
Feature-based Time Series Analytics

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Dipl.-Inf. Lars Kegel

geboren am 16. Juni 1988 in Dresden

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Themis Palpanas
University of Paris
LIPADE
45, rue des Saints-Pères
75006 Paris
Frankreich

Tag der Verteidigung: 9. März 2020

2

ABSTRACT

Time series analytics is a fundamental prerequisite for decision-making as well as au-
tomation and occurs in several applications such as energy load control, weather re-
search, and consumer behavior analysis. It encompasses time series engineering, i.e.,
the representation of time series exhibiting important characteristics, and data mining,
i.e., the application of the representation to a specific task. Due to the exhaustive data
gathering, which results from the “Industry 4.0” vision and its shift towards automation
and digitalization, time series analytics is undergoing a revolution. Big datasets with very
long time series are gathered, which is challenging for engineering techniques. Tradition-
ally, one focus has been on raw-data-based or shape-based engineering. They assess the
time series’ similarity in shape, which is only suitable for short time series. Another focus
has been on model-based engineering. It assesses the time series’ similarity in structure,
which is suitable for long time series but requires larger models or a time-consuming
modeling. Feature-based engineering tackles these challenges by efficiently representing
time series and comparing their similarity in structure. However, current feature-based
techniques are unsatisfactory as they are designed for specific data-mining tasks.

In this work, we introduce a novel feature-based engineering technique. It efficiently pro-
vides a short representation of time series, focusing on their structural similarity. Based
on a design rationale, we derive important time series characteristics such as the long-
term and cyclically repeated characteristics as well as distribution and correlation char-
acteristics. Moreover, we define a feature-based distance measure for their comparison.
Both the representation technique and the distance measure provide desirable properties
regarding storage and runtime.

Subsequently, we introduce techniques based on our feature-based engineering and ap-
ply them to important data-mining tasks such as time series generation, time series match-
ing, time series classification, and time series clustering. First, our feature-based genera-
tion technique outperforms state-of-the-art techniques regarding the accuracy of evolved
datasets. Second, with our features, a matching method retrieves a match for a time series
query much faster than with current representations. Third, our features provide discrim-
inative characteristics to classify datasets as accurately as state-of-the-art techniques, but
orders of magnitude faster. Finally, our features recommend an appropriate clustering of
time series which is crucial for subsequent data-mining tasks. All these techniques are
assessed on datasets from the energy, weather, and economic domains, and thus, demon-
strate the applicability to real-world use cases. The findings demonstrate the versatility
of our feature-based engineering and suggest several courses of action in order to design
and improve analytical systems for the paradigm shift of Industry 4.0.

3

4

CONTENTS

1 INTRODUCTION 11

2 FOUNDATIONS OF TIME SERIES ANALYTICS 15

2.1 Time Series and Domains . 15
2.1.1 Time Series in Energy . 16

2.1.2 Time Series in Meteorology and Climate 17

2.1.3 Time Series in Medicine . 18

2.2 Data-mining Tasks . 18
2.2.1 Time Series Generation . 19

2.2.2 Time Series Matching . 19

2.2.3 Time Series Classification . 19

2.2.4 Time Series Clustering . 20

2.3 Challenges . 20

2.4 Summary . 21

3 TIME SERIES ENGINEERING 23

3.1 Raw-data-based Engineering . 24

3.2 Shape-based Engineering . 26
3.2.1 Representation . 26

3.2.2 Distance . 28

3.3 Model-based Engineering . 29
3.3.1 Representation . 30

3.3.2 Distance . 35

3.4 Feature-based Engineering . 36
3.4.1 Representation . 36

3.4.2 Distance . 39

3.5 Summary . 39

4 FEATURE-BASED ENGINEERING ACROSS DATA-MINING TASKS 41

4.1 Design Rationale . 42

4.2 Time Series Model . 43

4.3 Decomposition . 43

5

4.3.1 Related Work . 44

4.3.2 Multi-seasonal Decomposition . 44

4.4 Feature-based Representation . 45
4.4.1 Features for Deterministic Components 46

4.4.2 Features for Stochastic Component 47

4.4.3 Representation Size . 47

4.4.4 Representation Time . 48

4.5 Feature-based Distance Measure . 49

4.6 Summary . 50

5 TIME SERIES GENERATION 51

5.1 State of the Art . 52
5.1.1 Properties of Generation Techniques 52

5.1.2 Raw-data-based Generation Techniques 53

5.1.3 Model-based Generation Techniques 54

5.1.4 Assessing Expressiveness . 56

5.1.5 Comparison . 57

5.2 Feature-based Generation . 58
5.2.1 Feature-based Modification . 58

5.2.2 Feature-based Recombination . 60

5.2.3 Comparison . 64

5.3 Experimental Evaluation . 64
5.3.1 Experimental Setting . 65

5.3.2 Feature-based Distance . 66

5.3.3 Standard Distance . 68

5.4 Summary . 71

6 TIME SERIES MATCHING 73

6.1 State of the Art . 74
6.1.1 Original SAX . 75

6.1.2 SAX Extensions . 76

6.2 Season- and Trend-aware Symbolic Approximation 77
6.2.1 Season-aware Symbolic Approximation 78

6.2.2 Trend-aware Symbolic Approximation 81

6.2.3 Properties of Engineering Techniques 83

6.3 Experimental Evaluation . 83
6.3.1 Experimental Setting . 84

6.3.2 Results and Discussion . 87

6.4 Summary . 91

7 TIME SERIES CLASSIFICATION 93

6 CONTENTS

7.1 State of the Art . 94
7.1.1 Run Length Distribution . 95
7.1.2 Discrete Wavelet Transform . 95
7.1.3 Large Feature Vector . 96

7.2 System Overview . 96
7.2.1 Labeled Dataset . 97
7.2.2 Feature-based Representation . 97
7.2.3 Normalization . 98
7.2.4 Feature Selection . 99
7.2.5 Feature-based Classification . 99

7.3 Experimental Evaluation . 100
7.3.1 Experimental Setting . 100
7.3.2 Results and Discussion . 103

7.4 Summary . 108

8 TIME SERIES CLUSTERING 109

8.1 Cross-sectional Autoregression Model . 110
8.1.1 Integration . 110
8.1.2 Autoregression . 111
8.1.3 Error Terms . 111

8.2 Feature-based Clustering . 112
8.2.1 ACF and PACF for ARIMA . 112
8.2.2 ACF and PACF for CSAR . 112

8.3 Experimental Evaluation . 113
8.3.1 Experimental Setting . 113
8.3.2 Results and Discussion . 116

8.4 Summary . 118

9 CONCLUSIONS 119

BIBLIOGRAPHY 123

LIST OF FIGURES 133

LIST OF TABLES 135

A PROOFS FOR SSAX AND TSAX 137

A.1 Proof of Lower-bounding sPAA . 137

A.2 Proof of Lower-bounding sSAX . 139

A.3 Proof of Combined Trend Feature . 140

A.4 Proof of Lower-bounding tPAA . 140

A.5 Proof of Lower-bounding tSAX . 141

B LIST OF SYMBOLS 143

CONTENTS 7

8 CONTENTS

ACKNOWLEDGMENTS

First and foremost, I would like to thank Wolfgang Lehner for giving me the opportunity
to realize this thesis project. As my advisor, he guided my research project, provided
many ideas as well as valuable feedback. He also gave me the time and freedom I needed
to evolve my thesis plan. Because of him, I was able to attend exciting conferences and
workshops and to gain experience with industrial partners. Thanks for everything!

I want to thank Themis Palpanas for co-refereeing this thesis. Moreover, I am deeply
grateful to my colleagues Claudio Hartmann and Martin Hahmann, who acted as co-
advisors over the last years. Claudio took a lot of time for discussions concerning my
research, as he is also deeply interested in time series analytics. He was also a great
roommate and created a productive working atmosphere. I am also thankful for our co-
operation in time series forecasting and clustering. Martin offered me a lot of support in
publishing papers, especially in finding an appealing and convincing writing style. With
his great sense of humor, he enriched every conversation, and I am looking forward to
his conference on surreal computer sciences. I also want to thank my former supervisors,
who inspired me with their work on time series analytics while I was studying: Philipp
Rösch and Lars Dannecker from SAP, and especially Ulrike Fischer.

This thesis would not have been possible without the support from the team. I am thank-
ful to all my colleagues for a great and creative atmosphere that included constructive
discussions as well as fun coffee breaks. Thank you, Alex, Annett, Axel, Dirk, Elvis, Jo-
hannes P., Johannes L., Julius, Lisa, Maik, and Patrick! Special thanks also to Robert and
Lucas for many fruitful collaborations on student courses and theses. I am deeply grate-
ful to Ioana Manolescu, who provided me “academic shelter” for one year; her research
group, especially Alexandre, Félix, Khaled, Maxime, Mikaël, Mirjana, Paweł, and Tayeb,
received me well, and I enjoyed the social activities. A special thanks to all students who
contributed to my research projects. Moreover, I would like to thank Claudio, Jiři, and
Olga for proof-reading this thesis and for providing many valuable comments.

Finally, I am deeply grateful for the constant encouragement from my family and friends.
My parents Ilona and Lutz, as well as my sister Anita always stood behind me and sup-
ported me during this tough time. Moreover, I enjoyed unforgettable activities with my
friends and band. The music we played did not only made our audience happy; it also
made me happy. Thank you for helping me keep a work-life balance!

Lars Kegel
Dresden, January 9, 2020

9

10 CONTENTS

1
INTRODUCTION

EXHAUSTIVE DATA GATHERING is not a new trend anymore but can be considered stan-
dard practice in many domains. It is the primary driver of the current paradigm shift

in industrial production towards automation and digitalization. Especially the German-
speaking area refers to this shift as Industry 4.0 [LFK+14]. For example, smart factories
follow this paradigm shift; they are heavily equipped with sensors providing informa-
tion to autonomous factory systems. Besides, parameters of cyber-physical systems, which
merge physical and digital components, are monitored for controlling and maintenance.
Finally, systems connected via the Internet of Things (IoT) monitor and communicate their
status [XYWV12].

A significant part of these measured values is captured over time and thus forms a time
series [SS11]. A dataset of these time series gives analytical insights into the underly-
ing processes, which are uncovered by data mining. Four insights are fundamental for
this work: the extraction of important time series characteristics and their reproduction
[MS82], the retrieval of a similar time series [AFS93], the mapping of a time series to
a class label [PO94], and the partitioning of a dataset into meaningful clusters [Bel77].
We refer to these four data-mining tasks as time series generation, time series match-
ing, time series classification, and time series clustering, respectively. In recent years
there has been growing interest in carrying out these data-mining tasks in many domains
[KHL18, ZP18, BLB+17, ASY15].

It is challenging to carry out these data-mining tasks for two reasons. First, time series
are inherently high-dimensional. Their discriminative characteristics do not arise from
one single value, but from many, possibly very distant values. Moreover, these character-
istics do not only appear by considering each value in isolation, but also from the mutual
dependence of values. Since data-mining tasks usually focus on low-dimensional data
types, they are not directly applicable to time series and their specific nature. Second,
exhaustive data gathering leads to big datasets. Not only do time series occur together
with thousands of other time series, but they also have a fine granularity, leading to large
series with tens of thousands of values. Thus, they require much storage, and their com-
parison is time-consuming. Overall, techniques are required that transform time series
in a low-dimensional representation, while enabling effective and efficient data mining.

In the literature, the term engineering refers to the branch of science and technology that
focuses on the design, the building, and the use of structures [Lex19]. With this in mind,
we introduce the term time series engineering to refer to the task of designing a representa-
tion technique that builds a low-dimensional representation of a time series and of design-
ing a distance measure which describes how far away two representations are by returning

11

Time Series Analytics

Time Series Engineering Data-
Mining

Task
Representation

Technique
Distance
Measure+

Figure 1.1: Time Series Analytics

their distance (Figure 1.1). Thus, time series engineering provides techniques to transform
a time series into a low-dimensional representation, exhibiting its important characteris-
tics. Consequently, the term time series analytics encompasses time series engineering and
the application to a data-mining task.

The energy, meteorological, and economic domain are attracting considerable interest
due to the rise of cyber-physical systems and IoT, and we focus on them in our research
projects [FFQ17, GOF17]. In the energy domain, a multitude of smart meters and en-
ergy management systems captures processes as time series, such as the electricity con-
sumption in households and businesses. This data is gathered by the grid operator and
provides analytical insights to control the load in the grid [UFLD13]. Meteorological
time series are heavily analyzed to assess the feasibility of industrial installations, such
as wind or solar power plants [MS82]. Besides, climate phenomena are also captured as
time series. For example, they provide insights about dependent ecosystems [STK+03].
In the economic domain, macro-economic, sales, and payment data is gathered as time
series and analyzed for better decision-making [MSA18]. For example, many shops mon-
itor payment transactions to analyze and forecast consumer behavior [Int17]. Since these
domains also face the challenges of big datasets it is of highest importance to apply a
suitable engineering technique to capture the important characteristics of these datasets.

There is a considerable amount of literature on engineering techniques. While raw-data-
based techniques focus on the time series as is, applying different measures to describe
their distance, shape-based and model-based techniques reduce a time series to a low-
dimensional space, by selecting important points, aggregating segments of the time se-
ries, or estimating a generative model.

Feature-based techniques form the fourth class of engineering techniques. A feature is
a global time series property, which arises from the application of a method from the
time-series analysis literature [FLJ13]. These features are gathered as a feature vector,
characterizing a time series by its important characteristics. This class of engineering
techniques is very promising for big datasets, as it focuses on global structural properties
and calculates them efficiently. As such, different feature-based techniques have been
applied to various data-mining tasks, such as generation, matching, classification, and
clustering. However, they cannot be easily adopted by other data-mining tasks, as they
do not support their specific requirements. A generation technique must evolve new
time series from a representation, while a classification technique requires discrimina-
tive features for accurately mapping time series to their correct class label. Time series
matching requires a distance measure for an efficient retrieval, while clustering relies on
a distance measure for grouping similar time series and separating dissimilar ones. These
requirements have not yet been addressed altogether.

With this in mind, our goal is the design of a feature-based engineering technique that is
used across data-mining tasks. First, it has to capture important characteristics of time

12 Chapter 1 Introduction

series. Second, it should provide desirable properties regarding space and runtime, i.e.,
it should efficiently build a short representation and compare them with an efficient dis-
tance measure, and thus, tackle the challenges of big datasets. Finally, it should consider
specific requirements from data-mining tasks and provide analytical insights effectively
and efficiently.

Summary of Contributions

Overall, we propose a feature-based engineering technique that efficiently captures the
long-term and cyclically repeated characteristics of a time series in a short representation,
together with its distribution and correlation characteristics. Its distance measure focuses
on the global structural similarity, which is desirable for big datasets with long time series
[WSH06]. Moreover, we show its versatility to handle fundamental data-mining tasks.
In more detail, the contributions of this work are:

• We give an overview of domains where time series analytics plays an important
role, and exemplify data-mining tasks on three selected domains. Moreover, we
motivate time series engineering by formulating the challenges of data-mining tasks
regarding big time series datasets.

• We survey engineering techniques from the literature and review them regarding
desirable properties for the application on big time series datasets. We conclude
that a versatile feature-based technique is required to tackle a variety of data-mining
tasks.

• We introduce a feature-based engineering technique, which applies to a multitude
of domains and across data-mining tasks. Moreover, we demonstrate its competi-
tive properties compared to other techniques [KHL17b, KHL18].

• We give an overview of time series generation by surveying generation techniques
and comparing the characteristics they are able to reproduce. Moreover, we propose
feature-based generation techniques that reproduce these characteristics accurately
[KHL16, KHL17a, KHL18].

• We extend the state-of-the-art engineering technique for time series matching, the
symbolic aggregate approximation [LKLC03], with features from our engineering
technique, which leads to a significantly more effective and efficient matching with-
out increasing the representation size.

• Regarding time series classification, we survey engineering techniques for the clas-
sification of long time series. Taking into account both effectiveness and efficiency,
we propose a feature-based classification that classifies as accurately as state-of-the-
art techniques, but orders of magnitude faster.

• We assess a feature-based clustering of a dataset, applied to time series forecasting.
In particular, we show that a vectorized forecast technique [Har18], estimating one
model for a cluster of time series, is more accurate if the time series in a cluster have
similar features [HKL20].

13

State of the Art Contribution

Chapter 9: Conclusions

Chapter 4:
Feature-based Engineering
Across Data-Mining Tasks

Chapter 2:
Foundations of Time Series

Analytics

Chapter 5:
Time Series Generation

Chapter 6:
Time Series Matching

Chapter 3:
Time Series Engineering

Chapter 7:
Time Series Classification

Chapter 8:
Time Series Clustering

Figure 1.2: Structure of this Work

Structure of this Work

Figure 1.2 illustrates the overall structure of this work. In the first part, we give the nec-
essary background on time series engineering. Chapter 2 starts with the foundations
of time series analytics by giving example applications of time series and by explaining
the challenges of data mining. Chapter 3 surveys engineering techniques for time se-
ries. Based on these observations, we introduce our engineering technique in Chapter 4
along with a feature-based representation technique and distance measure. In the second
part, we shift our attention to four selected data-mining tasks, i.e., time series genera-
tion (Chapter 5), time series matching (Chapter 6), time series classification (Chapter 7),
and time series clustering (Chapter 8). We start each of these chapters by introducing
state-of-the-art engineering techniques and desirable properties. Subsequently, we apply
our engineering technique to the data-mining task and evaluate it experimentally. We fi-
nally conclude this work in Chapter 9 with a summary and challenges for future research
activities.

14 Chapter 1 Introduction

2
FOUNDATIONS OF TIME SERIES ANALYTICS

THIS CHAPTER gives an overview of time series analytics. It introduces time series as
the fundamental data type for this work and identifies domains that gather this data

for different purposes (Section 2.1). Subsequently, it presents data-mining tasks for time
series and exemplifies the relevance of four data-mining tasks, time series generation,
matching, classification, and clustering in several domains (Section 2.2). Finally, it identi-
fies challenges of big time series datasets, which lead researchers to carry out time series
engineering (Section 2.3). We conclude with a summary of our observations (Section 2.4).

2.1 TIME SERIES AND DOMAINS

It is quite natural in many domains to measure a process at consecutive time instances.
The measured values are likely to depend on each other instead of being independent
and identically distributed [SS11]. The data type that stores measured values is a time
series. It covers the value domain by storing each value as a real number, and it covers the
time domain by storing the values in increasing order of time. Formally, a time series y is
a vector of values y that are measured at discrete time instances t:

yᵀ = (y1, ... , yt, ... , yT) where y ∈ RT , t ∈ N>0, t ≤ T (2.1)

The distance between two time instances is called granularity. In this work, we assume
that a time series (1) is finite with a fixed length T , (2) is complete, i.e., there are no missing
values, and (3) is equidistant, i.e., the distance between between any two consecutive
time instances is constant. Works that omit these conditions, i.e., omit condition (1) and
process time series in a streaming fashion or omit conditions (2) and (3) and process
irregular time series, are orthogonal and not covered in this work. Conditions (2) and (3)
are achieved by cleaning and transforming the data beforehand.

Often, processes that are related to each other are bundled together. Consequently, they
are stored as a time series dataset which is a set of I time series:

Y = {y1, ... , y
i
, ... , y

I
}where i ∈ N>0, i ≤ I (2.2)

where we assume that all time series of a dataset have the same length.

There is a multitude of domains that use time series for data mining [SS11, Fis14]. As
shown in Figure 2.1, they may be broadly categorized into four groups: Economy, Inani-
mate Nature and Environment, Biometrics, and Society.

15

Economy

Computing
· online

advertisement
· query

processing

Energy
· energy

balancing
· gas

production

Finance
· stock

development
· price

development

Industry
· production

planning
· inventory
planning

Sports
· player

performance
· team

performance

Tourism
· tourist visits

· airline
passengers

Inanimate
Nature and

Environment

Biometrics

Society

Chemistry

· chemical concentration

Meterology & Climate
· wind speed and

direction
· climate index

Physics

· sunspots
· earthquakes

Remote Sensing

· deforestation
· desertification

Agriculture

· animal population
· yield

Epidemiology

· Influenza cases

Medicine

· electrocardiography
· magnetic resonance imaging

Crime

· robberies
· drunkenness

Demography

· population rate
· immigrants

Macro-Economy

· gross national income
· inflation

Politics

· election outcome
· unemployment rate

Figure 2.1: Domains of Time Series

The first group, Economy, encompasses domains such as computing, energy, finance,
industry, sports, and tourism. These domains utilize time series for market research and
for supporting business processes. The energy domain is attracting widespread interest
due to the increased installations of smart metering and energy management systems that
measure many electric processes at a fine granularity for energy load control. Therefore,
we give a brief overview of two data-mining tasks in this domain (Subsection 2.1.1).

In the second group, Inanimate Nature and Environment, researchers study the natural
sciences (chemistry, physics), and environmental sciences (meteorology and climate, re-
mote sensing). In these domains, time series express natural and environmental phenom-
ena over time and allow decision-makers to take actions such as planning new industrial
sites or adopting new environmental policies. In meteorology and climate, big time series
datasets that contain weather and climate influences are most interesting for an analysis,
which is why we give an overview of data-mining tasks in this domain (Subsection 2.1.2).

Biometrics is the application of statistical analysis to biological data. It encompasses do-
mains such as agriculture, epidemiology, and medicine. In medicine, time series support
medical diagnosis and data-mining tasks are among the most commonly discussed in the
literature, which is why we present three data-mining tasks from this domain (Subsection
2.1.3).

The last group, Society, studies the social sciences and social relationships. It encom-
passes domains such as crime, demography, macro-economy, and politics. For example,
demography utilizes time series for grouping societies with similar development of their
population. These insights are used by decision-makers for adopting new policies.

Subsequently, we present scenarios from three selected domains, energy, meteorology
and climate, as well as medicine, and demonstrate the use of time series for their pur-
poses.

2.1.1 Time Series in Energy

By 2020, the European Union aims at producing at least 20% of its total energy using re-
newable energy sources (RES) [Eur09], and by 2030, it has even higher ambitions [Eur19].
The impact of RES on the electricity sector is the highest compared to other sectors

16 Chapter 2 Foundations of Time Series Analytics

[Eur19]. However, the feed-in of RES is challenging due to their intermittent and irregu-
lar nature. Solar power is produced only during the day and not during the night while,
in Germany, wind energy is produced mostly in winter. The energy production is more
and more decentralized, but the existing grid was initially designed for unidirectional
power flows, i.e., from power plants to consumers.

To tackle these challenges, several technologies have been proposed that are innovated
and rolled out piece by piece. Among them, smart meters and data management plat-
forms contribute to a balanced energy grid, and they do this by time series analytics.
Smart meters record and transmit the energy consumption of a household, a circuit, or a
device to improve energy savings. One approach is to notify a consumer about the cor-
rect, inefficient, or even faulty behavior of a device and recommend him to take action.
Thus, the monitored device is the process whose measured values are captured as a time
series. A classification model is trained to identify a device and its behavior automati-
cally [LBCSA11]. Grid authorities may also store time series from smart meters on a data
management platform. On this aggregated level, they use time series to provide better
analytical insights and to balance the energy grid [UFLD13]. Moreover, they have to take
care that the data management platform fulfills the specific requirements of their area,
i.e., the correct sizing and performance. Therefore, Arlitt et al. propose an assessment
tool that involves time series generation. This tool helps grid authorities to assess their
data management platform by loading and analyzing generated datasets with realistic
characteristics, but configurable in their size [AMB+15].

Thus, we identify time series classification and generation as crucial data-mining tasks in
the energy domain.

2.1.2 Time Series in Meteorology and Climate

Meteorological time series capture a variety of atmospherical phenomena such as tem-
perature, solar irradiation, wind speed, wind direction, and precipitation. They are most
frequently used for estimating weather prediction models that provide forecasts of these
phenomena. Besides forecasting, these time series are also used in two other data-mining
tasks, which are time series generation and time series clustering.

Systems that rely on atmospherical phenomena have to be assessed in order to test and
verify their performance, their robustness, and their correct sizing. For example, wind
power plants are heavily evaluated for possible weather scenarios (wind speed and wind
direction at different altitudes) before they are installed at a specific location. If such
scenario datasets are not available because measuring in the field is expensive or not
possible, time series with realistic characteristics are generated [MS82].

An essential task in climate research is the discovery of climate phenomena linked to each
other. These so-called teleconnections give explanations on how climate changes and
how ecosystems respond to remote phenomena. Usually, they are discovered by climate
indices capturing the variance on a regional and global level as a time series. It has been
shown that clustering climate indices are an essential tool of discovering teleconnections
[STK+03].

2.1 Time Series and Domains 17

Anomaly Detection Classification Clustering Forecasting

Generation Matching Motif Discovery Subsequence Matching

Figure 2.2: Data-mining Tasks

2.1.3 Time Series in Medicine

In medicine, diagnostic tools capture a variety of characteristics from the human body.
Two prominent examples are the electrocardiography (ECG) of the heart and the sequen-
tial analysis of the deoxyribonucleic acid (DNA).

The ECG measures the heartbeat of a patient by its electrical activity. The values repre-
sent time series that allow physicians to identify heart arrhythmia, i.e., conditions that
result from disturbances of the heartbeat. Since some arrhythmias appear infrequently,
patients have to be monitored over several days. Subsequently, physicians analyze the
resulting time series, which can be very time-consuming. Therefore, research focuses on
the automatic classification to support this task [DOR04].

Another diagnostic tool for medical but also for biological research is the sequential anal-
ysis of the DNA, i.e., the determination of the nucleotides adenine, guanine, cytosine, and
thymine in their sequential order. It enables researchers to discover homologies between
species such as humans and monkeys. Since the DNA is very long and split into several
chromosomes, it is a challenging task to match subsequences to each other in order to
discover these homologies. Camerra et al. propose an approach where they translate a
DNA sequence into real numbers forming a time series [CPSK10]. They build a time se-
ries index that stores representations of all subsequences of a monkey DNA. Then, they
query the index with subsequences from human DNA and find matches. These matches
establish a co-occurrence map identifying the chromosomes of humans and monkeys that
are most similar. Not only do their results agree with previous research, their time series
index is also an efficient matching method.

Thus, time series classification and matching are crucial data-mining tasks in medicine.

2.2 DATA-MINING TASKS

Time series have been used in several data-mining tasks, as presented in Figure 2.2.
Anomaly detection, clustering, generation, matching, motif discovery, and subsequence matching
are descriptive tasks, which analyze past and current data in order to prepare informed
decisions. Classification and forecasting are predictive tasks; they infer the class of an un-
labeled time series and the future values of a given time series, respectively. Based on
the examples mentioned above and their requirements, we focus on four selected data-
mining tasks, explain and motivate them in the following subsections.

18 Chapter 2 Foundations of Time Series Analytics

2.2.1 Time Series Generation

Time series generation extracts important characteristics from a given dataset and re-
produces them in a generated dataset. While this looks like a paradox considering the
abundance of data that is collected, it is still a very important task for evaluating a system
and for providing evolved data in case there is no given data available.

Thus, it has been applied in a multitude of domains. As reported earlier, it is used in
the meteorological domain for generating wind speed time series [MS82]. Since then,
researchers have been developing techniques for simulating further weather parameters
[JL86, KKD91, BdMK02, MH15]. The energy domain utilizes it to assess renewable energy
power plants [JL86, ILD+17], while industry and computing apply generated datasets for
various evaluation purposes [CDB94, SJ13].

2.2.2 Time Series Matching

Time series matching retrieves a time series from a dataset that is most similar to a query
time series [KK03]. A naive matching algorithm compares the query time series to each
time series from the dataset one by one. However, this approach is time-consuming
which is why matching methods focus on a more efficient retrieval. Efficiency can be
increased by pruning unpromising observations as early as possible [AFS93].

The data-mining task was first mentioned in 1993 where Agrawal et al. presented an
R*-index that stores coefficients of the Fourier transform of time series [AFS93]. It gained
popularity by the GEMINI approach (GEneric Multimedia INdexIng) where researchers
built upon their work on time series engineering [Fal96, KK03]. Since then, progress
has been made towards an effective and efficient time series engineering [LKLC03], i.e.,
a better pruning and a faster distance calculation, and towards more efficient indexing
structures [SK08]. Up to now, index structures are improved regarding build time and
contiguity [CPSK10, KDZP18].

Time series matching is widely applied in domains such as industry, finance [AFS93], and
medicine. The matching of DNA sequences is a prominent example [CPSK10].

2.2.3 Time Series Classification

Time series classification is a supervised data-mining task that maps an unlabeled time
series to a class label [KK03]. It is applied for two reasons: to support human classification
decision [DOR04] and to fully automatize processes by, for example, triggering events in
case of irregular time series [PO94].

Usually, classification is carried out for observations from a low-dimensional space. How-
ever, time series are high-dimensional and their values are mutually dependent [KK03].

Due to these differences, time series classification may considered a proper data-mining
task. As such, it was first discussed in an automated labeling of control charts in 1994
[PO94]. It gained more attention as researchers started proposing highly discrimina-
tive distance measures that classified their datasets well [KK03]. Up to 2017, researchers
also focused on better time series engineering and on combining classification techniques
[BLB+17].

2.2 Data-mining Tasks 19

Following Chen et al. [CKH+15], classification problems mainly arise from computing
where signals from images, sensors, and motions are observed, from medicine where
the automated labeling of the aforementioned ECG signals but also of, e.g., blood flow
dynamics support the diagnosis, and from energy where electrical devices are classified
by their signal in order to detect failures.

2.2.4 Time Series Clustering

Time series clustering is an unsupervised data-mining task. Its goal is to partition a time
series dataset into clusters such that each cluster is homogeneous, i.e., the distance of
time series within a cluster is minimal, while the distance of time series from different
clusters is maximal [Lia05]. As pointed out in [ASY15], there are several reasons to carry
out this data-mining task. (1) Clusters may uncover interesting patterns in a dataset, thus
they help to identify frequent patterns that arise commonly as well as suprising patterns
that arise rarely. (2) Clustering supports the exploration of big time series datasets by
partitioning big datasets and presenting only a prototype time series per cluster. More-
over, these clusters s may be hierachically ordered such that they may be collapsed and
uncollapsed. (3) It is applied as a subroutine in other data-mining tasks such as time
series forecasting. (4) The visualization of cluster structures helps to quickly understand
the structure of the data along with its regular and irregular behavior.

Due to the special structure of time series, time series clustering is considered a proper
data-mining task. Most often, clustering techniques are applied in a low dimension, too.
However, time series engineering is necessary in order to prepare a dataset such that it
presents the important characteristics to the clustering technique [Lia05].

Time series clustering was first mentioned in a work in 1977 [Bel77]. Since then, the data-
mining task gained more and more attention because different techniques of time se-
ries engineering were proposed and different clustering algorithms were applied [Lia05,
ASY15]. Moreover, it is utilized in a multitude of domains. Among them, it has been
applied in the climate domain to discover the aforementioned climate indices [STK+03],
in the energy domain to discover similar energy consumption behavior [KB90], and in
medicine to partition ECG data [PG15].

2.3 CHALLENGES

Data-mining tasks for time series have to tackle two major challenges. First, they have
to take many values into account that are ordered by time because a time series is an
inherently high dimensional data type. Second, the paradigm shift of Industry 4.0 leads to
an increasing number of sensors, and these processes are captured at a finer granularity.
Thus, data-mining tasks face big time series datasets. Subsequently, these two challenges
are further detailed.

20 Chapter 2 Foundations of Time Series Analytics

High Dimensionality

It is easier to carry out data-mining tasks once on a whole time series rather than once
per time instance. The latter case would require to study the evolution of data-mining
results across the time instances [Bel77]. Therefore, most publications focus on the former
case and present whole time series to a data-mining technique, i.e., they present high-
dimensional data.

One challenge arising from this presentation is the ordering of the values by time. The
important characteristics of a time series do not only arise by considering each value in
isolation but also from the mutual dependence of values. Distance measures have to de-
scribe this dependence accurately [KK03]. Besides the ordering, the length of a time series
is a second challenge. Standard distance measures used for low-dimensional data cannot
be effectively applied to long time series because the noise in the time series disturbs their
results [KK03], and their notion of similarity becomes dubious [WSH06].

Data-mining tasks that take time series as is and that rely on standard distance measures
become intractable: (1) Generation techniques aim at evolving time series that are similar
to given time series regarding their shape, their value distribution, and their correla-
tion [BdMK02]. Standard distance measures do not describe distribution and correlation
characteristics and thus fail to provide this similarity. (2) Indexes for matching time se-
ries cannot handle more than 16-20 dimensions, i.e., time series values. Time series are
usually much longer and the index would degenerate [LKLC03]. (3) Time series classi-
fiers could be prepared to work in a high-dimensional space. However, authors suggest
reducing a time series rather than constructing complex classifiers [BDHL12]. (4) Some
clustering techniques cannot handle high-dimensional data and would not accomplish
their task on time series datasets [WSH06]. It is thus beneficial for these data-mining
tasks to reduce the dimensionality of time series.

Big Time Series Datasets

Besides the high dimensionality, time series datasets are challenging due to their size.
Once datasets are too big to fit into memory, data-mining tasks decrease in speed due to
much disk I/O [ASY15]. Therefore, time series matching methods represent time series
in a compressed manner so that they fit into memory. Due to pruning strategies, disk
I/O is further reduced [LKLC03]. Other data-mining techniques such as highly accurate
classifiers fail due to their complexity [BLHB15]. Clearly, they are not feasible for time
series with a fine granularity.

2.4 SUMMARY

Although time series occur in many domains and provide insights for different purposes
they are challenging due to their inherent nature and due to the increasing dataset size.
Thus, data-mining tasks cannot be effectively and efficiently applied to provide analytical
insights. These observations suggest that time series should be transformed in order to
expose their important characteristics in a small representation.

2.4 Summary 21

22 Chapter 2 Foundations of Time Series Analytics

3
TIME SERIES ENGINEERING

ENGINEERING TECHNIQUES consist of two components: first, a representation tech-
nique that builds representations of time series datasets and second, a distance mea-

sure that uses representations to compare time series with each other. They tackle the
challenges of big time series datasets for the following reasons. A representation tech-
nique reduces a time series to a low-dimensional space and thus, a time series dataset
has a smaller memory footprint. It provides representations that capture important char-
acteristics. The distance measure ensures that these representations are similar if the
original time series are similar [ASY15]. Moreover, the distance calculation is faster on a
representation than on the original time series.

Figure 3.1 gives an overview of engineering techniques that are commonly applied in
the literature. They are classified into raw-data-based, shape-based, model-based, and feature-
based approaches. While raw-data-based and shape-based engineering focuses on a sim-
ilarity in shape, i.e., on a similarity of time-dependent characteristics, model-based and
feature-based engineering focuses on a similarity in structure, i.e., on a similarity of time-
independent characteristics. Beyond this classification, we characterize the engineering
techniques regarding five properties that express how they represent and compare time
series. It is desired that a technique fulfills all of these properties in order to be applicable
for big time series datasets and for a variety of data-mining tasks.

Representation Size The representation size of a time series should be small compared
to its original size. Big time series datasets may not fit into memory and carrying
out a data-mining task may incur additional disk I/O. We assess this property by
the storage size in bit that one representation is occupying. We assume that a real
value is stored as a floating-point value occupying 32 bit.

Representation Time A representation technique should provide a fast representation
of a time series. We assess this property by counting the number of passes the tech-
nique has to read a time series dataset.

Distance Storage Usually, the distance is calculated directly on the representations. But
some distance measures require additional storage for the calculation. We assess
this property by the size in byte of the storage overhead which is required once per
time series dataset.

Distance Time Data-mining tasks can benefit from a representation technique if the com-
parison between representations is fast. We assess this property by counting the
value comparisons between two representations.

23

Time Series Engineering

Similarity in Shape Similarity in Structure

Raw-data-based Shape-based Model-based Feature-based

Figure 3.1: Taxonomy of Engineering Techniques

Lower-bounding Distance Measure A distance measure is lower-bounding if the dis-
tance of two representations is always smaller than or equal to the Euclidean distance
of the original time series:

dED(y, y′) =
√∑T

t=1
(yt − y′t)2 (3.1)

This property is a desirable property in time series matching where observations
can be efficiently pruned: if its distance to a query is too large then there is no need
to evaluate their Euclidean distance. It also implies that the Euclidean distance is
always considered the true distance between time series. Agrawal et al. point out
that this true distance depends on the data-mining task and the domain [AFS93].
However, they claim several advantages of the Euclidean distance over other dis-
tance measures, most importantly, it preserves the distance if the time series are
transformed by rotation, translation, or reflection. There are also drawbacks of the
Euclidean distance: first, it focuses on a similarity in shape and second, it is sensitive
to noise and misalignments. When designing a lower-bounding distance measure
we accept these drawbacks in order to compare our solution to the literature.

In the following sections, we present and review engineering techniques (Sections 3.1-3.4)
and conclude with an overall comparison of their properties (Section 3.5).

3.1 RAW-DATA-BASED ENGINEERING

Raw-data-based engineering takes a time series as is and does not represent it in a low-
dimensional space. Instead, it focuses on distance measures, which can be distinguished
into lock-step, elastic, and cross-correlation distance measures [Lia05, DTS+08]. Further dis-
tance measures are often combinations of these categories [ASY15].

Lock-step Distance Measure

Lock-step distance measures compare the t-th value of one time series with the t-th value
of another time series [DTS+08]. The Minkowski distance, defined as

dMink(y, y′) =
(∑T

t=1
|yt − y′t|o

)1/o (3.2)

gathers several lock-step distance measures. For o = 2, it is equivalent to the Euclidean
distance dED(y, y′) which is its most prominent example. It is applied in time series

24 Chapter 3 Time Series Engineering

clustering [Lia05, ASY15], in time series matching [DTS+08] and in time series classifica-
tion [DTS+08, BLB+17]. The root mean squared error (RMSE) is derived from the Euclidean
distance and is often used in time series generation for comparing generated and given
time series [BdMK02, BK09, APHRH13, SJ13]:

dRMSE(y, y′) =
√

1
T

∑T

t=1
(yt − y′t)2 (3.3)

Other Minkowski distances such as the Manhattan distance dMD (o = 1) and the Chebyshev
distance (o = ∞) are applied in time series matching [DTS+08] but they are less com-
mon. Overall, lock-step distance measures have a linear complexity and they requires T
comparisons for the distance calculation without any distance storage. They are easy to
implement, and they are parameter-free which is why they are often a baseline for carry-
ing out data-mining tasks or for assessing their results [CKH+15, KHL18]. The Euclidean
distance is lower-bounding itself [LKLC03], other distance measures do not provide this
property.

Elastic Distance Measure

The fixed mapping of lock-step distance measures makes them sensitive to noise and
misalignments. Elastic distance measures tackle this problem by aligning time series with
different local speeds and thus, compares one-to-many or one-to-none values [DTS+08].
They are further distinguished into dynamic time warping and edit distance measures.

Dynamic Time Warping Dynamic time warping (DTW) aligns two time series such that
their distance is minimized [SC78]. It uses a matrix of size T ×T which has the lock-
step distance of values yt and y′t′ in cell (t, t′). Within this matrix, DTW searches a
warping path WP = {d1, d2, ... , dk, ... , dK} that consists of the distances of matrix
cells. For restricting the search space, the warping path has to fulfill three conditions
[SC78]: first, it starts and ends in the corners (1, 1) and (T, T), respectively, second,
it is continuous, i.e., the path steps from one cell to an adjacent cell, and third, it
is monotonous, i.e., the cells are monotonically ordered with respect to the time
instances. Constrained DTW (cDTW) further restricts the warping path to a band,
i.e., a range of matrix cells. Finally, the DTW distance is:

dDTW (y, y′) = minWP

∑K

k=1
dk (3.4)

Edit Distance Edit distance measures are the second group of elastic distance measures.
They are inspired by the edit distance which determines the similarity of two text se-
quences by taking insertions, deletions, and substitutions into account. The longest
common subsequence (LCSS) is a variant for time series data [VGK02]. Similar to
DTW, it matches time series with different speed but it allows to leave some values
unmatched if it would increase the distance. Thus, it claims to be more robust to
noise than the Euclidean distance and DTW.

