Definition 6) and their severities for predicting the 

automotive gasoline engine knockings 

 

No. columns in a sub-

matrix of DSVs 
Pattern ID Symptom patterns Severity 

1 

1 [𝑙14, 𝑙24, 𝑙34, 𝑙43, 𝑙54, 𝑙63]
T 0.717 

2 [𝑙14, 𝑙24, 𝑙34, 𝑙44, 𝑙54, 𝑙63]
T 0.425 

⋮ 

40 [𝑙16, 𝑙24, 𝑙34, 𝑙42, 𝑙56, 𝑙63]
T 0.009 

2 

41 [
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63

]
T

1 0.319 

42 [
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63
𝑙12 𝑙27 𝑙34 𝑙44 𝑙54 𝑙64

]
T

 0.310 

⋮ 

172 [
𝑙12 𝑙26 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙56 𝑙64

]
T

 0.009 

3 

173 [

𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63

]

T

 0.301 

174 [

𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63

]

T

 0.283 

⋮ 

432 [

𝑙14 𝑙24 𝑙35 𝑙45 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64

]

T

 0.009 

4 

433 [

𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙12 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63

]

T

 0.274 

434 [

𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙64
𝑙14 𝑙24 𝑙34 𝑙44 𝑙54 𝑙63

]

T

 0.248 

⋮ 

859 [

𝑙12 𝑙24 𝑙34 𝑙43 𝑙57 𝑙64
𝑙12 𝑙24 𝑙34 𝑙43 𝑙57 𝑙64
𝑙12 𝑙24 𝑙34 𝑙42 𝑙56 𝑙64
𝑙12 𝑙24 𝑙34 𝑙42 𝑙54 𝑙63

]

T

 0.009 
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Figure 7.4 The results of the 37th and 92nd set of gasoline engine knocking preidction (blue: original 

sensor signal, green dash dot: the corresponding label, vertical yellow dot: the time point where a 

symptom pattern(s) is(are) found, and vertical red: the time point where a fault is predicted) 
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as similar to Section 7.2. However, in the case of the 51st of normal and symptom case, it showed a 

gradual increase in the total cumulative severity at about 110 seconds.  

In the case of automotive gasoline engine knocking, as described by a large aVar and a high DI 

in section 5.3, it is hard to investigate a common signals’ behavior in the symptom pattern. For 

example, no-period changes of ‘O2 ratio’ and a sudden drop of ‘RF low’ are found as symptom 

patterns in the 37th fault occurrences. On the other hands, the 92nd fault was predicted when the ‘RF 

low’ signal suddenly rose (after a sudden drop) and ‘Ignition’ signal showed intermittent impulses. 

Therefore, many combination of discretized state vectors are generated and selected as a set of 

symptom patterns, among both the sensors and the time segments.  

In the online fault prediction, it is clearly observed that a fault was predicted earlier if we 

considered a loose warning threshold, and thereby resulting in a better prediction capability accepting 

potential false alarms (e.g., a more liberal decision than using the high warning threshold), as 

summarized in Table 7.5. On the other hand, if the warning threshold is tightly set to 90% of the 

average of the total severities, any false prediction (i.e., no type I error) did not be made, but one fault 

cannot be predicted early (i.e., one type II error), i.e., a fault is conservatively predicted.  

Table 7.5 The prediction summary of the automotive gasoline engine knockings 

 

User-defined warning 

threshold 
Type I error** Type II error*** Average prediction earliness 

10% (0.069)* 12% (14/113) 0% 5.8 seconds 

20% (0.138) 2% (3/113) 0% 2.2 seconds 

30% (0.207) 2% 0% 1.8 seconds 

40% (0.277) 2% (2/113) 0% 1.7 seconds 

50% (0.346) 2% 0% 1.7 seconds 

60% (0.415) 1% (1/113) 1% (1/113) 1.6 Seconds 

70% (0.484) 1% 1% 1.5 seconds 

80% (0.553) 1% 1% 1.5 seconds 

90% (0.622) 0% 1% 1.4 seconds 

* % of the average of the total severities (e.g. 10% of 0.690= 0.069)  

** no. of false predictions / no. of normal state (=symptom state = fault state = fault occurrences) 

*** no. of missed predictions / no. of symptom state  
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If symptom patterns are found rarely or weak patterns are observed in the state, the symptom 

state can show a very lower total severity, e.g. 1st symptom state in Table 7.1. In this case, the 

corresponding sensor signals are not easy to exceed the warning threshold, and thus symptom cannot 

be predicted when the warning threshold is determined as high percentage of the average of total 

severity in each symptom states. 