Overall, elastic distance measures are applied in time series matching, classification,
and clustering [DTS+08, BLB+17, Lia05, ASY15]. The accurate distance calculation has
a quadratic complexity O(T 2), thus it requires at most T 2 comparisons. However, ap-
proaches that use constraint parameters or that calculate approximative distances reduce
this complexity down to a linear complexity [VGK02, SC07]. They do not require distance
storage and they are not lower-bounding.

3.1 Raw-data-based Engineering 25

Cross-correlation Distance Measure

Cross-correlation distance measures consider time series similar if they are highly corre-
lated, i.e., their linear dependence of each other is very strong. They are based on the
Pearson correlation coefficient which is defined as:

cc(y, y′) =
∑T
t=1(yt −m(y))(y′t −m(y′))√∑T

t=1(yt −m(y))2 ·
∑T
t=1(y′t −m(y′))2

(3.5)

where m(y) = 1/T
∑T
t=1 yt denotes the mean of a time series. The coefficient value ranges

between -1 and +1: If cc = 0, then there is no linear dependence between the time series.
If cc > 0, then there is a positive linear dependence. The maximum correlation, cc = 1
means that the time series perfectly depend on each other. If cc < 0, there is a negative
linear dependence between: if one time series increases, the other one decreases. This
also leads to perfect anti-correlation, if cc = −1.

To use the Pearson correlation coefficient as a distance measure, high correlation values
are mapped to 0 and low correlation values are mapped to 1. There are different formulas
applied in time series generation and clustering [ILD+17, Lia05, PG15]. Overall, this
distance measure needs T comparisons assuming that m(y) and m(y)′ are known, it does
not require further distance storage, and it is not lower-bounding.

3.2 SHAPE-BASED ENGINEERING

Shape-based engineering is not clearly defined in the literature because there is no gen-
eral definition of a shape [PG15]. Aghabozorgi et al. use the term to refer to “working with
the raw time-series data” [ASY15], while other authors use it for a reduced representa-
tion [AJB97, LKL03]. We follow this second notion and define shape-based engineering
as the time-dependent representation of a time series in a low-dimensional space that are
considered similar if their shapes as a, e.g., line plot, are similar. Subsequently, we give an
overview of shape-based representations from the literature along with distance measures
and discuss their properties.

3.2.1 Representation

Shape-based representation techniques reduce a time series into a low-dimensional space
by selecting random or salient values, by aggregating values segment-wise, or by discretiz-
ing values [Fu11].

Random or Salient Points

Sampling is the random selection of values from a time series and the most straight-
forward technique to reduce the dimensionality in the time domain [Åst69]. It is very
efficient as it does not need even one pass over the data. However, it may distort the
shape if the sampling is too low [Fu11].

The capture of salient values, i.e., values that are perceptually important leads to a more
accurate representation. Intuitively, authors propose the selection of extreme values and
filter those which are the most extreme among their neighbored values [PF02]. More-
over, they propose the selection of important and critical values whose filtering is more
sophisticated. These representations need at least one pass over the time series [Fu11].

26 Chapter 3 Time Series Engineering

Aggregation

While selection techniques assume that a subset of values represents a time series reason-
ably well, aggregation techniques assume that all values of a time series should be taken
into account but they should be reduced to aggregates. The most prominent representa-
tion technique is the piecewise aggregate approximation (PAA) [YF00]. It segments a time
series into intervals of constant length and aggregates them using their mean value. Let
W ∈ N>0 be the number of segments per time series andW divides the time series length
T . The piecewise aggregate approximation ȳ is the vector of mean values of a time series:

ȳᵀ = (ȳ1, ... , ȳw, ... , ȳW) (3.6)

where

ȳw = W

T

T
W
w∑

t= T
W

(w−1)+1

yt (3.7)

The adaptive piecewise constant approximation (APCA) also relies on the mean values of
intervals but it supports adaptive interval lengths instead of constant ones [KPMP01],
requiring many passes over the dataset. However, it has to store the interval length and
thus, it can only represent half as many segments as PAA. Moreover, the representation
needs many passes over the data while PAA only needs one pass. Piecewise linear approx-
imation (PLA) segments a time series into intervals of constant length and represents the
values of each segment by linear regression [Keo97]. Like APCA it needs two values to
represent each interval but it only needs one pass over the data.

Discretization

The aforementioned shape-based techniques reduce a time series in the time domain by
representing it with random values, salient values or aggregates. The reduction in the
value domain is the idea behind discretization. Originally, discretization is carried out on
the values themselves, i.e., each value is replaced by a symbol. This is the idea behind the
shape description alphabet (SDA) which characterizes each value transition with five differ-
ent states: highly or slightly increasing, stable, and highly or slightly decreasing [AJB97].
Later, such states were utilized to characterize segments instead of values. The gradient
alphabet characterizes each segment with three states, similarily to SDA [QWW98]. With
the aim to flexibly adapt the characterization, the change ratio and the codebook of sequences
(PVQA) introduce an alphabet of size A such that segments are described by A different
states [HY99, MLW04]. The final breakthrough is proposed by Lin et al. with the symbolic
aggregate approximation (SAX) [LKLC03]. SAX combines the PAA aggregation technique
with the concept of discretization. Moreover, it assumes that a time series is z-normalized,
i.e., its values have a mean of zero and a variance of one. Let A be the size of an alphabet
(A ∈ N>0) and let bᵀ = (b1, ... , ba, ... , bA−1) be a vector of increasingly sorted breakpoints
that split the real numbers into A intervals:

]−∞, b1], ... ,]ba−1, ba], ... ,]bA−1,∞[

The symbolic aggregate approximation ŷ is the vector of symbols, i.e., mean values dis-
cretized into the alphabet A:

ŷᵀ = (ŷ1, ... , ŷw, ... , ŷW) (3.8)

3.2 Shape-based Engineering 27

-2.00

-1.00

0.00

1.00

2.00

c

d

b

a

SAX

b1

b2

b3

Value

y y (PAA) yʹ yʹ (PAA)

c

d d

c

a a

c

d

Figure 3.2: Time Series With PAA and SAX Representations

where each mean value is mapped to a discrete value a if its between the corresponding
breakpoints:

ŷw =


1 −∞ < ȳw ≤ b1

a ∃a : ba−1 < ȳw ≤ ba
A bA−1 < ȳw <∞

(3.9)

Most importantly, SAX assumes that the PAA mean values of a z-normalized time series
is also normally distributed with the same standard deviation. While all presented dis-
cretization techniques provide a short representation and only need one pass over the
data, only SAX provides versatile and dataset-independent breakpoints.

3.2.2 Distance

Most of the shape-based representation techniques use lock-step distance measures to
compare the representations. PAA, APCA, PLA, PVQA, and SAX build their distance
measures on the Euclidean distance [Keo97, YF00, KPMP01, LKLC03, MLW04]. The PAA
distance measure is the distance between the mean values of all segments multiplied by
the length of the segment:

dPAA(ȳ, ȳ′) =
√
T/W

√∑W

w=1
(ȳw − ȳ′w)2 (3.10)

The SAX distance measure is defined as the minimum distance between the symbols that
represent a segment’s mean value:

dSAX(ŷ, ŷ′) =
√
T/W

√∑W

w=1
cell(ŷw, ŷ′w)2 (3.11)

where

cell(a, a′) =
{

0 |a− a′| ≤ 1
bmax(a,a′) − bmin(a,a′)+1 otherwise

(3.12)

For example, Figure 3.2 shows a time series y (blue line, T = 4) from [SK08]. Its PAA
representation (red segments, W = 4) is ȳᵀ = (−0.70,−0.81, 0.08, 1.50). SAX visualizes
the symbols with alphabetic characters (“a", “b", . . .) in order to stress their discrete
nature. Given an alphabet A = 4 and respective breakpoints at 0.00 and ±0.67 (black
horizontal lines and x-axis), its SAX representation is ŷᵀ = (a, a, c, d).

28 Chapter 3 Time Series Engineering

The figure shows a second time series y′ (orange line) whose PAA and SAX representa-
tions are ȳ′ᵀ = (1.72, 0.34, 1.55, 0.49) (green segments) and ŷ′ᵀ = (d, c, d, c), respectively.
The Euclidean distance between y and y′ is approx. 6.71, the PAA distance between ȳ and
ȳ′ is approx. 6.44, and the SAX distance between ŷ and ŷ′ is approx. 3.02.

These distance measures have the following properties.

• The distance calculation only requires W comparisons instead of T comparisons.

• PVQA and SAX use some storage to precalculate the distance. SAX stores the
distance between all symbols as a lookup table of size A2 so that dSAX needs W
lookups. Thus, it does not call the cell function (Equation 3.12) and it avoids the
comparisons min(a, a′) and max(a, a′).

• The distance measures lower-bound the Euclidean distance, d∗(y, y′) ≤ dED(y, y′).
Thus, the Euclidean distance is considered the baseline distance between two time
series that is calculated approximately and efficiently by shape-based distance mea-
sures. For PVQA, the lower-bounding property has not been shown [MLW04]. By
lower-bounding the Euclidean distance, shape-based distance measures fulfill an
important requirement for time series matching.

Besides lock-step distance measures, techniques based on salient points apply relative
distance measures [PWZP00, PF02] which relate the distance to the given values, and op-
timization techniques [MW01]. Further discretization techniques apply string matching
as distance measure [AJB97, HY99]. Other techniques do not require a distance measure
for their application [QWW98, BYS08, Fu11].

3.3 MODEL-BASED ENGINEERING

While raw-data-based and shape-based engineering focuses on the effect of a process ex-
pressed by a time series or its compressed shape, model-based engineering focuses on
the cause of the process expressed by a generative time series model. This model consists
of three components:

• The representation technique determines the class of the model which is assumed
as cause of the time series.

• Metaparameters specify a model regarding important characteristics such as long-
term or cyclically repeated characteristics.

• After identifying the representation technique and metaparameters, model parame-
ters are estimated and form the model-based representation of a specific time series.

Model-based engineering follows a life cycle with five stages (Figure 3.3).

1. The model identification is the manual selection of a representation technique and of
the manual or semi-automatic identification of metaparameters. Moreover, a dis-
tance measure is selected that expresses the distance of two representations based
on model parameters.

3.3 Model-based Engineering 29

1. Model
Identification

2. Model
Estimation

3. Model Use
4. Model

Evaluation

5. Model
Maintenance

Figure 3.3: Life cycle of Time Series Model

2. The model parameters are estimated such that they represent a time series accurately.

3. Subsequently, the model parameters are used as model-based representation for a
data-mining task.

4. Model evaluation provides diagnostic checks in order to re-evaluate the model.

5. Model maintenance uses the results from diagnostic checks to improve model identi-
fication and estimation.

Subsequently, we give an overview of model-based representation techniques from the
literature along with distance measures and discuss their properties.

3.3.1 Representation

There are five classes of model-based representation techniques that we assess subse-
quently: statistical models, ARIMA models, Markov models, and artificial neural networks.
Beyond, there are representation techniques such as Gaussian processes, time series bit-
maps, or kernel models that have been applied rarely for more than one data-mining
task which is why we do not include them in our assessment. More details on these
techniques can be found in [MS82, Lia05, ASY15, BLB+17].

All these representation techniques are domain-independent since they focus on statisti-
cal causes in a time series. Domain-dependent models such as models for atmospherical
phenomena [KKD91, BdMK02], are out of scope because they take physical information
into account which is why they cannot be applied to others domains.

Statistical Model

A statistical model gathers the statistical assumptions concerning the generation of a time
series. It treats values of a time series as realizations of a random variable Y and captures
their distribution in a short representation. Formally, a statistical model is a pair (S,P) of
the sample space S and a set of probability distributionsP . The sample space of a time se-
ries is the space of real numbers. The probability distributions are usually parametrized,
i.e., P = {Pθ : θ ∈ Θ} where θ is one set of model parameters from all possible sets of
model parameters Θ. It is assumed that there is a true probability distribution that gener-
ates the time series values. The goal is to identify a set of probability distributions P and
estimate model parameters θ such that Pθ approximates the true distribution [McC02].

30 Chapter 3 Time Series Engineering

For example, time series values are assumed to be normally distributed. The normal
distribution N has two model parameters θ = (µ, σ2) where µ ∈ R is the mean and
σ2 ∈ R>0 is the variance. Its probability density function is:

fY (y) = 1√
2πσ2

exp(−(y − µ)2

2σ2) (3.13)

After the identification of normal distributions as underlying probability distributions
P , the model parameters have to be estimated to find Pθ ∈ P . This is carried out by a
maximum-likelihood estimation. The likelihood function for the time series values y1,
... , yT is given by:

L(µ, σ2; y1, ... , yT) =
∏T

t=1
fY (yt;µ, σ2) (3.14)

= (2πσ2)−T/2 · exp(− 1
2σ2

∑T

t=1
(yt − µ)2). (3.15)

A logarithm is applied that leads to an easier calculation:

log(L(µ, σ2; y1, ... , yT)) = −T2 log(2π)− T

2 log(σ2)− 1
2σ2

∑T

t=1
(yt − µ)2 (3.16)

Finally, if the log-likelihood is maximized, it provides the estimations µ̂ and σ̂2 that ap-
proximate the true distribution:

µ̂ = 1
T

∑T

t=1
yt (3.17)

σ̂2 = 1
T

∑T

t=1
(yt − µ̂)2 =

(1
T

∑T

t=1
y2
t

)
−
(1
T

∑T

t=1
yt
)2

(3.18)

Overall, the normal distribution represents a time series with two real values that can be
calculated in one pass. When it comes to generating time series for meteorology, other
probability distributions, such as Weibull or Reighley distributions are also assumed
[KKSM91]. Moreover, Gaussian mixture models which are combinations of normal dis-
tributions have been applied to compute representations for audio signals [TW02].

ARIMA Model

The autoregressive integrated moving average (ARIMA) process provides a model for a
variety of time series. It treats a time series as a realization from a stochastic process. As
its name suggested, the model consists of an autoregressive (AR), a moving average (MA)
part, and an integration (I) part that are derived from respective processes. Prerequisites
of these processes are a white noise process and the linear process. First, we define these
processes and second, we explain the parts of the ARIMA process.

White noise process An ARIMA process assumes that a time series is generated by
a series of shocks which we call error terms at. These error terms are independent from
each other, randomly drawn from a fixed distribution with mean 0 and variance σ2

a, or
more succintly at~ iid N (0, σ2

a) where iid is a shorthand for independent and identically
distributed [SS11]. A series of these error terms ... , at−1, at is called white noise process. If
the error terms are at~ iid N (0, 1), then the series is called normal white noise process.

3.3 Model-based Engineering 31

Linear process A process is called stationary if its probabilistic properties do not change
over time and its values vary around a constant mean with a constant variance. A linear
process assumes that a time series is generated by a weighted sum of error terms:

ỹt = at + ψ1at−1 + ψ2at−2 + ... (3.19)

where ψ1, ψ2, ... are the weights and ỹt = yt − µ̂ is the time series corrected by its mean,
if it is stationary. To be a valid stationary process, it is necessary for the weights to be
absolutely summable, i.e.,

∑∞
j=1 |ψj | <∞. Under suitable conditions, the linear process can

also be regarded as weighted sum of past values of ỹt plus an added error term:

ỹt =
∑∞

j=0
πj ỹt−j + at (3.20)

In this form, the process can be regarded as “regressed” on itself: yt depends on former
values plus noise.

Autoregressive process In practice, the representations of linear processes are not use-
ful because they have an infinite amount of weights. The autoregressive process assumes
a stationary linear process. However, the current value of an autoregressive process of
order p, AR(p), is a finite, linear aggregate of previous p values:

ỹt = φ1ỹt−1 + φ2ỹt−2 + ... + φpỹt−p + at (3.21)

where φ1, φ2, ... , φp are the weights, and at is an error term from a normal white noise
process.

Using the backshift operator B which is defined as Byt = yt−1 and the operator of AR(p)
which is defined as:

φ(B) = 1− φ1B − φ2B
2 − ...φpBp (3.22)

the autoregressive process may be written as:

φ(B)ỹt = at (3.23)

Moving average process The moving average process is the second important stationary
process. Instead on depending on former values of the process, a moving average process
of the order q, MA(q), assumes a finite, linear aggregate q of error terms that occurred at
time instance t and before:

ỹt = at − θ1at−1 − θ2at−2 − ... − θqat−q (3.24)

where θ1, θ2, ... , θq are weights. With the definition of an operator for MA(q):

θ(B) = 1− θ1B − θ2B
2 − ...θqBq (3.25)

the moving average process is written as:

ỹt = θ(B)at (3.26)

Mixed autoregressive-moving average process For some time series, it is necessary to
combine an autoregressive and moving average process to provide an accurate model.
The ARMA(p, q) process combines an AR(p) and a MA(q) process as follows:

ỹt = φ1ỹt−1 + ... + φpỹt−p + at − θ1ãt−1 − ... − φqãt−q (3.27)

or
φ(B)ỹt = θ(B)at (3.28)

32 Chapter 3 Time Series Engineering

ARIMA The autoregressive, moving average, and mixed autoregressive-moving aver-
age processes assume a stationary time series. However, some time series may exhibit
a trend or a seasonal component which is why their values do not vary around a mean
value. These time series can be transformed such that their differentiated representation
is stationary. In case of a trend component, sometimes the dth difference of the time series
is stationary. Thus it can be modeled with an ARMA process:

φ(B)vt = θ(B)at (3.29)

where
vt = ∇dyt = (1−B)dyt (3.30)

The realizations yt are a sum (or “integration”) of vt. Thus, an ARIMA(p, d, q) process is
a sum of stationary ARMA(p, q) processes.

For a seasonal component, there also exists a differentiated representation taking into
account the season length L:

∇Lyt = (1−BL)yt = yt − yt−L (3.31)

Here, the differentiation is carried out by subtracting the value of a season position from
the value of the subsequent season position. For example, in a time series with monthly
values, the value from Januar 2018 is subtracted from January 2019, February 2018 from
February 2019 and so on. There are also higher order differentiations ∇DL which again
differentiate these monthly differences. If an appropriate D has been identified, the time
series does not exhibit seasonal behavior and it can be expressed as an ARIMA(P,D,Q)
process:

Φ(Bs)∇DL yt = Θ(Bs)αt (3.32)

with P seasonal autoregressive weights Φ1, ...ΦP , Q seasonal moving average weights
Θ1, ... , ΘQ, and error terms αt. However, these error terms are correlated which is why a
second non-seasonal ARIMA model (p, d, q) is introduced that corrects this:

φ(B)∇dαt = θ(B)at (3.33)

Finally, a seasonal ARIMA model is of order (p, d, q)x(P,D,Q)L.

Based on the invertibility assumption [CP08], a seasonal ARIMA process can be repre-
sented by an autoregressive expansion, i.e., an AR(∞) process:

π(B)yt = at (3.34)

Thus, the weights π1, π2, ...may be used to represent a time series [Pic90]. It is proposed
to truncate this sequence to at least p+ q + P +Q+ 1 weights [CP08].

Although the representation size of ARIMA models is small, it is time-consuming to rep-
resent a time series with an appropriate ARIMA model. First, there is a large search space
of metaparameters (p, q, d, P , Q, D) that have to be manually or semi-automatically iden-
tified. Second, estimating an ARIMA model usually involves optimization techniques
that require many passes over a time series until the appropriate model parameters, i.e.,
weights π have been fitted.

3.3 Model-based Engineering 33

Markov Model

Like an ARIMA model, a Markov model assumes that a time series is a realization of
a stochastic process. However, while an ARIMA model assumes that a value yt is a
weighted combination of former values and error terms, a Markov model assumes the
Markov property, i.e., a value yt only depends on the predecessing value yt−1.

The Markov chain is a Markov model that is applied in numerous works. It assumes
that each individual time series value is discretized into a state ŷ ∈ {1, 2, ... , A}. A state
is closely related to a symbol used in discretization (Section 3.2, page 26). However, a
state uses an integer representation, i.e., {1, 2, ... , A}, while a symbol uses a character, i.e.,
{“a′′, “b′′, ...}. From one time instance to another, the state may change, i.e., there is a state
transition. The Markov property suggests that the conditional probability of the current
state only depends on the predecessing state:

p(Yt = ŷ|(Y1, ... , Yt−1)) = p(Yt = ŷ|Yt−1) (3.35)

Thus, a Markov chain can be represented by the transition probability matrix P . It describes
the conditional probability that a state j succeeds a state i: pi,j = p(Yt = j|Yt−1 = i):

P = (pi,j) =


p1,1 p1,2 . . . p1,A
p2,1 p2,2 . . . p2,A

...
...

. . .
...

pA,1 pA,2 . . . pA,A

 (3.36)

An estimation of this matrix is calculated by counting the occurrences of state transitions
in the time series. Let ni = |t : ŷt = i| be the absolute frequency, i.e., the number of
occurrences, of state i in the time series and let ni,j = |t : 2 ≤ t ∧ ŷt−1 = i ∧ ŷt = j|
be the absolute frequency of state transition i to j. Then p̂i,j = ni,j/ni is the estimated
conditional probability and P̂ = (p̂i,j) is the estimated transition probability matrix. Each
row in the matrix represents a probability distribution since:

∑A

j=1
p̂i,j = 1 for all 1 ≤ i ≤ A (3.37)

The representation is efficiently estimated in one pass. However, it consists of A2 model
parameters which is large.

Markov chains have been used for time series generation since the 1980s [JL86, KKSM91,
SBW+05, PSAH15]. Few studies have been published on Markov chains for other data-
mining tasks. One work presents their use for time series clustering [RSC02]. Further
works focus on hidden Markov models (HMM) rather than Markov chains [Lia05, ASY15].
HMM are more complex and their representation is larger than the representation of
Markov chains.

Artificial Neural Networks

Artificial neural networks (ANNs) are a family of models inspired by biological neural
networks [GBC16]. They are universal approximators of functions with unknown type.

34 Chapter 3 Time Series Engineering

Artificial neurons are interconnected in order to transmit signals. The transmission ac-
tivity depends on connection weights. A representation technique (perceptron, convo-
lutional ANNs, recurrent ANNs [LBH15]) needs to be identified manually along with
metaparameters, i.e., how many neurons are needed, how they are interconnected, and
how they learn from each other. Model parameters are the weights that are estimated
using given data.

Two data-mining tasks apply ANNs: time series generation and time series classification.
While ANNs have been employed for time series generation, existing literature is scarce
[APHRH13]. A recent review of the literature on time series classification found that
ANNs were able to outperform raw-data-based techniques. However, they could not
significantly outperform state-of-the-art shape-based techniques [IFW+19].

3.3.2 Distance

Statistical models express a time series as a probability density function. Applied to time
series generation, they are used for evolving synthetic time series with same characteris-
tics. Thus, two realizations of a statistical model, the given time series and the synthetic
time series, are compared with each other [KKSM91]. Histograms plot their estimated
probability distribution and show the frequency of realizations bucket-wise. However,
literature on a numerical representation of this similarity is scarce.

ARIMA models are most often compared by the Euclidean distance of their truncated au-
toregressive expansion [Pic90, CP08, BJ14], some works focus on other distance measures
such as a test-based similarity [Mah00] and a likelihood-based similarity [XY02].

Markov chains characterize a time series by a transition probability matrix. Each row
in this matrix can be considered a probability distribution (Equation 3.37) and can be
compared with the row from another transition probability matrix. The comparison of
two estimated probability distributions is carried out by the Kullback-Leibler divergence:

dKL(p̂i, p̂′i) =
∑A

j=1
p̂i,j · log p̂i,j

p̂′i,j
(3.38)

where p̂i and p̂′i are the i-th rows in two transition probability matrices P̂ and P̂ ′, respec-
tively. To apply this distance to the full matrix, it is first symmetrized dKL,s(p̂i, p̂′i) =
(dKL,s(p̂i, p̂′i) + dKL,s(p̂′i, p̂i))/2 and subsequently, it is applied to all rows dKL(P̂ , P̂ ′) =∑
i dKL,s(p̂i, p̂′i)/A [RSC02].

Artificial neural networks use distance measures based on the Euclidean distance for
comparing their outcome [APHRH13, MTV+17]. However, especially in time series clas-
sification, end-to-end architectures of ANNs are preferred which learn the data-mining
task directly on a dataset without providing an intermediate representation [IFW+19].

Overall, ARIMA and ANNs requireW comparison for the Euclidean distance calculation
while Markov chains require 2 ·A2 for calculating the symmetric Kullback-Leibler diver-
gence. None of these techniques require additional storage for the distance calculation
and none of them focus on a lower-bounding property.

3.3 Model-based Engineering 35

3.4 FEATURE-BASED ENGINEERING

Feature-based engineering is the second engineering class which compares time series
based on their structure. Unlike model-based engineering it focuses on the effect of a time
series process. A feature is a global time series property. It arises from the application
of a method from the time-series analysis literature which characterises a time series as
one real value [FLJ13, FJ14]. A feature vector gathers these characteristics and thus, rep-
resents a time series in a low-dimensional space. Subsequently, we present feature-based
representations, related distance measures, and discuss their properties.

3.4.1 Representation

Time series features can be grouped into five categories, there are distribution, correlation,
component, stationarity, and frequency domain. Subsequently, we give an overview of these
categories along with example features. Beyond these five categories, there are further
categories that describe time series [FLJ13]. There are several model-based representa-
tions among them whose parameters are regarded as features. Given that the focus is on
an efficient and small representation, we do not include them in this work.

Distribution Features

Distribution features treat a time series as a set of values without focusing on the time do-
main. They provide summaries of these sets, such as moment features, location features
as well as extreme and outlier value features [FLJ13]. Moment features, i.e., the mean and
the standard deviation and the higher order moments skewness and kurtosis are applied in
several works [TGDH93, NAM01, WSH06]. There are two versions of estimators that
provide these features: the naive estimator and the unbiased estimator. Subsequently,
we present the naive version since we work on long time series where this estimator is
sufficiently close to the unbiased estimator.

The mean describes the center of the time series values, and is defined as follows:

m(y) = 1
T

∑T

t=1
yt (3.39)

The standard deviation is a measure of dispersion within the values (Equation 3.40). A
low standard deviation means that the values are very narrow to the mean, whereas a
high standard deviation represents a wide spread of the data. The variance is the squared
standard deviation (Equation 3.41).

sd(y) =
√

1
T
·
∑T

t=1
(yt −m(y))2 (3.40)

var(y) = 1
T
·
∑T

t=1
(yt −m(y))2 (3.41)

= 1
T
·
∑T

t=1
y2
t −

(1
T
·
∑T

t=1
yt
)2

(3.42)

36 Chapter 3 Time Series Engineering

The skewness is the third standardized moment and represents the degree of asymmetry
of the values around the mean. It is defined by:

skew(y) =
T−1∑T

t=1(yt −m(y))3

(T−1∑T
t=1(yt −m(y))2)3/2

(3.43)

The skewness ranges around 0: skew = 0 means that the values are symmetric.
If skew < 0 , then the left tail of the distribution is longer, i.e., the values are skewed
to the left. If skew > 0, then the right tail is longer, i.e., the values are skewed to the right.

The kurtosis is the fourth standardized moment. It represents the peakness or flatness
relative to the probability density function of the normal distribution and is defined as:

kurt(y) =
T ·
∑T
t=1(yt −m(y))4

(
∑T
t=1(yt −m(y))2)2

(3.44)

Kurtosis values range around 3: kurt = 3 means that the distribution of the values is as
flat as the normal distribution, i.e., the tails of the distribution are as thin as the tails of the
normal distribution. If kurt < 3, the distribution has a stronger peak and thinner tails. If
kurt > 3, the distribution is more flat and has thicker tails.

While the mean and the variance/standard deviation (Equation 3.42) can be calculated
in one pass, the skewness and kurtosis need two passes over the time series unless the
mean is precalculated.

Correlation Features

The mutual dependence of a time series value to another is captured by correlation fea-
tures [FLJ13]. The autocorrelation is frequently used as a feature [TGDH93, WSH06]. It
expresses the linear dependence of a time series on itself, shifted by a sequence of lags.
For example, a lag of 1 expresses the linear dependence between a time series with itself
lagged by one time instance. It measures the linear predictability of a value yt+1 using
only the value yt and it is defined by:

acf1(y) =
∑T−1
t=1 (yt+1 −m(y))(yt −m(y))∑T

t=1(yt −m(y))2
(3.45)

Autocorrelation values range between -1 and +1: acf1 = 0 means that there is no linear
dependence between a value yt and its successor yt+1. If acf1 > 0, then there is a positive
linear dependence between the values. The maximum correlation, acf1 = 1 means that
yt perfectly predicts yt+1. If acf1 < 0, there is a negative linear dependence between
successive values: if yt increases, yt+1 decreases. This leads also to perfect predictability,
if acf1 = −1. Unless the mean is precalculated, this representation requires two passes
over a time series.

Component Features

Several engineering techniques describe a time series as a combination of three compo-
nents: a trend, a season and a residual component [SS11]. The trend represents the long-
term change in the mean level of the series, whereas the season describes a cyclically

3.4 Feature-based Engineering 37

repeated behavior. Residuals represent unstructured information that is generally as-
sumed to be random. The sum of these three components is called additive combination
and represents time series from several domains:

y = tr + seas+ res (3.46)

where tr, seas, and res are the trend, season, and residual component, respectively. If a
time series exhibits a multiplicative combination, it can be transformed into an additive
combination by applying a logarithm. Components are extracted from a time series by
decomposition techniques [HA13] and subsequently, they are reduced to features. Common
features are the trend and season strength which express the influence of the respective
component on the time series [WSH06, FLJ13]:

The trend strength represents the influence of the trend component on the time series
(Equation 3.47). Its feature values range between 0 and 1: R2

tr = 0 means that the series is
determined by the residuals and the influence of the trend is negligible, whereas R2

tr = 1
shows a high trend influence. These feature values also apply to the season strengthR2

seas
which represents the influence of the seasonal component on the time series (Equation
3.48). Assuming the components have been extracted beforehand, the representation of
the component strength needs one pass over the time series.

R2
tr(y) = 1− var(res)

var(res+ tr) (3.47)

R2
seas(y) = 1− var(res)

var(res+ seas) (3.48)

Stationarity Features

Stationarity is a notion of regularity which stems from model-based ARIMA representa-
tions (Subsection 3.3.1). It defines a time series as stationary if every set of time series
values {yt1 , yt2 , ... , ytK} has the same probabilistic properties as a set shifted by a lag h:
{yt1+h, yt2+h, ... , ytK+h}. For example, when K = 1, yt+h has the same probabilistic dis-
tribution as yt which imposes that the mean of the time series is constant and does not
depend on the time instance [SS11].

Feature-based representations do not assume a generative time series model and there-
fore, they express the stationarity of time series empirically. For example, the StatAv
feature splits a time series into segments and calculates the mean in each segment which
corresponds to a PAA representation. Then, it returns the standard deviation of the set of
mean values. If the feature value is low it indicates that the time series is stationary, if it
is high the time series is not stationary [PCH93]. One pass over a time series is required
to calculate this feature. Further extensions are proposed that, for example, use sliding
windows instead of fixed windows for calculating the mean values [FLJ13].

Frequency Domain Features

The aforementioned categories assume that features arise in the time domain. In some
domains such as climate and physics, characteristics arise from periodic and sinusoidal
variations. Therefore, time series are first transformed into the frequency domain and then,

38 Chapter 3 Time Series Engineering

these transforms are reduced to features. One example is the Fourier transform which
transforms a time series into Fourier coefficients:

ŷf = 1√
T

∑T

t=1
yt exp(−2πi(f − 1)(t− 1)

T
) (3.49)

By selecting the most important coefficients, they may be used as features [AFS93] or they
may be further filtered [FLJ13]. Besides the Fourier transform, also the wavelet transform
is used for the representation. Both transformations are efficient as one Fourier coefficient
requires one pass over the time series. However, if several coefficients are calculated, the
Fourier transform requires several passes. A fast implementation requires O(T log T)
operations [Mör03]. In contrast, a fast implementation of the wavelet transform requires
only O(T) operations, which is more efficient [Mör03].

3.4.2 Distance

In most cases, the distance of feature representation is assessed by means of the Eu-
clidean distance. This applies to time series matching and classification where Fourier
coefficients represent time series [AFS93], and it applies to time series clustering where
correlation features [GHLR01, WSH06] as well as distribution, and component features
[WSH06] are selected. The frequency domain features provide the desirable property
to lower-bound the Euclidean distance [AFS93, CF99]. Not all works need a distance
measure for carrying out the data-mining task. Especially some classification techniques
focus on a manual value comparison [PCH93], or they train an ANN [NAM01] or other
classification algorithms [FJ14] directly on features.

3.5 SUMMARY

Table 3.1 summarizes the properties of all representation techniques and distance mea-
sures that have been presented. Recall that the variable T represents the time series
length, W represents the amount of scalars in a representation, and A represents the al-
phabet size in case of a discretized representation. We make the following observations:

Representation Size Besides raw-data-based representations, the representation size of
SAX and PVQA are the shortest compared to all other shape-based and model-based
representations. Usually, W floating-point values need more storage than a dis-
cretized representation. For example, if SAX splits a time series into eight segments
and discretizes them into an alphabet of sizeA = 256 each representation would oc-
cupy 64 bit. Another shape-based or model-based representation would occupy this
storage with only two real values which is usually not an accurate representation.
Feature-based representations are floating-point values, too. Even short feature vec-
tors have a higher representation size than discretized shape-based representations.

Representation Time Most of the techniques need one or two passes to transform a time
series into a representation. Many shape-based techniques require one pass over a
time series. Sampling is the fastest representation technique, as it does not access
every value. APCA adaptively determines the segment lengths and require many
passes over a time series. Model-based techniques have different properties. While
fitting a normal distribution is fast and requires only 64 bit, ARIMA models and
ANNs need a time-consuming model identification and estimation. Markov chains
represent a time series faster, but the representation size is quadratic in the alphabet
size. Feature-based techniques only require one or two passes.

3.5 Summary 39

Distance Storage Raw-data-based, model-based, and feature-based techniques calculate
the distance directly on the representations, as well as most of the shape-based tech-
niques. In order to increase performance, PVQA and SAX precalculate distances
once for the dataset and stores them in a lookup table. The additional storage is
rather small; for a typical alphabet size of A = 256, the lookup table’s size is ap-
proximatively 262 kb.

Distance Time While raw-data-based distance measures need T or T 2 comparisons,
shape-based and model-based distance measures relying on the Euclidean distance
measure only need W comparisons, which makes them much faster. As an excep-
tion, Markov chains need A2 comparisons since they rely on a Kullback-Leibler di-
vergence; whether this is faster or slower than the other approaches depends on the
configuration of A and W . The distance calculation between two features is very
fast. For short feature vectors, it can be even faster than the comparison of the other
three engineering classes.

Lower-bounding Distance Some shape-based distances lower-bound the Euclidean dis-
tance (which also lower-bounds itself). The feature-based representation with Fouri-
er coefficients also fulfills this requirement, other feature-based techniques do not.

We observe that feature-based engineering is a promising class of engineering techniques.
It efficiently reduces time series to a set of real-valued features, which are efficiently com-
pared, and it allows us to tackle the challenges of big time series datasets. More details
will be given in the following chapter. Moreover, in Chapter 6, we will further inves-
tigate lower-bounding distance measures for our feature-based representation and on a
discretized representation occupying even less space.

Table 3.1: Properties of Engineering Techniques

Class Technique Representation Distance

Size (bit) Time Storage (32 bit) Time LB

Raw-data-based
ED – – – T X

DTW – – – T 2 –
cc – – – T –

Shape-based

Sampling 32 ·W < 1 – W –
Extreme Points 32 ·W 1 – W –

PAA 32 ·W 1 – W X
APCA 64 ·W * – W X
PLA 64 ·W 1 – W X

PVQA ld(A) ·W 1 W – –
SAX ld(A) ·W 1 A2 W X

Model-based

Normal Distr. 64 1 – – –
ARIMA model 32 ·W * – W –
Markov chain 32 ·A2 1 – A2 –

ANNs 32 ·W * – W –

Feature-based

Moments 32 1− 2 0 1 –
ACF1 32 1− 2 0 1 –

Component strength 32 2 0 1 –
StatAv 32 1 0 1 –

Fourier coefficient 32 1 0 1 X

Representation time in passes over time series (asterisk “*" means many passes); Distance time in number of

comparisons or lookups; LB means lower-bounding; A floating-point value occupies 32 bit

40 Chapter 3 Time Series Engineering

4
FEATURE-BASED ENGINEERING ACROSS

DATA-MINING TASKS

FEATURE-BASED ENGINEERING is a promising technique as it tackles the challenges of
big time series datasets by efficiently reducing time series to short vectors and com-

paring their similarity in structure. Many methods from the time-series analysis literature
provide features, which leads to vast feature collections. A selection of important features
is therefore required to keep the representation size short. Our goal is to select features
that are applicable across data-mining tasks.

Many feature-based engineering techniques focus on specific data-mining task such as
time series generation [KHSM17], time series matching [AFS93], time series classifica-
tion [PCH93, NAM01, FJ14], and time series clustering [GHLR01, WSH06]. These tech-
niques cannot be easily adopted by other data-mining tasks for two reasons: they do
not have a specific property required by another data-mining task or, likewise, they
rely on a specific property of the data-mining task they have been designed for. Time
series matching, for example, requires engineering techniques with a lower-bounding
distance measure. Techniques from other data-mining tasks do not have this property
[PCH93, NAM01, WSH06, FJ14, KHSM17]. On the other hand, an engineering technique
proposed by Fulcher et al. for classification contains thousands of features and thus, re-
quires an automatical feature selection for training a classifier [FJ14]. Other data-mining
tasks do not provide an automatical feature selection; thus, they cannot handle this rep-
resentation efficiently.

Two feature-based engineering techniques from the frequency domain, the Fourier and
wavelet transform, are applied to several data-mining tasks, including generation
[CDB94], matching [AFS93, Mör03], classification, and clustering [Mör03]. However,
they do not address the specific requirements of two data-mining tasks that we judge im-
portant: regarding generation, they do not simulate new stochastic characteristics, and
regarding matching, they do not reduce the representation size to a discrete representa-
tion. Moreover, our time series also contain stochastic characteristics from the stochastic
component, which blurs the representation in the frequency domain. Therefore, we do
not select Fourier and wavelet transform as our engineering technique.

In this chapter, we propose a feature-based engineering technique based on features from
the value and time domain, which is applicable to several data-mining tasks. We start
by giving a design rationale explaining the idea behind our technique (Section 4.1). To
support this design, we propose a suitable time series model (Section 4.2). The feature-
based representation is retrieved by decomposing a time series into components and by

41

reducing the components to features. We select an existing decomposition technique
and adapt it for our time series model (Section 4.3). Subsequently, we propose a rep-
resentation based on distribution, correlation, and component features (Section 4.4) and
introduce a suitable distance measure (Section 4.5). We summarize the advantages of our
engineering technique over state-of-the-art techniques (Section 4.6).

4.1 DESIGN RATIONALE

It was decided that the best procedure for the design of an engineering technique is to
study concrete big time series datasets from different domains. We choose three exam-
ple datasets from the energy, meteorology, and economic domain that we detail subse-
quently.

Example 1 (Metering). The Irish Commission for Energy Regulation initiated the Smart Me-
tering Project in order to assess the performance of smart meters in Ireland [The15]. The dataset
contains the electricity consumption of approximately 6,000 households, small or medium busi-
nesses, as well as other entities between July 2009 and December 2010. The consumption has
been measured in kilowatt-hour at a half-hour granularity. All recorded time series show seasonal
components (daily, weekly, yearly) but lack a strong trend.

Example 2 (Wind). The weather domain is represented by a dataset that contains time series of
wind speed from 16 German airports between 2010 and 2016. The wind speed has been measured
in meters per second at a half-hour granularity.

Example 3 (Economy). The M3-Competition is the third of four M-Competitions [MH00]. Its
goal is to compare forecast techniques on a defined dataset. The dataset contains about 3000 time
series from different domains (finance, industry, demography, macro-economy, other). The values
of each time series have a defined interval (year, quarter, month, other) and exhibit a trend and a
seasonal component.

Time series from the aforementioned domains can be long such as the Metering and Wind
time series. Moreover, the Metering dataset contains approximately 6,000 time series
which makes it large. We observe that the long-term behavior occurs in every value, and
a cyclically repeated behavior reoccurs several times, which is why these time series can
be reduced. We make the following observations that motivate our feature selection.

Observation 1: Features from the value and time domain The frequency domain cap-
tures characteristics of periodic and sinusoidal processes. Time series from the afore-
mentioned domains exhibit such characteristics. However, they also contain stochastic
characteristics that blur the representation in the frequency domain. Therefore, we focus
on features from the value and time domain to characterize the time series.

Observation 2: Stationarity by decomposition Most time series from the aforemen-
tioned domains exhibit deterministic behavior. The wind speed is often stronger in win-
ter than in other seasons which leads to yearly seasons. In long-term studies trends can
also be observed. If human behavior comes into play, time series exhibit other season
lengths. For example, weekly patterns can be observed in Metering due to a different
behavior of consumers during weekdays and weekends. As a consequence, time series
may have multiple seasons that should be taken into account. Economic time series ex-
hibit long-term changes due to, e.g., an increase in sales of a product. As a consequence,
we argue that extracting this behavior from time series is important for their characteri-
zation. The decomposition makes the residuals stationary which is why we do not need
stationarity features for their characterization.

42 Chapter 4 Feature-based Engineering Across Data-Mining Tasks

Observation 3: Deterministic components are highly predictable The trend and sea-
sonal components provide a highly predictable behavior. Their characterization with
distribution and correlation features would be meaningless because their value distribu-
tion is fixed and their autocorrelation is inherently high. Instead, we characterize them
with component features.

Observation 4: Take stochastic patterns into account After extracting the deterministic
components, the remaining residuals still have an important share in the overall signal.
It is desirable to capture their characteristics, too. This finding is also confirmed in the
literature. Theodosiou [The11] reports that autocorrelation remains in the residuals and
should be taken into account. Modelers for time series generation report that generating
wind speed with a Weibull distribution yields more realistic results than normal distri-
bution because the given residuals are skewed and not symmetric [PSAH15]. The value
distribution has been reduced to moment features by Nanopoulos in [NAM01]. The au-
tocorrelation of lag 1 has been used as a feature for time series generation in [The11]. As
a consequence, we argue that these distribution and correlation features should charac-
terize residuals in our representation.

4.2 TIME SERIES MODEL

According to component features, a time series consists of a trend, a seasonal, and a
residual component. Based on Observation 3, a time series can have several seasonal
components with different season lengths that we take into account. We refer to the
trend and seasonal components as deterministic components. Residuals are the stochastic
component of a time series. Together, these components describe the time series model that
we introduce subsequently. Formally, a time series is a combination of components:

y = tr +
∑S

s=1
seass + res (4.1)

where tr, seass, and res are the trend, season, and residual component, respectively. The
cyclically repeated characteristics of a season repeats T/Ls times where Ls, 1 ≤ s ≤ S

is the season length. The season length as well as the number of seasons S is fixed for
every time series dataset. According to Equation 3.46 (page 38), we adopt an additive
combination of components.

4.3 DECOMPOSITION

Knowing the components, we now look at decomposition techniques that can extract
them. A decomposition does a non-unique split into the respective components, which
can be further reduced to component features. We review existing techniques in Subsec-
tion 4.3.1 [KHL17b]. Then in Subsection 4.3.2, we propose our multiseasonal decomposi-
tion that we use for our time series model.

4.2 Time Series Model 43

Table 4.1: Properties of Decomposition Techniques

DEC X-13 STL

Arbitrary season length X - X
Decomposition of endpoints - X X

4.3.1 Related Work

Regarding our design rationale, a decomposition technique should provide two impor-
tant properties. As we observe a variety of season lengths (daily, weekly, yearly), it
should handle season components of arbitrary season length. Moreover, it should de-
compose all time series values and not only a subset. There are several techniques based
on moving-average filters or regression: classical decomposition and the more sophisticated
techniques, X-13 and STL. Subsequently, we review them regarding these two properties.

Classical decomposition dates back to the 1920s and is the basis for most subsequent
decomposition techniques [KS83, HA13]. The key concept is to retrieve the trend by
applying a moving-average filter on the given time series. Afterwards, the season is
calculated by averaging the detrended values of associated time instances: in case of
monthly values, all values of January are averaged, all values of February, and so on.
The season may be of arbitrary season length. A major drawback is that this technique
does not decompose the first and last values of the time series, called endpoints, due to
the moving-average filter. Consequently, components cannot be completely retrieved.

In the 1970s, the X-11 technique from the U.S. Bureau of the Census was published and
adopted by several statistical agencies around the world [Dag80]. This technique and its
successors, X-12 and X-13, furthered the concept of classical decomposition with several
moving-average filters [HA13, Bur17]. Most importantly, they use predictions from fore-
cast models backward and forward in time such that the endpoints can be decomposed,
too. However, the techniques are designed for decomposing only quarterly and monthly
data. That is why this technique is not applicable to our general approach.

In the 1990s, Cleveland et al. [CCMT90] found that Loess smoothing, a locally-weighted
regression technique, also leads to good results for detrending and deseasonalizing a
time series. Their technique, STL, is considered a versatile and robust decomposition
technique, handling every type of season length and decomposing endpoints [HA13]. It
is widely and recently applied [The11].

Table 4.1 summarizes relevant properties of the presented techniques. STL fulfills these
properties, which is why we adopt this technique for our approach.

4.3.2 Multi-seasonal Decomposition

STL handles arbitrary season lengths and decomposes the endpoints of a time series. But
it only handles one seasonal component. To handle multiple seasonal components we
adopt STL for our multi-seasonal decomposition technique, which splits a time series into
components of our time series model (Equation 4.1). Multi-seasonal decomposition de-
seasonalizes a time series from the shortest up to the longest season. As input, a time
series, a list of season lengths, and a list of season granularities are provided. A season
granularity Gs determines the aggregation of time instances before the time series is de-
seasonalized. For instance, a yearly season is best extracted with monthly values, so the
season length is 12, and the season granularity is “month”.

44 Chapter 4 Feature-based Engineering Across Data-Mining Tasks

Algorithm 4.1: Multi-seasonal Decomposition
1 Sub ms_st l
2 remainder = y
3 r es = y
4 For s = 1 To S
5 remainder = aggregate (remainder , G_s)
6 f i t = s t l (remainder , L_s)
7 remainder = remainder − f i t . season
8

9 seas_s = disaggregate (f i t . season)
10 re s = r es − seas_s
11 Next s
12

13 t r = disaggregate (f i t . trend)
14

15 r es = r es − t r
16 End Sub

Algorithm 4.1 shows the pseudocode of multi-seasonal decomposition. The remainder
(line 2) is the object that is successively decomposed. First, a loop (lines 4 – 11) extracts
the seasons. The remainder is aggregated to the expected season granularity (line 5), STL
decomposes the object into trend, season, and residuals (line 6). The season is extracted
(line 7) and stored in the original granularity (line 9). Second, the trend component is
the disaggregated trend fit (line 13). The residuals result as a subtraction of the extracted
components and the given time series (lines 3, 10, and 15).

Figure 4.1 illustrates the multi-seasonal decomposition for a Metering time series. Fig-
ure 4.1a shows the first 20 days of the time series in a half-hourly granularity. Throughout
the two years, we can observe only a slightly decreasing trend (Figure 4.1b). However, we
can observe daily peaks in consumption, with less intensive consumption on the week-
ends. For the extraction of the daily season, we assume a half-hour season granularity
(Figure 4.1c). A clear pattern with higher consumption during the day and a small peak
at noon can be identified. We further aggregate the remainder to a daily granularity and
extract the weekly season (Figure 4.1d). The pattern shows that consumption is higher
during weekdays than the weekend. Finally, we aggregate the time series to a monthly
granularity and extract the yearly season (Figure 4.1e). In order to extract the yearly sea-
son (which needs at least two cycles), it is assumed that the months January 2011 until
June 2011 behave like January 2010 until June 2010. Due to the short time interval of two
years, the monthly values are rather fluctuating. Nevertheless, they show an increased
energy consumption during the winter months. An important share of the time series
remains after extracting the aforementioned component. Figure 4.1f shows the first 20
days of these residuals. As expected, it contains less signal, and appears less systematical
than the original time series.

4.4 FEATURE-BASED REPRESENTATION

Decomposition separates the deterministic and stochastic behavior of a time series and
expresses it as components. However, components still have the same length as the orig-
inal time series and they are not easier to handle. Therefore, they are reduced to features
that we define as follows.

4.4 Feature-based Representation 45

-1

0

1

2

3

4

07
/1

3/
09

07
/2

0/
09

07
/2

7/
09

08
/0

3/
09

C
o

n
su

m
p

ti
o

n
 /

 k
W

h

(a) Time Series

-1

0

1

2

3

4

07
/0

9

01
/1

0

07
/1

0

01
/1

1

07
/1

1

(b) Trend

-0.5

0.0

0.5

1.0

1.5

12
 A

M

06
 A

M

12
 P

M

06
 P

M

12
 A

M

(c) Daily Season

-0.75

-0.50

-0.25

0.00

0.25

Tue Thu Sat

C
o

n
su

m
p

ti
o

n
 /

 k
W

h

(d) Weekly Season

-0.2

-0.1

0.0

0.1

0.2

Jun Sep Dec Mar

(e) Yearly Season

-1

0

1

2

3

4

07
/1

3/
09

07
/2

0/
09

07
/2

7/
09

08
/0

3/
09

(f) Residuals

Figure 4.1: Multi-seasonal Decomposition

A feature is a mapping fk : RT → R that transforms a time series of length T into a
scalar. A feature vector fᵀ = (f1, ... , fk, ... , fK) is a short representation with a vector
length K, which captures the time series’ important characteristics. Taking into account
the aforementioned observations, we represent the deterministic components with com-
ponent features (Subsection 4.4.1) and the stochastic component with distribution and
correlation features (Subsection 4.4.2). Subsequently, we assess this feature-based repre-
sentation regarding its size (Subsection 4.4.3) and time (Subsection 4.4.4).

4.4.1 Features for Deterministic Components

The trend component returned by STL contains the long term mean of the time series,
base value, the long term change of this mean, trend slope, as well as local trend changes.
In an attempt to identify trend features, we fit a linear regression model to the trend
component:

tr = θ1 + θ2 · t+ δ (4.2)

where θ1 is the base value, θ2 is the trend slope, and δ is the vector of local trend changes.
The vector tᵀ = (1, ..., t, ..., T) is the vector of time instances of the time series. We use the
base value and the trend slope as features and denote them θ1(tr) and θ2(tr), respectively.
The trend changes are high-dimensional which is why we do not select them for our
representation.

The season component is a cyclically repeated season mask that remains stable throughout
the time series, which is configured by STL. The season mask is a set of Ls seasonal features
σl(1 ≤ l ≤ Ls) such that:

σl(seass) = seass,l (4.3)

for all 1 ≤ l ≤ Ls. The season mask σs is in line with the season granularity Gs. Fig-
ures 4.1c - 4.1e show the season masks for the daily, weekly, and yearly season.

46 Chapter 4 Feature-based Engineering Across Data-Mining Tasks

4.4.2 Features for Stochastic Component

Most of the meaningful information is extracted with the deterministic components. As
observed in the design rationale, there is information remaining that cannot be described
as a long-term change or a cyclically repeated behavior. These residuals are calculated by
subtracting the deterministic components from the time series:

res = y − tr −
∑S

s=1
seass (4.4)

We represent these residuals by distribution and correlation features: standard deviation,
skewness, and kurtosis as well as the autocorrelation of lag 1 (Equations 3.40, 3.43, 3.44 and
3.45, page 36f.). They are noted sd(res), skew(res), kurt(res), and acf1(res), respectively.
The mean of the residuals is assumed to be 0 since it is extracted with the trend compo-
nent.

4.4.3 Representation Size

The features for the deterministic and stochastic components are combined in one feature
vector:

fᵀ = (θ1(tr), θ2(tr), σ1(seas1), ... , σLS (seasS), sd(res), skew(res), kurt(res), acf1(res))
(4.5)

Consequently, it reduces a time series to a representation of size W = 6 +
∑S
s=1 LS . For

example, a time series with a yearly season and a monthly aggregation level is reduced
to 6 + 12 = 18 features. The multi-seasonal time series from Figure 4.1 is represented
with 6 + 48 + 7 + 12 = 73 features. Still, this size is short compared to the raw-based
representation (35,040 values).

The presented features are calculated for each time series of the Metering and the Wind
dataset. Figure 4.2 presents the Metering features as boxplots. The features from the trend
and stochastic component (Figure 4.2a) are heterogeneous, the share of extreme outliers
(black circles) ranges between 1 and 8%. The season masks confirm this observation.
The daily season of the Metering dataset is very fluctuating (Figure 4.2b) with a share of
extreme outliers ranging between 4 and 11%. The season mask begins at midnight (σ1,1)
and finishes at 23:30 (σ1,48). During the night (σ1,1 until σ1,12), the boxes indicate that
less energy is consumed than during the day (σ1,13 until σ1,35). In the evening (σ1,36 until
σ1,48), consumers tend to consume more energy. The weekly and yearly season masks
(Figure 4.2c and Figure 4.2d) also indicate that the consumers are very heterogeneous as
there are many outliers. A clear tendency of a weekly pattern, as for a single consumer
(Figure 4.1), cannot be observed. However, a yearly seasonal behavior can be observed.
The seasonal positions correspond to the months of the year, i.e., σ3,1 is January, σ3,2
February, and so on. In the summer term, there is clearly less energy consumed than in
winter term. This fluctuation is mainly due to different consumption behavior resulting
in differently shaped season masks.

Let us turn to the Wind dataset (Figure 4.3). The features of the Wind dataset have a
small spread indicating a strong homogeneity (Figure 4.3a). The daily season of the Wind
dataset has a clear shape (Figure 4.3c), as well as the yearly season (Figure 4.3b), indicat-
ing that there is more wind during the day than the night, and during winter than during
summer. These observations are consistent with the meteorological literature [DBB+18].

4.4 Feature-based Representation 47

q1 q2 sd skewkurt acf1

0
10

30
50

(a) Features

s1,1 s1,13 s1,25 s1,37 s1,48

-0
.5

0.
0

0.
5

(b) Daily Season Mask

s2,1 s2,3 s2,5 s2,7

-0
.1

0.
0

0.
1

0.
2

(c) Weekly Season Mask

s3,1 s3,3 s3,5 s3,8 s3,10 s3,12

-0
.3

0.
1

0.
3

0.
5

(d) Yearly Season Mask

Figure 4.2: Non-normalized Features (Metering)

Table 4.2: Mean Runtime per Time Series in Seconds (Metering)

Season Length
T = 35,040 T = 350,400 T = 3,504,000

Dec. Red. Dec. Red. Dec. Red.

48 0.049 0.013 0.497 0.132 6.170 1.460
480 0.039 0.013 0.396 0.151 4.534 1.576

Dec. means decomposition runtime; Red. means reduction runtime

4.4.4 Representation Time

We assess the representation time of our approach in order to assess its efficiency for
big time series datasets. The representation time consists of the runtime for the multi-
dimensional decomposition and the runtime for the feature reduction. We evaluate on
the Metering dataset (2 years at half-hourly granularity) and measure the mean decom-
position runtime and the mean reduction runtime per time series in seconds. Two dataset
configurations are interesting for the approach because they influence the runtime of STL:
the time series length T and the season length L1. Other seasonal components (L2 and
L3) are extracted on the aggregated time series, which is why they are much cheaper.
We increase the time series length by a factor 10 and 100, leading to a length of 20 years
(T = 350, 400) and 200 years (T = 3, 504, 000). Moreover, we increase the daily season
length L1 by a factor 10, leading to time series of 73 days, 2 years, and 20 years at a
3-minute granularity, respectively.

Table 4.2 displays the mean runtime per time series by time series length and by season
length. Although our representation technique requires several passes over a time series

48 Chapter 4 Feature-based Engineering Across Data-Mining Tasks

q1 q2 sd skewkurt acf1

0
1

2
3

4
5

(a) Features

s2,1 s2,3 s2,5 s2,8 s2,10 s2,12

-0
.5

0.
0

0.
5

1.
0

(b) Yearly Season Mask

s1,1 s1,13 s1,25 s1,37 s1,48

-0
.5

0.
0

0.
5

1.
0

(c) Daily Season Mask

Figure 4.3: Non-normalized Features (Wind)

to decompose it and to reduce it into features, results suggest that our technique is very
fast. Moreover, it scales linearly by the time series length, also representing very long
time series with millions of values in an acceptable runtime. A longer daily season does
not increase the decomposition runtime. Quite the contrary, it decreases it for two rea-
sons: (1) at a higher granularity, the time series consists of less weeks or years, which
need to be decomposed, and (2) the decomposition of the year is skipped if there are less
than two years. The reduction runtime increases compared to a shorter season length
since there are more seasonal features building up the feature vector. Overall, it takes
approximately 6 minutes in total to represent the Metering dataset, which is acceptable
for subsequent data-mining tasks.

4.5 FEATURE-BASED DISTANCE MEASURE

A feature-based distance measure compares two time series regarding their structural
similarity. We define a distance measure that compares the selected features of two time
series. It incorporates raw-data-based and feature-based distance measures to some ex-
tent: the deterministic features cover the shape of the time series while the stochastic
features represent the value distribution and their autocorrelation.

To make features comparable, they have to be brought to a common range. Normaliza-
tion has to (1) adjust feature values to a common range and (2) diminish the influence
of outliers compared to the most frequent feature values. The boxplot provides an intu-
itive notion of common values (represented as box), near outliers (whiskers) and extreme
outliers (black points), which we adopt for our 0-1-normalization with outliers as follows.

4.5 Feature-based Distance Measure 49

q1 q2 sd skewkurt acf1

0.
0

0.
4

0.
8

(a) Wind

q1 q2 sd skewkurt acf1

0.
0

0.
4

0.
8

(b) Metering

Figure 4.4: Normalized Features

Let F = {f(y
i
), 1 ≤ i ≤ I} be the values that a single feature exhibits in a time series

dataset. Let Q1(F) be the value of the lower quartile and Q3(F) the value of the upper
quartile, respectively. Let IQR(F) = Q3(F)−Q1(F) be the interquartile range. We define
a normalized feature f01out(y) based on:

lower(F) = arg min
f(y)∈F

{f(y) ≥ median(F)− 1.5 · IQR(F)}

upper(F) = arg max
f(y)∈F

{f(y) ≤ median(F) + 1.5 · IQR(F)}
(4.6)

as follows:
f01out(y) = (f(y)− lower(F))/(upper(F)− lower(F)) (4.7)

where f01out is the feature that ranges between 0 and 1 except for extreme outliers. Fig-
ure 4.4 illustrates how features are shifted to the same range. The values we are focusing
on, are between 0 and 1, the extreme outliers are below or above this range. Their share
has not changed compared to the non-normalized representation. Based on the normal-
ized features, we now define the feature-based distance measure that assesses the similarity
of two time series. Let y and y′ be two time series. The feature-based distance dk of the
feature fk is given by Equation 4.8. Moreover, the overall feature-based distance is the RMSE
of all feature-based distances (Equation 4.9). This distance is either close to 0, i.e., time se-
ries are highly similar, between 0 and 1, i.e., the features of time series are in the common
range or close to it, or greater than 1, i.e., some features are not in the common range.

dk(y, y′) = | f01out
k (y)− f01out

k (y′) | (4.8)

df (y, y′) =
√

1
K

∑K

k=1
dk(y, y′)2 (4.9)

4.6 SUMMARY

Our feature-based engineering technique provides promising properties compared to
other engineering techniques. The feature vector size is W = 6 +

∑S
s=1 LS and thus,

the representation of one time series occupies 32 ·W bit. This is comparable to the size of
some shape- and model-based representations. The technique provides a representation
in a reasonable time, as our evaluation suggests. Big time series datasets can be efficiently
represented in a few minutes, although STL needs several passes. The distance measure
calculates the distance directly on the features. It requires no additional storage and it
calculates the result with W comparisons which, again, is comparable to state of the art.
However, this distance measure is not lower-bounding because it does not provide an
estimation of the Euclidean distance. We defer this discussion to Chapter 6 where we
present a discretized feature-based representation calculated in up to two passes.

50 Chapter 4 Feature-based Engineering Across Data-Mining Tasks

5
TIME SERIES GENERATION

FEATURE-BASED ENGINEERING has several advantages over other engineering classes,
as discussed in Chapter 3. It efficiently calculates a short time series representation

that can be compared efficiently regarding the similarity in structure. Our feature-based
engineering technique proposed in Chapter 4 provides these properties for several do-
mains. Let us now turn to the second part of this work: we apply this technique to
data-mining tasks and begin with time series generation. Time series generation evolves
a generated time series dataset from a given dataset. It is a crucial data-mining task for
two major reasons: system evaluation and data availability.

System evaluation is a crucial phase in many industrial and organizational processes. It
is done to test and verify component performance, to assess system robustness, and to
estimate the correct sizing of necessary resources. Generated datasets are vital to this
phase by providing comparability and a variety of possible inputs for the systematic
and thorough assessment of a system [JL86, CDB94, SJ13]. Also, generated datasets can
include user-given hypotheses. Thus, they allow users to study system behavior and
assess risks in possible future scenarios [vPL02, KHL17b].

Data availability covers the many side conditions that accompany data gathering in gen-
eral. Often, data might not be available in the required amount or quality, due to very
complex and expensive measurement procedures or because of sensitive and error-prone
sensors. In addition to these technical issues, legal regulations often restrict data avail-
ability by concerning privacy and intellectual property. With generated datasets, the im-
pact of these issues can be lessened, e.g., by compensating missing or erroneous data and
by anonymizing confidential data [KKD91, BdMK02, MH15, ILD+17].

Generation techniques are applied in a multitude of domains. As reported in Chapter 2,
they are used in the meteorological domain, where a statistical model was first mentioned
in 1982 for the generation of wind speed time series [MS82]. Since then, researchers have
been developing further generation techniques for simulating weather parameters such
as wind speed and direction, solar radiation, humidity, and precipitation [JL86, KKD91,
BdMK02, MH15]. In the energy domain, generated data assess renewable energy power
plants [JL86, ILD+17], while in industry and computing, they evaluate various purposes
[CDB94, SJ13].

While these techniques are valuable, they represent isolated solutions tailored to their
specific application; thus, they only cover specific characteristics. Concerning the im-
portance of time series generation, this poses a challenge as it makes the topic difficult

51

to access for new users that want to utilize it in their domain. In the worst case, an in-
terested user would have to survey existing work before either adopting a technique to
his/her respective domain or starting from scratch.

Our first objective is a comparative and domain-independent assessment of generation
techniques. To compare what generation techniques can express, we apply a feature-
based distance since it captures well the important characteristics of given datasets. Our
second objective is a generation technique that is applicable across domains. We use the
feature-based representation to capture the important characteristics of a given dataset
and to evolve a new dataset that is highly similar to the given dataset.

This chapter is structured as follows. We review existing generation techniques in Section
5.1 together with distance measures which commonly assess generation techniques. In
Section 5.2, we introduce and discuss two feature-based generation techniques. They not
only allow the controlled generation of time series that abide by the specific characteris-
tics of their originating domain but also provide a way to evolve new characteristics for
hypothetical "what-if" scenarios. We compare the performance with existing generation
techniques in Section 5.3 before we summarize our results in Section 5.4.

5.1 STATE OF THE ART

We review generation techniques for time series from the literature and compare them
regarding their class, their properties, and their expressiveness. For this review, we only
select domain-independent techniques. Domain-dependent techniques are out of scope
because they take physical information of a given time series into account, and thus,
they cannot be applied to other domains. For example, there are techniques for wind
power generation, taking into account the specific power curve of a wind power plant,
including cut-in and cut-off speed. Clearly, such techniques cannot be adopted by other
domains. Finally, we summarize distance measures that commonly assess the accuracy
of the generated time series.

In the literature, there are raw-data-based generation techniques and model-based genera-
tion techniques. The former take a given time series dataset as input while the latter take
a model-based representation of a dataset as input. We review them in Subsections 5.1.2
and 5.1.3, respectively. Beyond this classification, we characterize generation techniques
regarding four principal properties. A technique should fulfill all these properties to be
comprehensive and widely applicable. We present these properties in Subsection 5.1.1
before reviewing the generation techniques. Finally, we review generation techniques
regarding their expressiveness, i.e., the time series characteristics they can capture and
reproduce. Subsection 5.1.4 gives an overview of characteristics that are important for
time series generation across domains. In Subsection 5.1.5, we compare the generation
techniques regarding their properties and their expressiveness.

5.1.1 Properties of Generation Techniques

As illustrated in Figure 5.1, we characterize generation techniques with four properties.

52 Chapter 5 Time Series Generation

𝑦1

𝑦1

𝑦𝐼

…

𝑦∗
1

𝑦∗
2

𝑦∗
𝐼

…

𝑦1

𝑦1

𝑦𝐼

…

𝑦∗
1

𝑦∗
2

𝑦∗
𝐼

…

(a) Series-oriented and Dataset-oriented (b) Deterministic

𝑓∗ =
𝑠𝑑 = 2

𝑠𝑘𝑒𝑤 = 0.5
𝑘𝑢𝑟𝑡 = 2.5
𝑎𝑐𝑓1 = 0.9

Target

(c) Stochastic (d) Innovative

Figure 5.1: Properties of Generation Techniques

Dataset-oriented There are two different input scopes for a generation technique: either
it focuses on one time series at a time or on the whole dataset at a time (Figure 5.1a).
In the former case, the technique reproduces the characteristics of only one time se-
ries while ignoring the characteristics from other time series of the dataset. Dataset-
oriented techniques take advantage of all characteristics that arise in a dataset, and
they can take relationships of time series into account [ILD+17, KHSM17].

Deterministic A deterministic generation technique reproduces deterministic character-
istics of a time series which arise from a trend or seasons (Figure 5.1b). These char-
acteristics are shuffled or recombined [SJ13, ILD+17].

Stochastic A stochastic generation technique captures the stochastic characteristics of a
time series, i.e., distribution and correlation characteristics (Figure 5.1c). Moreover,
these characteristics are used to simulate new random values instead of taking the
randomness as is [KKSM91, PSAH15].

Innovative There are techniques that not only reflect given characteristics but also incor-
porate new characteristics in a generated dataset. A feature space (Figure 5.1d) vi-
sualizes the characteristics or features of a dataset in a scatter plot [KHSM17]. Blue
dots represent given time series, while red crosses represent time series evolved by a
generation technique. This generation technique is innovative because evolved time
series have new characteristics not covered by the given dataset. Such innovative
techniques are important when it comes to inflate a dataset or to provide “what-if”
scenarios [KHL17a, KHL17b, FPD+17].

Generation techniques that fulfill all these properties are considered comprehensive since
they can evolve time series for a variety of domains. Subsequently, we present generation
techniques regarding these properties and summarize them in Table 5.1.

5.1.2 Raw-data-based Generation Techniques

Raw-data-based generation techniques do not need an intermediate representation and
generate a dataset directly on the given dataset. They are based on bootstrapping, averag-
ing, recombination, or on a genetic algorithm.

5.1 State of the Art 53

Bootstrapping

Bootstrapping splits a time series into intervals of the same length and permutes the
values within these intervals [SJ13]. The technique can generate several new time series
from one given time series. Obtained results stay similar to the original data as long
as the chosen interval length is reasonably small. We conclude that bootstrapping is a
deterministic but not stochastic technique. It only focuses on one time series at a time,
and it is not innovative.

Averaging

Averaging evolves new time series by averaging given time series from a dataset. It can
be combined with varying weights to increase variety and in order to follow the char-
acteristics of the given data [FPD+17]. This technique is dataset-oriented, deterministic,
and innovative. However, since distribution and correlation characteristics are taken as
is, we consider this technique non-stochastic.

Recombination

The recombination technique first decomposes the values of time series into a trend, sea-
sons, and residuals. Then it shuffles these components and finally recombines them in
a new order. Time series generated in that way keep the characteristics of the original
dataset but in new combinations. Iftikhar et al. [ILD+17] brings time series recombina-
tion together with ARIMA models. The authors cluster components and shuffle them
within their clusters. New residuals are simulated using an autoregressive model.

Overall, recombination is a dataset-oriented and deterministic generation technique. It
is innovative in that it creates new combinations of characteristics. However, it is only
partially considered stochastic as the randomness stems from an ARIMA model [ILD+17]
and does not take distribution characteristics into account.

Genetic Algorithm

The genetic algorithm generates time series by combining randomly selected given time
series and ensures that the result is as close as possible to a given set of characteristics. A
combination is carried out by selection, crossover, and mutation processes that occur with
a specified probability. This technique, which was presented by Kang et al. [KHSM17], is
considered a dataset-oriented and deterministic generation technique. It is innovative in
that it can evolve new characteristics. Mutation evolves new random values even though
they are not modeled.

5.1.3 Model-based Generation Techniques

Model-based generation techniques use a model-based representation as an intermediate.
We could identify four representations in the literature: statistical models, ARIMA models,
Markov chains, and artificial neural networks, which we introduced in Section 3.3 (page 29).
Subsequently, we explain how they are used for generating new time series.

54 Chapter 5 Time Series Generation

Statistical Model

As mentioned earlier, statistical models gather statistical assumptions of a time series in
a model that needs to be identified and whose parameters need to be estimated. These
models can be used for evolving new time series. One example is a random variable
that generates a sample of independent and identically distributed values with a spe-
cific value distribution such as a normal distribution. While there is a plethora of value
distributions, literature regarding generation is sparse. Besides the normal distribution,
authors used the Weibull, and Reighley distribution [KKSM91].

Usually, these samples are not immediately obtained because there is no direct sample
generator for each value distribution. However, a sample of each (continuous) random
variable Z can be generated from a uniformly distributed sample using inversion sampling
[Kol08]. Let FZ : R→ [0, 1] be the cumulative distribution function of Z, and U a random
variable that is uniformly distributed between 0 and 1. Inversion sampling states that
the random variable Z can be obtained from the inverse of its cumulative distribution
function Z = F−1

Z (U). This means, a sample u from U can be transformed into a sample
z from an arbitrary (continuous) random variable Z. These samples are the time series
values with the expected value distribution.

In summary, statistical models are stochastic but they are not deterministic, dataset-
oriented, or innovative.

ARIMA Model

Besides the specific value distribution, the correlation between the values of a time series
is also important. Inversion sampling cannot achieve this. Instead, ARIMA models are
employed for this characteristic. Recall that an AR(p) model is of the form φ(B)ỹt = at
where φ(B) are the weights using the backshift operator, and at is an error term from
a normal white noise process. The correlation can be calculated from the weights such
that a simulation of an autoregressive model exhibits an expected autocorrelation in the
generated time series. Specifically for anAR(1) model, the autocorrelation of lag 1 equals
φ1 [SS11].

After model identification and estimation, the ARIMA model is used for time series gen-
eration. First, a normal white noise process is simulated. Second, these simulations are
fed into the model leading to a generated time series incorporating the target correlation
characteristics. The generated values are normally distributed, like the white noise pro-
cess. If the given time series exhibits a value distribution other than a normal distribution,
it may be poorly expressed in a generated time series.

ARIMA models can also include deterministic characteristics from a given time series
[HK08]. In summary, they are deterministic and stochastic but not dataset-oriented or
innovative.

Markov Chain

A Markov chain is a technique reproducing both correlation and distribution character-
istics. It represents a time series as a transition probability matrix P̂ = (p̂i,j) where p̂i,j is
the estimated conditional probability that a state j succeeds a state i. The generation is
carried out by simulating the transitions with a sample of uniformly distributed values

5.1 State of the Art 55

between 0 and 1. For example, let us assume that a Markov chain consists of two states
(A = 2) and the estimated probabilities of state 1 are p̂1,1 = 0.5 and p̂1,2 = 0.5. If the
sample value is smaller or equal 0.5, then a state transition from 1 to 1 is simulated, if the
sample value is greater than 0.5, then a state transition from 1 to 2 is simulated. Before the
simulation of state transitions, the first state of a time series has to be determined. Either
the first state of the given time series is used as the first value of the generated time series
[PSAH15], or the first state is selected randomly [SBW+05]. Other works do not discuss
how they determine the first state [JL86, KKSM91]. Finally, the resulting vector of states
is transformed back to real values. Either one representative value from the state interval
is selected [JL86] or a uniform distribution generates a real value from the state interval
[SBW+05, PSAH15].

This generation technique can reproduce the distribution and correlation characteristics
of a time series pretty well [BK09]. It has been used since the 1980s [JL86]. Since then, it
was extended to better capture the autocorrelation of longer lags which is why Markov
chains of second order were applied [KKSM91]. More recently, Pesch et al. focus on
finding the best distance for the second lag in order to optimally fit a Markov chain to
a given scenario [PSAH15]. The problem of Markov chains of orders higher than 2 is
their increased representation size, therefore existing research is generally limited to this
order. In summary, this generation technique is not dataset-oriented because it trains
one transition probability matrix per time series. It is stochastic but not deterministic or
innovative.

Artificial Neural Networks

Artificial neural networks (ANNs) are universal approximators of functions with un-
known type. They have been applied for time series generation, however existing liter-
ature is scarce. Almonacid et al. use a multilayer perceptron [APHRH13]. They feed in
characteristics from a time series as input and expect that the network returns the time
series as output. As such, they train the network on a given dataset. Subsequently, they
evolve new time series by feeding in new combinations of characteristics.

Regarding this reference, an ANN is dataset-oriented, deterministic, and innovative.
While ANNs in general are capable of evolving stochastic characteristics, the present
technique is not. Therefore, we classify it as non-stochastic.

5.1.4 Assessing Expressiveness

To assess the expressiveness of a generation technique, a generated dataset is compared
to a given dataset using a distance measure. There are numerical distance measures from
different engineering techniques (Chapter 3) as well as visual distance measures, which
we summarize subsequently.

Most often, a raw-data-based distance measure is assessed, either visually by providing
line plots or scatter plots [KKD91, BdMK02, APHRH13, ILD+17, KHSM17, CDB94, BK09,
PSAH15], or numerically [BdMK02, APHRH13, BK09, SJ13]. The root mean squared er-
ror measure (RMSE) is the most frequent numerical distance measure. It is a lock-step
distance measure based on the Euclidean distance (Equation 3.3, page 25). It represents
the mean distance between the values of the given and the generated time series, whereas
higher distances are more influential due to squaring.

56 Chapter 5 Time Series Generation

Table 5.1: Properties of Generation Techniques

BT AV RE GA SM AM MC ANN

Dataset-oriented – X X X – – – X
Deterministic X X X X – X – X
Stochastic – – (X) (X) X X X –
Innovative – X X X – – – X

Statistical Model (SM); ARIMA Model (AM); Markov Chain (MC); Artificial Neural Network
(ANN); Bootstrapping (BT); Averaging (AV); Recombination (RE); Genetic Algorithm (GA)

Raw-data-based distance measures focus on the time domain, by comparing values at
each time instance. In contrast, distribution distance measures focus on the value domain
rather than the time domain. They assess the distribution of time series values indepen-
dent from their time instance. Histograms are an appropriate visual distance measure
for this class: they plot the estimated probability distribution of given and generated
time series values and show the frequency of occurrences bucket-wise [KKSM91, JL86,
BdMK02, APHRH13, PSAH15]. Thus, two time series are compared using the frequency
of their values. However, the literature on generation techniques that numerically assess
this distance is scarce. For Markov chains, it can be shown that the generated time se-
ries nearly follows the probability distribution of the given time series [BK09]. However,
the comparison of the distribution with a histogram distance measure or the comparison
of distribution features (Section 3.4, page 36) is not carried out. While distribution fea-
tures would compare the moments of two distributions, this histogram distance measure
would compare two distributions bucket-wise.

Finally, the autocorrelation distance measure often assesses the correlation of a time series
[JL86, KKD91, KKSM91, BdMK02, BK09, PSAH15]. It is visualized by a line plot whose x-
axis is the sequence of lags and whose y-axis is the corresponding autocorrelation. Thus,
the autocorrelation of a generated time series is similar to a given time series if their lines
are narrow to each other. Numerically, these lines are assessed by the RMSE [BK09].

Several other characteristics may be assessed with a distance measure. However, we fo-
cus on the presented ones since they are most general, and they are frequently employed
to assess generation techniques from different domains.

5.1.5 Comparison

We compare the reviewed generation techniques regarding the four properties: dataset-
oriented, deterministic, stochastic, and innovative. If a generation technique fulfills all
these properties, it is considered comprehensive, as it can evolve time series for a variety
of domains. However, as Table 5.1 shows, none of generation techniques fulfill all the
properties to a full extent. Subsequently, we establish generation techniques addressing
this issue.

Most often, raw-data-based, distribution, and autocorrelation distance measures assess
the expressiveness of generation techniques. Throughout this chapter, we use the term
standard distance measure to refer to them, and we assess them visually and numerically.
We hypothesize that the feature-based distance measure describes them well: by com-
paring the deterministic features, it assesses the overall raw-data-based distance measure
and by comparing the distribution and autocorrelation features, it assesses the histogram
and autocorrelation distance measure. Moreover, it provides insights which features are
well reproduced and which features are not.

5.1 State of the Art 57

𝑑𝑓 𝑦, 𝑦∗

𝑌 = {𝑦1, … , 𝑦𝐼} 𝑏𝑎, 𝑡𝑟, 𝑠𝑒𝑎𝑠𝑠 , 𝑟𝑒𝑠 𝑓 𝑓∗ 𝑌∗ = {𝑦1
∗, … , 𝑦𝐼

∗}

Given Dataset Decomposition Feature-based
Representation

Target Generated Dataset

Feature-based
Distance

Figure 5.2: Overview of Feature-based Generation

5.2 FEATURE-BASED GENERATION

In this section, we present two feature-based generation techniques, a technique based
on modification and a technique based on recombination. The common steps of these tech-
niques are highlighted in Figure 5.2. After retrieving a given dataset each time series is
decomposed and reduced to a feature-based representation. A target feature vector f∗ indi-
cates for which features a time series shall be generated. Generation techniques provide
a generated time series y∗ for this target, which results in a generated dataset Y ∗. This
dataset can be compared with the given dataset by the feature-based distance for assessing
their similarity. Thus, features fulfill two tasks: (1) they provide a characterization of a
given dataset that can be employed for generation and (2) they assess the expressiveness
of generation techniques. Subsequently, we present our two feature-based generation
techniques based on modification (Subsection 5.2.1) and recombination (Subsection 5.2.2)
[KHL17a, KHL17b, KHL18].

5.2.1 Feature-based Modification

Our first generation technique relies on the observation that time series components can
be modified for evolving new time series. We propose to modify components by intro-
ducing factors and to calculate these factors such that the new time series agrees with a
target feature vector.

Modification with Factors

We describe three factors β, γ, and κ that express the modification of a time series compo-
nent and that affect the three features trend strength (Equation 5.1), trend slope (Equation
5.2), as well as season strength (Equation 5.3). Recall that these features are calculated as
follows:

R2
tr(y) = 1− var(res)

var(res+ tr) (5.1)

θ2(tr) = θ2 where tr = θ1 + θ2 · t+ δ (5.2)

R2
seas(y) = 1− var(res)

var(res+ seas) (5.3)

58 Chapter 5 Time Series Generation

Subsequently, we introduce the three factors that express how a time series component is
modified. Figure 5.3 visualizes modifications on the Economy and Metering dataset.

Trend Strength Factor Let β be a factor that varies the trend strength:

tr∗ = θ1 + β · (θ2 · (t− 1) + δ) (5.4)

This equation represents the linear regression model that is fitted to the STL trend.
The factor β is applied to the trend slope θ2 and the trend change δ. Depending on
β, the trend strength increases (β > 1), decreases (0 ≤ β < 1), or is left unchanged
(β = 1). A factor β < 0 is not admissible.