7.4 BSR noise detection  

For demonstrating online fault detection only, BSR noise detection is analyzed using a typical 

acoustic sensor array. In this case, we consider to be fault detected if a fault pattern is found in the 

measurements. In this problem, there is no symptom state, because the system requires a detection 

result per one inspection cycle, defective or defect-free. That is, the only fault pattern is extracted as 

following modified definition 

 Fault pattern: a set of event codes which are found only in fault states (defective 

weldments), but not in normal states (defect-free weldments). 

Total 183 fault patterns are extracted from 27 fault states (defective door trims), which are not 

found in 40 normal states (defect-free door trims). Their corresponding severities are summarized in 

Table 7.6. In this case study, a set of individual DSVs are only analyzed to extract fault patterns. The 

most severe fault pattern has occurred in 20 different fault sates, whereas the weakest pattern has only 

found in one fault state.  

Table 7.6 The fault patterns (according to Definition 1) and their severities for detecting defective 

BSR noise in the door trims  

 

Pattern ID Symptom patterns Severity 

1 [𝑙14, 𝑙24, 𝑙34, 𝑙44, 𝑙56, 𝑙64, 𝑙74, 𝑙84, 𝑙94]
T 0.741 

2 [𝑙14, 𝑙24, 𝑙34, 𝑙44, 𝑙55, 𝑙64, 𝑙74, 𝑙84, 𝑙94]
T 0.333 

3 [𝑙14, 𝑙25, 𝑙35, 𝑙44, 𝑙56, 𝑙65, 𝑙74, 𝑙85, 𝑙94]
T 0.333 

4 [𝑙14, 𝑙25, 𝑙34, 𝑙44, 𝑙54, 𝑙64, 𝑙74, 𝑙85, 𝑙95]
T 0.259 

5 [𝑙14, 𝑙25, 𝑙34, 𝑙44, 𝑙54, 𝑙64, 𝑙74, 𝑙84, 𝑙94]
T 0.222 

⋮ 

351 [𝑙16, 𝑙27, 𝑙36, 𝑙46, 𝑙55, 𝑙66, 𝑙74, 𝑙86, 𝑙96]
T 0.037 
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 The extracted fault patterns successfully detect all 13 fault states and do not generate any 

false alarms in 20 normal states, as listed in Table 7.7. An example of the online fault detection is 

illustrated Figure 7.5, a fault is successfully detected and identified when a BSR noise is generated. 

For example, in the example of Figure 7.5, it is considered to a BSR noise be generated at about 0.2 to 

0.6 seconds.  

In addition, the criticalities of all fault states which are also analyzed in the training and test 

step varies from 0.222 to 0.629, as shown in Table 7.8 and Table 7.9 respectively. The different 

severity degrees for all extracted patterns indicate that the defects are generated by various root causes, 

not a single stronger root cause. In other words, although we push the same point on the door trim to 

generate identical defects, the BSR noise can be caused by various root causes. This is because any 

Figure 7.5 An example of the online fault detection of BSR noise using a typical acoustic sensor 

array (blue: original sensor signal, green dash dot: the corresponding label, vertical red: the time 

point where a fault pattern is found) 
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given part is attached to several other parts, therefore it can contact multiple surfaces and generate 

multiple collisions. The more tests we conduct on a target, the more the target will fatigue, which may 

result in defect patterns that are scored differently. 

Table 7.7 Performance matrix for BSR-noise detection 

 

 

Decision/Respond about Null Hypothesis(H0) 

Normal Fault 

Null Hypothesis 

/Target (H0) 

Normal 20/20 0/20 

Fault 0/13 13/13 

 

Table 7.8 The criticalities of the 27 fault states (in the training) for detecting defective BSR noise in 

the door trims 

 

Fault state No. Criticality Fault state No. Criticality 

Fault state 4 0.674 Fault state 22, 26, 27 0.629 

20, 21 0.671 23 0.611 

3, 6, 11, 14 0.670 2 0.346 

8 0.669 19 0.326 

10, 25 0.668 7 0.322 

5, 18 0.6666 17 0.303 

16 0.651 13 0.259 

1, 9 0.648 15 0.253 

24 0.637 12 0.222 

 

Table 7.9 The criticalities of the 13 fault states (in the test) for detecting defective BSR noise in the 

door trims 

 

Fault state No. Criticality Fault state No. Criticality 

Fault state 28, 31 0.175 
Fault state 

32, 26, 27, 30, 33. 21 
0.163 

22, 24, 25, 29 0.165 23 0.161 
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CHAPTER 8 

CONCLUSION 

This study presented a fault detection and prediction framework that consists of: (i) definition of a 

system’s operational states; (ii) definitions of fault and symptom patterns; (iii) multivariate 

discretization; (iv) severity and criticality analyses, and (v) online detection and prediction procedures. 