The effect of this factor is represented by Figure 5.3a on a trend component from
the Economy dataset. The plot shows the original trend (blue with triangles) and
three modified trends. The latter ones are modified by a trend determination factor
β = 1.25, β = 0.75, and β = 0.50, respectively. Overall, the important characteristics
of the trend are kept but they are a multiple of the former value. The influence on
the trend strength R2

tr is given in the figure’s legend.

Trend Slope Factor Let γ be a factor that varies the trend slope:

tr∗ = θ1 + γ · θ2 · (t− 1) + δ (5.5)

Again, we apply the factor to the linear regression model. But in this case, only
the trend slope is modified and not the trend change. Depending on γ, θ2 increases
(γ > 1), decreases (0 ≤ γ < 1), or is left unchanged (γ = 0). γ < 0 is not admissible.

This effect is represented in Figure 5.3b on the aforementioned trend component.
Again, the original trend (blue with triangles) and three modified trends (with fac-
tors γ = 2.00, γ = 0.75, γ = 0.50) are shown. All time series start at the same level
and they keep the same trend changes, but their directions are different.

Season Determination Factor Let there be a factor κ that sets the season strength:

seas∗ = κ · seas (5.6)

Depending on κ, R2
seas increases (κ > 1), decreases (0 ≤ κ < 1), or is left unchanged

(κ = 1). κ < 0 is not admissible.

This effect is represented by Figure 5.3c on a season component from the Metering
dataset. The plot shows the original season (blue with triangles) and two modified
season components from the Smart Metering Project. The latter ones are modified
by a season strength factor κ = 2.00 and κ = 0.50, respectively. Modifying the
season by factor κ leads to higher peaks and lows. The resulting R2

seas is given in
the legend.

Feature Target Calculation

Based on time series features and factors, we are able to generate time series that cover
given target features. Generated time series keep the nature of given time series except
for the modified features.

Calculating the factor that corresponds to the target requires the calculation of the inverse
function of a feature. We exemplify this by showing how a factor β is calculated that
modifies the trend strength. Let y be a time series that shall be shifted to a target R2

tr such

5.2 Feature-based Generation 59

Time

Tr
en

d
C

om
po

ne
nt

1984 1986 1988 1990 1992

4,
00

0
4,

50
0

5,
00

0
5,

50
0 β = 1.25 (Rtr

2 = 0.74)
β = 1.00 (Rtr

2 = 0.65)
β = 0.75 (Rtr

2 = 0.52)
β = 0.50 (Rtr

2 = 0.34)

(a) Trend Strength

Time

Tr
en

d
C

om
po

ne
nt

1984 1986 1988 1990 1992

4,
00

0
4,

50
0

5,
00

0
5,

50
0 γ = 2.00

γ = 1.00
γ = 0.75
γ = 0.50

(b) Trend Slope

-2
0

2
4

6

Time

Se
as

on
 C

om
po

ne
nt

κ = 2.00 (Rseas
2 = 0.08)

κ = 1.00 (Rseas
2 = 0.02)

κ = 0.50 (Rseas
2 = 0.01)

2009-07-13 2009-08-02

(c) Season Strength

Figure 5.3: Modification of Time Series Components

that its modified trend is tr∗. Let t̃r = θ2 · (t − 1) + δt be the trend component without
base value. Then:

R2
tr = 1− var(res)

var(res+ tr∗)

= 1− var(res)
var(res+ θ1 + β · t̃r)

= 1− var(res)
var(res) + β2 · var(t̃r) + 2 · β · cov(res, t̃r)

(5.7)

where the covariance cov(y, y′) is defined as:

cov(y, y′) = 1
T

∑T

t=1
(yt −m(y))(y′t −m(y′)) (5.8)

The base value does not affect the variance and can be removed (Equation 5.7). Solving
the following equation returns factor β, which is the positive real solution of the following
equation:

0 = β2 · var(t̃r) · (R2
tr − 1)

+ 2 · β · cov(res, t̃r) · (R2
tr − 1)

+R2
tr · var(res) (5.9)

This enables us to modify a time series such that its features are the target feature. For
the other features this calculation is similar.

5.2.2 Feature-based Recombination

The feature-based generation technique described here is based on recombination and
statistical models. Regarding these techniques, it is similar to Iftikhar et al. [ILD+17],
but it extends several concepts in order to have a higher expressiveness. The technique
generates time series that adhere to the feature-based representation. As shown in Figure
5.2, each time series from a given dataset is decomposed and characterized by its fea-
tures. For a target y∗, a time series is evolved as follows. First, the generation technique
recombines deterministic components from a time series whose features fulfill the target
feature. Thus, it selects a base value from a time series that satisfies the target, it selects a

60 Chapter 5 Time Series Generation

trend slope from another time series that satisfies the target, and it selects season masks
from different time series that satisfy the target. Second, it generates a stochastic compo-
nent that satisfies the target and combines them with the deterministic components.

By taking thresholds into account, it allows the generation of time series with an expected
distance to the target. Based on the feature-based distance, we define a lower and an upper
threshold p and q. The time series y, y′ ∈ Y are similar with respect to a feature fk if the
feature-based distance dk is within the thresholds:

p ≤ dk(y, y′) ≤ q (5.10)

With q, we configure the maximum distance that is considered similar. This is an impor-
tant notion for time series generation. While generation techniques from the literature do
not define an upper threshold on standard distance measures, they can now be assessed
by the feature-based distance. Likewise, the lower threshold p defines the minimum dis-
tance that two time series shall have. By default, this value is 0, thus ensuring perfect
similarity. When this value is increased, a minimum deviation between two time series
is expected which ensures that a generated time series is not fully equivalent to a given
time series.

Recombination of Deterministic Components

The deterministic part of a time series detᵀ = (det1, det2, ... , detT) can be approximately
recombined by its features as follows:

dett = θ1 + (t− 1) · θ2 +
∑S

s=1
σs,(t−1)%Ls+1 (5.11)

where % is the modulo operator.

We use this relationship in order to draw recombination candidates. These candidates are
time series that are similar to a given time series regarding their deterministic features.
Thus, their recombination is also similar to the given time series.

The recombination comprises (1) the construction of a distance matrix for each determin-
istic feature, i.e., base value, trend slope, and season mask; (2) the nearest neighbor search
to identify recombination candidates; and (3) the recombination based on features.

For every deterministic feature fk, we calculate the distance dk(y, y′) between every pair
of given time series. These distances are stored in a distance matrix.

Subsequently, a nearest neighbor search is carried out on the distance matrix to identify
neighboring features that fulfill the error thresholds p and q. For every deterministic
feature fk, each given time series (identified by i) is annotated with a set of candidates
(identified by j) that fulfill the condition p ≤ dk(yi, yj) ≤ q.

Finally, we carry out the recombination. From the recombination candidates, we ran-
domly select one candidate per feature, i.e., one candidate jθ1 for the base value, one
candidate jθ2 for the trend slope and

∑
s Ls candidates jσs,l for the season masks. Their

recombination yields the deterministic part det∗i of the generated time series y∗
i
:

det∗i,t = θ1(y
jθ1

) + (t− 1) · θ2(y
jθ2

) +
∑S

s=1
σs,(t−1)%Ls+1(y

jσs,(t−1)%Ls+1
) (5.12)

5.2 Feature-based Generation 61

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Base Value

T
re

n
d

 S
lo

p
e

Figure 5.4: Feature Space of Economy Dataset

Figure 5.4 illustrates the feature space of the Economy dataset for two 0-1-normalized
features with outliers, the base value and trend slope. We assume a lower error threshold
p = 0.10 and an upper error threshold q = 0.25. For an example time series (red triangle
in the center), possible recombination candidates lie within the error thresholds (black
points between the inner and the outer blue dashed rectangle). They are recombined and
result in new combinations that still fulfill the feature-based similarity (green crosses).
These recombinations are the deterministic part of generated time series.

There are two anomalies that can occur. If two recombinations are based on the same
features, they are treated as duplicates. If a recombination matches the components of a
given time series, it is treated as the original time series. Both anomalies are analyzed in
order to make sure that they do not influence the results of the generation.

Simulation of Stochastic Component

The stochastic component includes the remaining random information that cannot be
modeled directly. In order to describe this component, its value distribution and its re-
maining autocorrelation can be used. Our feature-based representation captures these
characteristics with the features: standard deviation, skewness, kurtosis, and autocorre-
lation of lag 1 (Equations 3.40, 3.43, 3.44, and 3.45, page 36f.).

To generate a component that agrees with these features, we apply a composite statistical
model. It combines a distribution function generating random values with a simulation
of an autoregressive model. Moreover, we take care that the generated residuals do not
exceed the value limits from the given dataset by imposing constraints to the generated
residuals. These three elements are explained subsequently.

Distribution Function The goal is to generate residuals that agree with the target dis-
tribution features. A distribution that fits this purpose is the Pearson distribution system.
It is a set of eight different distribution functions that cover a large space of distribution
features [BK17].

For each feature combination {sd(y), skew(y), kurt(y)}, a distribution function is selected
based on its ability to provide a sample for this combination. The mean is assumed to be

62 Chapter 5 Time Series Generation

𝑓∗ =
𝑠𝑑 = 2

𝑠𝑘𝑒𝑤 = 0.5
𝑘𝑢𝑟𝑡 = 2.5
𝑎𝑐𝑓1 = 0.9

Target AR(1) Simulation Z Normalization Uniform
Distribution

Inversion
Sampling

𝑠𝑑 = 2.3
𝑠𝑘𝑒𝑤= 0.0
𝑘𝑢𝑟𝑡 = 2.9
𝑎𝑐𝑓1 = 0.9

𝑠𝑑 = 1.0
𝑠𝑘𝑒𝑤= 0.0
𝑘𝑢𝑟𝑡 = 2.9
𝑎𝑐𝑓1 = 0.9

𝑠𝑑 = 0.3
𝑠𝑘𝑒𝑤= 0.0
𝑘𝑢𝑟𝑡 = 1.8
𝑎𝑐𝑓1 = 0.9

𝑠𝑑 = 2.0
𝑠𝑘𝑒𝑤= 0.5
𝑘𝑢𝑟𝑡 = 2.5
𝑎𝑐𝑓1 = 0.9

Figure 5.5: Autoregressive Model

0 since it is captured by the base value. For a given time series y and error thresholds
p and q, a time series is generated whose distribution features f are expected to be in
the interval below the given features, [f01out(y) − q, f01out(y) − p], or the interval above
the given features, [f01out(y) + p, f01out(y) + q], where f01out is the normalized feature of
standard deviation, skewness, and kurtosis.

Autoregressive Model In the presence of significant autocorrelation, an autoregressive
model is simulated. It weaves autocorrelation into the generated residuals such that the
residuals approximately agree with both, the distribution and and the autocorrelation
features. Figure 5.5 illustrates this weaving, starting with expected target features. We
first simulate an autoregressive process using an AR(1) model. As presented in Section
5.1, an AR(1) model is of the form:

yt = φ1 · yt−1 + at (5.13)

The autocorrelation of lag 1 equals φ1. Thus, we simulate the process for the given target
feature acf1(res) = φ1, leading to values with the expected autocorrelation. However,
the simulated values are normally distributed, since the error terms at are normally dis-
tributed. To support other distribution features, we transform the values to the target
distribution by means of inversion sampling. The simulation from the autoregressive
model is z-normalized, with a mean of 0 and a standard deviation of 1, which keeps the
autocorrelation from the simulation. Then, it is transformed to a uniformly distributed ran-
dom variable U using u = FN (y), where FN is the cumulative distribution function of
the normal distribution N(0, 1). The values of U are between 0 and 1, and their auto-
correlation of lag 1 is still as expected. Finally, by using the inverse of the cumulative
distribution function FPearson from the Pearson distribution system, the inversion sam-
pling yields residuals res∗ = F−1

Pearson(u) that reproduce the expected distribution and
autocorrelation features.

Constraints The simulation of the aforementioned model provides residuals that agree
with the distribution and autocorrelation features of a given time series. However, once
the residuals are combined with the deterministic components they may lead to unex-
pectedly low or high time series values. For example, such combinations may lead to a
negative or extremely high wind speed value which should be avoided.

Therefore, we define two constraintsminY andmaxY that express the lowest possible and
the highest possible value in a dataset, respectively. The generation of residuals is aware
of these constraints and of the deterministic part of the time series they were combined
with. It ensures that evolved residuals do not exceed these constraints as follows.

5.2 Feature-based Generation 63

Table 5.2: Properties of Proposed Generation Techniques

MD FBG

Dataset-oriented – X
Deterministic X X
Stochastic – X
Innovative X X

Feature-based Modification (MD);
Feature-based Recombination (FBG)

An error term at, which is a set of samples from a normal distribution, is generated. At
time instance t, a new value y∗t from the autoregressive model is simulated using at. If
the resulting residual value res∗t does not fulfill the conditions:

minX − det∗t ≤ res∗t and res∗t ≤ maxX − det∗t (5.14)

it is rejected and another sample for at is drawn. The originally selected value at is used
at another future time instance. Thus, it ensures the distribution properties of the sample.

5.2.3 Comparison

Table 5.2 summarizes the properties of the proposed generation techniques. The gener-
ation technique based on modification (MD) is deterministic and innovative. The use of
factors allows to modify the influence of a deterministic component such that an evolved
time series fulfills target features. Moreover, it incorporates new characteristics in a gen-
erated dataset that were not provided by a given dataset. While it is a valuable technique
to create “what-if” scenarios of a dataset it is not dataset oriented and it does modify the
stochastic properties. Moreover, the trend changes δ are taken into account which is why
this approach does not fully reduce the representation of a time series.

The generation technique based on generation (FBG) fulfills all properties: (1) by recom-
bining time series, it is dataset-oriented, (2) by reusing trend and season components, it
is deterministic, (3) by simulating residuals with expected distribution and correlation
characteristics, it is stochastic, and (4) by relying on modifiable features, it is innovative.
As stated in the introduction of this chapter, our main objective is the applicability of
the generation technique across domains. Subsequently, we assess FBG to generation
techniques regarding three domains, and compare it with other generation techniques.

5.3 EXPERIMENTAL EVALUATION

The feature-based generation technique FBG provides desirable properties as it repro-
duces deterministic and stochastic characteristics. In this section, we evaluate that (1)
FBG evolves a dataset that is highly similar to a given dataset regarding the feature-based
distance, and that (2) the feature-based distance measure is able to compare generation
techniques regarding their expressiveness.

We evaluate our technique with the three time series datasets Metering, Wind, and Econ-
omy that have been introduced in Section 4.1 (page 42). The Metering and Economy
datasets have already been used by Iftikhar et al. and Kang et al., respectively [ILD+17,
KHSM17]. In order to extract the yearly season of the Metering dataset (which needs at
least two cycles), it is assumed that the months January 2011 until June 2011 behave like
January 2010 until June 2010. The Wind dataset is similar to the dataset used by Pesch et
al. [PSAH15].

64 Chapter 5 Time Series Generation

5.3.1 Experimental Setting

We compare FBG to three generation techniques that have been recently cited in the lit-
erature (Table 5.3). Each technique is applied to a dataset from a specific domain and is
used to reproduce either all deterministic and stochastic features or a subset of them. For
each dataset Y , a generation technique evolves one dataset Y ∗, i.e., for each time series
y
i
∈ Y , it evolves one time series y∗

i
∈ Y ∗. Thus, the size of the generated dataset is equal

to the size of the given dataset with one exception: only 100 time series are generated
for the Metering dataset which is due to time limitations of the genetic algorithm. The
comparison is carried out regarding standard and feature-based distance measures. To
ensure the reproducibility of the results, we summarize the configuration of the selected
techniques. Our technique, FBG, is set to a lower error threshold p = 0.01 and an upper
threshold q = 0.05 for all features and all datasets.

The generation technique from Iftikhar et al. [ILD+17] is based on recombination. It splits
a time series into a base component, a season mask, and residuals. The base component
is the long-term mean value of the time series, without a trend. The season masks are
then clustered, shuffled, and assigned to another base component and residuals from
the same cluster. We carry out a k-means clustering of the daily season masks with the
Euclidean distance measure. The number of clusters is 20 as proposed by Iftikhar et al.
We apply this setting to the Metering and the Economy dataset. We create only 5 clusters
for the Wind dataset because it contains less time series. The residuals are simulated
with an AR(3) model as suggested by Iftikhar et al. Since a trend is not considered by this
technique, we do not assess the trend slope with the feature-based distance. For assessing
the raw-data-based distance, we add the original trend.

A second comparison is carried out for Markov chains. The generation technique of Pesch
et al. [PSAH15] is re-implemented with some slight modifications. Each time series is
decomposed into deterministic and stochastic components. A Markov chain of second
order with 65 states (Metering, Wind) and a second order lag of 6 capture the state tran-
sitions of a given time series. These parameters correspond to the suggestion of Pesch et
al. We only set 10 states for the Economy dataset because its time series are too short to
fill a transition probability matrix for 65 states. In the rare case of anomalies in the tran-
sition probability matrix, a healing mechanism is applied as suggested by Pesch et al.
In contrast, we adopt the multi-seasonal decomposition instead of the trend and season
elimination that the authors applied. Moreover, we do not apply a running average filter
for smoothing the time series because this characteristic is not important for this work.
Generation is carried out for the stochastic component only since Markov chains are not
applicable to deterministic components.

Finally, we re-implement the genetic algorithm based on Kang et al. [KHSM17]. As sug-
gested by the authors, the initial population consists of 20 time series Economy that are
randomly selected. Its size is set to 20 for the Metering and 10 for the Wind dataset. The
time series y

i
, which sets the target for the generation of y∗

i
, is not among the initial pop-

ulation. A crossover of time series occurs with a probability of 80%, a mutation occurs
with a probability of 40%. Time series are selected by their fitness. We use the overall
feature-based distance df as the fitness function (Equation 4.9, page 50). As suggested
by the authors, the iteration stops if (1) the fitness is at least -0.01, (2) if the maximum
number of iterations, 3000, has been reached, or (3) if there was no improvement in a
sequence of 200 iterations.

5.3 Experimental Evaluation 65

Table 5.3: Experimental Setting

Generation Technique Dataset Relevant Features

Recombination Metering All without trend slope
Markov chain Wind Speed Stochastic
Genetic algorithm Economy All
FBG All All

5.3.2 Feature-based Distance

The selected generation techniques are compared regarding the feature-based and the
overall feature-based distance (Equations 4.8 and 4.9, page 50). First, they are applied to
the domain they were originally designed for, second they are applied to all domains.

Recombination on Metering

Figure 5.6 compares FBG with the recombination technique. The x-axis shows the feature
fk, the y-axis shows the distances {dk(yi, y

∗
i
), 1 ≤ i ≤ I} as boxplot. For readability

reasons, seasonal features of the same seasonal component are presented in one box.

FBG generates time series whose deterministic features respect the error threshold q (Fig-
ure 5.6a). The base value also respects the error threshold p. However, there are rare
cases where the seasonal features of a given time series is not recombined which led to a
feature-based distance below p. The recombination technique generates time series with
a higher feature-based distance to its given counterpart. While the base features (which
are not recombined) yield good results, the clustered and recombined daily season masks
are more distant.

FBG also generates stochastic features which are similar to their given counterparts (Fig-
ure 5.6b). Although the distribution features from FBG are remarkably good, they are not
below the expected error threshold q. The simulation process makes a trade-off between
the expected features and the value constraints. The recombination technique uses an AR
simulation that generates values with a fixed standard deviation, skewness, and kurto-
sis. Thus, these features do not fit well the given moments of the original dataset. The
autocorrelation can be well reproduced.

Markov Chain on Wind

The Markov chain technique evolves only stochastic components. The generated dataset
reproduces well the given features for the Wind dataset (Figure 5.7). FBG yields better
results but the skewness is higher than for the Markov chain due to the trade-off with the
value constraints.

The feature-based distances seem high because the Wind dataset is very homogeneous.
However, the non-normalized distances are not (Figure 4.3, page 49).

66 Chapter 5 Time Series Generation

q1 s1 s2 s3

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

FBG
Recombination

(a) Deterministic Features

sd skew kurt acf1

0.
00

0.
50

1.
00

1.
50 FBG

Recombination

(b) Stochastic Features

Figure 5.6: Feature-based Distance of Recombination

sd skew kurt acf1

0.
00

0.
20

0.
40

0.
60 FBG

Markov Chain

Figure 5.7: Feature-based Distance of Markov Chain

q1 q2 s1

0.
00

0.
20

0.
40

0.
60

FBG
Genetic Algorithm

(a) Deterministic Features

sd skew kurt acf1

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

FBG
Genetic Algorithm

(b) Stochastic Features

Figure 5.8: Feature-based Distance of Genetic Algorithm

5.3 Experimental Evaluation 67

Genetic Algorithm on Economy

Figure 5.8 compares FBG with the genetic algorithm on the Economy dataset. For the
deterministic features, FBG does not exceed the error threshold q (Figure 5.8a). In less
than 8%, no recombination candidates are found which is why the component is identical
to the given one. Thus, the lower whiskers reach 0 instead of stopping at p. The genetic
algorithm generates highly similar components. The base value and trend slope have a
median feature distance of 10% while the season masks differ from given season masks
by only 2%.

Regarding the stochastic features, FBG provides more similar residuals in terms of stan-
dard deviation and autocorrelation (Figure 5.8b). However, the genetic algorithm out-
performs it regarding skewness and kurtosis for the same reason as in the experiments
above.

Summary

Table 5.4 lists the median feature-based distance per dataset and generation technique.
For readability reasons, seasonal features of the same seasonal component are printed
in the same cell. The table also lists the median overall feature-based distance df . It is
calculated based on the relevant features (Table 5.3), other features (cell crossed-out) are
ignored. The best distances are printed in boldface.

FBG generally outperforms the other techniques on the deterministic components due
to the error thresholds. It partially yields the best results on the stochastic components.
However, Markov chains are sometimes better because they use a bigger model for gen-
erating residuals. The good results of the genetic algorithm on the Economy dataset are
due to the 3000 iterations which led to best results on some of these features.

FBG also outperforms the other techniques on the overall feature-based distance. The
genetic algorithm is also very accurate on the Economy dataset. The Markov chain tech-
nique performs well on the Metering dataset, however, it does not take the deterministic
components into account.

5.3.3 Standard Distance

The feature-based distance measure compares characteristics that generation techniques
are able to express. In this subsection, we show that it is related to the results from
standard distance measures that we presented in Section 5.1: the raw-data-based distance,
the distribution distance, and the autocorrelation distance. We assess them numerically as
well as visually (Figure 5.9).

Raw-data-based Distance

Visually, the raw-data-based distance is assessed with a lineplot. Figure 5.9a shows the
first four years of an exemplary time series from the Economy dataset (black solid line)
together with the result from FBG (blue dashed line) and from the genetic algorithm (red
dotted line). Due to the error thresholds and the strong deterministic components, the

68 Chapter 5 Time Series Generation

Table 5.4: Median Feature-based Distance on All Datasets

Deterministic Features Stochastic Features Overall

Metering θ1 θ2 σ1 σ2 σ3 sd skew kurt acf1 df
RE 0.0285 – 0.1344 0.2492 0.1930 1.0120 0.4846 0.2805 0.2105 0.2935
MC – – – – – 0.0388 0.0494 0.0691 0.0367 0.0587
GA 0.1145 – 0.0977 0.0880 0.1244 0.1025 0.2063 0.3159 0.1970 0.1613
FBG 0.0272 – 0.0296 0.0306 0.0306 0.0582 0.0926 0.1151 0.0764 0.0410

Wind θ1 θ2 σ1 σ2 σ3 sd skew kurt acf1 df

RE 0.0494 – 0.2703 0.5889 – 1.3999 2.2606 0.9540 1.9901 0.6434
MC – – – – – 0.1692 0.0792 0.2318 0.4334 0.2636
GA 0.2078 0.2520 0.0749 0.1881 – 0.2469 0.1850 0.3778 0.6589 0.2137
FBG 0.0192 0.0190 0.0180 0.0184 – 0.1364 0.2539 0.1590 0.2670 0.0653

Economy θ1 θ2 σ1 σ2 σ3 sd skew kurt acf1 df

RE – – 0.2193 – – 0.3517 0.1429 0.3325 0.2440 0.3867
MC – – – – – 0.0575 0.1245 0.1896 0.2663 0.2222
GA 0.1047 0.1127 0.0244 – – 0.1166 0.0687 0.0696 0.1406 0.0997
FBG 0.0299 0.0294 0.0275 – – 0.0349 0.1199 0.1548 0.0886 0.0767

FBG result is very close to the original time series. The genetic algorithm has some peaks
and lows due to mutation.

Numerically, the raw-data-based distance is calculated as RMSE. Table 5.5 lists the me-
dian RMSE of a given and the corresponding generated time series per dataset and gen-
eration technique. On the Metering dataset, FBG is the most accurate regarding raw-
data-based distance. The Markov chain technique ranks second. Although this tech-
nique copies the deterministic components as is, it has a higher RMSE. One reason is
that it does not take value constraints into account. On the Wind dataset, the genetic
algorithm yields the highest accuracy. Due to the homogeneous data, every time series
in the initial population is already highly similar to the time series that set the target fea-
tures. The techniques Markov chain and FBG return a similar distance. While the Markov
chain technique copies the deterministic components, FBG recombines components with
a lower error threshold that lead to a slightly higher RMSE. On the Economy dataset, the
recombination technique shows the lowest distance. Since this technique does not exhibit
a high similarity of monthly season masks (σ1), the trend component that is copied as is
has a major influence on this accuracy.

Distribution Distance

The distribution distance focuses on how often a time series value occurs rather than when
it occurs. Visually, Figure 5.9b illustrates the histogram of an original Wind time series
and the corresponding generated ones. The genetic algorithm, FBG, and the Markov
chain generate values that are highly similar to the original ones. The recombination
technique is less similar because it does not take into account the higher order moments.

Numerically, we assess the distribution distance with a histogram distance measure, the
Bhattacharyya distance measure [Bha43]:

dB(y, y∗) = − log
∑A

i=1

√
freqi(y) · freqi(y∗) (5.15)

where i is one ofA equidistant buckets and freqi is the relative frequency of values within
the bucket. Equal distributions have a distance 0, the less similar they are the higher is

5.3 Experimental Evaluation 69

Time

V
al

u
e

Original
FBG
Genetic Algorithm

3,
00

0
6,

00
0

9,
00

0

1983 1984 1985 1986 1987

(a) Lineplot of FBG and Genetic Algorithm

 0

10
,0

00
20

,0
00

-5 0 5 10 15 20

Value

F
re

q
u

en
cy

Original
FBG
Recombination
Markov Chain
Genetic Algorithm

(b) Histogram of Residuals on Wind Dataset

Figure 5.9: Visual Distances

the distance. Table 5.5 lists the median Bhattacharyya distance for every dataset and gen-
eration technique. We split the value range into B = 100 (Metering), B = 30 (Wind), and
B = 10 (Economy), respectively. On the Metering and Wind datasets, the genetic algo-
rithm ranks first and FBG second. The Metering dataset contains several deterministic
effects that are not captured by our time series model. Thus, they are treated as resid-
uals and they are more difficult to reproduce. The Wind dataset is very homogeneous.
New combinations and mutations of its time series reproduce the value distribution very
well. Therefore, the genetic algorithm ranks first, followed by FBG that reproduces the
distribution from only three distribution features. The Markov chain and recombination
technique yield less accurate distribution distances which is mainly due to missing value
constraints as shown in Figure 5.9b. On the Economy dataset however, the Markov chain
and recombination technique yield better results than the competitors. Since these tech-
niques take the strong trend component as is, they could better reproduce the original
distribution than FBG and the genetic algorithm. Moreover, these time series are very
short and thus, FBG is unable to reproduce the value distribution accurately.

Autocorrelation Distance

We assess the non-normalized autocorrelation of lag 1 of original and generated time
series (Equation 3.45, page 37). Table 5.5 lists the median distance per dataset and tech-
nique. These results correspond to the normalized feature acf1. FBG has the best results
on the Wind and Economy dataset. The Markov chain has the smallest distances on the
Metering dataset. On the Economy dataset, its results are only slightly worse than those
of FBG.

Summary

The standard distance measures suggest that FBG competes with generation techniques
from the literature. Regarding the distribution and ACF distance, it mostly ranks first
and second place. Regarding the raw-data-based distance, it ranks first place on Meter-
ing, but third place on Wind and Economy. As mentioned earlier, two competitors have
an advantage as they take the given trend (RE) and the given deterministic components
(MC) as is. The feature-based and overall feature-based distances correspond to standard
distance measures only to some extent. They compare the similarity in structure, while
the raw-based-distance measure compares the similarity in shape. The distribution fea-
tures do not capture the full spectrum of a histogram which is why these features only
correspond to the histogram - and thus, the histogram distance - in special cases.

70 Chapter 5 Time Series Generation

Table 5.5: Standard Distances

Metering Raw-data-based Distribution ACF

RE 1.7829 0.4471 0.2320
MC 0.7934 0.1478 0.0183
GA 0.8214 0.0858 0.1562
FBG 0.7167 0.1305 0.0492

Wind Raw-data-based Distribution ACF

RE 3.4251 0.0676 0.1142
MC 2.7296 0.0242 0.0205
GA 2.0618 0.0090 0.0336
FBG 2.7559 0.0149 0.0166

Economy Raw-data-based Distribution ACF

RE 277.4685 0.0790 0.0268
MC 335.3713 0.0767 0.0146
GA 690.3626 0.2520 0.0200
FBG 387.8705 0.0999 0.0145

5.4 SUMMARY

In this chapter, we introduced feature-based time series generation. We reviewed and
analyzed generation techniques from the literature and we derived properties they have
to fulfill to be applicable across domains. Moreover, we reviewed distance measures that
assess the expressiveness of generation techniques. We hypothesized that our feature-
based representation captures these characteristics well.

Based on these reviews, we introduced feature-based generation techniques. The gen-
eration technique based on recombination, FBG, supports the desired properties and
evolves highly similar time series. Moreover, it respects similarity expectations which
are expressed by the feature-based distance and limiting error thresholds. By this means,
it outperforms currently available generation techniques and confirms our hypothesis.

This evaluation is the first to present a domain-independent comparison of time series
generation. This assessment is important in order to generalize generation techniques
from different domains that were considered isolated applications but that could evolve
datasets independent of their original application. In this context, the feature-based dis-
tance is a tool for the validation of generated datasets. Generated time series are selected
if they respect an expected feature range which is required by an application.

5.4 Summary 71

72 Chapter 5 Time Series Generation

6
TIME SERIES MATCHING

EXHAUSTIVE TIME SERIES GATHERING and the inherent nature of time series lead to the
design of data management systems handling this data type natively [ZP18]. These

systems provide a storage model, a query language, and optimization mechanisms suit-
able for time series. Fast data access is needed to carry out data-mining tasks efficiently.
A crucial prerequisite of these systems is the retrieval of similar time series which is
commonly referred to as time series matching [ZP18]. Figure 6.1 gives an overview of
this data-mining task. Due to their high dimensionality, a query time series is not directly
matched against a time series dataset to retrieve the match, i.e., its nearest neighbor. In-
stead, both objects are represented and compared in a low-dimensional space. Their repre-
sentation distance approximates their true distance which is assumed to be the Euclidean
distance (Equation 3.2, page 24) [AFS93]. Two matching methods are carried out on these
objects: exact and approximate matching. Exact matching retrieves the exact match which
is closest to the query time series with respect to the Euclidean distance. In contrast, ap-
proximate matching retrieves the approximate match which is closest to the query time
series with respect to the representation distance.

For the past three decades, researchers have been developing engineering techniques for
matching that rely on the shape [DTS+08], on the model parameters [KGP01], or on the
features [AFS93] of a time series. Among these techniques, the symbolic aggregate ap-
proximation (SAX) from Lin et al. is of particular interest [LKLC03], as presented earlier
(Section 3.2, page 26). First, this shape-based technique splits a time series into segments
which are represented by their mean value, the so-called piecewise aggregate approxi-
mation (PAA). Second, it discretizes each mean value by mapping it to a discrete symbol.
Thus, SAX provides a small representation together with a fast distance measure which
makes it suitable for time series matching. Moreover, its distance measure has the impor-
tant property to lower-bound the Euclidean distance measure, i.e., it allows for pruning
time series observations based on the representation, without the need to load all high-
dimensional time series into memory and calculate their Euclidean distance.

However, this technique suffers from two design criteria. First, SAX assumes that the
PAA of a z-normalized time series, whose values have a mean of zero and a variance
of one, is also normally distributed with the same variance. As pointed out by Butler
and Kazakov, this is over-simplistic and negatively impacts the symbolic distribution
[BK15]. Second, SAX ignores the deterministic behavior of a time series. As shown in
our design rationale (Section 4.1, page 42), a season and a trend are common behavior in
many domains. SAX does not take it into account which again leads to a distortion in the
symbolic distribution.

73

argmin
𝑦∈𝑌

𝑑𝐸𝐷(𝑦, 𝑦′)

𝑦′

𝑌 = {𝑦1, … , 𝑦𝐼} 𝑌 = { 𝑦1, … , 𝑦𝐼}

Time Series Dataset Representation
Dataset

Exact
Matching

Query Time Series

 𝑦′

Query Representation

Exact
Match

argmin
 𝑦∈ 𝑌

𝑑∗𝑆𝐴𝑋(𝑦, 𝑦
′)

Approximate
Matching

Approximate
Match

Figure 6.1: Overview of Time Series Matching

This chapter focuses on engineering techniques based on SAX that aim to solve these two
shortcomings and thus, provide a more efficient time series matching.

Several SAX extensions have been proposed to include further characteristics. While
the original SAX focuses on the mean value of a segment, existing SAX extensions also
include its standard deviation or its trend. To the best of our knowledge, no work in
the literature focuses on global features before the time series is split into segments. As
we will show, features from deterministic components leverage SAX for a more efficient
matching while providing a lower-bounding distance measure.

In this chapter, we introduce the season- and trend-aware symbolic approximations,
sSAX and tSAX, that take into account the global time series’ season and trend, respec-
tively. First, they improve the symbolic distribution of the representation compared to
SAX. Second, they provide a more accurate representation while keeping the same repre-
sentation size as SAX. Taking into account this behavior enables them to provide a more
accurate and efficient time series matching.

In this chapter, we shortly recap SAX and provide a comprehensive review of existing
SAX extensions. Although all extensions provide lower-bounding distance measures,
most of them increase the representation size (Section 6.1). We introduce our techniques
sSAX and tSAX which provide a high accuracy at the same representation size as SAX. As
we will show, their distance measures are also lower-bounding, which is most important
(Section 6.2). Subsequently, we evaluate the techniques for time series matching (Section
6.3) where we summarize our experimental setting and discuss our results. The most
remarkable result to emerge from this evaluation is that on big datasets (100 Gb), sSAX
returns exact matches up to three orders of magnitude faster than SAX. We conclude
with a summary of our observations (Section 6.4). Throughout this chapter, we use the
term “normalization” to refer to “z-normalization” because it is the only normalization
technique assumed by Lin et al. [LKLC03].

6.1 STATE OF THE ART

Many attempts have been made to include further features in SAX representations. In
this section, we give an overview of these attempts. We start by giving a short recap of
the original SAX as presented in Section 3.2 (page 26) and a discussion of its properties
for an efficient time series matching. Subsequently, we review SAX extensions and assess
them regarding these properties.

74 Chapter 6 Time Series Matching

6.1.1 Original SAX

The original SAX reduces the dimensionality of a time series in two steps: the segment-
wise aggregation into mean values using PAA and the discretization into symbols using
SAX. The former reduces the dimensionality in the time domain, while the latter reduces
the dimensionality in the value domain. As such, PAA is the prerequisite of SAX as it
aggregates a time series as follows:

ȳᵀ = (ȳ1, ... , ȳw, ... , ȳW) (6.1)

where

ȳw = W

T

T
W
w∑

t= T
W

(w−1)+1

yt (6.2)

Still, this representation contains real values that take a considerable amount of storage,
which is why it is further discretized utilizing SAX:

ŷᵀ = (ŷ1, ŷ2, ... , ŷw, ... , ŷW) (6.3)

where

ŷw =


1 −∞ < ȳw < b1

a ∃a : ba−1 ≤ ȳw < ba

A bA−1 ≤ ȳw <∞
(6.4)

As such, ŷ is the mean value ȳ discretized into an alphabet A ∈ N>0, and bᵀ = (b1, ... ,
ba, ... , bA−1) are the breakpoints of this alphabet:

]−∞, b1[, ... , [ba−1, ba[, ... , [bA−1,∞[(6.5)

SAX reduces each mean value to a discrete symbol of the alphabetA. Ideally, the symbols
of a dataset are equiprobable so that they make full use of the alphabet capacity. For
achieving this, Lin et al. assume that mean values would be N (0, 1)-distributed because
the time series are normalized [LKLC03]. Consequently, breakpoints are set such that the
area under the normal distribution N (0, 1) from [ba−1, ba[equals 1/A.

The SAX representation of a time series has a size W · ld(A) bit, which is small compared
to the original time series occupying T · 32 bit. Moreover, SAX allows for a fast trans-
formation requiring only one pass over the dataset. The time series are assumed to be
normalized beforehand in a preprocessing step.

Distance measures for PAA and SAX are defined as follows:

dPAA(ȳ, ȳ′) =
√
T/W

√∑W

w=1
(ȳw − ȳ′w)2 (6.6)

dSAX(ŷ, ŷ′) =
√
T/W

√∑W

w=1
cell(ŷw, ŷ′w)2 (6.7)

where

cell(a, a′) =
{

0 |a− a′| ≤ 1
bmax(a,a′) − bmin(a,a′)+1 otherwise

(6.8)

6.1 State of the Art 75

The results of cell(a, a′) are stored as a lookup table occupying A2 · 32 bit, which is rather
small for typical alphabet sizes and which is calculated once per dataset. Thus, the dis-
tance calculation requires one lookup per segment, so in total W lookups for comparing
two time series. This is faster than the Euclidean distance where the calculation consists
in loading two time series of length T � W in memory and comparing them value by
value. Moreover, the SAX distance measure lower-bounds the Euclidean distance, which
has been proven for its prerequisite PAA in [YF00] and for SAX itself in [LKWL07].

An engineering technique that competes with SAX should provide similar properties.
Moreover, by including other features it should also give a higher representation accuracy
and a more efficient time series matching. These properties, however, must be evaluated
experimentally.

6.1.2 SAX Extensions

Several SAX extensions that include further features have been proposed in the literature.
We review them regarding their representation and distance properties and summarize
them in Table 6.1 together with the original SAX.

ESAX [LSK06] extends SAX by taking the extreme values of each segment into account.
Thus, it represents a PAA segment by a minimum, mean, and maximum symbol, which
are retrieved simultaneously. Although this technique is more accurate than SAX, it
triples the representation size. For each segment, the distance is calculated with the help
of a lookup table. However, the shape of the lookup table is not given. Since there are
three symbols per segment, a lookup table would have a size A6. Therefore, we assume
that ESAX cannot fully precalculate the distances.

1d-SAX [MGQT13] segments a time series first using piecewise linear approximation
(PLA) and discretizes the values using SAX. PLA represents each segment by its mean
level and its slope which are estimated by linear regression. Subsequently, these features
are discretized like SAX and interleaved to one representation. Thus, they have the same
representation size as SAX. For the representation, it needs a second pass over the data
due to the linear regression. The distance calculation is based on a lookup table and re-
quires W lookups. It is only formulated for an asymmetric comparison, i.e., the distance
of the real-valued query and the discretized observations. Therefore, one lookup table
is constructed per query that stores the distance between each segment of the query and
each symbol of the alphabet.

TD-SAX [SLL+14] also uses segment trends which are encoded as start and end value
of each segment. Although fast to calculate, these real values cause TD-SAX representa-
tions to be much larger than SAX. The distance calculation for the mean values relies on
W lookups and thus, it needs the same storage as SAX. However, the trend distance is
calculated on real values and does not use a lookup table. Therefore, the distance calcu-
lation has additional costs.