To do this, firstly we developed a systematic discretization procedure of multi-sensor signals for fault 

and symptom pattern extraction, which includes: (i) label definition in consideration of the estimated 

distribution functions of sensor signals and the trends of a signal’s short-term variation (ii) label 

specification of a set of time segments, and (iii) event codification in order to describe the state of a 

given system for the time segment as either individual DSV or sub-matrices of DSVs.  

In order to detect faults consistently, we first defined a fault pattern which should occur only 

during the system's faulty states, and not found during the system's no-fault states. Every extracted 

fault pattern is employed for detecting an unexpected fault to consider the various root causes, 

However, the degree of severity of each pattern can be different. Therefore, the degree of severity was 

provided as statistical evidence for the probability of a fault occurrence. If a pattern is discovered 

from multiple fault states, it is considered to be a pattern with a higher likelihood of being found. In 

addition, for the more informative detection, we analyzed the given fault states to consider the degrees 

of severity of the extracted patterns. To do this, the criticality of the fault state was computed by 

calculating how many severe patterns make a fault state discernible. In other words, the identification 

of more severe fault patterns will result in being more critical to the system.  

To obtain a better fault pattern, we need to determine appropriate parameters in the 

multivariate discretization problem. Therefore, we formalized the discretization problem for fault 

detection following the fault pattern definition in two ways: Find optimal values for the discretization 

parameters, (i) to extract a pattern that is found in as many as possible fault states but not in the no-

fault states, and (ii) to extract a set of patterns thereby maximizing the number of discernible fault 

states. Since discretization parameters are highly dependent on the key characteristics of the given 
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multivariate time series data, we quantitatively represent the data using the two proposed KCIs which 

are to differentiate between abrupt and steady changes in the fault states, and to measure the overlap 

area between the given sensor data in the fault and no-fault states. By conducting the empirical 

sensitivity analysis of discretization parameter selection using the four fault detection problem in the 

different electromechanical systems, we observed the relationships between discretization parameters 

and the key characteristics of sensor signals in extracting the most severe fault patterns. The identified 

relationships can be applied as a practical guideline for the choice of appropriate discretization 

parameters with respect to the given data’s KCIs. To demonstrate the effectiveness of the proposed 

guideline, two BSR noise detection problems were further analyzed to detect defective car door trim 

by using the recommended values for discretization parameters. The proposed guideline successfully 

helps to extract not only a set of fault patterns which are found in every fault state, but also the most 

severe pattern compared to the other parameter settings.  

For fault prediction, we also formulated a symptom pattern definition which should occur 

during the system’s symptom states, and not found during the system’s normal states. Different 

combinations of the defined labels for each sensor determine all possible patterns, buts some 

combinations of labels are unlikely to exist in any state of the system. Therefore, we suggest that it is 

reasonable to consider some non-existing DSVs with similarity to fault patterns as symptoms. For 

extracting meaningful symptoms, we assumed that a symptom state was another operational state of 

the system in the no-fault states, which are given in the conventional supervised problem as follows: 

the state to be observed in a certain amount of time prior to a fault occurrence. Therefore, we 

proposed the procedure to determine the symptom state length while a symptom pattern extraction is 

conducted. The symptom state search starts from the end of the no-fault states and proceeds backward 

in time. The search will stop when no further new symptom pattern is found or the total severity is 

smaller than a pre-defined threshold in the sliding window. A time-based weight function was also 

applied to impose penalties for very rarely found patterns for the entire duration of a no-fault state that 

are particularly far from fault occurrence. 

Finally, online fault detection and prediction was conducted by inspecting whether symptom 

patterns occurred and further how many severe patterns were found in the symptom state. By 

monitoring the total severity of found patterns in the current monitoring window of the length of a 

symptom state, early warning decision could be made. By controlling the warning threshold, we can 

adjust the Type I and Type II error in online fault prediction. In the case of online fault detection, it is 

considered that a fault is detected when any fault pattern is found in the current states regardless of its 

severity degree, and the criticality of the current state is recursively updated according the severities 

of the found patterns. The performance of the extracted patterns is examined with two fault prediction 
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problems (i.e., abnormal cylinder temperature in the marine diesel engine and the automotive gasoline 

engine knocking), and one fault detection problem (i.e., BSR-noise detection using a typical acoustic 

sensor array). 

In addition to the pattern’s severity and the state’s criticality, the extracted patterns themselves 

also provide qualitative information of the sensor signals in the fault and symptom states, respectively. 

The labels of each DSV contain relative magnitude and linear slope of a sensor signal in a short time 

segment, therefore we can indirectly use the information to isolate and to identify the fault by, for 

example, what happens until a fault occurs and which components/parts show abnormal signal 

behavior before a fault has occurred. Using such label information in the fault and symptom patterns, 

we successfully estimated the root cause and fault propagation when an abnormal cylinder 

temperature was found in a marine diesel engine as a fault. 