TFSA [YYZ+15] represents a time series by segment trends only. It splits the time se-
ries into segments of unequal length using a changepoint detection algorithm that passes
twice over the time series. On every segment, trends are extracted by linear regression
(third pass) and discretized in 2 bit: increasing, decreasing, or stationary. The slope and
the endpoint of each trend annotate this symbol, but they are not discretized. Compared
to SAX, this engineering technique has an increased representation size. TFSA calcu-
lates the distance from the representation without a lookup table. This practice might be
slower because there are several floating-point operations involved for each segment.

76 Chapter 6 Time Series Matching

Table 6.1: Properties of Engineering Techniques

Technique Representation Distance

Size (bit) Time Storage (32 bit) Time LB

SAX W · ld(A) 1 A2 W X
ESAX 3 ·W · ld(A) 1 A6 W X

1d-SAX W · ld(A) 2 W ·A W (X)
TD-SAX W · (ld(A) + 32) + 32 1 A2 W X

TFSA W · (ld(T) + 66) 3 0 W X
SAX_SD W · (ld(A) + 32) 1 A2 W X

sSAX W · ld(A) 1 A2
seas +A2

res 4WL X
tSAX W · ld(A) 2 A2

tr +A2
res W + 1 X

Representation Time in passes over time series; Distance time in number of lookups; LB means lower-bounding

SAX with standard deviation (SAX_SD) [ZY16] represents every PAA segment with its
mean value (discretized as SAX) and its standard deviation (not discretized). Both fea-
tures are calculated in one pass but they increase the representation size. The distance
calculation is done with a lookup table for the mean value. The distance of the standard
deviation is calculated directly on the feature.

Based on Table 6.1, we make the following observations:

Representation Size All SAX extensions increase the representation size except 1d-SAX.
For an unbiased evaluation of representation accuracy, it should be equal.

Representation Time 1d-SAX and TFSA need several passes over the dataset for the rep-
resentation, which is an acceptable penalty because the calculation still has linear
complexity.

Distance Storage The distance storage often uses a lookup table with a small size that
provides a fast distance calculation.

Distance Time The distance calculation needs W lookups for all techniques. However,
for features other than the mean value, the distance calculation has additional costs.
A detailed evaluation would require an optimized distance function of each tech-
nique which is not covered in this work.

Lower-bounding Distance The distance measures of ESAX, TD-SAX, TFSA, as well as
SAX_SD lower-bound the Euclidean distance measure. Although PLA is lower-
bounding [CCL+07], it is not clearly stated for 1d-SAX.

Subsequently, we propose our symbolic approximations together with lower-bounding
distance measures. In contrast to the SAX extensions mentioned above, they provide a
higher representation accuracy while having the same representation size as SAX.

6.2 SEASON- AND TREND-AWARE SYMBOLIC APPROXIMATION

As we observed in Chapter 4, time series from many domains such as meteorology, en-
ergy, and economy exhibit deterministic behavior. The wind speed has a yearly season,
while the solar irradiation has a strong daily season. Consequently, this cyclically re-
peated behavior has an effect on the amount of energy production from renewables. In

6.2 Season- and Trend-aware Symbolic Approximation 77

energy consumption, human behavior leads to the observation of weekly seasons. Eco-
nomic time series may exhibit a trend due to, for example, an increase in sales of a prod-
uct.

Researchers have always applied SAX to datasets with trends and seasons, whether it
was a synthetic [LKLC03, LKWL07] or a real-world dataset [SK08]. However, they did
not exploit this deterministic behavior, which is why it affected all symbols redundantly
and distorted the symbolic distribution. As a consequence, we argue that taking this
behavior into account is essential for an accurate representation.

In this section, we propose sSAX and tSAX that are aware of the time series’ season and
trend, respectively. Each technique is described along with its time series model, its rep-
resentation, its distance measure, and its properties. Moreover, both techniques take
into account heuristics for improving the symbolic distribution. These heuristics are ef-
ficiently calculated in the preprocessing step which is required by SAX to normalize the
time series.

6.2.1 Season-aware Symbolic Approximation

The sSAX technique is aware of a time series’ season, i.e., it explicitly assumes a seasonal
component in the time series. The remaining part of the time series forms the residuals.

Time Series Model

The use of the sSAX technique is restricted to a season-aware time series model:

y = seas+ res (6.9)

where seas is the seasonal and res is the residual component of the time series y. It devi-
ates from the more general form (Section 4.2, page 43) in two assumptions. First, it only
assumes one seasonal component. Second, the season is extracted by averaging all values
at the same seasonal position l [KS83] and not by multi-seasonal decomposition (Section
4.3, page 43). Through these assumptions, we are able to provide a lower-bounding dis-
tance measure. A seasonal feature σl (1 ≤ l ≤ L) is calculated as follows:

σl = L

T

∑T/L

k=1
y(k−1)·L+l (6.10)

where T/L is the number of seasons in the time series that are iterated by k. The resulting
features σ form the season mask.

Figure 6.2 illustrates a time series with a season that repeats after 48 values (Figure 6.2a).
Averaging the 1st, 49th, . . . , and (T-L+1)th value yields the seasonal feature of the 1st po-
sition. Averaging all positions results in the season mask (Figure 6.2b). Every seasonal
feature of this mask is further discretized into an alphabet of size A, here A = 4.

78 Chapter 6 Time Series Matching

0

1

2

0 250 500 750 1000

(a) Time Series

-0.4

0.0

0.4

0.8

1.2

a

b

c

d

0 10 20 30 40 50

S
y
m
b
o
l

(b) Season Mask

Figure 6.2: Time Series with Season

Representation

Similar to SAX, the reduction of sSAX into the low-dimensional space is carried out in
two steps: first, the season-aware PAA reduces it in the time domain, second, the season-
aware SAX reduces it in the value domain.

The season-aware PAA (sPAA) combines the season mask and the PAA of the residuals in
one representation. While PAA would ignore the season of the time series by taking the
mean value of a segment, sPAA explicitly extracts this season beforehand. Formally, the
sPAA representation is the vector:

ȳᵀ
sPAA

= (σ1, ... , σl, ... , σL, res1, ... , resw, ... , resW) (6.11)

where W · L divides T .

This representation is made of real values, which is why it is further reduced by the dis-
cretization of season-aware SAX (sSAX). Let Aseas, Ares ∈ N>0 be the sizes of two alpha-
bets. Let bseas and bres be the respective vectors of breakpoints that split the real numbers
into Aseas and Ares intervals. Then, the sSAX representation is the vector ŷ

sSAX
:

ŷᵀ
sSAX

= (σ̂1, ... , σ̂l, ... , σ̂L, r̂es1, ... , r̂esw, ... , r̂esW) (6.12)

where σ̂l is the symbol of σl discretized into the alphabet Aseas and r̂esw is the symbol of
resw discretized into Ares.

Two heuristics retrieve the breakpoints. We quantify the influence of the season on the
time series by the season strength R2

seas (Equation 3.48, page 38). As mentioned earlier,
this feature ranges between 0 and 1: R2

seas = 0 means that the time series is determined
by the residuals while R2

seas = 1 shows a high influence of the season. Assuming that the
residual and seasonal component are independent of each other, the following equations
estimate the standard deviation of the season and the residuals:

sd(res) =
√

1−R2
seas (6.13)

sd(seas) =
√

1− sd(res)2 (6.14)

where R2
seas is the mean season strength of the dataset. Consequently, we set the break-

points bseas such that the area under normal distributionN (0, sd(seas)) is split into equi-
probable regions 1/Aseas.

6.2 Season- and Trend-aware Symbolic Approximation 79

-1.8

0

1.8

Time Series

P
A

A

S
A

X

1 2 3 4

1 y1 y2 y3 y4 y1 y1

2 y5 y6 y7 y8 y2 y2

3 y9 y10 y11 y12 y3 y3

Q
Y

b

c c

Time Series

(a) Original SAX

Time Series

1 2 3 4

1 y1 y2 y3 y4

2 y5 y6 y7 y8

3 y9 y10 y11 y12

Seas.
PAA 𝜎1 𝜎2 𝜎3 𝜎4

SAX 𝜎1 𝜎2 𝜎3 𝜎4

Q
Y

-1.8

0

1.8

-0.25

0

0.25

+

Season Residuals

Residuals

P
A

A

S
A

X

1 2 3 4

1 res1 res2 res3 res4 res1 res1

2 res5 res6 res7 res8 res2 res2

3 res9 res10 res11 res12 res3 res3

Q
Y

=

a

c
d

c

a

d c

(b) Season-aware SAX

Figure 6.3: Advantages of Season-aware SAX over SAX

Regarding the residuals, we also assume normally distributed mean values. After season
extraction, the residual component has less influence and its variance does not reach one
as assumed from Lin et al. Therefore, we set the breakpoints bres such that the area under
normal distribution N (0, sd(res)) is split into equiprobable regions 1/Ares.

Figure 6.3 illustrates the advantages of sSAX over SAX using an economic time series,
measured at a quarterly granularity (Q) during three years (Y). It displays the time series
as lineplot and below, it arranges its values in an array. PAA and SAX (red and yellow
column) only focus on a row-wise reduction of values, which cannot capture the cycli-
cally repeated characteristics (Figure 6.3a). In contrast, sPAA and sSAX capture these
characteristics first by a column-wise reduction, leading to the season mask (Figure 6.3b).
Moreover, the residuals are reduced row-wise.

Distance

The techniques sPAA and sSAX provide distance measures dsPAA(ȳ
sPAA

, ȳ′
sPAA

) and
dsSAX(ŷ

sSAX
, ŷ′
sSAX

):

dsPAA(ȳ
sPAA

, ȳ′
sPAA

) =

√
T

W · L

√√√√ L∑
l=1

W∑
w=1

(σl − σ′l + resw − res′w)2 (6.15)

dsSAX(ŷ
sSAX

, ŷ′
sSAX

) =

√
T

W · L

√√√√ L∑
l=1

W∑
w=1

cell(σ̂l, σ̂′l, r̂esw, r̂es
′
w)2 (6.16)

The distance measure of sSAX relies on a lookup table that returns the precalculated dis-
tance of the season and residual symbols, using bseas and bres as breakpoints, respectively.
However, this lookup table for four symbols may get huge, which is why we propose an
equivalent formulation for two smaller lookup tables. Let cs be a lookup table defined as
follows:

cs(a, a′) = ba − ba′+1 (6.17)

80 Chapter 6 Time Series Matching

where ba are the breakpoints of the given feature. Then cell(σ̂, σ̂′, r̂es, r̂es′) can be calcu-
lated by:

cell(σ̂, σ̂′, r̂es, r̂es′) =


cs(σ̂, σ̂′) + cs(r̂es, r̂es′) cs(σ̂, σ̂′) ≥ −cs(r̂es, r̂es′)
cs(σ̂′, σ̂) + cs(r̂es′, r̂es) cs(σ̂′, σ̂) ≥ −cs(r̂es′, r̂es)
0 otherwise

(6.18)

6.2.2 Trend-aware Symbolic Approximation

The tSAX technique is aware of the time series’ trend and captures this behavior in a
trend component.

Time Series Model

The use of the tSAX technique is restricted to a trend-aware time series model:

y = tr + res (6.19)

where tr and res are the trend and residual component, respectively. It deviates from the
more general form (Section 4.2, page 43) in that it supports only a linear trend component.
Trend changes and seasonal components are not included in order to provide the lower-
bounding property.

Linear regression extracts the components from the time series. This technique is fast
and allows for proving the lower-bounding property of subsequent distance measures. It
estimates two features θ1 and θ2 which describe the base value and the slope of the time
series, respectively. Consequently, the trend-aware time series model is equal to:

y = θ1 + θ2 · (t− 1) + res (6.20)

where tᵀ = (1, ... , t, ... , T) is the vector of time instances of the time series. Linear re-
gression selects these features if they minimize the sum of squared residuals

∑T
t=1 res

2
t .

Moreover, it yields two important properties. First, the sum of the residuals is always
zero: ∑T

t=1
rest = 0 (6.21)

and second, the deterministic components and the residuals are uncorrelated:∑T

t=1
(trt · rest) = 0 (6.22)

Figure 6.4 represents a time series with a strong trend component (Figure 6.4a). Its trend
is extracted by linear regression (Figure 6.4b) and characterized by θ1 = −1.72 and θ2 =
0.01.

The features θ1 and θ2 are interdependent because the time series is normalized. There-
fore, the following equation holds:

θ2 = − 2
T − 1 · θ1 (6.23)

The interested reader finds the proof in the Appendix (Section A.3). Using this equation,
θ1 and θ2 are combined to one trend feature φ that represents the angle between the x-axis
and the trend component:

φ = arctan(θ2) (6.24)

6.2 Season- and Trend-aware Symbolic Approximation 81

-1

0

1

0 100 200 300

(a) Time Series

-1

0

1

0 100 200 300

(b) Season Mask

Figure 6.4: Time Series with Trend

Representation

Similar to SAX, the trend-aware symbolic approximation transforms a time series in two
steps: first, the trend-aware PAA reduces the time series in the time domain; second, the
trend-aware SAX reduces it in the value domain.

The trend-aware PAA (tPAA) representation is the vector of the trend feature and the mean
values of the residual component:

yᵀ
tPAA

= (φ, res1, ... , resw, ... , resW) (6.25)

LetAtr, Ares ∈ N>0 be the sizes of two alphabets. Let btr and bres be the respective vectors
of breakpoints that split the real numbers intoAtr andAres intervals. The trend-aware SAX
(tSAX) representation is the vector ŷ

tSAX
:

ŷᵀ
tSAX

= (φ̂, r̂es1, ... , r̂esw, ... , r̂esW) (6.26)

where φ̂ is the symbol of φ discretized into the alphabet Atr and r̂esw is the symbol of
resw discretized into Ares.

Two heuristics retrieve the breakpoints. As a result of normalization, there is a minimum
and a maximum feature φ that is reached if the time series is a perfect trend with zero
residuals. Thus, φ is bounded by φmax:

|φ| ≤ φmax where φmax = tan−1
√

1/var(t) (6.27)

Using this observation and the assumption that each trend is equiprobable, we set the
breakpoints btr such that the area under uniform distribution between [−φmax, φmax] is
split into regions of probability 1/Atr.

Regarding the residuals, we adopt normally distributed mean values similar to SAX.
After extracting the trend, the residual component has less influence. We quantify the
influence of the trend on the time series by the trend strength R2

tr. As mentioned earlier
(Equation 3.47, page 3.47), this feature ranges between 0 and 1: R2

tr = 0 means that the
time series is determined by the residuals while R2

tr = 1 shows a high influence of the
trend. Assuming that the trend strength of the dataset is known and the time series are
normalized, the standard deviation of the residuals is estimated by:

sd(res) =
√

1−R2
tr (6.28)

where R2
tr is the mean trend strength of the dataset. Thus, we set bres such that the area

under normal distribution N (0, sd(res)) is split into equiprobable regions 1/Ares.

82 Chapter 6 Time Series Matching

Distance

The techniques tPAA and sPAA provide the distance measures dtPAA(y
tPAA

, y′
tPAA

) and
dtSAX(ŷ

tSAX
, ŷ′
tSAX

) that are given as follows:

dtPAA(y
tPAA

, y′
tPAA

) =

√√√√ T∑
t=1

(∆θ1 + ∆θ2 · (t− 1) + ∆resb(t−1)/(T/W)c+1)2 (6.29)

dtSAX(ŷ
tSAX

, ŷ′
tSAX

) =

√√√√ct(φ̂, φ̂′)2 + T

W

W∑
w=1

cell(r̂esw, r̂es′w)2 (6.30)

where ∆f = f−f ′ is a shorthand symbol for the difference between a feature or a segment
value of time series y and y′. The tSAX distance measure relies on a lookup table ct for the
trend feature using btr as breakpoints. It expresses the minimum distance of two trend
components represented by φ̂ and φ̂′. For the residuals, tSAX relies on the lookup table
cell from SAX using bres as breakpoints (Equation 6.8).

6.2.3 Properties of Engineering Techniques

We review sSAX and tSAX regarding their properties from Table 6.1.

Representation Size The alphabets Aseas, Atr, and Ares are chosen such that the repre-
sentation size of sSAX and tSAX equals the representation size of SAX. If they are
not a power of 2, we allow for interleaving as in [MGQT13].

Representation Time For sSAX, the representation needs one pass over the time series
because the season mask and the residuals can be calculated simultaneously. The
tSAX representation needs an additional pass for the linear regression.

Distance Storage Both representations need two lookup tables of size A2
res and either

A2
seas orA2

tr. Depending on the alphabet sizes, this leads to a storage for the distance
calculation that is smaller or larger compared to SAX.

Distance Time The sSAX distance measure needs at most 4 ·W ·L lookups instead of W
lookups due to the combinations of season and residual symbols. Although sSAX
may use fewer segments for the residuals than SAX does for the time series, it leads
to more lookups. However, if the calculation of the Euclidean distance is much
slower since it incurs disk I/O, this limitation can be accepted. The tSAX distance
measure needs only 1 lookup for the trend and W lookups for the residuals.

Lower-bounding Distance The most remarkable finding is that all presented distance
measures, dsPAA, dtPAA, dsSAX , and dtSAX lower-bound the Euclidean distance
measure. The interested reader finds the proofs in the Appendix (Sections A.1, A.2,
A.4, and A.5).

6.3 EXPERIMENTAL EVALUATION

We compare our techniques sSAX and tSAX to the competitors SAX and 1d-SAX in order
to examine the following hypotheses: first, they improve the symbolic distribution of the
residuals, second, they provide a higher representation accuracy, and third, they allow for
a more accurate and efficient time series matching. We begin by giving our experimental
setting. Subsequently, we present and discuss the results.

6.3 Experimental Evaluation 83

6.3.1 Experimental Setting

This section details the experimental setting, i.e., the matching methods that are applied,
the time series datasets that are selected, the output variables that are measured, the con-
figurations chosen for the engineering techniques, as well as the software and hardware
environment.

Matching Methods

Besides the evaluation of the representation accuracy, we assess the time series represen-
tations used in two matching methods: the exact and approximate time series matching.

Exact matching returns the observation from a time series dataset that has the minimum
Euclidean distance to the query time series. It conducts a linear search: First, the repre-
sentation distance of the query to each observation in the dataset is calculated. These
distances are sorted increasingly. Second, the Euclidean distance from the observations
is calculated in the order of their representation distance, keeping track of the “best-so-
far” observation and its Euclidean distance. If this “best-so-far” (Euclidean) distance is
less than the representation distance of the next observation, the linear search terminates
and returns the “best-so-far” observation as an exact match. The early termination is
possible because of the lower-bounding property: subsequent observations never have a
Euclidean distance that is smaller than the “best-so-far” distance.

Approximate matching returns the observation that is almost as good as the exact match.
It conducts a linear search on the representation, too. However, it returns the observation
with the minimum representation distance as an approximate match. If there is more than
one observation with the minimum representation distance, it returns the observation
with the minimum Euclidean distance within this set.

Datasets

To study the behavior of the engineering techniques, they are evaluated on synthetic time
series datasets with specific characteristics and on two real-world time series datasets.
Table 6.2 recaps the dataset dimensions.

Season A Season dataset contains 1,000 random walk time series, each of which is over-
laid with a season mask of length 10. In compliance with [SK08], the time series
length varies between 480 and 1,920. All time series of a dataset have the same sea-
son strength which is fixed to a value between 1 and 99%, where a tolerance of 0.5
percentage points (pp) in both directions is accepted.

Trend A Trend dataset contains 1,000 random walk time series, each of which is overlaid
with a trend. Similarly to the Season datasets, the time series length varies between
480 and 1,920. All time series of a dataset have the same trend strength between 1
and 99% with a tolerance of 0.5 pp.

Metering (1.5 years) As described in Section 4.1 (page 42), the Metering dataset is a real-
world dataset with seasonal components. The season-aware SAX is evaluated with
respect to the daily season, which has, on average, a season strength of 18.3%. In
contrast to the presentation in Chapters 4 and 5, we do not focus on the yearly
season; thus, we focus on the original 1.5 years.

84 Chapter 6 Time Series Matching

Table 6.2: Dataset Dimensions

Dataset Dataset Size Time Series Length

Season 1,000 [480; 960; 1,440; 1,920]
Trend 1,000 [480; 960; 1,440; 1,920]

Metering 5,958 21,840
Economy (M4) 6,400 300
Season (Large) [6,510,417; 13,020,833] 960

Economy (M4) The Economy (M4) dataset contains about 100,000 time series from dif-
ferent domains (finance, industry, demography, macro-economy, other). It is the
result from the M4-Competition to systematically evaluate the accuracy of forecast
techniques on a defined dataset [MSA18]. The values of each time series have a
specified interval (year, quarter, month, other) and exhibit a trend component. In
compliance with our dataset definition, only time series with the same length are
selected, i.e., 6,400 time series measured for 25 years with monthly granularity. In
the scope of this chapter, we refer to this dataset as Economy dataset, and omit the
name of the competition.

Season (Large) For the efficiency evaluation, two Season datasets with an overall size of
50 and 100 Gb are included. The time series length is fixed to 960 values. In contrast
to Season, the season strength of a time series may vary. We select datasets such
that their season strength is on average 10.0% (weak), 50.0% (medium), and 90.0%
(strong).

For the accuracy evaluation, each time series from a dataset acts as query and is matched
against the dataset of the remaining time series. Thus, there are as many queries as there
are time series in the dataset. For the efficiency evaluation on Season (Large), we ran-
domly select up to 50 query time series for each dataset. We limit an experiment to four
hours. Since the runtime differs for each query, each technique is evaluated with the same
set of queries.

Output Variables

Five output variables assess the accuracy and efficiency of symbolic approximations and
enable us to evaluate our hypotheses: the entropy, the tightness of lower bound, the pruning
power, the approximate accuracy, and the runtime which are defined subsequently.

Entropy We hypothesize that sSAX and tSAX improve the distribution of the residual
symbols compared to the SAX symbols. A uniform distribution is a desirable prop-
erty as Butler and Kazakov point out [BK15]. This property is quantified by the
entropy as follows:

H(A) = −
∑

1≤a≤A
freqa · ld(freqa) (6.31)

where freqa is the relative frequency of a residual symbol in a time series dataset.
An equal frequency of all symbols leads to the maximum entropy. If some symbols
are more frequent than others, the entropy decreases. Only the entropy of two al-
phabets with equal size are compared since alphabets with different sizes have a
different maximum entropy.

6.3 Experimental Evaluation 85

Tightness of Lower Bound Our second hypothesis is that sSAX and tSAX provide a
higher representation accuracy than the competitors. This is evaluated with the
tightness of lower bound (TLB) in accordance with [LKLC03]. The TLB expresses
the ratio between the representation distance and the Euclidean distance as follows:

TLB(y, y′) =
d∗SAX(ŷ, ŷ′)
dED(y, y′) (6.32)

where d∗SAX is either dSAX , d1d−SAX , dsSAX , or dtSAX . To evaluate the TLB of a
time series dataset, the mean TLB of all time series combinations is calculated.

Accurate and Efficient Time Series Matching Our third hypothesis is that time series
matching with sSAX and tSAX is more accurate and efficient than the competitors.
Accuracy it is evaluated with the pruning power or the approximate accuracy, de-
pending on the matching method.
Exact matching is improved if more observations can be pruned and the linear
search terminates earlier. The pruning power (PP) expresses the fraction of observa-
tions that can be pruned and whose Euclidean distance is not evaluated [CCL+07].
A pruning power of 0 means that no observations are pruned, a pruning power
close to 1 means that the linear search terminates after the first observation.
Approximate matching is improved if the approximate match is closer to the Eu-
clidean distance of the exact match. We introduce the output variable approximate
accuracy (AA) which is the quotient of the Euclidean distance between the query
and the exact match and the Euclidean distance between the query and the approx-
imate match. An approximate accuracy of 0 means that the approximate match is
very inaccurate, an approximate accuracy of 1 means that the approximate match is
as accurate as the exact match.
The efficiency of time series matching is evaluated with the runtime. We measure
the wall-clock time in seconds for the calculation of the representation distances and
the Euclidean distances.

Configurations

Table 6.3 summarizes all possible configurations for the number of segments W and the
alphabet size A for each dataset and each engineering technique. The representation size
is fixed, which is why the alphabet Ares of sSAX and of tSAX is set in accordance to Aseas
and Atr, respectively. 1d-SAX uses the alphabet Aa for the base value of a segment and
the alphabet As for the slope [MGQT13]. Alphabet sizes less or equal than 4 are ignored
since they evidently cause a high accuracy loss. We limit the size of a lookup table to
4 Mb, which corresponds to an alphabet of size 1,024. The standard deviation of sSAX
and tSAX to discretize the residuals is derived from the component strength (Equations
6.13 and 6.28).

Software and Hardware Environment

All engineering techniques are implemented as an R package and published together
with the scripts and datasets of this evaluation [Keg19a, R C18]. For the runtime evalua-
tion, matching methods are implemented in C and compiled with GCC 6.3.0 with level 3
optimization under Windows 10. Experiments run on a machine with Intel(R) i7 Proces-
sor 6660U@2.60GHz and 20 Gb of RAM and compare two disks, one 1 Tb HDD and one
500 Gb SSD. Each time series is stored as a binary file on disk. Time series representa-
tions and lookup tables are kept in-memory, while time series are read from disk without
system cache buffering.

86 Chapter 6 Time Series Matching

Table 6.3: Configurations of Engineering Techniques

Synthetic W A or Ares Aseas or Atr Size (bit)

SAX [32; 40; 48; 96] [1,024; 256; 101; 10] – 320
sSAX [24; 48; 48] [1,024; 32; 64] [256; 256; 9] 320
tSAX [32; 40; 48; 96] b2̂ ((320− ld(Atr))/W)c [32; 128; 1,024] 320

Metering W A or Ares Aseas or Atr Size (bit)

SAX [455; 520; 728; 910] [256; 128; 32; 16] – 3,640
sSAX 455 [191; 165; 142; 123] [16; 64; 256; 1024] 3,640

Economy W A, Aa, or Ares Atr or As Size (bit)

SAX [10; 12; 15; 20; 30] [256; 101; 40; 16; 6] – 80
1d-SAX [10; 12; 15; 20] b2̂ ((80− ld(As) ·W)/W)c [8; 16; 32] 80

tSAX [10; 12; 15; 20; 30] b2̂ ((80− ld(Atr))/W)c [16; 64; 256; 1,024] 80

6.3.2 Results and Discussion

The results of our evaluation are presented and discussed in the order of our hypotheses.
The quality of the symbolic distribution is assessed, followed by the evaluation of the
representation accuracy. Finally, the accuracy and efficiency of matching methods are
evaluated.

Symbolic Distribution

We compare the symbolic distribution of SAX, sSAX, and tSAX utilizing the entropy.
For this evaluation, the alphabet size is the same for all configurations and is fixed to
A = Ares = 256 which results in a maximum entropy of Hmax(A) = 8.

Figure 6.5 visualizes the entropy of SAX and sSAX on the Season datasets. The sSAX
technique systematically provides a higher entropy, which results in more equally dis-
tributed symbols. The entropy decreases if time series get longer (Figure 6.5a) or if there
are fewer segments, i.e., longer segments (Figure 6.5b). This observation confirms the
observation of Butler and Kazakov that the mean value distorts the symbolic distribu-
tion [BK15]. However, this effect is less strong for sSAX. Interestingly, the entropy of
SAX significantly decreases for datasets with a strong season, but it is not the case for
sSAX (Figure 6.5c). This finding confirms that the seasonal component should be treated
separately.

Figure 6.6 visualizes the entropy of SAX and tSAX on the Trend datasets. Figures 6.6a and
6.6b reconfirm the finding that the mean value distorts the symbolic distribution and that
tSAX remediates this effect. Moreover, Figure 6.6c shows that the entropy decreases if
SAX is applied to a time series with strong trends and that this entropy is more stable for
tSAX. Overall, both techniques exhibit a high entropy close to the maximum. Therefore,
the gain of tSAX over SAX is less strong than the gain of sSAX over SAX.

On the real-world dataset, we compare the techniques for the same number of segments
W . On the Metering dataset, the entropy increases from 6.96 for SAX to 7.09 for sSAX. On
the Economy dataset, the entropy increases from 7.92 for SAX to 7.95 for tSAX. The over-
all increase of entropy is less strong compared to the homogeneous synthetic datasets.
This result is due to the heterogeneous component strengths in both datasets, and due to
the heuristics which assume the mean component strength.

6.3 Experimental Evaluation 87

7.6

7.7

7.8

7.9

8.0

 480 960 1,440 1,920

Time Series Length T

E
n

tr
o

p
y

 H
SAX sSAX

(a) By Series Length

7.6

7.7

7.8

7.9

8.0

25 50 75 100

#PAA Segments W

E
n

tr
o

p
y

 H

(b) By Number of Segments

5

6

7

8

 1 20 40 60 80 99

Season Strength Rseas
2 (%)

E
n

tr
o

p
y

 H

(c) By Season Strength

Figure 6.5: Entropy on Season

7.6

7.7

7.8

7.9

8.0

 480 960 1,440 1,920

Time Series Length T

E
n

tr
o

p
y

 H

SAX tSAX

(a) By Series Length

7.6

7.7

7.8

7.9

8.0

25 50 75 100

#PAA Segments W

E
n

tr
o

p
y

 H

(b) By Number of Segments

5

6

7

8

 1 20 40 60 80 99

Trend Strength Rtr
2 (%)

E
n

tr
o

p
y

 H

(c) By Trend Strength

Figure 6.6: Entropy on Trend

Representation Accuracy

We evaluate the representation accuracy utilizing the TLB (Figure 6.7). For this evalua-
tion, the representation size is constant for each dataset, and the possible configurations
are given in Table 6.3.

On the synthetic datasets, the TLB of SAX is compared to sSAX and tSAX (Figures 6.7a
and 6.7b). Results are grouped by time series length and component strength. Each cell
presents the difference in percentage points between the mean TLB of the most accurate
sSAX/tSAX configuration and the mean TLB of the most accurate SAX configuration.
Figure 6.7a shows that sSAX gains accuracy compared to SAX with up to 86 pp. The
longer the time series and the stronger the season, the higher is the accuracy gain. If there
is no season, sSAX is only slightly less accurate. The tSAX technique gains accuracy by
only 1.2 pp and has slight losses in the absence of a trend (Figure 6.7b). This gain is lower
than expected. However, there are two possible reasons for this. First, SAX satisfactorily
captures the global trend of a time series. Second, the normalization transforms the time
series such that the trend has less influence. Therefore, tSAX has not much room for
improvement.

Figures 6.7c and 6.7d display the results for the real-world datasets. It shows the mini-
mum and maximum mean TLB which are reached with the chosen configurations. On
the Metering dataset, the best sSAX configuration gains up to 9.9 pp compared to the
best SAX configuration (Figure 6.7c). Thus, if the season is taken into account, it leads to
a much higher representation accuracy. On the Economy dataset, we include 1d-SAX in
our comparison, which is the only trend-aware SAX extension that has the same repre-
sentation size as SAX. Overall, tSAX has a better representation accuracy than 1d-SAX.
Thus, it better takes advantage of the available representation size. However, it does
not gain compared to the best SAX configurations and reaches at best 82.7% while SAX
reaches 82.9% (Figure 6.7d).

88 Chapter 6 Time Series Matching

69.03

43.59

30.42

19.74

8.3

−0.71

84.16

52.75

33.8

20.71

8.93

−1.02

85.36

54.04

33.03

20.61

9.07

−1.18

86.63

53.79

35.13

21.38

9.09

−1.29

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

S
ea

so
n

 S
tr

en
g
th

 R
se

as
2

 (
%

)

(a) Season

1.2

0.18

0.12

0.07

0.01

−0.09

1.24

0.24

0.12

0.08

0

−0.09

1.24

0.21

0.13

0.08

0

−0.09

1.19

0.19

0.14

0.07

0

−0.09

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

T
re

n
d

 S
tr

en
g
th

 R
tr2
 (

%
)

(b) Trend

9.9 pp

30

35

40

45

SAX sSAX

M
ea

n
 T

L
B

 (
%

)

(c) Metering

40

50

60

70

80

90

SAX 1d−SAX tSAX

M
ea

n
 T

L
B

 (
%

)

(d) Economy

Figure 6.7: Increase of TLB compared to SAX

57.38

20.94

9.88

5.82

1.57

−0.06

97.41

42.99

15.15

6.52

1.74

−0.17

89.05

44.47

13.74

6.5

1.78

−0.24

99.53

44.69

18.62

7.08

1.97

−0.29

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

S
ea

so
n

 S
tr

en
g
th

 R
se

as
2

 (
%

)

(a) Season

0.48

0.15

0.07

0.04

0.01

−0.04

0.6

0.17

0.07

0.04

0.01

−0.04

0.7

0.16

0.07

0.03

0.01

−0.03

0.76

0.14

0.07

0.04

0.01

−0.04

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

T
re

n
d

 S
tr

en
g
th

 R
tr2
 (

%
)

(b) Trend

3.8 pp

1

3

5

7

SAX sSAX

M

ea
n

 P
P

 (
%

)

(c) Metering

50

60

70

80

90

100

SAX 1d−SAX tSAX

M
ea

n
 P

P
 (

%
)

(d) Economy

Figure 6.8: Increase of Pruning Power Compared to SAX

6.59

24.39

15.42

9.7

2.15

0.17

1.61

36.48

27.69

22.87

15.47

−0.08

4.48

38.71

17.31

11.98

8.49

−0.11

1.96

47.41

39.2

27.1

16.26

−0.1

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

S
ea

so
n

 S
tr

en
g
th

 R
se

as
2

 (
%

)

(a) Season

−0.36

0.15

0.11

0.05

0.02

0.04

−0.46

0.04

0.07

0.09

0.02

−0.01

−0.55

0.1

0.09

0.1

0

−0.01

−0.59

0.08

0.04

0.06

0.1

0

99

80

60

40

20

1

 480 960 1,440 1,920

Time Series Length T

T
re

n
d

 S
tr

en
g
th

 R
tr2
 (

%
)

(b) Trend

1.3 pp

86

88

90

92

SAX sSAX

M
ea

n
 A

A
 (

%
)

(c) Metering

70

80

90

100

SAX 1d−SAX tSAX

M
ea

n
 A

A
 (

%
)

(d) Economy

Figure 6.9: Increase of Approximate Accuracy Compared to SAX

Exact Matching

For exact matching, we first evaluate the pruning power that results from the representa-
tion accuracy (Figure 6.8).

On the synthetic datasets, sSAX and tSAX exhibit a gain in pruning power compared to
SAX. Remarkably, sSAX improves the pruning power up to 99 pp in the presence of a
strong season (Figure 6.8a). However, if no season is present, sSAX has a worse pruning
power by at most 0.29 pp which is negligible regarding the overall gain of sSAX. The
tSAX technique improves the pruning power even for weak trends (Figure 6.8b). But the
gain is limited with at most 0.76 pp.

This behavior is also confirmed on the real-world datasets. On Metering, sSAX gains
3.8 pp in pruning power and reaches 6.6% (Figure 6.8c). While SAX can prune 274 from
5,958 time series on average, sSAX efficiently prunes 393 time series. On Economy, the
best SAX configuration already has a very high pruning power (Figure 6.8d) with 97.4%.
The tSAX technique outperforms 1d-SAX but reaches at best the same pruning power as
SAX.

6.3 Experimental Evaluation 89

Table 6.4: Matching Efficiency on Season (Large)

HDD R2
seas = 10.0% R2

seas = 50.0% R2
seas = 90.0%

Size Technique Repr. Raw Sum Raw Sum Raw Sum

50 Gb SAX 1.80 135.82 137.61 1,801.12 1,802.92 6046.75 6048.55
sSAX 8.67 41.76 50.43 0.54 9.21 0.08 8.75

100 Gb SAX 3.69 73.61 77.30 4181.02 4184.72 13,423.47 13,427.16
sSAX 16.86 4.77 21.63 1.09 17.95 0.11 16.97

SSD R2
seas = 10.0% R2

seas = 50.0% R2
seas = 90.0%

Size Technique Repr. Raw Sum Raw Sum Raw Sum

50 Gb SAX 1.84 4.05 5.89 101.61 103.45 850.81 852.65
sSAX 9.12 0.71 9.83 0.04 9.16 0.02 9.14

100 Gb SAX 3.80 8.29 12.09 115.14 118.95 1,088.80 1,092.60
sSAX 17.99 1.05 19.04 0.07 18.06 0.02 18.02

Let us now look at the efficiency evaluation. Table 6.4 details the runtimes for both disks
(HDD, SSD) on the Season (large) datasets with 50Gb and 100Gb. The runtime is broken
down into one part for calculating the representation distances including result ordering
(Repr.), and in another part for accessing the time series and calculating the true distances
(Raw). Although the representation times are not affected by the underlying disk, the
experiments provide slightly different runtimes due to measuring inaccuracy. For each
season strength, the sum of both parts indicates the mean runtime per query. Calculating
the representation distances is displayed once for all season strengths since it does not
depend on this heuristic.

The table reveal that (1) sSAX is faster for all datasets from HDD even when there is
only a weak season strength, (2) sSAX is faster for all datasets from SSD for a significant
season strength. The most striking result to emerge from the data is that sSAX is up to
three orders of magnitude faster for time series with a strong season. On HDD, sSAX
requires approximately 17 seconds for querying the 100 Gb dataset, while SAX requires
approximately 3.7 hours. SAX has a decreased pruning power and thus, needs more disk
access. The pruning power of sSAX, however, increases and provides exact matches even
faster. A naive matching of the time series as is (raw-data-based) using the Euclidean
distance would require 6,137 seconds, i.e., approximately 53 minutes (50 Gb on SSD),
and 13,866 seconds, i.e., 231 minutes (100 Gb on SSD); thus it is much slower than sSAX.
We did not evaluated naive matching on HDD due to time restrictions.

Approximate Matching

In approximate matching, we evaluate the accuracy of an approximate match compared
to the exact match utilizing the approximate accuracy (Figure 6.9).

Figures 6.9a and 6.9b show the increase of approximate accuracy on the synthetic datasets
by time series length and component strength. The longer the time series and the stronger
the deterministic component, the higher is the gain of sSAX and tSAX over SAX. The
sSAX reaches up to 47 pp improvement on Season, i.e., the approximate match is, on
average, 50% more accurate (Figure 6.9a). Due to the aforementioned reasons, tSAX only
reaches minor improvements on Trend with up to 0.14 pp (Figure 6.9b). On datasets
with a strong component strength, both representations reach an approximate accuracy
of approximately 99%. The sSAX and tSAX representations reach this accuracy thanks to
the accurate representation. SAX reaches this accuracy because most of the observations

90 Chapter 6 Time Series Matching

have the same representation which is why SAX re-evaluates their Euclidean distance
to the query in order to retrieve the most accurate approximate observation. Thus, it
reaches a slightly higher approximate accuracy, which is mainly due to the evaluation of
the Euclidean distance.

On the real-world datasets, sSAX and tSAX show a similar behavior. All sSAX config-
urations outperform all SAX configurations on Metering, and the best sSAX configura-
tion is up to 1.3 pp more accurate than the best SAX configuration (Figure 6.9c). The
exact search shows that the time series are all very close to each other regarding the Eu-
clidean distance. The pruning power of 6.6% shows that for many observations, it has
to be checked whether they are the exact match (Figure 6.8c). However, the approximate
match already reaches approximately 91.5% of the accuracy of the exact match. Although
tSAX provides a higher approximate accuracy compared to 1d-SAX (95.4% vs. 84.2%), it
cannot reach the best approximate accuracy of SAX (96.9%) (Figure 6.9d).

Let us now look at the efficiency evaluation. For all chosen queries, there are not two
matches with the same minimum representation distance (which would require the cal-
culation of the Euclidean distance). Therefore, we can focus on the representation dis-
tance calculation. Table 6.4 reveals that approximate matching with sSAX is slower com-
pared to SAX due to an increased number of lookups. However, these approximate
matches are much more accurate, as Figure 6.9 suggests.