The proposed method can be applied to fault detection and prediction of any 

electromechanical system which can collect multiple sensor signals in the form of time series in real 

time, and can also be helpful in early degradation detection of a product. For example, we adapted our 

method to early degradation detection of MLCCs using two indirect sensor signals, and it successfully 

performed the early detection of four degradations without any false alarm (S. Baek, D. Kwon, & D.-

Y. Kim, 2017b; S. Baek, D. Kwon, & D.-Y. Kim, 2017c).  

It should be re-emphasized that the main contributions of the research are: 

 We proposed the online monitoring procedure using extracted patterns, their severity, and 

the symptom state length 

 We defined the symptom state, and determine its length for the symptom pattern 

extraction 

 We formalized a fault pattern and a symptom pattern from multiple sensor signals 

 We provided a guideline to select appropriate discretization parameters with respect to 

key characteristics of the given dataset 

To summarize, in this study, a systematic framework for the fault and symptom pattern 

extraction based on time series discretization using multiple sensor signals is developed. Although the 

primary objectives were attained, there are still further works to overcome the existing limitations, as 

follows: 
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 To apply the proposed symptom pattern extraction for unsupervised or semi-supervised 

fault detection and prediction problems, for example, without the time markers of fault 

occurrences.  

 To select the most significant sensor signals to describe a system’s states among the 

given huge amount of multiple sensor signals 

 To update the procedure for generating DSVs and defining event codes from the 

perspective of multi-sensor fusion 

 To transform the label coordinates (such as a transition probability matrix) with regard to 

the extracted fault and symptom patterns for similarity measure (such as Euclidean 

distance based measure) between event codes  

 To discuss how to determine the appropriate feature(s) in label definition, with respect to 

the given datasets, and to characterize signals in the frequency domain to enrich the label 

definition process 

 To validate and generalize the results using different datasets with detailed levels of 

discretization parameters and to employ different discretization parameter setting for 

each sensor in the dataset 

 To determine user-defined control parameters for online fault prediction including sliding 

window length, time weight function, and warning threshold in the symptom pattern 

extraction. For example, a warning threshold should be precisely set by considering the 

trade-off between type I and type II errors (X.-S. Si et al., 2011) 
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Appendix 

A. Software Manual: SF diagnostics and SF Monitoring 
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(i) Significance analysis of multi-sensor signals 

 After selecting PCs which can explain a large portion of variance account for 

original sensor signals, the degrees of significance of signals are computed by 

how much explain variance account for the selected PC subsets, and ranked. 

Large coefficient indicates more significant sensors.  

 
 

(ii) Correlation analysis among multi-sensor signals  

 Through auto/cross correlation analysis, a measure of similarity (e.g., sliding 

linear relationship) of selected sensor signals (or a signal itself) is computed as a 

function of the displacement of one relative to the other. Large correlation 

indicates redundant information in two signals (or a signal itself). 
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(iii) Fault detection in a machine – Basic analysis (Univariate SPC model) 

 Using univariate SPC models (i.e., mean, standard deviation, range, and 

individual value), upper and lower control limits are computed for each sensor 

signals. If a current measurement from a sensor is out of control limits, it is 

considered as fault states.  

 
 

(iv) Fault detection in a machine – Advance analysis (Multivariate SPC model) 

 Using multivariate SPC models (i.e, Hotelling’s T2 and Q statistics), control 

limits are computed for the selected sensors. If a current corresponding statistic 

computed from the current signals exceeds a control limit, it is considered as 

fault states.  
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(v) Fault detection and prediction in a machine – Fault and symptom pattern extraction 

 Unique trends of sensor signals during system’s fault and symptom states are 

extracted as fault and symptom pattern, respectively (more detail information is 

written in the main body of this thesis). If the extracted pattern is found, the 

system is considered to be a fault detected or predicted. 

 
 

 

(vi) Defect detection of a product/sub-assembled part –Geometric binary classifier 

 Through binary or one-class SVM, a hyperplane is constructed based on two 

sensors’ statistical features, in order to classify a product quality into defect and 

defect-free.  
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(vii) Reservation and automatic update for detection and prediction analysis results  

 The analysis results are automatically updated by conducting analysis again 

using the additionally accumulated sensor signals in the set time according to 

pre-reserved information. 

 

(viii) Real-time dynamic fault detection and prediction 

 If the detection and prediction analysis results are ready for a target sensor 

signals in a station, we can dynamically conduct real-time fault detection, 

prediction and defect detection without any programming changes. 
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 Simper version of online monitoring: This module automatically recognizes a 

target stations (e.g., QR code or user selection), and perform real-time fault 

detection and prediction.  
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