6.4 SUMMARY

Based on our feature-based engineering technique, we have devised two novel symbolic
approximations, sSAX and tSAX. They extend the shape-based technique SAX by the
trend feature and the season mask, respectively, and thus, they take an important be-
havior of time series into account. Compared to other SAX extensions, they combine
characteristics from segments with global characteristics that affect the full time series.
Moreover, they do not increase the representation size and keep a comparable representa-
tion time and distance storage. Most importantly, they provide lower-bounding distance
measures. Overall, they improve the symbolic distribution, the representation accuracy,
and the time series matching compared to state-of-the-art techniques. Especially sSAX
makes automation and data-mining tasks much more efficient in domains where deter-
ministic behavior arises.

6.4 Summary 91

92 Chapter 6 Time Series Matching

7
TIME SERIES CLASSIFICATION

TIME SERIES CLASSIFICATION differs greatly from the aforementioned data-mining
tasks. It assumes that a dataset contains time series from several classes and that

they are annotated by a class label. The task is to estimate a model, a so-called classifier,
which maps time series from a training dataset to a class. Subsequently, this classifier is
used to infer the class of time series from a test dataset.

Time series classification is desirable in many domains, often for supporting human clas-
sification decisions, or for fully automatizing processes. For example, image classification
is a crucial task in computing, and authors suggest to extract image properties as time se-
ries. A classifier is estimated on this data helping users to classify the images [YK09]. In
medicine, classifiers support physicians for their ECG analysis, as we discussed earlier
(Section 2.1, page 15). In other circumstances, classifiers are fully automatized; human
interaction is not required anymore, or even not possible. This arises, for example, from
speech sentiment analysis in human-computer interaction [DPW96], from consumer pro-
filing and target marketing [Agg02], and from anomaly or risk detection of monitored
processes [NAM01, WGH12, FJ14, HWN15].

A multitude of engineering techniques has been proposed for time series classification,
from raw-data-based [BLB+17], shape-based [DTS+08, YK09, BLB+17], to model- and
feature-based techniques [XPK10]. They are evaluated on datasets from several domains
[CKH+15, BLB+17]. While these datasets have a considerable size of up to 24,000 time
series, the length of these time series is rather short, ranging from between 24 and 2,844.
Thus, these works do not focus on the current challenges that we observe in many do-
mains (Section 2.3): time series are captured at a fine granularity, which makes classifica-
tion a challenging task, especially regarding efficiency.

Our objective is the classification of datasets with long time series, i.e., consisting tens of
thousands of values. We assess classification techniques regarding their effectiveness, i.e.,
their ability to classify unlabeled time series accurately, but most importantly, we assess
their efficiency, i.e., the runtime they need to represent a dataset, and to estimate and use
a classifier. Various techniques have been proposed to increase the effectiveness of clas-
sification. Carried out on short time series, they can accept a quadratic time complexity
or even worse [BLB+17]. The most accurate classification technique, COTE, has a worst-
case complexityO(I2T 4), where I is the size of the time series dataset and T is the length
of the time series. However, this is clearly infeasible for big time series datasets as our
potential analysis of COTE suggests (Table 7.1). A single-threaded classifier estimation
of the Metering dataset on our hardware would require 16 days if the time series were
short (Table 7.1a). If the time series were two years long, it would take thousands of years
(Table 7.1b).

93

Table 7.1: Model Training Runtime of COTE

(a) Time Series Length T = 60

Dataset Size Runtime

10 6.7 s
20 16.0 s
30 31.4 s
40 53.2 s
100 4.6 m
300 1.2 h

4,871 16 d

(b) Dataset Size I = 50

Time Series Length Runtime

20 12.0 s
40 36.8 s
60 1.4 m
80 2.4 m

160 9.6 m
480 3.0 h

35,040 11,772 y

Clearly, we have to rely on more efficient techniques for classifying long time series.
While one work is based on a shape-based representation [BJ14], most of the approaches
focus on feature-based representations [Mör03, FJ14, CBNKL18] and a subsequent feature
selection. However, these features are very general and not always efficiently calculated.
Christ et al. provide a comprehensive feature vector with more than 700 features, pro-
viding potentially highly discriminative features. However, calculating all these features
takes a considerable amount of runtime.

With this in mind, we propose a feature-based classification based on our representation
from Chapter 4. Not only is this technique tailored to the seasonal and trend effects
ocurring in a multitude of domains but the features are also efficiently calculated. We
show experimentally on two real-world datasets that it competes and even outperforms
most accurate classifiers, while keeping a reasonable overall runtime for representation
and classification.

This chapter is structured as follows. We review existing classification techniques used
for big time series datasets in Section 7.1. In Section 7.2, we give a system overview of
our classification technique based on our feature-based representation, along with nor-
malization techniques, and feature selection techniques. We evaluate our technique and
its competitors in Section 7.3 regarding effectiveness and efficiency, and summarize our
observations in Section 7.4.

7.1 STATE OF THE ART

There are eager and lazy classification techniques. An eager technique estimates a clas-
sifier based on the training dataset and captures its discriminative characteristics as a
model. After estimation, this classifier is used on an unlabeled test dataset. In contrast, a
lazy technique uses the training dataset for classification without an intermediate model.
While it avoids the runtime for classifier estimation, it may require more time for infer-
ring the class label than an eager technique.

Authors suggest reducing a time series to a low-dimensional representation and pre-
senting it to standard classification techniques, rather than constructing complex classifi-
cation technique for a high-dimensional space [BDHL12]. With this in mind, we review
three engineering techniques that have been proposed to classify long time series, the run
length distribution (Subsection 7.1.1), the discrete wavelet transform (Subsection 7.1.2),
and a large feature vector (Subsection 7.1.3).

94 Chapter 7 Time Series Classification

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

4 2 6 2 2

Figure 7.1: Run Length Distribution

Table 7.2: Haar Wavelet

Granularity Mean Values Wavelet Features

k = 4 yᵀ = (8, 6, 2, 3, 4, 6, 6, 5) –
k = 3 (7, 2.5, 5, 5.5) (1, -0.5, -1, 0.5)
k = 2 (4.75, 5.25) (2.25, -0.25)
k = 1 (5) (-0.25)

7.1.1 Run Length Distribution

Bagnall and Janacek present the run length distribution, which is a shape-based engineer-
ing technique [BJ14]. A run length is the length of a time series subsequence between
two zero crossings, i.e., a subsequence that is completely on one side of the x-axis. The
run length distribution counts all run lengths that occur in a time series. Figure 7.1 repre-
sents a time series of length 16. The run length 2 occurs three times, and the run lengths
4 and 6 occur once, forming a distribution (0, 3, 0, 1, 0, 1). Since run lengths without
occurrence are pruned it results in a run length distribution (3, 1, 1). Bagnall and Janacek
perform a 1NN classification based on the distance between two run length distributions
and show the superiority of dynamic time warping (Section 3.1, page 24) compared to
other distance measures experimentally.

7.1.2 Discrete Wavelet Transform

The discrete wavelet transform is a feature-based technique from the frequency domain
and is applied for classification in several works [Agg02, Mör03, MDC19]. We select
this transform and not a Fourier transform because of its higher efficiency, as noted in
Section 3.4 (page 36). It decomposes a time series into features at different levels of
granularity, capturing global time series properties as well as local ones. Its simplest,
yet effective configuration is the Haar wavelet, which is explained in Table 7.2, using the
example from [Agg02]. For a given time series y of length 8, neighbored values are suc-
cessively averaged, (8 + 6) / 2 = 7, leading to the mean values of the next granularity,
k = 3. The distance of a mean value to its components, 8 − 7 = −(6 − 7) = 1, is the
wavelet feature. The time series can be fully reconstructed using the wavelet features
and the time series mean value from the last granularity (k = 1). Thus, the representa-
tion is (5,−0.25, 2.25,−0.25, 1,−0.5,−1, 0.5), which is printed in boldface. The resulting
feature-based representation is still as long as the time series itself. Feature selection is
carried out by the classifier [Agg02] or by a heuristic prior to classification [Mör03]. Fi-
nally, an eager classifier is estimated on the selected features [Mör03].

7.1 State of the Art 95

Feature

Distribution

· Change Quantiles
· Index Mass Quantile

· Large Standard
Deviation
· Quantile

· Range Count
· Ratio Beyond R Sigma

· Symmetry Looking
· Value Count

Correlation

· Aggr. Autocorrelation
· Autocorrelation

· Partial Autocorrelation

Component

· Aggr. Linear Trend
· c3

· Linear Trend

Frequency
· Binned Entropy

· CWT Coefficients
· FFT Aggregated
· FFT Coefficient

· SPKT Welch Density

Other
· Augm. Dickey Fuller

· Time Reversal
· Asymmetry Statistic

· Energy Ratio By Chunks
· Cid Ce

Distribution Correlation

Component

Shape

· Number Crossing
· Number CWT peaks

· Number Peaks

Model

· AR Coefficient
· Friedrich Coefficients

· Max Langevin Fixed Point

Model

Shape

Figure 7.2: Features from tsfresh

7.1.3 Large Feature Vector

While the aforementioned techniques rely on specific shapes or features of a time se-
ries that are discriminative for long time series, Christ et al. and Fulcher et al. de-
cide to take features from many categories into account, forming a large feature vector
[CKLF16, FJ14]. Christ et al. names its feature vector tsfresh, consisting of more than 700
features. As we will explain in our experimental setting, we only include features that
the authors define as comprehensive and efficient. These features are illustrated in Fig-
ure 7.2, further details can be found in [CKLF16]. Based on our five feature categories
(Section 3.4, page 36), we can classify most of the features as distribution, correlation,
component, and frequency features. Besides, the authors include other features as well
as characteristics from shape- and model-based representation that are efficiently calcu-
lated. Among these features, only the autocorrelation and the linear trend corresponds
to our feature vector; the season masks are not included. The moment features belong to
the full feature vector of Christ et al., but not to the comprehensive and efficient subset.
Based on this feature vector, discriminative features are selected, and an eager classifier
is estimated. The authors propose their own feature selection technique, which is based
on hypothesis tests [CKLF16].

The large feature vector of Fulcher et al. [FJ14] is highly similar to tsfresh. But it consists
of thousands of features, which takes even more time than tsfresh to represent a time
series. Consequently, we focus on tsfresh as competitor of this group.

7.2 SYSTEM OVERVIEW

In this section, we explain the techniques that we apply for our feature-based classifica-
tion. To highlight the major steps, Figure 7.3 shows an overview. A labeled dataset contains
time series with class labels. We shortly formalize this dataset in Subsection 7.2.1. Each
time series is decomposed and reduced to a feature-based representation. In Subsection 7.2.2,
we explain how we apply our feature-based engineering technique to this data-mining
task. Subsequently, these features are normalized to the same range. We present normal-
ization techniques in Subsection 7.2.3. Although our feature vector is already small, not
all features are highly discriminative. Therefore, we present a feature selection in Sub-
section 7.2.4, identifying the most promising features, which are then passed to a feature-
based classification. In Subsection 7.2.5, we present how a classifier is estimated using these
features and how it infers the class label of a time series.

96 Chapter 7 Time Series Classification

 𝑔 𝑓n = 𝑔 𝑖

𝑌 = 𝑦1, … , 𝑦𝐼

𝑔 𝑖 ∈ {1, … , 𝐶} 𝑓 𝑓n 𝑓n ⊆ 𝑓n

Labeled Dataset Feature-based
Representation

Normalization Feature Selection

Feature-based
Classification

?

Figure 7.3: Overview of Feature-based Classification

7.2.1 Labeled Dataset

In contrast to the time series generation, matching, and clustering, time series classifica-
tion relies on a labeled dataset, i.e., each time series is annotated by a class label. Recall
that y

i
is the i-th time series of a dataset Y . Formally, a label function g maps a time series

to a label c from a set {1, ... , C}:
g(i) = c (7.1)

For example, the Metering dataset contains three labels C = 3, classifying households
(c = 1), small or medium businesses (c = 2), as well as other entities (c = 3). Each time
series has a class label, even if the class is not well characterized, such as c = 3.

7.2.2 Feature-based Representation

We transform the labeled dataset using our feature-based representation (Chapter 4).
First, each time series is treated as a composition of components:

y = tr +
∑S

s=1
seass + res (7.2)

where tr, seass, and res are the trend, seasonal, and residual component, respectively.
Second, the components are reduced to deterministic and stochastic features:

fᵀ = (θ1(tr), θ2(tr), σ1(seas1), ... , σLS (seasS), sd(res), skew(res), kurt(res), acf1(res))
(7.3)

where θ1, θ2, σl are deterministic features, representing the base value, the trend slope,
and the season masks of the time series, respectively; and sd, skew, kurt, and acf1 are the
stochastic features, representing the standard deviation, the skewness, the kurtosis, and
the autocorrelation of lag 1 of the residuals, respectively.

Figure 7.4 illustrates the features of the Metering dataset as a heatmap. This dataset
contains time series from three classes, and we draw 50 time series from each class and
arrange them next to each other on the x-axis. We arrange all features of Equation 7.3
on the y-axis and map the feature value to a color (Figure 7.4a). The first class and the
second class are different to each other which illustrate the different feature values. The
third class is highly similar to the first class.

7.2 System Overview 97

Time Series

F
e
a
tu

r
e

(a) All Features

Time Series

F
e
a
tu

r
e

(b) Selected Features

Figure 7.4: Feature-based Representation of Metering Dataset as Heatmap

7.2.3 Normalization

Different features exhibit different value ranges. For example, the autocorrelation ranges
between −1 and +1, while the standard deviation is always positive. To avoid a bias in
favor of features with larger ranges, we normalize features to a common range with a
normalization technique. Let fn denote a normalized feature. We choose among three
different normalization techniques:

0-1-Normalization The 0-1-normalization transforms feature values to the interval [0, 1].
Recall that F = {f(y

i
), 1 ≤ i ≤ I} are the values that a feature exhibits in a dataset.

Formally, the 0-1-normalization is:

f01(y) = (f(y)−min(F))/(max(F)−min(F)) (7.4)

wheremin(F) andmax(F) are the minimum and the maximum value of the feature,
respectively.

0-1-Normalization with Outliers The 0-1-normalization with outliers is the normaliza-
tion as presented in Section 4.5 (page 49). Recall that IQR(F) = Q3(F) − Q1(F)
is the interquartile range between the lower quartile Q1(F) and the upper quartile
Q3(F). Using lower(F) and upper(F):

lower(F) = arg min
f(y)∈F

{f(y) ≥ median(F)− 1.5 · IQR(F)}

upper(F) = arg max
f(y)∈F

{f(y) ≤ median(F) + 1.5 · IQR(F)}
(7.5)

the 0-1-normalization with outliers is defined as follows:

f01out(y) = (f(y)− lower(F))/(upper(F)− lower(F)) (7.6)

It transforms the feature value to a range between 0 and 1 except for extreme out-
liers.

Z-Normalization Similar to the z-normalization of time series, the z-normalization of
a feature transforms its values to a range such that their mean is zero and their
standard deviation is one:

fz(y) = (f(y)−mean(F))/sd(F) (7.7)

wheremean(F) an sd(F) are the mean and standard deviation of the feature values,
respectively.

98 Chapter 7 Time Series Classification

Strongly
Relevant

Weakly relevant
Non-redundant

Weakly Relevant
Redundant

Irrelevant

Optimal Subset

(a) Subsets of Features

Redundancy
Analysis

Original
Set

Relevant
Set

Selected
Set

Relevance
Analysis

(b) Workflow

Figure 7.5: Correlation-based Feature Selection [LL18]

While one eager classifier suggests a z-normalization [MDH+19], we cannot know how
normalization will impact other classifiers. Therefore, we compare all three normaliza-
tion techniques during a configuration of the engineering techniques.

7.2.4 Feature Selection

Our feature-based representation contains tens to hundreds of features, depending on
the number and length of the season masks (Equation 7.3). Classification relies only on
features with a high discriminative power, which is why these features should be selected
prior to classifier estimation. Feature selection carries out this task with the overall goal to
provide a comprehensive feature subset [LL18]. It filters irrelevant features with little dis-
criminative information as well as redundant features whose discriminative information
is largely covered by already selected features. This subset is beneficial for the subse-
quent classification: Not only does it reduce the estimation runtime, it also improves the
classification accuracy.

The correlation-based feature selection is an important class of feature selection techniques
(Figure 7.5) [LL18]. It focuses on the correlation among features, and the correlation
between features and classes. The former is regarded as redundancy, the latter as rele-
vance. Thus, a feature vector is divided into four subsets: (1) strongly relevant features,
(2) weakly relevant but non-redundant features, (3) redundant features, and (4) irrelevant
features (Figure 7.5a). Optimally, only relevant and non-redundant features should be
selected. The correlation-based feature selection consists of two steps (Figure 7.5b). The
relevance analysis determines the relevant features. Subsequently, the redundancy analy-
sis determines and eliminates the redundant features and lead to the optimal subset of
features.

Initially, a feature vector on Metering contains 73 features (Figure 7.4a). After the cor-
relation-based feature selection, six features are selected on the Metering dataset (Figure
7.4b). They are the standard deviation, the autocorrelation of lag 1, the trend slope, and
three seasonal features from the daily and weekly seasonal component.

Besides correlation-based feature selection, there is a second class of techniques, search-
based feature selection. However, correlation-based feature selection has several advan-
tages regarding efficiency and effectiveness over this second class [LL18], which is why
we adopt it for our approach.

7.2.5 Feature-based Classification

Based on the normalized and selected features f̄n of the training dataset, a classifier ĝ is
estimated, which maps the features to a class label:

ĝ(f̄n) = c (7.8)

7.2 System Overview 99

Since we reduced the time series to a low-dimensional feature-based representation, we
can apply standard classification techniques to carry out the data-mining task. We give
more details on these standard techniques in the experimental evaluation, together with
their configuration.

After estimation, the classifier is used on a test dataset to assess whether it correctly infers
the class of an unlabeled time series, i.e., a time series whose label the classifier does not
know:

ĝ(f̄n) ?= g(i) (7.9)

If the classifier accurately infers a class label, then the underlying engineering technique
is highly discriminative, which is evaluated experimentally.

7.3 EXPERIMENTAL EVALUATION

We evaluate our feature-based representation and compare it to the state-of-the-art tech-
niques regarding an effective and efficient classification. We give our experimental set-
ting (Subsection 7.3.1) and present and discuss the results (Subsection 7.3.2).

7.3.1 Experimental Setting

This subsection details the experimental setting, i.e., the selected datasets, the applied en-
gineering techniques for time series classification, the eager and lazy classification tech-
niques, and the measured output variables.

The engineering and classification techniques are implemented in R, as they rely on
several methods of this programming language. They are published together with the
scripts of the evaluation [Keg19b]. The experiments are executed and optimized for par-
allel execution on a server machine with a Twelve-Core Intel(R) Xeon(R) Gold Processor
6136@3.0GHz and 64GB of RAM.

Engineering Techniques

We detail the engineering techniques applied for time series classification along with their
configuration.

Raw-data-based Engineering (Raw) As a baseline technique, we leave the time series as
is without any transformation. An unlabeled time series is mapped to the label of
its nearest neighbor in the training dataset, with respect to the Euclidean distance.
We implement this technique in C, using optimizations from [RCM+12]: (1) we omit
the calculation of the square root of the Euclidean distance since it does not change
the ordering of the neighbors, and (2) we prune unpromising candidates if their
Euclidean distance exceeds the best-so-far Euclidean distance.

Run Length Distribution (RLD) We re-implement the run length distribution from Bag-
nall and Janacek, as they did not provide access to their code [BJ14]. We assume
that values y = 0 belong to a run length above the x-axis. The representations are
compared with dynamic time warping, as suggested by the authors. We use the
implementation of the R dtw package [Gio19].

100 Chapter 7 Time Series Classification

Discrete Wavelet Transform (DWT) We transform a time series into Haar wavelets us-
ing the R wavelets package and its default configuration [Ald19]. Feature selection is
carried out by selecting the k ∈ {2, 4, 8, 16} strongest wavelet coefficients across the
dataset, as suggested by [Mör03]. This feature selection is called Best by the authors.

Large Feature Vector (tsfresh) We compare our feature-based representation against the
large feature vector from the tsfresh implementation, which is publicly available
[CBNKL18]. Calculating all 794 features is infeasible for our datasets for two rea-
sons. First, the time series of the Metering dataset have a length T = 35,040. There-
fore, the representation of one single time series with tsfresh needs on average 30
minutes, i.e., a single-threaded execution of the dataset I = 6,089 needs approxi-
mately 126 days. Second, some features require a temporary memory size of 2 · T 2,
i.e., approximately 20 Gb per time series which is why the representation cannot be
carried out in parallel execution on our machine. We select a subset of 748 features
that the authors annotate as comprehensive and efficient. Moreover, we use the
feature selection technique proposed by the authors, which is based on hypothesis
tests rather than correlation [CKLF16].

Feature-Based Representation (FBR) We assess our feature-based representation (Equa-
tion 7.3), which decomposes a time series into its seasonal and trend components,
and reduces each deterministic component to its deterministic features (base value,
trend slope, season mask) as well as the residual component to its stochastic fea-
tures (standard deviation, skewness, kurtosis, autocorrelation of lag 1). The feature
vector has a lengthK = 6+

∑S
s=1 Ls, where S is the number of seasons and Ls is the

season length. We carry out a correlation-based feature selection using the WEKA
framework [FHW16].

Classification Techniques

Since we transformed the time series in a low-dimensional space, we can apply standard
classification techniques to carry out the data-mining task. As eager techniques, we select
a decision tree, a support vector machine, and a gradient boosting machine. As a lazy technique,
we select a one-nearest-neighbor classifier.

Decision Tree (DT) As a baseline technique for eager classification, we use a decision
tree classifier. It separates the observations by automatically selecting an appropri-
ate feature for splitting the feature space along one feature dimension. As features
are evaluated one after another, there is no need to normalize them to the same
range. The Gini coefficient is applied to select an appropriate split feature automat-
ically. If splits do not improve the fit they are pruned during cross-validation. We
use the implementation of the R rpart package for this technique [TAR19].

Support Vector Machine (SVM) The second eager classifier is a support vector machine
(SVM). It considers the features of a time series as a point in the feature space, and
fits a model which splits the classes of points by a gap that is as wide as possible. In
contrast to a decision tree, the split is not done for each feature separately but for all
features together, often leading to a higher classification accuracy. Therefore, appro-
priate features need to be selected and normalized to the same range. If the points
are not separable in the feature space, SVM maps them into a higher space using
a kernel function, which often increases separability. We use the implementation of
the R e1071 package for this technique [MDH+19] and evaluate a linear and a radial
basis kernel function.

7.3 Experimental Evaluation 101

Gradient Boosting Machine (GBM) Gradient boosting is an ensemble technique which
evolves a set of weak classifiers adding up to a combined classifier with a high
classification accuracy. We use decision trees as weak classifiers. Consequently, gra-
dient boosting selects features automatically and does not need scaling. However,
there are several metaparameters that are needed to fine-tune a model: the learn-
ing rate to prevent overfitting; the maximum depth of a decision tree: while deeper
trees contain more discriminative information but are also likely to overfit; and the
number of boosting steps that iteratively lead to the combined classifer. We use the
implementation of the R xgboost package [CHB+19], validate several metaparame-
ter configurations: a learning rate {0.2, 0.3, 0.4}, a maximum depth {2, 4, 6, 8}, and
a maximum number of boosting steps of 10,000. We stop boosting if the accuracy
does not improve within 100 steps.

One Nearest Neighbor (1NN) The one nearest neighbor is a lazy classifier. It maps a
time series to the label of its nearest neighbor in the dataset. We carry out this clas-
sification on all engineering techniques, including the raw-data-based engineering.
We calculate the Euclidean distance to compare the representations except for the
run length distribution, which requires dynamic time warping [BJ14].

Datasets

We use two real-world datasets from the energy and the economic domain. We split the
data into a training dataset of 80% for classifier estimation and validation and into a test
dataset of 20% for using the classifier. Table 7.3 summarizes the dataset properties.

Metering (2 classes) We apply the Metering dataset as presented in Section 4.1 (page
42). In order to extract the yearly season of, we assume that the months January
2011 until June 2011 behave like January 2010 until June 2010. Thus, the dataset
contains complete time series with 35,040 time instances. Besides the yearly sea-
son, all time series exhibit daily and weekly seasonal components. There are three
classes: households (c = 1), small or medium businesses (c = 2), as well as other
entities (c = 3). As we see in Figure 7.4, time series from class 3 are very similar to
class 1; they are barely classifiable and thus, only disturb our evaluation. Therefore,
we only focus on the 4,710 time series from class 1 and 2.

Payment The second dataset is taken from the IJCAI-2017 Data Mining Contest [Int17]. It
consists of payment transactions of 2,000 distinct shops in hourly granularity mon-
itored over 494 days. The shops are classified into food stores (c = 1), supermarkets
(c = 2), entertainment stores (c = 3), health stores (c = 4), beauty stores (c = 5), and
other shopping entities (c = 6). There are mainly time series from food stores and
shopping entities, the other classes are sparse. None of the time series is complete;
either a time series is not monitored from the beginning or it has missing values.
In compliance with our definition of a time series dataset, we make this dataset
complete by setting missing values to 0, i.e., no payments have been carried out in
this hour. The dataset exhibits a daily and a weekly season which we use for the
evaluation.

102 Chapter 7 Time Series Classification

Output Variables

We assess the effectiveness and the efficiency of the engineering techniques with two
output variables: the classification accuracy and the overall runtime.

The classification accuracy is defined as the share of labels that is correctly infered by the
classifier. Recall that g(i) is the correct label of the time series y

i
. Let ĝ(f̄n) be the label

infered by the classifier. Then, the classification accuracy acc is defined as:

acc = 1
U

C∑
c=1

∑
i:g(i)=c

I(g(i) = ĝ(f̄n)) (7.10)

where U is the size of the test dataset, C is the nuber of classes, and I(·) is the indicator
function which returns 1 if the classes match and 0 otherwise.

The efficiency of engineering techniques is evaluated with the overall runtime, which
encompasses the runtime for each step of our system (Figure 7.3), i.e., the representation,
normalization, feature selection, and classification runtime. The classification runtime is fur-
ther split into the runtime for estimating the classifier, and using the classifier. We measure
the runtime as wall-clock time in seconds.

7.3.2 Results and Discussion

The results of our evaluation are presented and discussed in three parts. We start by
choosing the best configuration for each engineering technique and for each dataset.
Based on this configuration, we assess the effectiveness of each engineering technique in
terms of classification accuracy, using the best eager and lazy classifier. Finally, we also
compare their efficiency by measuring the overall runtime for classifying time series.

We choose the best configuration for an engineering technique and classification tech-
nique based on a ten fold cross-validation on the training dataset. Thus, results from the
configuration of engineering techniques refer to the classification accuracy on the training
dataset, while later results refer to the classification accuracy on the test dataset.

Configuration

The representation techniques FBR, tsfresh, and DWT are configured regarding normal-
ization and feature selection. RLD does not require these steps, the representation is
used as is [BJ14]. We select the configuration with the highest classification accuracy on
the training dataset.

Table 7.3: Datasets for Classification

Dataset Size Series Length Frequency of Class Labels

Training Dataset Test Dataset

Metering (2 classes) 4,710 35,040 [3,380; 388] [845; 97]
Payment (6 classes) 2,000 11,856 [1,132; 0; 1; 1; 463] [283; 1; 1; 1; 1; 116]

7.3 Experimental Evaluation 103

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 No 0-1 with Outlier 0-1 Z

(a) Normalization for SVM

0

20

40

60

80

100

Metering Payment

 No 0-1 with Outlier 0-1 Z

(b) Normalization for 1NN

73 6 65 37 6 20

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 No CFS tsfresh

(c) Feature Selection for SVM

73 6 65 37 6 20

0

20

40

60

80

100

Metering Payment

 No CFS tsfresh

(d) Feature Selection for 1NN

Figure 7.6: Configuration of FBR

FBR Figure 7.6 visualizes the accuracy of FBR on the Metering and Payment dataset.
First, it compares FBR for an SVM classifier using different normalizations (Figure 7.6a).
On both datasets, the accuracy of an SVM classifier is highest using a z-normalization
(cream white bar), which is typical for SVM [MDH+19]. 0-1-normalization (orange bar)
and 0-1-normalization with outliers (blue bar) range at the same level as no normalization
(red bar). The 0-1-normalization leads to the highest accuracy of an 1NN classifier (Figure
7.6b). While this gain is less significant on the Metering dataset, it is more significant on
the Payment dataset. Thus, we focus on 0-1-normalized features when using FBR for the
1NN classifier.

Moreover, we assess whether feature selection has to be carried out for FBR, and com-
pare the SVM classification accuracy (Figure 7.6c), using no feature selection (red bar),
correlation-based feature selection (blue bar), and tsfresh feature selection (orange bar).
The values above the bars indicate the length K of the feature vector. On Metering,
the feature vector can be reduced by CFS and tsfresh without loosing much accuracy.
There are several redundant and irrelevant features that are not needed for classifying
this dataset, which is mainly due to several long season masks containing highly cor-
related values. However, on Payment, feature selection leads to a significant accuracy
loss compared to the original feature vector, which we would like to avoid. 1NN recon-
firms this behavior on both datasets (Figure 7.6d). Therefore, we focus on the 6 selected
features on the Metering dataset, and on the 37 FBR features on Payment.

tsfresh The competitor tsfresh also needs a suitable configuration for SVM and 1NN re-
garding normalization and feature selection (Figure 7.7). For a SVM classifier, z-normal-
ization leads again to most accurate results (Figure 7.7a). Interestingly, it is also the best
normalization for a 1NN classifier (Figure 7.7b), which is why we use z-normalization for
both classifiers. 0-1-normalization with outliers performs poorly because its value range
for extreme outliers exceeds the usual value range for SVM.

104 Chapter 7 Time Series Classification

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 No 0-1 with Outlier 0-1 Z

(a) Normalization for SVM

0

20

40

60

80

100

Metering Payment

 No 0-1 with Outlier 0-1 Z

(b) Normalization for 1NN

748 36 485 748 22 319

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 No CFS tsfresh

(c) Feature Selection for SVM

748 36 485 748 22 319

0

20

40

60

80

100

Metering Payment

 No CFS tsfresh

(d) Feature Selection for 1NN

Figure 7.7: Configuration of tsfresh

Regarding feature selection, the technique from tsfresh (orange bar) provides the highest
accuracy on both datasets and on both classifiers, SVM and 1NN (Figures 7.7c and 7.7d).
No feature selection (red bar) is slightly (Metering) or even significantly (Payment) less
accurate than tsfresh. Although CFS (blue bar) strongly reduces the representation size
it also decreases the accuracy, apparently loosing some relevant features. Therefore, we
focus on the tsfresh feature selection for SVM and 1NN.

DWT The second competitor, DWT, does not use normalization, but it has to select
the most discriminative features from the wavelet transform. We use the feature selec-
tion Best and assess feature vectors of length 2, 4, 8, and 16, as suggested by Mörchen
[Mör03]. Using these lengths, Figure 7.8 visualizes the classification accuracy of SVM
and 1NN (Figures 7.8a and 7.8b). Both classifiers provide most accurate results for the
largest feature vector, Best 16 (cream white bar), Best 2, Best 4, and Best 8 decrease the
accuracy. Therefore, we apply Best 16 for SVM and 1NN. Although DT and GBM select
features automatically, presenting the DWT feature vector without selection is infeasible
for these techniques, as this vector still have the same length as the time series. Therefore,
we present only the 16 best features to these classifiers, too, which is the most accurate
feature selection according to Figure 7.8c and 7.8d.

Classification Accuracy

After the configuration of the techniques, we now select the most accurate eager and
lazy classifier for each technique based on the training dataset. This classifier is selected
and assessed on the test dataset (Figure 7.9). For DWT, tsfresh, and FBR, we display
the accuracies of the best eager classifier (Figure 7.9a), indicating the vector length of
the selected features above the bar. DWT (cream white bar) with its best configuration
achieves 89.7% on Metering and 86.4% on Payment, while tsfresh (orange bar) achieves

7.3 Experimental Evaluation 105

2 4 8 16 2 4 8 16

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 Best 2 Best 4 Best 8 Best 16

(a) Feature Selection for SVM

2 4 8 16 2 4 8 16

0

20

40

60

80

100

Metering Payment

 Best 2 Best 4 Best 8 Best 16

(b) Feature Selection for 1NN

2 4 8 16 2 4 8 16

0

20

40

60

80

100

Metering Payment

A
cc

u
ra

cy
 (

%
)

 Best 2 Best 4 Best 8 Best 16

(c) Feature Selection for DT

2 4 8 16 2 4 8 16

0

20

40

60

80

100

Metering Payment

 Best 2 Best 4 Best 8 Best 16

(d) Feature Selection for GBM

Figure 7.8: Configuration of DWT

16 748 6 16 748 37

0

20

40

60

80

100

Metering Payment

Dataset

A
cc

u
ra

cy
 (

%
)

 DWT tsfresh FBR

(a) Eager Classifiers

T * 16 485 73 T * 16 319 37

0

20

40

60

80

100

Metering Payment

Dataset

 Raw RLD DWT tsfresh FBR

(b) 1NN Classifier

Figure 7.9: Classification Accuracy

up to 98.7% and 94.0%, respectively. Our technique, FBR (blue bar), achieves almost the
same results than tsfresh, 98.0% and 93.1%, respectively. Importantly, it achieves these
results with a significantly smaller feature vector, using 6 features for Metering and 37
features for Payment. In contrast, tsfresh requires 748 features on both datasets. Let us
now turn to representation accuracy of the 1NN classifier (Figure 7.9b). Again, the vector
length is indicated above the bars. The raw-data-based technique (red bar), using the full
time series of length T as input, has an accuracy of 39.0% and 85.4% on Metering and
Payment, respectively. The poor result on Metering emphasizes the need to transform a
time series into a representation before discriminative features may be discovered. The
technique RLD (gray bar) and DWT (cream white bar) achieve both 89.7% on Metering, as
well as 73.4% and 80.6% on Payment. Feature vectors from tsfresh (orange bar) achieves
98.2% on Metering and 87.8% on Payment. The most striking observation to emerge
from this comparison is that FBR (blue bar) has the same result as tsfresh on Metering,
but outperforms tsfresh on Payment, having 89.3%. Using a lazy 1NN classifier, FBR
achieves better results than tsfresh while having a much smaller feature vector.

106 Chapter 7 Time Series Classification

Raw (lazy) RLD (lazy) tsfresh (eager) tsfresh (lazy)

DWT (eager) DWT (lazy) FBR (eager) FBR (lazy)

Metering Payment Metering Payment Metering Payment Metering Payment

 0

100

200

300

400

 0

 50,000

100,000

150,000

 0

100

200

300

 0

 50,000

100,000

150,000

 0

 50

100

150

200

250

 0

2,000

4,000

 0

 50

100

150

 0

200

400

600R
u

n
ti

m
e

(s
)

 Representation Normalization Feature Selection Classifier Estimation Classifier Use

Figure 7.10: Overall Runtime

Using eager and lazy classifiers, FBR provides results which are as accurate as large fea-
ture vectors, or even more accurate. Besides, FBR achieves this with a much shorter
feature vector indicating that it captures highly discriminative features.

Overall Runtime

Figure 7.10 presents the overall runtime in seconds of the competitors in increasing order.
It includes the representation runtime (red bar), the feature selection runtime (blue bar),
as well as the classification runtime of the most effective classifier on the test dataset. The
classification runtime is split into estimation and use runtime (orange and cream white
bar). The normalization runtime is also included in the overall runtime. However, it is
negligible compared to the other runtimes and thus, it is not visible.

DWT, FBR, and tsfresh spend most of the time representing the time series. DWT is
fastest, as it requires only one pass over the time series, while FBR requires more than
one pass for the multi-seasonal decomposition (Algorithm 4.1, page 45). On Metering,
these representations require approximately 30 and 75 milliseconds per time series, re-
spectively. In contrast, tsfresh is much slower, requiring approximately 30 seconds per
time series. All three techniques are implemented in R or Python with underlying C
code, but tsfresh calculates many features and thus, requires more passes over a time
series. A lazy 1NN classifier takes more classification runtime than an early classifier. If
present, the feature selection has a negligeable runtime compared to representation and
classification. The representation runtime of Raw is zero, and that of RLD is negligible.
These techniques spend most of the time using the 1NN classifier, i.e., calculating the
distances to all labeled time series from the dataset and selecting the label from the less
distant time series. The raw-data-based technique uses the Euclidean distance, which is
fast compared to the DTW distance measure applied to RLD.

Taken together, these findings suggest that FBR is among the most efficient classifiers for
classifying long time series.

7.3 Experimental Evaluation 107

DWT (eager)

DWT (lazy)

FBR (eager)

FBR (lazy)

Raw

RLD

tsfresh (eager)tsfresh (lazy)

 100

 1,000

 10,000

100,000

25 50 75 100 125

Accuracy (%)

R
u

n
ti

m
e

(s
)

(a) Metering Dataset

DWT (eager)DWT (lazy)

FBR (eager)FBR (lazy)

Raw

RLD

tsfresh (eager)tsfresh (lazy)

 10

 100

 1,000

10,000

25 50 75 100 125

Accuracy (%)

R
u

n
ti

m
e

(s
)

(b) Payment Dataset

Figure 7.11: Classification Accuracy versus Overall Runtime

Accuracy and Runtime

Figure 7.11 displays a scatterplot of the classification accuracy (x-axis) and the overall
runtime (y-axis), using a logarithmic y-axis for a better visualization. It is desirable that
a technique has a high accuracy, i.e., it is the rightmost compared to the competitors, and
it has a short runtime, i.e., it is lower than the competitors. On Metering, FBR ranges in
the lower right corner of the plot, i.e., it provides a trade-off compared to its competitors
tsfresh, which is slower but slightly more accurate, and DWT, which is faster but less
accurate. This trade-off is also confirmed on the Payment dataset, where the raw-data-
based 1NN classifier becomes the fastest but less accurate competitor. This comparison
reconfirms the aforementioned observations: FBR provides very accurate classification
results, while keeping a short overall runtime.

7.4 SUMMARY

In summary, our work emphasizes that big time series datasets consisting of long time
series require not only effective but also efficient engineering techniques for classifica-
tion. Regarding effectiveness, our evaluation suggests that feature-based engineering
techniques outperform raw-data-based and shape-based techniques. In particular, our
feature-based engineering technique classifies time series as accurately as the best com-
petitor, but it requires significantly fewer features. It is quite natural that feature-based
techniques spend most of the time representing the dataset, while raw-data-based and
shape-based techniques spend most of the time using the 1NN classifier. Regarding the
overall runtime, feature-based techniques outperform other techniques if they transform
a dataset efficiently. In particular, our feature-based engineering technique is as fast as the
fastest competitor, yet it provides more accurate results. Thus, our evaluation stresses the
importance of a trade-off regarding these two objectives. Our feature-based engineering
technique classifies as accurately as tsfresh, but it is orders of magnitude faster.

These observations have two main implications for research into time series analytics.
First, the classification of big time series datasets is a new challenge that researchers
should focus on with benchmark datasets and efficient engineering techniques. Second,
the 1NN classifier with the Euclidean distance measure is a poor baseline technique for
big time series datasets. In time series matching (Chapter 6), this distance measure is
considered the reference for subsequent approximations (SAX, sSAX), for efficiently re-
trieving an exact match. However, as our evaluation suggests, an exact match provides
inaccurate labels, which is why other baseline techniques for both, matching and classi-
fication, are desirable for big time series datasets.

108 Chapter 7 Time Series Classification

8
TIME SERIES CLUSTERING

TIME SERIES FORECASTING is a well-established research subject and an essential part
of today’s business landscape in many domains. The load control in the energy

domain and decision-making in the economic domain are just two examples where fore-
casting is of paramount importance. While the quality of time series forecasting, i.e., the
forecast accuracy, is still most important, the computation has to keep up with the chal-
lenges of big time series datasets.

A forecast technique identifies and estimates a forecast model for a given time series. Sub-
sequently, this model infers a forecast of the future time series values. While traditional
forecast techniques provide one forecast model per time series, vectorized techniques pro-
vide one model per dataset, and reduce the runtime for model estimation. Recently,
Hartmann et al. proposed the cross-sectional autoregression model (CSAR) [Har18]. This
vectorized forecast technique assumes that time series of a dataset have a similar autore-
gression and misprediction behavior. For example, the Metering dataset contains thou-
sands of time series which are inherently similar because all of them capture electricity
consumption, with daily, weekly, and yearly seasons. Thus, model estimation provides
one monolithic CSAR model per dataset.

However, these assumptions only hold to a certain degree. As mentioned by Hartmann et
al. [HRH+19], clustering time series by their behavior is expected to increase the forecast
accuracy. Moreover, our heatmap of features revealed that the households exhibit other
features than small and medium businesses (Figure 7.4). The underlying consumers of
the aforementioned Metering dataset are different, they are households, small or medium
businesses, as well as other entities. In this chapter, we aim to identify CSAR models for
clusters of time series. They may increase the forecast accuracy but also maintain a short
runtime, as there are only a few models to compute.

Time series clustering partitions a time series dataset into homogeneous clusters such
that the distance between clusters is maximal. It is often applied as subroutine of other
data-mining tasks, which is why we apply it to time series forecasting [ASY15]. Research
focuses on engineering for time series clustering as well as the selection of clustering
techniques and clustering prototypes [ASY15].

As we described in Chapter 3, feature-based engineering tackles the challenges of big
time series datasets very well. Therefore, we apply a feature-based clustering to partition
a time series dataset into clusters and forecast each cluster with an individual CSAR
model. The evaluation of this approach shows encouraging results as it significantly
improves the forecast accuracy while maintaining a shorter runtime time than traditional
forecast techniques.

109

In detail, we give an overview of cross-sectional forecasting with CSAR in Section 8.1 and
highlight its ability to address the challenges of big time series datasets. Subsequently, in
Section 8.2, we present a feature-based clustering technique and use it to partition time
series into clusters. Each cluster is estimated and forecasted with an individual CSAR
model. In Section 8.3, we conduct an experimental study to show that CSAR models on
time series clusters improve the forecast accuracy significantly compared to a monolithic
CSAR model, while maintaining a short runtime. Section 8.4 summarizes the results.

8.1 CROSS-SECTIONAL AUTOREGRESSION MODEL

The cross-sectional autoregressive (CSAR) model is inspired by the ARIMA model, as it
utilizes the autoregression and the error terms of the data. In contrast to ARIMA, CSAR
is a vectorized forecast technique, which assumes that time series in a dataset are similar.
It identifies and estimates one model per dataset, which is then used to provide a forecast
for each time series. The core concept of CSAR is the cross section which gathers values of
all time series from a dataset measured at one time instance. Formally, it is defined as:

yᵀ
t

= (yt,1, ... , yt,i, ... , yt,I) where y
t
∈ RI , 1 ≤ t ≤ T (8.1)

where yt,i is the value of the i-the time series at time instance t. Thus, it shifts from a hori-
zontal view, where time series are considered individually, to a vertical view, where time
series are viewed commonly per time instance. Based on cross sections, CSAR estimates
a model. A forecast for an cross-sectional autoregressive model of order 1 is of the form:

ŷ
t+1 = µ̂+ φ̂1yt (8.2)

where µ̂ is the mean and φ̂1 is the weight, which are estimated beforehand.

CSAR models tackle the challenges of big time series datasets by providing one model
per dataset, while traditional forecast techniques would estimate thousands of individual
models. Subsequently, we re-visit its three components: integration, autoregression, and
error terms. While the integration component is a prerequisite to make a time series
stationary, autoregression and error terms are part of a CSAR model.

8.1.1 Integration

Integration is carried out to make a time series stationary by eliminating deterministic
components. If integration is used, all time series of a dataset are differentiated before
model identification and estimation. After model use, results are transformed back using
integration.

For trend elimination, CSAR uses a differentiation similar to ARIMA (Equation 3.30, page
33):

vt = (1−B)dyt (8.3)

where B is the backshift operator and vt is the differentiated time series. For d = 1, this
operation results in a differentiated time series vt = yt − yt−1.

For season elimination, CSAR uses a differentiation taking into account the season length
L (Equation 3.31, page 33):

vt = (1−BL)Dyt (8.4)

For D = 1, this operation results in a differentiated time series vt = yt − yt−L.

110 Chapter 8 Time Series Clustering

8.1.2 Autoregression

The autoregression component extends the AR process from ARIMA with cross sections.
It is closely related to the AR component from ARIMA models, as it regards a time series
value as a finite, linear, weighted aggregate of its previous values. For the non-seasonal
and seasonal part, it uses p and P previous values, respectively. The corresponding
weights φ1, φ2, ... , φp and Φ1, Φ2, ... , ΦP as well as the mean value are estimated. Equa-
tion 8.5 shows the non-seasonal autoregression process. In contrast to the autoregressive
process from ARIMA (Equation 3.21, page 32), cross sections are used instead of time
series values:

y
t

= µ+ φ1yt−1 + φ2yt−2 + ... + φpyt−p + at (8.5)

Model parameters are estimated accordingly so that the model can be used for forecast-
ing. A non-seasonal model without seasonal part provides a forecast as shown in Equa-
tion 8.6. A seasonal model without a non-seasonal part provides a forecast as shown in
Equation 8.7. Both formulations rely on the estimated mean and weights.

ŷ
t

= µ̂+ φ̂1 · yt−1 + φ̂2 · yt−2 + ... + φ̂p · yt−p (8.6)

ŷ
t

= µ̂+ Φ̂1 · yt−L + Φ̂2 · yt−2·L + ... + Φ̂P · yt−P ·L (8.7)

An autoregressive process containing a seasonal and a non-seasonal part together re-
quires a more general formulation than Equation 8.5. Recall that a seasonal AR process
is given by Φ(Bs)yt = αt (Equation 3.32) and that the error terms αt are modeled by a
second non-seasonal AR process given by φ(B)αt = at (Equation 3.33). Applied to cross
sections, these two equations yield the general formulation of a cross-sectional autore-
gressive process:

at = φ(B)Φ(Bs) · y
t

(8.8)

For a process with P = 1 and p = 2, this process results in:

at = φ(B)Φ(BL) · y
t

= (1− φ1B − φ2B) · (1− ΦBL) · y
t

= (1− φ1B − φ2B) · (y
t
− y

t−L)

= y
t
− Φ1 · yt−L − φ1 · yt−1 − φ2 · yt−2 + Φ1φ1 · yt−L−1 + Φ1φ2 · yt−L−2 (8.9)

CSAR estimates a model for this process and also for the mean [Har18]:

ŷ
t

= µ̂+ Φ̂1 · yt−L + φ̂1 · yt−1 + φ̂2 · yt−2 − Φ̂1φ̂1 · yt−L−1 − Φ̂1φ̂2 · yt−L−2 (8.10)

8.1.3 Error Terms

Individual time series in a dataset may exhibit systematic misprediction when they are
forecasted by a cross-sectional autoregressive model. To compensate for this behavior,
CSAR uses error terms and applies them to correct the forecast. An error term e occurs
while estimating a cross-sectional autoregressive model; it expresses the deviation of the
forecast value from the real value in the training interval. CSAR combines q non-seasonal
and Q seasonal error terms for correcting the forecast of time series y

i
:

et = yt − ŷt (8.11)

ēi,t = 1
q +Q

(q∑
j=1

ei,t−j +
Q∑
j=1

ei,t−j·L
)

(8.12)

ŷi,t = µ̂− ēi,t (8.13)

8.1 Cross-sectional Autoregression Model 111

8.2 FEATURE-BASED CLUSTERING

CSAR assumes that all time series of a dataset exhibit the same behavior. In this section,
we present a feature-based clustering technique efficiently identifying clusters for CSAR
models. A CSAR model uses a set of metaparameters: p and P refer to the order of non-
seasonal and seasonal cross sections, q and Q to the order of non-seasonal and seasonal
error terms, and constant to the availability of a non-zero mean value. It assumes that
all the time series in a cluster exhibit the same behavior. They have the same degree of
autoregression, expressed by a similar autoregressive process, and the same degree of
systematic misprediction, expressed by similar error terms. Through the use of correla-
tion features, we are able to partition a dataset with respect to this behavior. Originally,
correlation features are used for ARIMA model identification. Therefore, we shortly re-
cap the features based on this application. Second, we leverage them for partitioning
datasets with CSAR.

8.2.1 ACF and PACF for ARIMA

ARIMA modeling needs an identification of metaparameters for each time series, using
the autocorrelation and the partial autocorrelation function for the determination of the
order of the moving average and the autoregressive process, respectively [BJR08].

The autocorrelation function (ACF) expresses the linear dependence of a time series on
itself, shifted by a sequence of lags. For example, the ACF of lag 1 (Equation 3.45, page
37) expresses the linear dependence between a time series with itself lagged by one time
instance. With ACF, ARIMA determines the order q of a moving average process. The
first q ACF lags of a moving average process are nonzero, while subsequent lags are zero.

Another correlation feature, which has not been used as time series representation, is
the partial autocorrelation (PACF). It also expresses the dependence of a time series on
itself, shifted by a sequence of lags. In contrast to ACF, the dependence of time instances
between the lag is removed. For example, pacf2 expresses the dependence of yt from
yt−2 which is corrected by the effects of yt−1. The partial autocorrelation pacf1 expresses
the dependence of yt from yt−1 which is equal to acf1 since there are no time instances
between t and t + 1. With PACF, ARIMA determines the order p of an autoregressive
process. The first p PACF lags of an autoregressive process are nonzero, while subsequent
lags are zero.

8.2.2 ACF and PACF for CSAR

ARIMA and CSAR are closely related. The autoregressive process of ARIMA is the
blueprint for the autoregressive part of CSAR and the moving average process serves
the same purpose as the error terms of CSAR. ACF and PACF advises ARIMA regard-
ing these components. We hypothesize that these features are able to identify time series
with similar behavior such these time series may be considered together in a cluster. In-
terestingly, ACF and PACF may be calculated efficiently for common lags h � T , which
makes them suitable for big time series datasets.

Let pmax, Pmax, qmax, and Qmax be the maximum number of non-seasonal and seasonal
cross sections as well as non-seasonal and seasonal error terms that are assessed during

112 Chapter 8 Time Series Clustering

Table 8.1: Correlation Features for CSAR

Component Features Indices

Non-seasonal cross section pacfk 1 ≤ k ≤ pmax

Seasonal cross section pacfk·s 1 ≤ k ≤ Pmax

Non-seasonal error term acfk 1 ≤ k ≤ qmax

Seasonal error term acfk·s 1 ≤ k ≤ Qmax

model validation. The correlation features as given in Table 8.1 build up a feature-based
representation for neighboring time series with similar autoregression and misprediction.

The partitioning carried out as follows. The feature-based representation is reduced into
two dimensions by t-distributed stochastic neighbor embedding (t-SNE) [vdMH18]. For
each pair of embedded representations, the Euclidean distance is calculated and stored
in a distance matrix. Based on this distance matrix, a density-based spatial cluster-
ing (DBSCAN) is carried out in order to discover partitions of the dataset [EKSX96].
With kNN-distplot, the DBSCAN parameters (minimum distance ε and minimum points
minPoints) are appropriately configured.

8.3 EXPERIMENTAL EVALUATION

To examine whether feature-based clustering for CSAR improves the forecast accuracy, it
is compared to monolithic CSAR and to commonly used forecast techniques. Moreover,
its runtime for identifying metaparameters is assessed, as well as the runtime for model
estimation and use.

8.3.1 Experimental Setting

This subsection details the experimental setting, i.e., the applied forecast techniques, the
selected datasets, the measured output variables, and the configurations for representa-
tion, clustering, and forecast techniques.

To leverage R’s built-in functions for optimization, clustering, and forecasting, CSAR and
feature-based clustering for CSAR are implemented in R together with the scripts of the
evaluation [R C18]. The experiments are executed and optimized for parallel execution
on a server machine with a Twelve-Core Intel(R) Xeon(R) Gold Processor 6136@3.0GHz
and 64GB of RAM.

Datasets

We use two real-world datasets, the Metering and the Payment dataset, and shortly sum-
marize their characteristics. In compliance with Hartmann et al. [HRH+19], we also
include time series which are not complete. ACF and PACF provide reasonable results
for incomplete time series, thus, we can apply our feature-based representation. More-
over, we do not carry out integration on these datasets, as it did not lead to a systematic
improvement in the forecast accuracy [HRH+19].

8.3 Experimental Evaluation 113

Metering (6 hours) We apply the Metering dataset presented in Section 4.1 (page 42). In
compliance with Hartmann et al. [HRH+19], we aggregate the values to a 6-hour
granularity. Thus, the dataset contains 6,433 time series with a length of 2,144. 5%
of the data is missing. We evaluate our techniques on the weekly season, as done by
Hartmann et al. [HRH+19].

Payment The second dataset is the Payment dataset as presented in Section 7.3 (page
100). We recall that it consists of payment transactions of 2,000 distinct shops in daily
granularity monitored over 494 days. The shops are classified into food stores, su-
permarkets, entertainment stores, health stores, beauty stores, and other shopping
entities. None of the time series is complete; either a time series is not monitored
from the beginning or it has missing values. Compared to a complete dataset, 40%
of the data is missing. The dataset exhibits a weekly season which we use for the
evaluation.

Forecast Techniques

We compare the CSAR techniques with commonly used forecast techniques, i.e., two
baseline techniques and one traditional forecast technique:

Naive (N) We include the naive forecast where a measured value is the forecast of the
subsequent time instance: ŷt = yt−1. This forecast reflects the baseline of our evalu-
ation: if a forecast technique performs worse than the naive forecast, it is obviously
not suited for the given dataset.

Naive Seasonal (NS) If a time series is seasonal, then a value is highly correlated to the
value from the previous season. Based on the observation, we include the naive
seasonal forecast as a second baseline: ŷt = yt−s. Like the naive forecast, it should
be a lower bound for subsequent forecast techniques.

ARIMA (A) As a traditional forecast technique, we select an ARIMA model as imple-
mented in R. We use auto.arima from the forecast package [HK08] for model identifi-
cation and arima from the stats package for model estimation and use. In compliance
with CSAR, we set the maximum order to the same number of cross sections and
error terms (pmax and qmax). A seasonal component is assumed with a maximum
order in compliance with the seasonal cross sections and error terms of CSAR (Pmax
and Qmax). A mean value is assumed but not a trend. Missing values in a time
series are handled by this implementation. If identification or estimation fails, the
forecast for this time instance is missing.

CSAR with Single Cluster (OC) CSAR with “one global" cluster only trains a mono-
lithic CSAR model for a full dataset, which provides a forecast for all time series
simultaneously.

CSAR with Class-based Clusters (CC) The selected datasets provide class labels that
we exploit for creating partitions. Each cluster identifies and models an individ-
ual CSAR model.

CSAR with Feature-based Clusters (FC) We use our feature-based representation and
assume a maximum order of 2 for the ACF and PACF features. A DBSCAN cluster-
ing with ε = 1.5 and minPts = 3 is applied. Each cluster identifies and models an
individual CSAR model.

114 Chapter 8 Time Series Clustering

Household Business Other

(a) Class-based (b) Feature-based

Figure 8.1: Clustering of Metering Dataset

Table 8.2: Metaparameter and Time Intervals

Dataset
Metaparameter Intervals Time Intervals

p P q Q constant Training Validation Use

Metering [0, 2] [0, 2] [0, 2] [0, 2] [False, True] [1, 2088] [2089, 2116] [2117, 2144]
Payment [0, 2] [0, 2] [0, 2] [0, 2] [False, True] [1, 438] [439, 466] [467, 494]

Figure 8.1 displays the feature-based representation in a two-dimensional feature space.
The class-based clustering (Figure 8.1a) shows that households (blue points) and small-
or medium businesses (red points) have a different behavior which is why they are not
overlapping. However, the other entities (green points) are spread across the feature
space. The feature-based clustering (Figure 8.1b) leads to 33 partitions plus one partition
for outliers. On the Payment dataset, the feature-based clustering leads to 37 partitions
plus one partition for outliers.

Model Validation and Use

Model validation is carried out for CSAR in order to determine the best metaparameters
for each model. For all clusters, all metaparameter combinations, and all validation time
instances (Table 8.2), a model is estimated returning a one-step ahead forecast for each
time series in its cluster ŷt, T r + 1 ≤ t ≤ Tr + V , where Tr and V are the number
of time instances for model training and validation, respectively. The metaparameter
combination providing the best forecast accuracy for its cluster is selected for model use.
ARIMA selects the best metaparameters based on the recommendation of auto.arima on
the training and validation interval yt, 1 ≤ t ≤ Tr + V .

Model use is carried out to assess the forecast accuracy of all forecast techniques. For each
time instance of the model use interval (Table 8.2), a model is estimated based on the
selected metaparameter combination. The resulting vector of one-step ahead forecasts
ŷt, T r + V + 1 ≤ t ≤ Tr + V + U is assessed regarding forecast accuracy, where U is the
number of time instances for model use.

8.3 Experimental Evaluation 115

Output Variables

In compliance with Hartmann et al. [HRH+19], the forecast accuracy is assessed with the
symmetric absolute percentage error (SAPE):

SAPE(yt, ŷt) = |yt − ŷt|
(|yt|+ |ŷt|)/2

· 100% (8.14)

where yt is the real value and ŷt the corresponding forecast value. SAPE is a relative
lock-step distance measure which relates the error to the average of real and forecast
value. Thus, it has a defined range (0% to 200%) and it is easier to interpret than squared
lock-step distance measures such as the Euclidean distance or RMSE. If yt or ŷt are not
defined, SAPE returns 200%. Averaging several SAPE errors results in the Symmetric
Mean Absolute Percentage Error (SMAPE). While model validation applies this output
variable on the validation interval [Tr + 1, ... , T r + V] to select the best metaparameters,
model use applies it to the use interval [Tr+ V + 1, ... , T r+ V +U] to assess the forecast
model:

SMAPE(y, ŷ) = 1
T

∑
t
SAPE(yt, ŷt) (8.15)

The forecast accuracy is assessed on the base and top level. On the base level, every time
series is assessed individually. On the top level, all time series are aggregated for each
time instance:

∑
i yt,i. These aggregated values are compared to the aggregated forecast∑

i ŷt,i. If a real value is missing, it is not included in the aggregate together with its
forecast counterpart (and vice-versa).

The runtime is measured in seconds. We only report the time of the single-threaded ex-
ecution. Since ARIMA execution takes a considerable amount of time, we measure the
calculation time for a representative sample of time series and extrapolate it for the com-
plete dataset. The parallel execution, which is carried out on all time series for assessing
the forecast accuracy, confirms the accuracy of this extrapolation.

8.3.2 Results and Discussion

The results of our evaluation are presented and discussed in the order of our hypotheses:
the forecast accuracy is assessed, followed by runtime for model validation and model
use.

Forecast Accuracy

Figure 8.2 shows the forecast accuracy of the datasets on the top level and on the base
level, respectively. The boxplot shows the distribution of forecast errors as SAPE, while
the red cross displays the mean error as SMAPE.

On the top level of the Metering dataset (Figure 8.2a), the naive forecasts (N and NS) have
an SMAPE of 32.9% and 18.9%. With 13.5%, ARIMA (A) is more accurate. The monolithic
CSAR (OC) is as accurate as ARIMA with 13.6%. Clustering significantly improves the
accuracy. Class-based clustering (CC) has an error of 12.5%. The feature-based clustering
(FC) provides an even better partitioning which reaches 11.8%.

116 Chapter 8 Time Series Clustering

N NS A OC CC FC

0
10

20
30

40
50

60
70

S
A

P
E

 (
%

)

(a) Metering (Top)

N NS A OC CC FC

0
5

10
15

S
A

P
E

 (
%

)
(b) Payment (Top)

N NS A OC CC FC

0
50

10
0

15
0

20
0

S
A

P
E

 (
%

)

(c) Metering (Base)

N NS A OC CC FC

0
20

40
60

80

S
A

P
E

 (
%

)

(d) Payment (Base)

Figure 8.2: Forecast Accuracy

This behavior is confirmed on the Payment dataset (Figure 8.2b). Again, the naive fore-
casts provide an SMAPE of 4.9% (N) and 5.9% (NS), respectively. Thus, the value of the
previous season is not a good guess for this dataset and the most recent value provides
a smaller error. ARIMA (A) is only slightly better with 4.8%. CSAR modeling revealed
an overall improvement compared to these forecast techniques. Monolithic CSAR (OC)
provides an error of 4.2%. There is no significant difference with respect to class-based
clustering (CC); the latter also provides 4.2%. Interestingly, feature-based clustering (FC)
provides a strong improvement with 3.6%, underlining that class labels do not necessar-
ily reflect the behavior for accurate clustering.

Contrary to expectations, no significant difference is observed between the traditional
and CSAR forecast techniques on the base level. The error on the Metering dataset (Figure
8.2c) decreases from 55.5% and 48.6% (N and NS) to 45.8% (A). OC and CC provide
results that are slightly less accurate than ARIMA (46.8% and 47.2%). The feature-based
clustering (FC) has an accuracy similar to ARIMA (45.9%).

The Payment dataset confirms this behavior (Figure 8.2d). While the naive forecasts have
an SMAPE of 21.8% (N) and 28.5% (NS), reconfirming the observation of the top level,
ARIMA (A) is slightly more accurate with 20.8%. The evaluation does not reveal an
improvement of CSAR over ARIMA, with an SMAPE ranging between 21.7% (OC and
CC) and 21.4% (FC).

Overall, our experiments show that CSAR is at least as accurate as ARIMA on the base
level and even more accurate on the top level. Furthermore, the forecasts are calculated
much faster, as the next experiment will show.

Model Validation Runtime

To identify ARIMA metaparameters, auto.arima needs on average 25 seconds per time
series. This sums up to 163,668 seconds, i.e., approximately 45 hours, for all Metering
time series (Table 8.3). For CSAR, we assess all metaparameter combinations based on
their one-step ahead forecast in the validation interval. For a single time instance and all
time series, the validation of OC takes on average 69 seconds with a standard deviation of
4 seconds. Splitting a dataset into clusters leads to a higher validation time of 108 seconds
(CC) and 846 seconds (FC) with a similar standard deviation. CC splits the dataset into
three clusters but the validation time does not triple compared to OC. Therefore, smaller
partitions need less validation time but clustering itself incurs some overhead compared
to OC.

This behavior is confirmed on the Payment dataset. ARIMA (A) only needs 1.9 seconds
per time series, thus, 3,792 seconds, i.e., approximately 1.1 hours, for all time series and

8.3 Experimental Evaluation 117

Table 8.3: Runtime per Time Instance in Seconds

Technique
Validation Use

Metering Payment Metering Payment

A 163,668 3,792 141,968 582
OC 69 ± 4 47 ± 4 0.29 ± 0.03 0.10 ± 0.03
CC 108 ± 3 168 ± 3 0.62 ± 0.03 0.59 ± 0.09
FC 846 ± 7 1,186 ± 8 3.63 ± 0.14 3.40 ± 0.27

one time instance. It is faster than the validation time on the Metering dataset due to the
shorter time series length. Monolithic CSAR, class-, and feature-based partitioning (OC,
CC, FC) only need 47 to 1,186 seconds because they validate all time series in a cluster
at once. Overall identifying metaparameters for CSAR is one order of magnitude faster
than ARIMA, even on long validation intervals.

Model Use Runtime

During model use, a model is estimated based on the best configuration per time series
(A) or per cluster (OC, CC, FC). Subsequently, this model is used to provide a forecast.
Estimating an ARIMA model (A) for each Energy time series requires on average 22 sec-
onds and adds up to 141,968 seconds, i.e., approximately 39 hours (Table 8.3). Estimating
a model for CSAR for a single time instance only requires 0.29 seconds (OC). Class- and
feature-aware clustering incurs some overhead since one CSAR model per cluster is esti-
mated. However, even with clustering, CSAR outperforms ARIMA model estimation by
two orders of magnitude.

This behavior is confirmed by the Payment dataset. Modeling an ARIMA model (A)
takes 0.29 seconds which adds up to 582 seconds for one dataset. This is faster than
the calculation time on the Energy dataset due to the shorter time series length. Again,
monolithic CSAR, class-, and feature-based partititioning (OC, CC, FC) are faster by two
orders of magnitude. They are less affected by the time series length, but by the amount
of clusters to model.

8.4 SUMMARY

In this chapter, we have proposed a feature-based clustering technique for identifying
time series clusters with similar correlation features, and evaluated the clustering for
time series forecasting. These features were selected based on the observation that CSAR
is closely related to ARIMA models, where these features are also applied. The CSAR
forecast technique together with clustering showed its capability to forecast big time
series datasets more accurately and by two orders of magnitude faster than traditional
techniques. These findings were experimentally confirmed on two real-world datasets.

Hartmann et al. also showed the superiority of a monolithic CSAR model over other
traditional and vectorized forecast techniques, i.e., triple exponential smoothing, vector
autoregression, Croston’s method, and hierarchical forecasting [Har18]. As we are out-
performing the monolithic CSAR model on the top level, we surely outperform other tra-
ditional forecast techniques, too. But other vectorized forecast technique might improve
their results by clustering the time series, which is why we recommend investigating this
in future work.

118 Chapter 8 Time Series Clustering

9
CONCLUSIONS

In this work, we have found a novel feature-based engineering technique that fulfills the
three goals which we have set in the Introduction (Chapter 1). First, it captures important
characteristics which provide beneficial results in subsequent data-mining tasks. Second,
it successfully tackles the challenges of big time series datasets (Chapter 2). Long time
series with a fine granularity are efficiently transformed into a short representation, and
the feature-based distance measure efficiently compares the representations. Finally, it is
versatile in that it takes the specific requirements from data-mining tasks into account.

In more detail, we have started by surveying engineering techniques based on raw data,
shapes, models, and features (Chapter 3). Comparing these techniques by their time
and space requirements revealed that features are most promising. The survey also re-
vealed that feature-based engineering techniques are mainly designed for specific data-
mining tasks. However, a versatile engineering technique applicable to several tasks is
most desirable. Therefore, we studied concrete big time series datasets in a design ra-
tionale, and based on these observations, we introduced our feature-based engineering
technique (Chapter 4). Its representation efficiently captured deterministic characteris-
tics, i.e., trend and season, as well as stochastic characteristics, i.e., distribution and cor-
relation, using our multi-seasonal decomposition technique. Its distance measure based
on the Euclidean distance compared the resulting feature vectors and thus, the structure
of the underlying time series. This versatile technique provided the backbone for subse-
quent techniques.

In the second part of this work, we have successfully applied our feature-based engi-
neering technique to time series generation, matching, classification, and clustering. Re-
garding time series generation (Chapter 5), our generation technique FBG captured im-
portant time series characteristics and evolved time series that were highly similar to
given time series. Thus, FBG outperformed state of the art. Regarding time series match-
ing (Chapter 6), we extended the symbolic aggregate approximation (SAX) with features
from our representation. The resulting techniques, the season-aware and trend-aware
symbolic approximations (sSAX and tSAX), provided a more effective retrieval of sim-
ilar time series while keeping the same representation size as SAX. Most importantly,
we proved that the corresponding distance measures were lower-bounding. Although
sSAX increased the runtime for calculating the representation distance, exact matching
was up to three orders of magnitude faster due to better pruning. Regarding time series
classification (Chapter 7), our feature-based engineering technique tackled the challenges
of classifying big datasets with long time series as it efficiently captured discriminative
characteristics. Thus, classifiers using our representation achieved both, an excellent clas-
sification accuracy as well as a short runtime, compared to state-of-the-art techniques for
long time series. Regarding time series clustering (Chapter 8), we devised a meaningful
partitioning of time series datasets by using correlation features. Applied to vectorized
forecasting, it further improved the forecast accuracy of the cross-sectional autoregres-
sion model (CSAR) while keeping a short runtime. In summary, we were able to give
better analytical insights by using our versatile feature-based engineering technique.

119

Future Research Directions

The backbone of this work was an engineering technique based on statistical features.
Regarding this foundation and the subsequent data-mining tasks, we see a lot of open
challenges and list a few of them that we consider most interesting.

Further Time Series Components Our feature-based representation focuses on a time
series model with a linear trend and multiple seasonal components. Other mod-
els can be assumed, or other components can be added to the proposed time series
model if it is required. Also, non-linear trends may occur. Then, the feature-based
representation and distance can be adapted to these requirements. Our symbolic
approximations, sSAX and tSAX, focus on one deterministic component per time
series, a seasonal component and a linear trend component, respectively. Since time
series exhibit these components simultaneously, future studies are required to com-
bine and extend sSAX and tSAX for investigating these cases accurately.

Learned Representations We focused on statistical features that have been presented in
the literature on time series analysis. If we consider the automation in many do-
mains, important characteristics should also be extracted automatically. Therefore,
further research should focus on learning characteristics with, e.g., ANNs, and com-
pare them with our feature-based representation. As a model-based representation,
ANNs require more passes over a dataset for identifying and estimating a model.
However, using a model on a time series is fast. Specifically, recurrent networks and
auto-encoders [LBH15] have the potential to learn representations for time series
classification and clustering. Although they do not provide interpretable features,
they should also be applicable to time series generation. As time series matching
requires a lower-bounding distance measure, we are not sure whether future work
can prove this property for learned representations.

Indexable and Asymmetric Time Series Matching Regarding time series matching, fu-
ture work should concentrate on time series matching with indexes. Until recently,
related work has focused on indexes based on SAX for matching billions of time se-
ries. However, the time series lengths are rather short (T ≤ 640 in [ZIP16], T ≤ 256
in [ZAER19]). Our season- and trend-aware approximations have the potential to
efficiently index and match longer time series thanks to their higher representation
accuracy. Moreover, an asymmetric distance measure of sPAA/tPAA with sSAX/t-
SAX representations should further increase the pruning power and the approxi-
mate accuracy [SK08].

Contribution to Analytical Systems

This work has highlighted that feature-based analytics is a versatile tool. In an attempt to
give an outlook on its further use, we provide a glance at two analytical systems, ECAST
and NESTOR. Their components are illustrated in Figure 9.1.

The Energy Forecasting Service (ECAST) is part of an IoT system for energy load control
[GOF17]. For a given forecast task from connected devices, ECAST compares the forecast
accuracy of suitable forecast techniques [UFK+14, UHH+16]. Its backend (Figure 9.1a)
consists of three main components: a use case repository, a core logic component, and a pre-
diction API. The use case repository stores time series and forecasts, as well as forecast
tasks and parameters. The core logic component has a time series manager for preparing
and transforming the data into the internal format, a recommender for retrieving optimal

120 Chapter 9 Conclusions

Use Case
Repository

Core Logic
Component

Time
Series

Manager

Output
Evaluator

Task
Creator

Recom-
mender

Prediction
API

(a) ECAST [UHH+16]

Logical Data Views
& Declarative API

Specialized Query
Processing

Storage Engine

Logical Sequence Views

Similarity
Search

Aggrega-
tion

Filtering

Summarization
and Indexing

Parallelization

Adaptive
Reorganization

Modern
Hardware

(b) NESTOR [PZ19]

Figure 9.1: Components of Analytical Systems

parameters from the repository, a task creator for creating forecast tasks, and an output
evaluator for assessing the forecast accuracy. Forecast techniques are called via the predic-
tion API and return forecasts to the system.

Feature-based analytics has the potential to extend two ECAST components, the recom-
mender and the prediction API. The recommender compares the structural similarity of
a given time series and the time series from the repository and suggests parameters from
the most similar use case. Feature-based classification could enrich this by suggesting pa-
rameters for a specific domain of time series such as the nature of the signal (load, price,
wind power production, solar power production) and the aggregation level (household
level, grid level). Moreover, vectorized forecast techniques, in combination with feature-
based clustering, could extend the prediction API so that datasets of similar time series
are forecast together.

Zoumpatianos and Palpanas suggest several courses of action in order to manage big
time series datasets and to carry out complex analytics [ZP18]. Their system NESTOR
(Figure 9.1b) summarizes these actions in three layers, a storage engine, a specialized query
processing, and a logical data view with a declarative API. NESTOR’s storage engine en-
compasses techniques for an efficient retrieval of time series, from indexing summarized
datasets outperforming sequential scans, over an adaptive reorganization of the data layout,
to efforts regarding parallelization and using modern hardware such as multi-core, SIMD,
and GPU. A specialized query processing enables an efficient time series matching (simi-
larity search), as well as an aggregation and filtering of results. Logical sequence views return
the results via a declarative interface, taking into account the inherent nature of the data
type.

Feature-based analytics could contribute to these actions in two ways. First, our symbolic
approximations improve the similarity search; they could be seamlessly integrated as an
extension for datasets with deterministic behavior. Second, data management platforms
like NESTOR should be assessed using generated datasets with realistic characteristics,
as Arlitt et al. suggests [AMB+15]. Our feature-based generation technique evolves char-
acteristics arising in a multitude of domains, and thus, could be useful to achieve this
task.

With this in mind, we hope that our research will be valuable in solving the difficulties of
current and future analytical systems.

121

122 Chapter 9 Conclusions

BIBLIOGRAPHY

[AFS93] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. Efficient Similarity
Search In Sequence Databases. In Proceedings of the 4th International Confer-
ence on Foundations of Data Organization and Algorithms, volume 730, pages
69–84, 1993.

[Agg02] Charu C. Aggarwal. On Effective Classification of Strings with Wavelets. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 163–172, 2002.

[AJB97] Henrik André-Jönsson and Dushan Z. Badal. Using Signature Files for
Querying Time-Series Data. In Proceedings of the 1st European Symposium
on Principles of Data Mining and Knowledge Discovery, pages 211–220, 1997.

[Ald19] Eric Aldrich. Functions for Computing Wavelet Filters, Wavelet Transforms
and Multiresolution Analyses, 2019. R package version 0.3.0, https://cran.
r-project.org/package=wavelets.

[AMB+15] Martin F. Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah, Jeff Healey,
and Ben Vandiver. IoTAbench: an Internet of Things Analytics Benchmark.
In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, pages 133–144, 2015.

[APHRH13] Florencia Almonacid, Pedro Pérez-Higueras, Pedro Rodrigo, and Leocadio
Hontoria. Generation of ambient temperature hourly time series for some
Spanish locations by artificial neural networks. Renewable Energy, 51:285–
291, 2013.

[ASY15] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-
series clustering – A decade review. Information Systems, 53:16–38, 2015.

[BDHL12] Anthony Bagnall, Luke Davis, Jon Hills, and Jason Lines. Transformation
Based Ensembles for Time Series Classification. In Proceedings of the 12th
SIAM International Conference on Data Mining, pages 307–318, 2012.

[BdMK02] Julia Bilbao, Argimiro H. de Miguel, and Harry D. Kambezidis. Air tem-
perature model evaluation in the north mediterranean belt area. Journal of
Applied Meteorology and Climatology, 41(8):872 – 884, 2002.

[Bel77] Antonio Bellacicco. Clustering Time Varying Data. In Proceedings of the
European Meeting of Statisticians, pages 739–747, 1977.

[Bha43] Anil Kumar Bhattacharyya. On a measure of divergence between two sta-
tistical populations defined by their probability distributions. Bulletin of the
Calcutta Mathematical Society, 35:99 – 109, 1943.

123

https://cran.r-project.org/package=wavelets
https://cran.r-project.org/package=wavelets

[BJ14] Anthony J. Bagnall and Gareth Janacek. A Run Length Transformation for
Discriminating Between Auto Regressive Time Series. Journal of Classifica-
tion, 31:154–178, 2014.

[BJR08] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time series
analysis: forecasting and control. Wiley, 4th edition, 2008.

[BK09] Kevin Brokish and James Kirtley. Pitfalls of modeling wind power using
markov chains. In Proceedings of the IEEE/PES Power Systems Conference and
Exposition, pages 1 – 6, March 2009.

[BK15] Matthew Butler and Dimitar Kazakov. SAX Discretization Does Not Guar-
antee Equiprobable Symbols. IEEE Transactions on Knowledge and Data Engi-
neering, 27(4):1162–1166, 2015.

[BK17] Martin Becker and Stefan Klößner. Pearson Distribution System, 2017. R pack-
age version 1.1, https://cran.r-project.org/package=PearsonDS.

[BLB+17] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn
Keogh. The great time series classification bake off: a review and experi-
mental evaluation of recent algorithmic advances. Data Mining and Knowl-
edge Discovery, 31(3):606–660, 2017.

[BLHB15] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. Time-Series
Classification with COTE: The Collective of Transformation-Based Ensem-
bles. IEEE Transactions on Knowledge and Data Engineering, 27(9):2522–2535,
2015.

[Bur17] U.S. Census Bureau. X-13ARIMA-SEATS Reference Manual V1.1, 2017.
http://census.gov/ts/x13as/docX13ASHTML.pdf (visited on January 2,
2017).

[BYS08] Depei Bao, Zehong Yang, and Yixu Song. A generalized model for financial
time series representation and prediction. Applied Intelligence, 29(1):1–11,
2008.

[CBNKL18] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-
Liehr. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests.
Neurocomputing, 307:72 – 77, 2018.

[CCL+07] Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. Index-
able PLA for Efficient Similarity Search. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases, pages 435–446, 2007.

[CCMT90] Robert B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma Ter-
penning. STL: A Seasonal-Trend Decomposition Procedure Based on Loess.
Journal of Official Statistics, 6(1):3–73, 1990.

[CDB94] Mark A. Cuddihy, J. B. Drummond Jr., and Daniel J. Bourquin. Vehicle
Crash Data Generator, 1994.

[CF99] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient Time Series Matching by
Wavelets. In Proceedings of the 15th International Conference on Data Engineer-
ing, pages 126–133, 1999.

[CHB+19] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,
Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou,
Mu Li, Junyuan Xie, Min Lin, and Yutian Li Yifeng Geng. Extreme Gradi-
ent Boosting, 2019. R package version 0.90.0.2, https://cran.r-project.
org/package=xgboost.

124 BIBLIOGRAPHY

https://cran.r-project.org/package=PearsonDS
http://census.gov/ts/x13as/docX13ASHTML.pdf
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=xgboost

[CKH+15] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, and Anthony
Bagnall. UCR Time Series Classification Archive, 2015.

[CKLF16] Maximilian Christ, Andreas W. Kempa-Liehr, and Michael Feindt. Dis-
tributed and parallel time series feature extraction for industrial big data
applications. Technical report, Universität Freiburg, 2016.

[CP08] Marcella Corduas and Domenico Piccolo. Time series clustering and classifi-
cation by the autoregressive metric. Computational Statistics & Data Analysis,
52(4):1860–1872, 2008.

[CPSK10] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh.
iSAX 2.0: Indexing and Mining One Billion Time Series. In Proceedings of
the 10th IEEE International Conference on Data Mining, pages 58–67, 2010.

[Dag80] Estella Bee Dagum. The X-11-ARIMA seasonal adjustment method. Statistics
Canada, 1980.

[DBB+18] Michael Durstewitz, Guillaume Behem, Volker Berkhout, Elisabeth Buch-
mann, Robert Cernusko, Stefan Faulstich, Berthold Hahn, Marc-Alexander
Lutz, Sebastian Pfaffel, Florian Rehwald, and Susann Spriestersbach.
Windenergie Report Deutschland 2017. Fraunhofer Verlag, 2018.

[DOR04] Philip De Chazal, Maria O’Dwyer, and Richard B. Reilly. Automatic Classi-
fication of Heartbeats Using ECG Morphology and Heartbeat Interval Fea-
tures. IEEE Transactions on Biomedical Engineering, 51(7):1196–1206, 2004.

[DPW96] Frank Dellaert, Thomas Polzin, and Alex Waibel. Recognizing emotion in
speech. In Proceedings of the 4th International Conference on Spoken Language
Processing, pages 1970–1973, 1996.

[DTS+08] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Ea-
monn J. Keogh. Querying and Mining of Time Series Data: Experimental
Comparison of Representations and Distance Measures. Proceedings of the
VLDB Endowment, 1(2):1542–1552, 2008.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the 2nd International Conference on Knowledge Discov-
ery and Data Mining, pages 226–231, 1996.

[Eur09] The Directive 2009/28/EC of the European Parliament and the Council of
the European Union, 2009. https://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:32009L0028.

[Eur19] The Renewable Energy Progress Report of the European Commission,
2019. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:52019DC0225.

[Fal96] Christos Faloutsos. Searching Multimedia Databases by Content. Kluwer, 1996.

[FFQ17] The FFQ Project, 2017. https://wwwdb.inf.tu-dresden.de.

[FHW16] Eibe Frank, Mark A. Hall, and Ian H. Witten. The WEKA Workbench, 2016.
https://www.cs.waikato.ac.nz/ml/weka.

[Fis14] Ulrike Fischer. Forecasting in Database Systems. PhD thesis, Technische Uni-
versität Dresden, 2014.

BIBLIOGRAPHY 125

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0225
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0225
https://wwwdb.inf.tu-dresden.de
https://www.cs.waikato.ac.nz/ml/weka

[FJ14] Ben D. Fulcher and Nick S. Jones. Highly Comparative Feature-Based Time-
Series Classification. IEEE Transactions on Knowledge and Data Engineering,
26(12):3026–3037, 2014.

[FLJ13] Ben D. Fulcher, Max A. Little, and Nick S Jones. Highly comparative time-
series analysis: the empirical structure of time series and their methods.
Journal of the Royal Society Interface, 10(83), 2013.

[FPD+17] Germain Forestier, François Petitjean, Hoang Anh Dau, Geoffrey I. Webb,
and Eamonn J. Keogh. Generating synthetic time series to augment sparse
datasets. In Proceedings of the IEEE International Conference on Data Mining,
2017.

[Fu11] Tak-Chung Fu. A review on time series data mining. Engineering Applica-
tions of Artificial Intelligence, 24(1):164–181, 2011.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GHLR01] Cyril Goutte, Lars Kai Hansen, Matthew G. Liptrot, and Egill Rostrup.
Feature-Space Clustering for fMRI Meta-Analysis. Human Brain Mapping,
13:165–183, 2001.

[Gio19] Toni Giorgino. Dynamic Time Warping Algorithms, 2019. R package version
1.21.3, https://cran.r-project.org/package=dtw.

[GOF17] The GOFLEX Project, 2017. https://www.goflex-project.eu.

[HA13] Robert J. Hyndman and George Athansopoulos. Forecasting: principles and
practice. OTexts, 2013.

[Har18] Claudio Hartmann. Forecasting Large-scale Time Series Data. PhD thesis, Tech-
nische Universität Dresden, 2018.

[HK08] Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecast-
ing: the Forecast Package for R. Journal Of Statistical Software, 27(3):1–22,
2008.

[HKL20] Claudio Hartmann, Lars Kegel, and Wolfgang Lehner. Feature-aware fore-
casting of large-scale time series data sets. it - Information Technology, 2020.
Published online ahead of print.

[HRH+19] Claudio Hartmann, Franziska Ressel, Martin Hahmann, Dirk Habich, and
Wolfgang Lehner. CSAR : the cross-sectional autoregression model for short
and long-range forecasting. International Journal of Data Science and Analytics,
2019.

[HWN15] Rob J. Hyndman, Earo Wang, and Laptev Nikolay. Large-Scale Unusual
Time Series Detection. In Workshop Proceedings of the IEEE International Con-
ference on Data Mining, pages 1616–1619, 2015.

[HY99] Yun-Wu Huang and Philip S. Yu. Adaptive Query Processing for Time-
Series Data. In Proceedings of the 5th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 282–286, 1999.

[IFW+19] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane
Idoumghar, and Pierre Alain Muller. Deep learning for time series clas-
sification: a review. Data Mining and Knowledge Discovery, 33(4):917–963,
2019.

126 BIBLIOGRAPHY

http://www.deeplearningbook.org
https://cran.r-project.org/package=dtw
https://www.goflex-project.eu

[ILD+17] Nadeem Iftikhar, Xiufeng Liu, Sergiu Danalachi, Finn E. Nordbjerg, and
Jens H. Vollesen. A scalable smart meter data generator using spark. In
OTM Conferences 2017, pages 21 – 36, 2017.

[Int17] International Joint Conference on Artificial Intelligence. IJCAI 2017 -
Data Mining Contest, 2017. https://tianchi.aliyun.com/competition/
entrance/231591/information (visited on February 8, 2017).

[JL86] D. I. Jones and M. H. Lorenz. An application of a markov chain noise
model to wind generator simulation. Mathematics and Computers in Simu-
lation, 28(5):391 – 402, 1986.

[KB90] Katarina Košmelj and Vladimir Batagelj. Cross-Sectional Approach for
Clustering Time Varying Data. Journal of Classification, 7(1):99–109, 1990.

[KDZP18] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-
panas. Coconut: A scalable bottom-up approach for building data series
indexes. Proceedings of the VLDB Endowment, 11(6):677–690, 2018.

[Keg19a] Lars Kegel. Supporting material, 2019. https://github.com/lkegel/dsax.

[Keg19b] Lars Kegel. Supporting material, 2019. https://github.com/lkegel/fbc.

[Keo97] Eamonn J. Keogh. Fast Similarity Search in the Presence of Longitudinal
Scaling in Time Series Databases. In Proceedings of the 9th International Con-
ference on Tools with Artificial Intelligence, pages 578–584, 1997.

[KGP01] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. Distance
measures for effective clustering of ARIMA time-series. In Proceedings of the
IEEE International Conference on Data Mining, 2001.

[KHL16] Lars Kegel, Martin Hahmann, and Wolfgang Lehner. Template-based
Time series generation with Loom. In Proceedings of the Workshops of the
EDBT/ICDT Joint Conference, 2016.

[KHL17a] Lars Kegel, Martin Hahmann, and Wolfgang Lehner. Feature-driven time
series generation. In Proceedings of the 29th GI-Workshop Grundlagen von
Datenbanken, 2017.

[KHL17b] Lars Kegel, Martin Hahmann, and Wolfgang Lehner. Generating What-If
Scenarios for Time Series Data. In Proceedings of the 29th International Confer-
ence on Scientific and Statistical Database Management, 2017.

[KHL18] Lars Kegel, Martin Hahmann, and Wolfgang Lehner. Feature-based Com-
parison and Generation of Time Series. In Proceedings of the 30th International
Conference on Scientific and Statistical Database Management, pages 1–12, 2018.

[KHSM17] Y. Kang, R. J. Hyndman, and K. Smith-Miles. Visualising forecasting algo-
rithm performance using time series instance spaces. International Journal of
Forecasting, 33(2):345 – 358, 2017.

[KK03] Eamonn J. Keogh and Shruti Kasetty. On the Need for Time Series Data
Mining Benchmarks. Data Mining and Knowledge Discovery, 7(4):349–371,
2003.

[KKD91] K. M. Knight, S. A. Klein, and J. A. Duffie. A methodology for the synthesis
of hourly weather data. Solar Energy, 46(2):109 – 120, 1991.

[KKSM91] F. C. Kaminsky, R. H. Kirchhoff, C. Y. Syu, and J. F. Manwell. A comparison
of alternative approaches for the synthetic generation of a wind speed time
series. Journal of Solar Energy Engineering, 113(4):280 – 289, 1991.

BIBLIOGRAPHY 127

https://tianchi.aliyun.com/competition/entrance/231591/information
https://tianchi.aliyun.com/competition/entrance/231591/information
https://github.com/lkegel/dsax
https://github.com/lkegel/fbc

[Kol08] Michael Kolonko. Inversionsmethode. In Stochastische Simulation, pages
85–95. Vieweg+Teubner, 2008.

[KPMP01] Eamonn Keogh, Michael Pazzani, Sharad Mehrotra, and Michael Pazzani.
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 151–162, 2001.

[KS83] M. Kendall and A. Stuart. The Advanced Theory of Statistics, volume 3, pages
410 – 414. Griffin, 1983.

[LBCSA11] Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson.
Classification of Household Devices by Electricity Usage Profiles. In Pro-
ceedings of the 12th International Conference on Intelligent Data Engineering and
Automated Learning, pages 403–412, 2011.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–444, 2015.

[Lex19] Lexico.com. Oxford Dictionary: Engineering, 2019. Retrieved June 6, 2019,
from https://www.lexico.com/en/definition/engineering.

[LFK+14] Heiner Lasi, Peter Fettke, Hans Georg Kemper, Thomas Feld, and Michael
Hoffmann. Industry 4.0. Business and Information Systems Engineering,
6(4):239–242, 2014.

[Lia05] Thunshun Warren Liao. Clustering of time series data - a survey. Pattern
Recognition, 38:1857–1874, 2005.

[LKL03] Sangjun Lee, Dongseop Kwon, and Sukho Lee. Dimensionality Reduction
for Indexing Time Series Based on the Minimum Distance. Journal of Infor-
mation Science and Engineering, 19(4):697–711, 2003.

[LKLC03] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A Symbolic
Representation of Time Series, with Implications for Streaming Algorithms.
In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, 2003.

[LKWL07] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:
A novel symbolic representation of time series. Data Mining and Knowledge
Discovery, 15(2):107–144, 2007.

[LL18] Yun Li and Tao Li. Feature Engineering for Machine Learning and Data
Analytics. In Guozhu Dong and Huan Liu, editors, Feature Engineering for
Machine Learning and Data Analytics, pages 191–220. CRC Press, 2018.

[LSK06] Battuguldur Lkhagva, Yu Suzuki, and Kyoji Kawagoe. New Time Series
Data Representation ESAX for Financial Applications. In Proc. of the 22nd
International Conference on Data Engineering Workshops, 2006.

[Mah00] Elizabeth Ann Maharaj. Cluster of Time Series, 2000.

[McC02] Peter McCullagh. What is a statistical model? Annals of Statistics, 30(5):1225–
1267, 2002.

[MDC19] Elizabeth Ann Maharaj, Pierpaolo D’Urso, and Jorge Caiado. Time Series
Clustering and Classification. Taylor and Francis, 2019.

128 BIBLIOGRAPHY

https://www.lexico.com/en/definition/engineering

[MDH+19] David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel,
Friedrich Leisch, Chih-Chung Chang, and Chih-Chen Lin. Misc Functions
of the Department of Statistics, Probability Theory Group, 2019. R package ver-
sion 1.7.1, https://cran.r-project.org/package=e1071.

[MGQT13] Simon Malinowski, Thomas Guyet, René Quiniou, and Romain Tavenard.
1d-SAX: A Novel Symbolic Representation for Time Series. In Proceedings of
the 12th International Symposium on Intelligent Data Analysis, pages 273–284,
2013.

[MH00] Spyros Makridakis and Michèle Hibon. The M3-Competition: results, con-
clusions and implications. International Journal of Forecasting, 16(4):451 – 476,
2000.

[MH15] Hannes Müller and Uwe Haberlandt. Temporal rainfall disaggregation with
a cascade model: From single-station disaggregation to spatial rainfall. Jour-
nal of Hydrologic Engineering, 20(11), 2015.

[MLW04] Vasileios Megalooikonomou, Guo Li, and Qiang Wang. A Dimensional-
ity Reduction Technique for Efficient Similarity Analysis of Time Series
Databases. In Proceedings of the ACM CIKM International Conference on In-
formation and Knowledge Management, pages 160–161, 2004.

[Mör03] Fabian Mörchen. Time series feature extraction for data mining using DWT
and DFT. Technical report no. 33, Philips-Universität Marburg, 2003.

[MS82] B. McWilliams and Dan Sprevak. The simulation of hourly wind speed and
direction. Mathematics and Computers in Simulation, 24(1):54–59, 1982.

[MSA18] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The
M4 Competition: Results, findings, conclusion and way forward. Interna-
tional Journal of Forecasting, 34(4):802 – 808, 2018.

[MTV+17] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam
Shroff. TimeNet: Pre-trained deep recurrent neural network for time series
classification. Proceedings of the 25th European Symposium on Artificial Neural
Networks, 2017.

[MW01] Polly Wan Po Man and Man Hon Wong. Efficient and Robust Feature Ex-
traction and Pattern Matching of Time Series by a Lattice Structure. In Pro-
ceedings of the ACM CIKM International Conference on Information and Knowl-
edge Management, pages 271–278, 2001.

[NAM01] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-based
Classification of Time-series Data. In Information processing and technology,
pages 49–61. Nova Science Publishers, 2001.

[PCH93] Steven M. Pincus, Theodore R. Cummins, and Gabriel G. Haddad. Heart
rate control in normal and aborted-SIDS infants. American Journal of Physi-
ology, 264(3 Pt 2):R638–R646, 1993.

[PF02] Kevin B. Pratt and Eugene Fink. Search for Patterns in Compressed Time
Series. International Journal of Image and Graphics, 2(1):89–106, 2002.

[PG15] John Paparrizos and Luis Gravano. k-Shape: Efficient and Accurate Clus-
tering of Time Series. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 1855–1870, 2015.

[Pic90] D. Piccolo. A distance measure for classifying ARMA models. Journal of
time series analysis, 11(2):153–163, 1990.

BIBLIOGRAPHY 129

https://cran.r-project.org/package=e1071

[PO94] Duc Truong Pham and Ercan Oztemel. Control chart pattern recognition us-
ing feature-based learning vector quantization. International Journal of Pro-
duction Research, 32(3):721–729, 1994.

[PSAH15] T. Pesch, S. Schröders, H. J. Allelein, and J. F. Hake. A new Markov-chain-
related statistical approach for modelling synthetic wind power time series.
New Journal of Physics, 17(5), 2015.

[PWZP00] Chang-Shing Perng, Haixun Wang, Sylvia R. Zhang, and D. Stott Parker.
Landmarks: A New Model for Similarity-Based Pattern Querying in Time
Series Databases. In Proceedings of the 16th International Conference on Data
Engineering, pages 33–42, 2000.

[PZ19] Themis Palpanas and Kostas Zoumpatianos. Storage and retrieval system
for complex analytics on big sequence collections, 2019. http://nestordb.
com (visited on December 12, 2019).

[QWW98] Yunyao Qu, Changzhou Wang, and X. Sean Wang. Supporting Fast Search
in Time Series for Movement Patterns in Multiple Scales. In Proceedings of
the ACM CIKM International Conference on Information and Knowledge Man-
agement, pages 251–258, 1998.

[R C18] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2018.

[RCM+12] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo
Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh.
Searching and Mining Trillions of Time Series Subsequences under Dy-
namic Time Warping. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 262–270, 2012.

[RSC02] Marco Ramoni, Paola Sebastiani, and Paul Cohen. Bayesian Clustering by
Dynamics. Machine Learning, 47(1):91–121, 2002.

[SBW+05] A. Shamshad, M. A. Bawadi, W. M. A. Wan Hussin, T. A. Majid, and S. A. M.
Sanusi. First and second order Markov chain models for synthetic genera-
tion of wind speed time series. Energy, 30(5):693–708, 2005.

[SC78] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Op-
timization for Spoken Word Recognition. IEEE Transaction on Acoustics,
Speech, and Signal Processing, 26(1):43, 1978.

[SC07] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[SJ13] Jan Schaffner and Tim Januschowski. Realistic tenant traces for enterprise
DBaaS. In Workshops Proceedings of the 29th IEEE International Conference on
Data Engineering, pages 29 – 35, 2013.

[SK08] Jin Shieh and Eamonn J. Keogh. iSAX: Indexing and Mining Terabyte Sized
Time Series. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2008.

[SLL+14] Youqiang Sun, Jiuyong Li, Jixue Liu, Bingyu Sun, and Christopher Chow.
An improvement of symbolic aggregate approximation distance measure
for time series. Neurocomputing, 138:189–198, 2014.

[SS11] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its Appli-
cations. Springer, 2011.

130 BIBLIOGRAPHY

http://nestordb.com
http://nestordb.com

[Åst69] K. J. Åström. On the Choice of Sampling Rates in Parametric Identification
of Time Series. Information Sciences, 1(3):273–278, 1969.

[STK+03] Michael Steinbach, Pang-Ning Tan, Vipin Kumar, Steven Klooster, and
Christopher Potter. Discovery of Climate Indices using Clustering. In Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 446–455, 2003.

[TAR19] Terry Therneau, Beth Atkinson, and Brian Ripley. Recursive Partitioning and
Regression Trees, 2019. R package version 4.1.15, https://cran.r-project.
org/package=rpart.

[TGDH93] J. Timmer, C. Gantert, G. Deuschl, and J. Honerkamp. Characteristics of
hand tremor time series. Biological Cybernetics, 70:75–80, 1993.

[The11] Marina Theodosiou. Forecasting monthly and quarterly time series using
STL decomposition. International Journal of Forecasting, 27(4):1178 – 1195,
2011.

[The15] The Commission for Energy Regulation. CER Smart Metering Project, 2015.
www.ucd.ie/issda.

[TW02] Dat Tran and Michael Wagner. Fuzzy C-Means Clustering-Based Speaker
Verification. In Proceedings of the International Conference on Fuzzy Systems
and Advances in Soft Computing, pages 318–324, 2002.

[UFK+14] Robert Ulbricht, Ulrike Fischer, Lars Kegel, Dirk Habich, Hilko Donker, and
Wolfgang Lehner. ECAST: A benchmark Framework for Renewable Energy
Forecasting Systems. In Proceedings of the Workshops of the EDBT/ICDT Joint
Conference, 2014.

[UFLD13] Robert Ulbricht, Ulrike Fischer, Wolfgang Lehner, and Hilko Donker. Re-
thinking Energy Data Management: Trends and Challenges in Today’s
Transforming Markets. In Proceedings der 15. BTW Fachtagung des GI-
Fachbereichs Datenbanken und Informationssysteme, pages 421–440, 2013.

[UHH+16] Robert Ulbricht, Claudio Hartmann, Martin Hahmann, Hilko Donker, and
Wolfgang Lehner. Web-based Benchmarks for Forecasting Systems - The
ECAST Platform. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 2169–2172, 2016.

[vdMH18] Laurens J. P. van der Maaten and Geoffrey E. Hinton. Visualizing Data Us-
ing t-SNE. Journal of Machine Learning Research, 26(9):2579–2605, 2018.

[VGK02] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. Discovering
Similar Multidimensional Trajectories. In Proceedings of the 18th International
Conference on Data Engineering, pages 673–684, 2002.

[vPL02] A. H. C. van Paassen and Q. X. Luo. Weather data generator to study climate
change on buildings. Building Services Engineering Research and Technology,
23(4):251 – 258, 2002.

[WGH12] Jenna Wiens, John V. Guttag, and Eric Horvitz. Patient Risk Stratification for
Hospital-Associated C. diff as a Time-Series Classification Task. In Advances
in Neural Information Processing Systems 25, volume 1, pages 476 – 484, 2012.

[WSH06] Xiaozhe Wang, Kate Smith, and Rob Hyndman. Characteristic-Based Clus-
tering for Time Series Data. Data Mining and Knowledge Discovery, 13(3):335–
364, 2006.

BIBLIOGRAPHY 131

https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=rpart
www.ucd.ie/issda

[XPK10] Zhengzheng Xing, Jian Pei, and Eamonn J. Keogh. A Brief Survey on Se-
quence Classification. SIGKDD Explorations, 12(1):40, 2010.

[XY02] Yimin Xiong and Dit-Yan Yeung. Proceedings of the IEEE International Con-
ference on Data Mining. In ICDM, pages 717–720, 2002.

[XYWV12] Feng Xia, Laurence T. Yang, Lizhe Wang, and Alexey Vinel. Internet of
Things. International Journal of Communication Systems, 25(9):1101–1102,
2012.

[YF00] Byoung-Kee Yi and Christos Faloutsos. Fast Time Sequence Indexing for
Arbitrary Lp Norms. In Proceedings of the 26th International Conference on
Very Large Data Bases, 2000.

[YK09] Lexiang Ye and Eamonn Keogh. Time Series Shapelets: A New Primitive for
Data Mining. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 947–955, 2009.

[YYZ+15] Hong Yin, Shuqiang Yang, Xiaoqian Zhu, Shaodong Ma, and Lumin
Zhang. Symbolic representation based on trend features for biomedical
data classification. Frontiers of Information Technology & Electronic Engineer-
ing, 16(9):744–758, 2015.

[ZAER19] Liang Zhang, Noura Alghamdi, Mohamed Y. Eltabakh, and Elke A. Run-
densteiner. TARDIS : Distributed Indexing Framework for Big Time Series
Data. In Proceedings of the 35th IEEE International Conference on Data Engi-
neering, 2019.

[ZIP16] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. ADS: the adap-
tive data series index. VLDB Journal, 25(6):843–866, 2016.

[ZP18] Kostas Zoumpatianos and Themis Palpanas. Data Series Management : Ful-
filling the Need for Big Sequence Analytics. In Proceedings of the 34th IEEE
International Conference on Data Engineering, pages 16–17, 2018.

[ZY16] Chaw Thet Zan and Hayato Yamana. An improved symbolic aggregate ap-
proximation distance measure based on its statistical features. In Proceedings
of the 18th International Conference on Information Integration and Web-based
Applications and Services, pages 72–80, 2016.

132 BIBLIOGRAPHY

LIST OF FIGURES

1.1 Time Series Analytics . 12
1.2 Structure of this Work . 14

2.1 Domains of Time Series . 16
2.2 Data-mining Tasks . 18

3.1 Taxonomy of Engineering Techniques . 24
3.2 Time Series With PAA and SAX Representations 28
3.3 Life cycle of Time Series Model . 30

4.1 Multi-seasonal Decomposition . 46
4.2 Non-normalized Features (Metering) . 48
4.3 Non-normalized Features (Wind) . 49
4.4 Normalized Features . 50

5.1 Properties of Generation Techniques . 53
5.2 Overview of Feature-based Generation . 58
5.3 Modification of Time Series Components . 60
5.4 Feature Space of Economy Dataset . 62
5.5 Autoregressive Model . 63
5.6 Feature-based Distance of Recombination 67
5.7 Feature-based Distance of Markov Chain . 67
5.8 Feature-based Distance of Genetic Algorithm 67
5.9 Visual Distances . 70

6.1 Overview of Time Series Matching . 74
6.2 Time Series with Season . 79
6.3 Advantages of Season-aware SAX over SAX 80
6.4 Time Series with Trend . 82
6.5 Entropy on Season . 88
6.6 Entropy on Trend . 88
6.7 Increase of TLB compared to SAX . 89
6.8 Increase of Pruning Power Compared to SAX 89
6.9 Increase of Approximate Accuracy Compared to SAX 89

7.1 Run Length Distribution . 95
7.2 Features from tsfresh . 96
7.3 Overview of Feature-based Classification . 97
7.4 Feature-based Representation of Metering Dataset as Heatmap 98
7.5 Correlation-based Feature Selection [LL18] 99
7.6 Configuration of FBR . 104
7.7 Configuration of tsfresh . 105
7.8 Configuration of DWT . 106
7.9 Classification Accuracy . 106
7.10 Overall Runtime . 107
7.11 Classification Accuracy versus Overall Runtime 108

133

8.1 Clustering of Metering Dataset . 115
8.2 Forecast Accuracy . 117

9.1 Components of Analytical Systems . 121

134 LIST OF FIGURES

LIST OF TABLES

3.1 Properties of Engineering Techniques . 40

4.1 Properties of Decomposition Techniques . 44
4.2 Mean Runtime per Time Series in Seconds (Metering) 48

5.1 Properties of Generation Techniques . 57
5.2 Properties of Proposed Generation Techniques 64
5.3 Experimental Setting . 66
5.4 Median Feature-based Distance on All Datasets 69
5.5 Standard Distances . 71

6.1 Properties of Engineering Techniques . 77
6.2 Dataset Dimensions . 85
6.3 Configurations of Engineering Techniques 87
6.4 Matching Efficiency on Season (Large) . 90

7.1 Model Training Runtime of COTE . 94
7.2 Haar Wavelet . 95
7.3 Datasets for Classification . 103

8.1 Correlation Features for CSAR . 113
8.2 Metaparameter and Time Intervals . 115
8.3 Runtime per Time Instance in Seconds . 118

135

136 LIST OF TABLES

A
PROOFS FOR SSAX AND TSAX

A.1 PROOF OF LOWER-BOUNDING SPAA

Proof. We show that the following inequality always holds:

dsPAA(ȳ
sPAA

, ȳ′
sPAA

) ≤ dED(y, y′) (A.1)

For convenience, we useE = T/W for the length of a segment andB = T/L for the number
of seasons in the time series. We square both sides:

dsPAA(ȳ
sPAA

, ȳ′
sPAA

)2 ≤ dED(y, y′)2 (A.2)

Until Equation A.11, we focus on transforming the left-hand side. Using dsPAA from
Equation 6.15 (page 80) yields:

T

W · L

T∑
t=1

(∆σ(t−1)%L+1 + ∆resb t−1
E
c+1)2 (A.3)

Rewriting the residuals with Equation 3.7 (page 27) from PAA yields:

T

W · L

T∑
t=1

(∆σ(t−1)%L+1 + 1
E

E∑
j=1

∆resb t−1
E
c·E+j)

2 (A.4)

The residuals are the difference of time series values and season mask:

T

W · L

T∑
t=1

(
+ ∆σ(t−1)%L+1

+ 1
E

E∑
j=1

∆yb t−1
E
c·E+j

− 1
E

E∑
j=1

∆σ(b t−1
E
c·E+j−1)%L+1

)2 (A.5)

137

The season mask is also expressed as mean values of y (Equation 6.10, page 78):

T

W · L

T∑
t=1

(
+ 1
B

B∑
k=1

∆y(k−1)·L+(t−1)%L+1

+ 1
E

E∑
j=1

∆yb t−1
E
c·E+j

− 1
B

1
E

E∑
j=1

B∑
k=1

∆y(k−1)·L+(b t−1
E
c·E+j−1)%L+1

)2 (A.6)

We focus on the case when W · L = T , thus E = L and W = B. Factoring out 1
B·L = 1

T

yields:

1
T 2

T∑
t=1

(
+ L ·

B∑
k=1

∆y(k−1)·L+(t−1)%L+1

+B ·
L∑
j=1

∆yb t−1
L
c·L+j

−
L∑
j=1

B∑
k=1

∆y(k−1)·L+j
)2 (A.7)

We arrange the distances ∆yt in a matrix D ∈ RB×L as follows:

D =


∆y1 ∆y2 . . . ∆yL

∆yL+1 ∆yL+2 . . . ∆y2·L
...

...
. . .

...
∆y(B−1)·L+1 ∆y(B−1)·L+2 . . . ∆yT

 (A.8)

Consequently, we arrange the factors L and B and −1 in a matrix At ∈ RB×L. The
positions of these factors depend on t. The cell of t which is in row b t−1

L c+ 1 and column
(t−1)%L+1 is filled withB+L−1. The other cells in the same row are filled withB−1.
The other cells in the same column are filled with L− 1. All other cells are filled with −1.
For example, for t = 1:

A1 =


B + L− 1 B − 1 . . . B − 1
L− 1 −1 . . . −1

...
...

. . .
...

L− 1 −1 . . . −1

 (A.9)

With these two matrices, Equation A.7 is represented as follows:

1
T 2

T∑
t=1

(B∑
k=1

L∑
j=1

Atj,kDj,k

)2 (A.10)

138 Appendix A Proofs for sSAX and tSAX

Expanding the square and iterating through t yields:

1
T

(
+ (B + L− 1)

∑
1≤k≤B
1≤j≤L

D2
k,j

+ (B − 1)
∑

1≤k≤B
1≤j≤L

∑
1≤j′≤L
j′ 6=j

Dk,j ·Dk,j′

+ (L− 1)
∑

1≤k≤B
1≤j≤L

∑
1≤k′≤B
k′ 6=k

Dk,j ·Dk′,j

−
∑

1≤k≤B
1≤j≤L

∑
1≤k′≤B
1≤j′≤L
k′ 6=k
j′ 6=j

Dk,j ·Dk′,j′
)

(A.11)

The Euclidean distance from the right-hand side (Equation A.2) can be rewritten as
dED(y, y′)2 =

∑
1≤k≤B
1≤j≤L

D2
k,j and can be subtracted from the left-hand side. Multiplying

by −T leads to:

+ (B · L+ 1−B − L)
∑

1≤k≤B
1≤j≤L

D2
k,j (A.12)

− (1−B)
∑

1≤k≤B
1≤j≤L

∑
1≤j′≤L
j′ 6=j

Dk,j ·Dk,j′ (A.13)

− (1− L)
∑

1≤k≤B
1≤j≤L

∑
1≤k′≤B
k′ 6=k

Dk,j ·Dk′,j (A.14)

+
∑

1≤k≤B
1≤j≤L

∑
1≤k′≤B
1≤j′≤L
k′ 6=k
j′ 6=j

Dk,j ·Dk′,j′ ≥ 0 (A.15)

This is equivalent to:

B∑
k=1

B∑
k′=1

k<k′

L∑
j=1

L∑
j′=1

j<j′

(Dk,j −Dk,j′ −Dk′,j +Dk′,j′)2 ≥ 0 (A.16)

Since all summands are squared, they are always greater than or equal to zero. The other
cases W · L 6= T where W · L divides T can be solved similarily.

A.2 PROOF OF LOWER-BOUNDING SSAX

Proof. We show that sSAX lower-bounds the Euclidean distance:

dsSAX(ŷ
sSAX

, ŷ′
sSAX

) ≤ dED(y, y′) (A.17)

We show this property based on the distance measure from Equation 6.18 (page 81).
For given symbols σ̂, σ̂′, r̂es, r̂es′, we assume that the Case 1 from Equation 6.18 holds:

A.2 Proof of Lower-bounding sSAX 139

cs(σ̂, σ̂′) ≥ −cs(r̂es, r̂es′). Using Equation 6.17 (page 80) and reformulating the inequality
taking into account the sPAA features yields:

σ + res ≥ bσ̂ + br̂es ≥ bσ̂′+1 + b
r̂es
′+1 ≥ σ

′ + res′ (A.18)

Thus, cell(σ̂, σ̂′, r̂es, r̂es′) is always lower than the sum of sPAA features:

cell(σ̂, σ̂′, r̂es, r̂es′)
= cs(σ̂, σ̂′) + cs(r̂es, r̂es′)
= bσ̂ − bσ̂′+1 + br̂es − br̂es′+1

= bσ̂ + br̂es − (bσ̂′+1 + b
r̂es
′+1)

≤ σ + res− (σ′ + res′) (A.19)

By symmetry, this inequality also holds for Case 2 of Equation 6.18 and it is trivial for
Case 3. Thus, we can conclude:

dsSAX(ŷ
sSAX

, ŷ′
sSAX

) ≤ dsPAA(ȳ
sPAA

, ȳ′
sPAA

) (A.20)

As shown in Section A.1, sPAA distance lower-bounds the Euclidean distance.

A.3 PROOF OF COMBINED TREND FEATURE

Proof. We prove Equation 6.23 (page 81) as follows. As defined in Chapter 6, a time series
for time series matching is z-normalized. Thus, the mean of its values is zero. Taking into
account the trend component (Equations 6.19 and 6.20, page 81):

T∑
t=1

yt =
T∑
t=1

(trt + rest) =
T∑
t=1

(θ1 + θ2 · (t− 1) + rest) = 0 (A.21)

Linear regression implies that the residuals’ sum is zero (Equation 6.21, page 81):

T∑
t=1

(θ1 + θ2 · (t− 1)) = T · (θ1 + θ2 ·
T − 1

2) = 0 (A.22)

A.4 PROOF OF LOWER-BOUNDING TPAA

Proof. We show that tPAA lower-bounds the Euclidean distance:

dtPAA(y
tPAA

, y′
tPAA

) ≤ dED(y, y′) (A.23)

For convenience, we rewrite rest = resb(t−1)/(T/W)c+1. Squaring each side and setting the
trend components yields:

T∑
t=1

(∆trt + ∆rest)2 ≤
T∑
t=1

(∆trt + ∆rest)2 (A.24)

140 Appendix A Proofs for sSAX and tSAX

Expanding the summands and subtracting the common summands:

T∑
t=1

(
(∆rest)2 + 2 ·∆trt ·∆rest

)
≤

T∑
t=1

(
(∆rest)2 + 2 ·∆trt ·∆rest

)
(A.25)

All summands except one are arranged on the right-hand side:

T∑
t=1

(∆rest)2 ≤
T∑
t=1

(
(∆rest)2 + 2 ·∆trt · (∆rest −∆rest)

)
(A.26)

The trend component and the residuals are not correlated which is also true for mean
residuals (Equation 6.22, page 81). Thus, this equation can be rewritten as:

T∑
t=1

(∆rest)2 ≤
T∑
t=1

(∆rest)2 (A.27)

PAA distance lower-bounds the Euclidean distance as shown in [YF00].

A.5 PROOF OF LOWER-BOUNDING TSAX

Proof. We show that tSAX lower-bounds the Euclidean distance:

dtSAX(ŷ
tSAX

, ŷ′
tSAX

) ≤ dED(y, y′) (A.28)

By construction, the lookup table ct always returns the minimum distance between deter-
ministic components represented by φ̂ and by φ̂′. Similarily, the lookup table cell returns
the minimum distance between two PAA mean values r̂esw and r̂es′w. Therefore:

dtSAX(ŷ
tSAX

, ŷ′
tSAX

) (A.29)

=

√
ct(φ̂, φ̂′)2 + T

W

∑W

w=1
cell(r̂esw, r̂es′w)2 (A.30)

≤
√∑T

t=1
((∆trt)2 + (∆rest)2) (A.31)

=
√∑T

t=1

(
(∆trt)2 + (∆rest)2 + 2 ·∆trt ·∆rest

)
(A.32)

=
√∑T

t=1
(∆trt + ∆rest)2 (A.33)

= dtPAA(y
tPAA

, y′
tPAA

) (A.34)

In Equation A.32, we introduce a summand that equals zero because trend and residual
components are not correlated (Equation 6.22, page 81). As already shown, tPAA distance
lower-bounds the Euclidean distance (Appendix A.4).

A.5 Proof of Lower-bounding tSAX 141

142 Appendix A Proofs for sSAX and tSAX

B
LIST OF SYMBOLS

We summarize all symbols that have been used in this work. Since we refer to different
methods of the time-series analysis literature, some symbols are non-unique. We changed
the original notation if the meaning was ambiguous, otherwise we left it.

Latin Symbols

a (ARIMA model) non-seasonal error term
a (discretization) symbol
A size of alphabet of symbols, states or histogram

buckets
AA approximate accuracy
acc classification accuracy
acf autocorrelation
b breakpoint
B backshift operator
c index of class, i.e., class label
C number of classes
cc Pearson correlation coefficient
cell lookup table
cov covariance
cs lookup table
d (ARIMA model) order of non-seasonal differentiation
d (distance measure) distance function
D order of seasonal differentiation
det deterministic value
e CSAR error term
f (feature-based engineering) feature
f (statistical model) probability density function
F (feature-based engineering) value set of one feature
F (statistical model) cumulative distribution function
freq relative frequency of values within histogram bucket
g label function
G season granularity

143

h lag of autocorrelation, partial autocorrelation, or
value set

H entropy
i index of time series in dataset, a state, or a histogram

bucket
I (foundations) size of time series dataset
I (function) indicator function
j index of a second state or a recombination candidate
k index of a feature or a DTW warping path element
K length of feature vector, a value set, or a DTW warp-

ing path
kurt kurtosis
L (feature-based engineering) season length
L (function) likelihood function
m mean value
minPts DBSCAN clustering parameter
n absolute frequency
N normal distribution
o order of Minkowski distance
p (ARIMA model) order of non-seasonal autoregressive process or

cross section
p (feature-based engineering) lower threshold
p (function) probability function
P (ARIMA model) order of seasonal autoregressive process or cross sec-

tion
P (Markov model) transition probability matrix
P (statistical model) probability distribution
P set of probability distributions
pacf partial autocorrelation
PP pruning power
q order of non-seasonal moving average process or

amount of non-seasonal CSAR error terms
q (feature-based engineering) upper threshold
Q order of seasonal moving average process or amount

of seasonal CSAR error terms
R2 strength of component
res residual value
s index of seasonal component
S amount of seasonal components
S sample space
SAPE symmetric absolute percentage error (accuracy mea-

sure)
sd standard deviation
seas season value
skew skewness
t time instance
T length of time series
TLB tightness of lower bound
tr trend value
Tr number of time instances for model training

144 Appendix B List of Symbols

U number of time instances or time series for model
use

U uniform distribution
v differentiated time series value
V number of time instances for model validation
var variance
w index of segment
W amount of scalars in a representation
WP DTW warping path
y time series value
y
i

time series
y
t

cross section
Y (foundations) time series dataset
Y (model-based engineering) random variable
Z random variable

Greek Symbols

α seasonal error term
β factor of generation technique MD
γ factor of generation technique MD
δ local trend change value
∆ difference operator
ε DBSCAN clustering parameter
θ (ARIMA model) weight of non-seasonal moving average process
θ (statistical model) set of model parameters
Θ (ARIMA model) weight of seasonal moving average process
Θ (statistical model) space of model parameters
θ1 base value
θ2 trend slope
γ factor of generation technique MD
µ mean (model parameter)
π weight of linear process regressed on itself
σ seasonal feature
σ2 variance (model parameter)
φ (ARIMA model) weight of non-seasonal autoregressive process
φ (feature-based engineering) trend feature
Φ weight of seasonal autoregressive process
ψ weight of linear process

Accents and Other Symbols

N. B. x is a placeholder for different elements such as a value (y), a feature (f), etc.

x a vector of elements x
x̄ (shape-based engineering) reduction to a real value
x̄ (time series classification) subset from x
x̂ (model-based engineering) estimated model parameter

145

x̂ (shape-based engineering) discretization
x̂ (time series clustering) forecast
x̃ element corrected by its mean or base value
xn normalized element
x∗ target element

146 Appendix B List of Symbols

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, January 9, 2020

147

	Introduction
	Foundations of Time Series Analytics
	Time Series and Domains
	Time Series in Energy
	Time Series in Meteorology and Climate
	Time Series in Medicine

	Data-mining Tasks
	Time Series Generation
	Time Series Matching
	Time Series Classification
	Time Series Clustering

	Challenges
	Summary

	Time Series Engineering
	Raw-data-based Engineering
	Shape-based Engineering
	Representation
	Distance

	Model-based Engineering
	Representation
	Distance

	Feature-based Engineering
	Representation
	Distance

	Summary

	Feature-based Engineering Across Data-Mining Tasks
	Design Rationale
	Time Series Model
	Decomposition
	Related Work
	Multi-seasonal Decomposition

	Feature-based Representation
	Features for Deterministic Components
	Features for Stochastic Component
	Representation Size
	Representation Time

	Feature-based Distance Measure
	Summary

	Time Series Generation
	State of the Art
	Properties of Generation Techniques
	Raw-data-based Generation Techniques
	Model-based Generation Techniques
	Assessing Expressiveness
	Comparison

	Feature-based Generation
	Feature-based Modification
	Feature-based Recombination
	Comparison

	Experimental Evaluation
	Experimental Setting
	Feature-based Distance
	Standard Distance

	Summary

	Time Series Matching
	State of the Art
	Original SAX
	SAX Extensions

	Season- and Trend-aware Symbolic Approximation
	Season-aware Symbolic Approximation
	Trend-aware Symbolic Approximation
	Properties of Engineering Techniques

	Experimental Evaluation
	Experimental Setting
	Results and Discussion

	Summary

	Time Series Classification
	State of the Art
	Run Length Distribution
	Discrete Wavelet Transform
	Large Feature Vector

	System Overview
	Labeled Dataset
	Feature-based Representation
	Normalization
	Feature Selection
	Feature-based Classification

	Experimental Evaluation
	Experimental Setting
	Results and Discussion

	Summary

	Time Series Clustering
	Cross-sectional Autoregression Model
	Integration
	Autoregression
	Error Terms

	Feature-based Clustering
	ACF and PACF for ARIMA
	ACF and PACF for CSAR

	Experimental Evaluation
	Experimental Setting
	Results and Discussion

	Summary

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Proofs for sSAX and tSAX
	Proof of Lower-bounding sPAA
	Proof of Lower-bounding sSAX
	Proof of Combined Trend Feature
	Proof of Lower-bounding tPAA
	Proof of Lower-bounding tSAX

	List of Symbols

